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Abstract The push to provide ever brighter coherent radiation sources has led to the creation of corre-
spondingly bright electron beams. With billions of electrons packed into normalized emittances (phase space)
below one micron, collective effects may dominate both the preservation and use of such ultra-bright beams.
An important class of collective effects is due to density modulations within the bunch, or microbunching.
Microbunching may be deleterious, as in the case of the Microbunching Instability (MBI), or it may drive
radiation sources of unprecedented intensity, as in the case of Free Electron Lasers (FELs). In this work we
begin by describing models of microbunching due to inherent beam shot noise, which sparks both the MBI
as well as SLAC’s Linac Coherent Light Source, the world’s first hard X-ray laser. We first use this model
to propose a mechanism for reducing the inherent beam shot noise as well as for predicting MBI effects. We
then describe experimental measurements of the resulting microbunching at LCLS, including optical radia-
tion from the MBI, as well as the first gain length and harmonic measurements from a hard X-ray FEL. In
the final chapters, we describe schemes that use external laser modulations to microbunch light sources of the
future. In these sections we describe coherent light source schemes for both both linacs and storage rings.
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line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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test sheet, we note that there is relatively little variation near the center of the sheet, as can be
seen from hsc evaluated at radius r = 0 (dashed green line) and r = a/2 (dotted red line). . 13
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dinal positions. At right, following the interaction and dispersive regions, we find a reduction
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(n0kR56)2|h̃u(k0)|2 ≈ 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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2.9 A simulation example for 10 undulator periods shows good agreement with the numerical
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5.1 Schematic of the harmonic measurements. Attenuators block the fundamental and second
harmonic, allowing measurement of the third harmonic on the Direct Imager YAG screen.
Alternatively, we can isolate the second harmonic by measuring the intensity at the P3S1
YAG screen; the soft x-ray mirrors, upstream of P3S1, absorb the third harmonic. We again
rely on the attenuators to block the fundamental. . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Schematic of the mirror cutoff measurement. For the soft x-ray line, the ratio of intensities
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second mirror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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5.3 Transmission plots show the photon energy cutoffs of the soft x-ray (left plot) and hard x-ray
(right plot) experimental beamlines. On the left, blue circles show the cube of the ratio of
intensities on P3S1 and P2S, while the red diamonds give the ratio from P3S1 to the full
pulse energy. Both results match the expected transmission (dashed green curve) [2, 3]. On
the right, blue circles give the square of the ratio of intensities measured on P3H and P2H. The
dashed curve gives the expected transmission at the nominal 0.0773 degree angle; however,
we find a better match for 0.083 degree angle (dot-dash curve). Hard x-ray measurements
rely on the third harmonic, resulting in lower resolution than for the soft x-ray measurements.
In both cases, the experimental curves are normalized to one at the maximal value. . . . . . 71

5.4 Examples of third harmonic measurements for fundamental FEL photon energies of 0.9 keV
(left), 6 keV (center) and 8 keV (right). Blue circles show the experimental data, red dotted
lines show linear one-parameter fits using the nominal attenuation lengths, while solid green
lines show three-parameter fits to both the harmonic content and attenuation lengths. The
black dot-dash line shows the expected drop in intensity for the fundamental only. We typi-
cally find around 2% third harmonic for soft x-rays, with between 0.2-2% third harmonic at
hard x-rays. The 4% level found from the one-parameter fit at 8 keV (right plot) is higher
than expected, and may be artificially high due to a lack of measurement points dominated
by the fundamental. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Transmission for the zirconium filter as a function of photon energy. The filter is made of 100
µm of zirconium (dashed blue) and 1 mm silicon (dotted green), with the combined transmis-
sion given in solid red. The zirconium K-edge manifests as a sharp drop in transmission at
18 keV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Plot of measured intensity on the Direct Imager YAG screen (Y-axis) vs. photon energy (X-
axis), with the FEL tuned to near 6 keV fundamental and the zirconium attenuator inserted.
The drop-off in intensity as the fundamental photon energy crosses 6 keV corresponds to the
zirconium K-edge at 18 keV; we conclude that the drop in intensity is due to third harmonic
content. With the zirconium filter blocking the fundamental, we find that the remaining ra-
diation is almost entirely third harmonic. Electron energy jitter and FEL bandwidth broaden
the otherwise sharp K-edge seen in Fig. 5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7 An example image in the soft x-ray beam line (P3S1) shows the characteristic double lobe
structure of the second harmonic. Though gas and solid (beryllium) attenuators strongly
suppress the fundamental in this image, a small amount of fundamental radiation remains
(gaussian mode background). Diffraction from the beryllium attenuators produces the uneven
speckle pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.8 We measure the harmonic component by varying the gas attenuator strength for 0.9 keV
(left) and 1 keV (right) fundamental photon energies. Blue circles show experimental data,
red dotted lines show one-parameter fits using the nominal attenuation lengths, and solid
green lines show three-parameter fits to both the harmonic content and attenuation lengths.
The black dot-dash line shows the expected attenuation of the fundamental only. We find
approximately 0.05-0.1% second harmonic content. . . . . . . . . . . . . . . . . . . . . . . 76
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5.9 Energy spread measured as a function of laser heater power. To determine energy spread,
we measure the beam width in the dispersive region a few meters downstream from the laser
heater. The energy spread in keV is approximately ∆E = 8

