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Abstract—The shallow ocean environment is ever changing
mostly due to temperature variations in its upper layers (<
100m) directly affecting sound propagation throughout. The
need to develop processors that are capable of tracking these
changes implies a stochastic as well as an “adaptive” design.
The stochastic requirement follows directly from the multitude of
variations created by uncertain parameters and noise. Some work
has been accomplished in this area, but the stochastic nature was
constrained to Gaussian uncertainties. It has been clear for a long
time that this constraint was not particularly realistic leading
a Bayesian approach that enables the representation of any
uncertainty distribution. Sequential Bayesian techniques enable
a class of processors capable of performing in an uncertain,
nonstationary (varying statistics), non-Gaussian, variable shallow
ocean. In this paper adaptive processors providing enhanced
signals for acoustic hydrophone measurements on a vertical array
as well as enhanced modal function estimates are developed.
Synthetic data is provided to demonstrate that this approach
is viable.

Index Terms—model-based processor, sequential Bayesian pro-
cessor, sequential Monte Carlo, particle filter.

I. INTRODUCTION

The shallow ocean is an uncertain, ever changing, dispersive

environment dominated by ambient and shipping noise as

well as temperature fluctuations that alter sound propagation

throughout. A processor is required to adapt to these en-

vironmental variations while simultaneously tracking modal

functions. A possible solution to this problem is accomplished

by developing a sequential Bayesian processor capable of

providing a joint solution to the modal function tracking

(estimation) and environmental adaptivity problem.

One basic approach to this problem is termed model-based.

Incorporating a propagation model into a signal processing

scheme has evolved over a long period of time where it

was recognized that by embedding a physics-based repre-

sentation can significantly improve the processing [1]-[5].

In ocean acoustics there are many problems of interest [6]-

[15] governed by propagation models of varying degrees of

sophistication.

Here we are interested in a shallow water environment

characterized by a normal-mode model. The model-based

approach offer a means of estimating various quantities of

high interest, but it also provides a methodology to statistically

evaluate its performance on-line [17].

In this paper, we are primarily interested in investigating the

application of the so-called “next generation” of model-based

signal processing algorithms, primarily the unscented Kalman

filter (UKF) and the particle filter (PF) with the goal of analyz-

ing their performance on pressure-field data synthesized from

the well-known Hudson Canyon experiments performed on the

New Jersey shelf [11], [12]. Recall that the PF is a sequential

Markov chain Monte Carlo (MCMC) Bayesian processor

capable of providing reasonable performance for a multi-

modal problem estimating a non-parametric representation of

the posterior distribution [24]. On the other hand, the UKF is a

unimodal processor capable of representing any single peaked

distribution using a statistical linearization technique based on

sigma points that deterministically characterize the posterior

[24].

Background for the state-space representation of our prob-

lem is given in Section II leading to the formulation of the

forward propagators. The design of the BP for a shallow

ocean acoustic problem is discussed in Section III and the

results are given where we compare processor performance.

We summarize and discuss our results in the final section.

II. STATE-SPACE PROPAGATOR

For our ocean acoustic signal enhancement problem we

assume a horizontally-stratified ocean of depth h with a

known horizontal source range rs and depth zs and that the

acoustic energy from a point source can be modeled as a

trapped wave governed by the Helmholtz equation [9], [14].

The standard separation of variables technique and removing

the time dependence leads to a set of ordinary differential

equations, that is, we obtain a “depth only” representation of

the wave equation which is an eigenvalue equation in z with

d2

dz2
φm(z) + κ2

z(m)φm(z) = 0, m = 1, · · · , M (1)

whose eigensolutions {φm(z)} are the so called modal func-

tions and κz is the wave number in the z-direction. These

solutions depend on the sound speed profile, c(z), and the

boundary conditions at the surface and bottom as well as the

corresponding dispersion relation given by

κ2 =
ω2

c2(z)
= κ2

r(m) + κ2
z(m), m = 1, . . . , M (2)

where κr(m) is the horizontal wave number associated with

the m-th mode in the r direction and ω is the harmonic source

frequency.



By assuming a known horizontal source range a priori,

we obtain a range solution given by the Hankel function,

H0(κrrs) enabling the pressure-field to be represented by

p(rs, z) =

M
∑

m=1

βm(rs, zs)φm(z) (3)

where p is the acoustic pressure; φm is the mth modal function

with the modal coefficient defined by

βm(rs, zs) := q H0(κrrs) φm(zs) (4)

for q is the source amplitude.

