FINAL REPORT

PDF Version Also Available for Download.

Description

Hydrogen storage systems based on the readily reversible adsorption of H{sub 2} in porous materials have a number of very attractive properties with the potential to provide superior performance among candidate materials currently being investigated were it not for the fact that the interaction of H{sub 2} with the host material is too weak to permit viable operation at room temperature. Our study has delineated in quantitative detail the structural elements which we believe to be the essential ingredients for the future synthesis of porous materials, where guest-host interactions are intermediate between those found in the carbons and the metal ... continued below

Physical Description

4 MB; 20 pages

Creation Information

Eckert, Juergen & Investigator), Anthony K. Cheetham (Principal March 11, 2011.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Hydrogen storage systems based on the readily reversible adsorption of H{sub 2} in porous materials have a number of very attractive properties with the potential to provide superior performance among candidate materials currently being investigated were it not for the fact that the interaction of H{sub 2} with the host material is too weak to permit viable operation at room temperature. Our study has delineated in quantitative detail the structural elements which we believe to be the essential ingredients for the future synthesis of porous materials, where guest-host interactions are intermediate between those found in the carbons and the metal hydrides, i.e. between physisorption and chemisorption, which will result in H{sub 2} binding energies required for room temperature operation. The ability to produce porous materials with much improved hydrogen binding energies depends critically on detailed molecular level analysis of hydrogen binding in such materials. However, characterization of H{sub 2} sorption is almost exclusively carried by thermodynamic measurements, which give average properties for all the sites occupied by H{sub 2} molecules at a particular loading. We have therefore extensively utilized the most powerful of the few molecular level experimental probes available to probe the interactions of hydrogen with porous materials, namely inelastic neutron scattering (INS) spectroscopy of the hindered rotations of the hydrogen molecules adsorbed at various sites, which in turn can be interpreted in a very direct way in by computational studies. This technique can relate spectral signatures of various H{sub 2} molecules adsorbed at binding sites with different degrees of interaction. In the course of this project we have synthesized a rather large number of entirely new hybrid materials, which include structural modifications for improved interactions with adsorbed hydrogen. The results of our systematic studies on many porous materials provide detailed information on the effects on hydrogen binding from framework modifications, including charged frameworks and extraframework cations, from reduction in pore sizes, functionalization of the organic linking group, and most importantly, that of the various types of metal sites. We provided a clear demonstration that metal sites are most effective if the metal is highly undercoordinated, open and completely accessible to the H{sub 2} molecule, a condition which is not currently met in MOFs with intra-framework metals. The results obtained from this project therefore will give detailed direction to efforts in the synthesis of new materials that can reach the goal of a practical sorption based hydrogen storage material.

Physical Description

4 MB; 20 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/GO/15004-Final
  • Grant Number: FG36-05GO15004
  • DOI: 10.2172/1009133 | External Link
  • Office of Scientific & Technical Information Report Number: 1009133
  • Archival Resource Key: ark:/67531/metadc833743

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 11, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Jan. 17, 2018, 5:13 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Eckert, Juergen & Investigator), Anthony K. Cheetham (Principal. FINAL REPORT, report, March 11, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc833743/: accessed November 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.