√
PL, with the laser heater power,

PL, given in µJ [4]. Note that at low laser power trickle heating causes a noticeable bump in
the energy spread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.10 Percentage of harmonic power vs. laser heater setting. As the FEL performance drops (dot-
ted red line), the percentage of third harmonic also drops (solid green), indicating enhanced
sensitivity to beam quality at higher harmonics. The FEL performance was determined by
energy loss scans, which measure the energy loss of the electrons due to the FEL process
[5]. We note that even at the nominal heating level, the harmonic content only reached 0.2%,
likely due to the poor FEL performance on the day of the measurement. . . . . . . . . . . . 77

6.1 Diagram of CHG scheme. a) The first accelerator section raises the particle energy to Ea and
introduces a linear chirp, h. After modulating with a laser, the first dispersive section, BC1,
compresses the beam and over-bunches the modulation. A second RF section accelerates the
particles to Eb, and cancels the chirp of the first section. The final dispersive section, BC2,
unwinds the over-bunching. b) Operating BC1 in over-compression rotates the electron beam
head-to-tail, allowing the use of a chicane for both BC1 and BC2. In both cases it is possible
to add a third accelerator section to reach a final energy of Ef . . . . . . . . . . . . . . . . . 80

6.2 In the first step (upper left) we add a chirp and laser modulation. We show only one mod-
ulation wavelength, so the chirp effect is small. After the first chicane, the modulation is
over-bunched (zoom, upper right). A second chirp reverses the first chirp (zoom, middle
left, shows reversed slope in phase space). After more acceleration, the second chicane re-
vives bunching (middle right). Note the compression of the wavelength by |α| = 10, and
the increase in modulation amplitude by |α|/g = 2.5. We find strong bunching past the 5th
harmonic (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Courant-Snyder parameters for 3D elegant simulations showing β-functions (solid and dotted
lines) and dispersion (ηx, dashed-dotted line). The weak second chicane is designed to min-
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6.4 a) Particle phase space for elegant simulation of parameters in Table 7.1. The two hori-
zontal stripes of higher density are signatures of a sinusoidal modulation. A third-harmonic
accelerating cavity produces the flat central portion of the beam. b) A zoom of the phase
space shows the compressed modulation bunched to optimize higher harmonics. The vertical
stripes (’standing up’ the modulation) in phase space produce sharp density spikes that drive
harmonic generation. The T566 component of the transfer matrix causes slight scalloping. . . 86

6.5 Bunching factor at two wavelengths with 0.15% bandwidth from elegant [6] simulation (pa-
rameters in Table 7.1). Bunching is lower than for the 1D case because of 2nd order effects
(e.g. emittance and T566), ISR and finite laser radius. . . . . . . . . . . . . . . . . . . . . . 87
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6.6 To demonstrate the emittance cancelation effect, we track a longitudinal delta slice (zero
length) following the laser modulation. Emittance effects increase the slice length before the
second chicane, BC2, (top left, x vs. z), but the off-crest accelerating section introduces a
chirp to the beam (bottom left, energy vs. z). The second chicane then re-compresses the
bunch by the compression factor, |α| (center). Following the final accelerator section, L3, the
slice starts to spread out again (right). Bunch head is to the left. . . . . . . . . . . . . . . . . 88

6.7 Wide bandwidth bunching for two simulations with a 0.01 degree phase shift (solid and dotted
blue lines). An FEL would pick out a narrow ∆λ/λ = 0.15% bandwidth, leaving lower
bunching (narrow peak, red dot-dash line).To calculate the bunching factor at a position z0

and bandwidth ∆λ/λ, we sum the phases of all particles in the region z0 − λ/2∆λ < z <

z0 + λ/2∆λ. The high baseline in the wide bandwidth curves is due to the relatively low
number of particles per bunching calculation when λ/∆λ is small. A bunched sine wave
makes a sawtooth that may either be right-leaning, as in Fig. 6.4, or left-leaning, depending
on the sign of the effective dispersion, R(T )

56 . In our simulation, R(T )
56 changes as a function of

longitudinal beam position, resulting in the double peak seen in the wide bandwidth bunching. 89