A. State-Space Model

The depth-only eigen-equation can easily be transformed to

state-space form by defining the state vector of the m-th mode

as

φm(z) :=

[

φm(z)
d
dz

φm(z)

]

=

[

φm1(z)
φm2(z)

]

(5)

Thus, we have for the m-th mode the following state

(vector) equation as:

d

dz
φm(z) = Am(z)φm(z) (6)

for

Am(z) =

[

0 1
−κ2

z(m) 0

]

(7)

Assuming that the ocean acoustic noise can be charac-

terized by additive uncertainties, we can extend the deter-

ministic state equation for the M -modes, that is, Φ(z) :=
[φ1(z)| · · · |φM(z)]T leading to the following 2M -dimensional

Gauss-Markov representation of the model:

d

dz
φ(z) = A(z)φ(z) + w(z) (8)

where w(z) = [w1 w2 . . . w2M ]T is additive, zero-mean

random noise. The system matrix A(z) is defined as

A(z) =







A1(z) · · · 0
...

. . .
...

0 · · · AM (z)






(9)

and the overall state vector is

φ(z) = [φ11 φ12 | φ21 φ22 | . . . | φM1 φM2]
T (10)

This leads to the measurement equations, which we can

write as

p(rs, z) = C
T (rs, zs)φ(z) + v(z) (11)

where

C
T (rs, zs) = [β1(rs, zs) 0 | · · · | βM (rs, zs) 0] (12)

The random noise terms w(z) and v(z) can be assumed

Gaussian and zero-mean with respective covariance matrices,

Rww and Rvv. The measurement noise (v(z)) can be used

to represent the “lumped” effects of near-field acoustic noise

field, flow noise on the hydrophone and electronic noise. The

modal noise (w(z)) can be used to represent the “lumped”

uncertainty of sound speed errors, distant shipping noise,

errors in the boundary conditions, sea state effects and ocean

inhomogeneities that propagate through the ocean acoustic

system dynamics (normal-mode model). These assumptions,

with known model parameters lead to the optimal solution of

the state estimation problem (Kalman filter) [18].

Since our array spatially samples the pressure-field dis-

cretizing depth, we choose to analogously discretize the dif-

ferential state equations using a central difference approach

for improved numerical stability, that is, from Eq. 1 we obtain

the following set of difference equations for the m-th mode

φm1(z`) = φm2(z`−1)

φm2(z`) = −φm1(z`−1) + (2 −4z2
` κ2

z(m))φm2(z`−1)

(13)

with each of the corresponding A-submatrices given by

Am(z) =





0 1

−1 2 −4z2
` κ2

z(m)



 ; m = 1, · · · , M (14)

B. Augmented State-Space Model

The “parametrically adaptive” processor evolves from this

representation by defining a parameter set of interest. Since we

are primarily interested in an environmentally adaptive proces-

sor, that is, a processor capable of adjusting its parameters to

variations in the environment such as temperature, noise, etc.

We choose to capture these changes by allowing the modal

coefficients to vary. Therefore, we define the parameter vector

as

θm(rs, zs) := βm(rs, zs); m = 1, · · · , M

and a new “augmented” state vector as

Φm(z`; θm) := Φm(z`) = [φm1(z`) φm2(z`) | θm(z`)]
T

With this choice of parameters (modal coefficients) the

augmented state equations for the m-th mode become

φm1(z`) = φm2(z`−1) + wm1(z`−1)

φm2(z`) = −φm1(z`−1) + (2 −4z2
` κ2

z(m))φm2(z`−1)

+ wm2(z`−1)

θm(z`) = θm(z`−1) + wθm
(z`−1)

(15)



Fig. 1. Model-based processor design: (a) Boundary Solver for initial
parameters. (b) Propagator, measurement and noise models. (c) BP. (d)
Applications: localization, enhancement (tracking) and inversion.

where we have selected a random walk model (θ̇m(z) =
wθm

(z)) to capture the variations of the modal coeffi-

cients with additive, zero-mean, Gaussian noise of covariance

Rwθmwθm
.

The random walk model can provide constraints in the

simulation, since the parameter is modeled as Gauss-Markov

implying that 95% of the samples must lie within confidence

limits controlled by (±1.96σm,m). This constitutes a soft

statistical constraint of the parameter variations [16]. For our

runs, we choose to start the processor with initial parameter

estimates close to those values other researchers have meticu-

lously estimated from the Hudson Canyon data set [11], [12].

