A ROLE FOR MANGANESE IN OXYGEN EVOLUTION IN PHOTOSYNTHESIS

PDF Version Also Available for Download.

Description

The prospects are shrinking rapidly for a future for society based on liquid hydrocarbons as a major source of energy. Among the wide array of alternative sources that are currently undergoing scrutiny, much attention is attracted to the photolysis of water to produce hydrogen and oxygen gases. Water, the starting material, does not suffer from lack of abundance, and there is every likelihood that the environmental consequences of water splitting will be negligible. Solar radiation is the obvious candiate for the ultimate energy source, but of course water cannot be photolyzed directly by the relatively low-energy wave-lengths, greater than 300 ... continued below

Physical Description

29 p.

Creation Information

Sauer, Kenneth January 1, 1980.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 70 times , with 5 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The prospects are shrinking rapidly for a future for society based on liquid hydrocarbons as a major source of energy. Among the wide array of alternative sources that are currently undergoing scrutiny, much attention is attracted to the photolysis of water to produce hydrogen and oxygen gases. Water, the starting material, does not suffer from lack of abundance, and there is every likelihood that the environmental consequences of water splitting will be negligible. Solar radiation is the obvious candiate for the ultimate energy source, but of course water cannot be photolyzed directly by the relatively low-energy wave-lengths, greater than 300 nm, that penetrate the earth's atmosphere. Nevertheless, the photolysis of water to produce O{sub 2} and reduced substances, with reduction potentials equivalent to that of H{sub 2}, is accomplished efficiently using sunlight by higher plant photosynthesis. There are even organisms that, under special conditions, will evolve H{sub 2} gas photosynthetically, but not efficiently when coupled with O{sub 2} production. To produce a molecule of O{sub 2} from water requires the removal of four electrons from two H{sub 2}O molecules.

Physical Description

29 p.

Source

  • Journal Name: Accounts of Chemical Research; Journal Volume: 13; Journal Issue: 8

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-10450
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.1021/ar50152a001 | External Link
  • Office of Scientific & Technical Information Report Number: 1030585
  • Archival Resource Key: ark:/67531/metadc833671

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1980

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • July 26, 2016, 5:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 5
Total Uses: 70

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sauer, Kenneth. A ROLE FOR MANGANESE IN OXYGEN EVOLUTION IN PHOTOSYNTHESIS, article, January 1, 1980; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc833671/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.