6.8 Double-horn energy distribution, left, from a sinusoidal modulation. Approximating a saw-
tooth with two frequencies gives the more uniform energy distribution at right. . . . . . . . . 90

7.1 An illustration of harmonic SSMB for H = 3. At top, we show particles in phase space at the
modulator. Each turn around the ring, particles slip forward or backward from dispersion, but
the distribution is stationary for a periodic modulation. At bottom, at an intermediate point
in the ring (1/H the way around), the microbunches are spaced by λin /H , i.e. the beam is
microbunched with λout=λin /H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Example schematic for a two-stage system. A laser cavity and two undulators of length Lu

and 1.9Lu modulate the electron beam at opposite ends of a storage ring. SSMB from the
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the laser modulation to produce long wavelengths, and an additional radiator could be placed
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7.3 Phase space for harmonic SSMB, with one-stage modulation on left and two-stage modula-
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7.4 Example of an sawtooth manipulation to a coasting beam. Modulation has Va = Vb = 0.05,
R(a)

56 = 1 and R(b)
56 = 200. After 2 × 105 loops, with damping of δ = 10−4, unmodulated

equilibrium energy spread of 10−4, and initial energy spread of 5%, we find bunching at the
10th harmonic. Phase space of one wavelength is shown at upper left (after a full turn) and
upper right (after R(a)

56 ). The bunching profile is bottom left with the fourier transform bottom
right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
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7.5 Illustration of the Echo mechanism for a sawtooth modulation. We have chosen modulations
Va = −Vb = 10σδ to make the scheme easier to follow. The first dispersive section fila-
ments the beam. The second modulation and dispersive sections then individually bunch the
filaments. The harmonic is determined by the vertical separation of filaments (upper right),
which will become horizontal separation after the final dispersive section (bottom right). We
may change the number of filaments independently of the harmonic number. . . . . . . . . . 99

7.6 Illustration of the Echo mechanism for a sine modulation. We have chosen modulations
V̄a= − V̄b= 2σδ , and set R(a)

56 for the 10th harmonic. Because a sine has two zero crossings
(ha = ±V k), we will have two different solutions for R(b)

56 , giving two different harmonics
H±. For the parameters above, we find H+ = 10 and H− ≈ 8. . . . . . . . . . . . . . . . . 101

7.7 Frequency-beating drives SSMB in multiple configurations. At left, modulations are in sepa-
rate stages, and stable fixed points survive only where the phases overlap. At center, beating
the laser prior to modulation can also drive SSMB if the electrons rely on the modulation to
replace energy lost to synchrotron radiation. At right, the one-stage scheme is identical to a
two-stage scheme with no dispersion between modulations. . . . . . . . . . . . . . . . . . . 102

7.8 Example of a long wavelength beating modulation with b = 10. On the left, the two stage
modulation affects particles throughout the beam, but stable fixed points can only survive near
the center where the phases overlap. On the right, in a one stage modulation the two lasers
beat together before interacting with the beam, and the modulation has little effect where
the phases cancel. The one stage modulation still results in bunching when the combined
modulation amplitude is less than the radiation loss (black line). Because the electrons rely
on the modulation to replace energy lost to radiation, stable islands only survive in the center
where the modulation is greater than the radiation loss. . . . . . . . . . . . . . . . . . . . . 103

7.9 Phase space for frequency beating (with b = 10) for both two-stage modulation (left) and one-
stage modulation (right). For two-stage modulations, the largest stable regions exist where
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7.10 In a system without RF, the modulation both drives SSMB and replaces the energy loss due
to synchrotron radiation. The stable islands of the one-stage modulation are centered at the
intersection of the synchrotron radiation (black line) and the combined beating modulation
(blue line), with the intersection points highlighted by the red circles. Modulating with just
one of the two beating wavelengths (green, dotted line) will modulate the stable islands by the
level of the orange circles. We can see that this modulation chirps the stable islands, because
of a relative phase slippage. A dispersive region can then compress the bunches. The sine
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7.11 Simulation of a two-stage manipulation to produce SSMB. After 10 million revolutions, we
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8.1 Comparison of code to analytical result for straight motion and motion at an angle. The dotted
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Chapter 1

Introduction

In the following work we consider a range of topics relating to electron microbunching in radiation sources.
We define microbunching as density modulations within an electron bunch, driving coherent radiation at
wavelengths shorter than the bunch. To illustrate the importance of microbunching, we first consider the
radiation from an incoherent bunch of length, L, much longer than the radiation wavelength, λr. Assuming
the electrons are evenly but randomly distributed, we expect each electron to radiate independently (i.e. with
random phase), and the total radiation, Pr, to scale linearly with the number of electrons in the bunch, N . In
contrast, in a short bunch, L # λr, the electrons all radiate with uniform phase. We then expect the radiation
amplitudes to add constructively, and the power to scale as the square of the number of electrons, Pr ∝ N2.
With N as large as a billion, the enhancement due to coherence can be enormous.