More succinctly, for the m-th mode we can write

Φm(z`) = Am(z`−1)Φm(z`−1) + wm(z`−1) (16)

for

Am(z`−1) =









0 1 | 0
−1 2 −4z2

`−1κ
2
z(m) | 0

− − −
0 0 | 1









The corresponding measurement model is given by

p(rs, z`) =

M
∑

m=1

θm(z`)φm(z`) + v(z`); ` = 1, · · · , L (17)

with dispersion (sound-speed)

c(z`) =
ω

√

κ2
z(m) + κ2

r(m)
, m = 1, · · · , M ; ` = 1, · · · , L

(18)

This completes the section on the discrete state-space

representation of the shallow ocean acoustic (normal-mode)

propagation model that is embedded as a “forward propagator”

into the subsequent processors for signal enhancement. Note

that the initial model parameters are obtained from the prior

solution of the boundary value problem as shown in Fig. 1.

III. PROCESSORS

In this section we briefly develop the processors for our

problem with details available in [24]. The basic adaptive

problem we pursue in this paper can now be defined in terms

of our mathematical models as:

GIVEN a set of noisy pressure-field and sound speed mea-

surements varying in depth, [{p(rs, z`)}, {c(z`)}] along with

the underlying state-space model of Eqs. 16, 17 and 18

with unknown modal coefficients, FIND the “best” (mini-

mum error variance) estimate of the modal functions, that is,

{φ̂m(z`|z`)}, {θ̂m(z`|z`)}; m = 1, · · · , M and measurements

(enhanced) {p̂(rs, z`)}.

We will primarily focus on the particle filter processor,

since the unscented Kalman filter has been discussed elsewhere

[18],[24] in detail. A particle filter is a different approach to

nonlinear filtering in that it removes the restriction of additive

Gaussian noise sources and is clearly capable of characterizing

multimodal distributions. In fact, it might be easier to think of

the PF as a histogram or kernel density like estimator in the

sense that it is an empirical probability mass function (PMF)

that approximates the desired posterior distribution such that

statistical inferences can easily be performed and statistics

extracted directly. The computational burden of the PF is much

higher than that of the KF, since it must provide an estimate

of the underlying state posterior distribution component-by-

component at each z`-step along with the fact that the number

of samples to characterize the distribution is equal to the

number of particles.

P̂r[φ(z`)|Pz] =

Np
∑

i=1

Wi(z`)δ
(

φ(z`) − φi(z`)
)

∀z` (19)

Wi(z`) ∝ P̂r[φi(z`)|Pz] is the estimated weights at depth z`;

φi(z`) is the i-th particle at depth z`;

P̂r[·] is the estimated empirical posterior distribution;

Pz is the set of batch pressure-field measurements,

Pz = {p(rs, z1) · · · p(rs, zL)}.

Thus, we see that once the underlying posterior is available,

the estimates of important statistics can be extracted directly.

For instance, the maximum a posteriori (MAP) estimate is sim-

ply found by locating a particular particle φ̂i(z`) correspond-

ing to the maximum of the PMF, while the conditional mean

or equivalently the minimum mean-squared error (MMSE)

estimate is calculated by integrating the posterior [24].

There are a variety of PF algorithms available, but perhaps

the simplest is the bootstrap technique [24] which we apply

to our problem. The PF design for our problem using the

bootstrap approach requires the conditional state transition

probability, Pr[Φ(z`)|Φ(z`−1)], and the likelihood (probability)

Pr[p(rs, z`)|Φ(z`)]. Here the state transition is characterized by



the underlying augmented state-space model for each mode.

For the bootstrap implementation, we need only draw noise

samples from the state and parameters distributions and use the

dynamic models above (normal-mode/random walk) to gener-

ate the set of particles, {Φmi(z`)} for each i = 1, · · · , Np.

The likelihood, on the other hand, is determined from the

nonlinear pressure-field measurement model of Eq. 17, that is,

for each mode we have

pmi(rs, z`) := θmi(z`)φmi(z`) + v(z`), for ` = 1, · · · , L
(20)

and therefore the scalar likelihood (assuming Gaussian noise)

is

Pr[p(rs, z`)|Φ(z`)] =
1√

2πRvv

×

exp
{

− 1

2Rvv

(

p(rs, z`) −
M
∑

m=1

θmi(z`)φm1(z`; i)

)2
}

(21)

Thus, we estimate the posterior distribution using a sequen-

tial Monte Carlo approach and construct a bootstrap particle

filter [19]-[24] using the following steps:

• Initialize: Φm(0), wz`
∼ N (0, Rww), Wi(0) = 1/Np; i =

1, · · · , Np;

• State Transition: Φm(z`) = Am(z`−1)Φm(z`−1) +
wm(z`−1);

• Likelihood Probability: Pr[p(rs, z`)|Φ(z`)];

• Weights: Wi(z`) = Wi(z`−1) × Pr[Φm(z`)|Φm(z`−1)];

• Normalize: Wi(z`) = Wi(z`)
∑

Np

i=1
Wi(z`)

;

• Resample: Φ̃i(z`) ⇒ Φi(z`);

• Posterior: P̂r[Φm(z`)|Pz] =
∑Np

i=1 Wi(z`)δ(φ(z`) −
φi(z`)); and

• MAP Estimate: Φ̂MAP
i (z) = maxi P̂r[φi(z`)|Pz];

• MMSE Estimate: Φ̂MMSE
i (z) = 1

Np

∑Np

i=1 Wi(z`)φi(z`)

More details can be found in the referenced textbooks and

papers [19]-[24].

IV. MODEL-BASED OCEAN ACOUSTIC

PROCESSING

In this section we discuss the development of the propa-

gators for the Hudson Canyon experiment performed in 1988

in the Atlantic with the primary goal of investigating acoustic

propagation (transmission and attenuation) using continuous

wave data [11], [12]. The Hudson Canyon is located off

the coast of New Jersey in the area of the Atlantic Margin

Coring project borehole 6010 . The seismic and coring data

are combined with sediment properties measured at that site.

Excellent agreement was determined between the model and

data indicating a well-known, well-documented shallow water

experiment with bottom interaction and yielding ideal data sets

for investigating the applicability of a BP to measured ocean

acoustic data [11], [12]. The experiment was performed at low

frequencies (50-600Hz) in shallow water of 73m depth during

a period of calm sea state. A calibrated acoustic source was

towed at roughly 36m depth along the 73m isobath radially

to distances of 4 to 26Km. The ship speed was between 2

and 4Kts. The fixed vertical hydrophone array consisted of

24 phones spaced 2.5m apart extending from the seafloor up

to a depth of about 14m below the surface. The normalized

horizontal wave number spectrum for a 50Hz temporal fre-

quency is dominated by 5 modes occurring at wave numbers

between 0.14 to 0.21 m−1 with relative amplitudes increasing

with increased wave number. A SNAP [13] simulation was

performed and the results agree quite closely, indicating a well-

understood ocean environment.

In order to construct the state-space propagator, we require

the set of parameters which were obtained from the experimen-

tal measurements and processing (wave number spectra). The

horizontal wave number spectra were estimated using synthetic

aperture processing [11]. Eight temporal frequencies were

employed: four on the inbounds (75Hz, 275Hz, 575Hz, 600Hz)

and four on the outbound (50Hz, 175Hz, 375Hz, 425Hz). In

this application we will confine our investigation to the 50Hz

case, which is well-documented, and to horizontal ranges from

0.5-4Km. The raw measured data was processed (sampled,

corrected, filtered, etc.) and supplied for this investigation.

A. Adaptive PF Design

The design and development of the environmentally adap-

tive PF proceeds through the following steps as shown in Fig.

2: (1) pre-processing the raw experimental data; (2) solving the

boundary value problem (BVP) [9] to obtain initial parameter

sets for each temporal frequency (e.g. wavenumbers, modal

coefficients, initial conditions, etc.); (3) state-space forward

propagator simulation of synthetic data for PF analysis/design;

(4) application to measured data; and (5) PF performance

analysis.

Pre-processing of the measured pressure-field data follows

the usual pattern of filtering, outlier removal and Fourier trans-

forming to obtain the complex pressure-field as a function of

depth along the array. This data along with experimental condi-

tions (frequencies, sound-speed profiles (CTD measurements),

boundary conditions, horizontal wavenumber estimators (see

[12] for details) provide the input to the normal mode BVP

solutions (SNAP [6], KRACKEN [7], etc.) yielding the output

parameters. These parameters are then used as input to the

state-space forward propagator (see Fig. 2) developed in Sec.

II.

The state-space propagator is then used to develop a set

of synthetic pressure-field data with higher resolution than

the original raw data, that is, a 46-element array at half-

wave inter-element spacing rather than the 23-element array
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Fig. 2. PF design/development procedure: (a) Initial parameters/conditions.

(b) Design runs. (c) Ensemble runs.

used in the experiment. This set represents the “truth” data

that can be investigated when “tuning” the PF (e.g. number

of particles, covariances, etc.). Once tuned, the processors

are applied directly to the measured pressure-field data (23-

elements) after re-adjusting some of the processor parameters

(covariances). Here the metrics are estimated and processor

performance analyzed. Since each run of the PF is a random

realization, that is, the process noise inputs are random, an

ensemble of results are estimated with ensemble statistics

presented. In this way, we can achieve a detailed analysis of

the processor performance prior to fielding and operational

version. In this paper we constrain our discussion results to

processing synthesized pressure-field measurements using a

46-element array.

B. Results

First we investigate the enhancement capabilities of the PF

in estimating the pressure-field over a 100-member ensemble

shown in Fig. 3. Using 1000-particles, we see the synthe-

sized data (dotted blue line) as well as both maximum a-

posteriori (MAP) estimates (solid red line) and conditional

mean (CM) estimates (dotted magenta line with circles).

Both estimators appear to track the field quite well. The

corresponding innovations (residual) sequence is also shown

(green). Classically, both estimators produced satisfactory

zero-mean/statistical whiteness tests as well as the WSSR

tests indicating a “tuned” processor [18], that is, PF-(ZM-WT:

3×10−4 < 3.5×10−1/9.4% out/WSSR below) and CM-(ZM-

WT: 1.5× 10−4 < 3.5× 10−1/0.0% out/WSSR below). The

UKF processor also produced reasonable results: UKF-(ZM-

WT: 1.5 × 10−4 < 3.5 × 10−1/6.5% out/WSSR below) for

the enhanced pressure-field.

Ensemble mode tracking results are shown in Figs. 4 and 5

for each of the modal function estimators, the PF (MAP/CM)

and the UKF. In Fig. 4 we observe that the performance

t u v u w x y z y { | } | ~ � � � � � � � � � � � � � � � � � � � �� � �
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Fig. 3. Synthesized/enhanced pressure-field (blue dots) data from the Hudson

Canyon experiment simulation with a 46-element hydrophone vertical array
using particle filter estimators: MAP (red), conditional mean (CM) in magenta

and the UKF (turquoise) with corresponding innovations (residuals) sequence
(green).

of the PF (MAP/CM) appears to track the modes quite well

especially compared to the UKF. The PF estimators perform

equivalently. Two of the modal function estimates (first two)

exhibit the largest errors as shown in Fig. 5 while the final

three functional estimates are much better. The mean-squared

(modal tracking) error for each mode is quite reasonable:

MSE: (222, 23, 5.5, 3.9, 3.7) × 10−9 again confirming the

difficulty the estimator is having to maintain track on the

two lower order modal functions. It is interesting to note that

the modal coefficient estimates are constantly being adapted

(adjusted) by the processor throughout the runs attesting to

the nonstationary nature of the ocean statistics as illustrated

in Fig. 6.

We also illustrate the multimodal aspect of the oceanic data

by observing the modal function posterior PDF estimates for

modes 1 and 5 as illustrated in Fig. 7. It is clear from the

plots that for each depth multiple peaks appear in the posterior

estimates. A slice of this probability surface at depth slice 10

shows just how the particles are allocated by the processor to

estimate the various peaks in each PDF as shown in Fig. 8.

The pressure-field posterior is better behaved almost pro-

ducing a near unimodal posterior for the predicted field.

Visualizing a peak at each depth produces a “smooth” estimate

(MAP) as shown in Fig. 8. This completes the analysis of

the Hudson Canyon experimental data and the PF processing

performance.

V. SUMMARY

In this paper we have developed on-line, adaptive, model-

based solutions to the ocean acoustic signal processing prob-

lem based on the normal-mode propagation model and a

vertical sensor array measurement system modeled after the

Hudson Canyon experiment with a synthesized 46-element
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Fig. 4. Modal function tracking (estimation): synthesized Hudson Canyon

data of a 46-element array (blue plus), UKF (turquoise dots), MAP (red
circles) and CM (magenta squares) particle filters.
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Fig. 5. Modal function tracking errors: synthesized Hudson Canyon data
(blue plus) and MAP (red circles) particle filters errors.

vertical array. The algorithms employed were the unscented

Kalman filter and the particle filter both modern approaches

applied to this problem. We compared their performances

and found slightly better performance of the PF over a 100-

member ensemble. Our future efforts will be focused on

extending the processors to actual measurement data.
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Fig. 7. PMF posterior estimation (modes 1 and 5) surfaces for synthesized

Hudson Canyon 46-element array data (particle vs. time vs. probability).
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