For microbunching, we consider a long bunch (L ( λr) containing a periodic density modulation. As a
toy model, we assume the bunch consists of periodic microbunches separated by λr. Despite the long bunch,
L ( λr, the electrons radiate with uniform phase, and consequently we still expect coherent radiation with
Pr ∝ N2. We will refer to this phenomenon – coherence at a wavelength λr # L – as microbunching.

To quantify the concept of microbunching at a wavevector k ≡ 2π/λr, we define the bunching factor

f(k) ≡ 1√
N

∑

i

eikzi (1.1)

where the sum is over all longitudinal electron positions, zi. (In Chapter 3 we extend this definition to
arbitrary directions by generalizing to a vector k → k.) For either radiation sources or diagnostics, we are
interested in the total radiated power, Pr = P1N |f(k)|2, with P1 the power radiated by a single electron.
We have chosen the normalization for f(k) so that for random electron positions (i.e. shot noise), we find
bunching amplitude squared |f(k)|2 = 1, and for perfect bunching (all electrons with identical phase), we
find |f(k)|2 = N .

The classic example of an electron-based coherent radiation source is the FEL [7]. In an FEL, a continuous
stream of electrons travels through a long line of undulator magnets. The feedback between the electrons and
the resulting radiation creates a beam microbunched at the undulator’s resonant wavelength,

λr =
λu

2γ2

(
1 +K2/2

)
(1.2)

with undulator period λu, undulator strength parameter K, and electron energy given by the relativistic γ

1
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factor. The microbunched beam radiates coherently, producing radiation orders of magnitude brighter than
that found in a standard undulator. (A full description of the FEL process can be found in, for example, [8].)

To start the FEL microbunching process, the electrons generally require a small initial level of either
microbunching or radiation. (This is not strictly true; theoretically the seed may also come from energy
modulation.) Ideally, an external laser source would either trigger the FEL or generate a pre-modulation in
the electron beam (see e.g. [9] or Chapter 6). However, a key advantage of the FEL is the ability to tune to
wavelengths beyond the reach of conventional lasers, and so by definition no convenient laser source exists.
At such wavelengths, the shot noise of the beam itself can trigger the FEL in a process known as Self Ampli-
fied Spontaneous Emission (SASE) [10, 11]. Though we will not limit ourselves to FEL microbunching, we
use this division of seeded and SASE microbunching to organize the topics of the following chapters. In the
first half, we consider shot-noise driven microbunching; Chapter 3 addresses the microbunching instability
(MBI), Chapter 2 extends the MBI analysis to the regime of noise suppression, and finally in Chapters 4
and 5 we report experimental results from the Linac Coherent Light Source (LCLS), the world’s first hard
X-ray laser. In the second half, we consider new schemes for seeding light sources; Chapter 6 describes a
scheme for seeding a linac-driven light source, Chapter 7 extends the seeding concept to a storage ring, and
Chapter 8 addresses a potential pitfall of seeded beams. The last chapter discusses an alternative method of
optimizing FEL power (relating tapered undulators to phase shifts) that can increase energy extraction from
both seeded and shot noise microbunching, and relates to gain length measurements of undulator lines with
gaps. Finally, an appendix includes detailed calculations to relate 3D and 1D results used in the chapters on
noise suppression and MBI (Chapters 2 and 3).

For the harried reader, we present a brief summary of each chapter in the following sections.

1.1 Noise Suppression

In a bunch of random (uncorrelated) electrons, the longitudinal density contains white noise fluctuations,
commonly called shot noise. While shot noise may be beneficial (e.g. as the driving force behind SASE
FELs), the same density fluctuations may adversely affect FEL operation (e.g. the MBI). Shot noise also
competes with external modulations in the operation of seeded FELs [12, 13]. Recent papers have proposed
schemes to suppress the noise level below that of shot noise to aid the FEL process [14, 15, 16]. In Chapter 2
we use the approach of [17] to study noise evolution. We consider a simple model system of a generic self-
interaction, h, which changes the particle energies, followed by a dispersive region, R56, which converts
the change in energy to change in position. We show that for a broad class of interactions, it is possible to
suppress density fluctuations below the shot noise level, and we provide 1D and 3D simulations to confirm
the result.

1.2 Microbunching Instability

In a high-brightness linear accelerator, as found in a high-gain FEL, impedance effects along the accelerator
can drive a periodic microbunching instability that degrades the electron beam qualities [6, 18, 19, 20, 21, 22,
23, 24]. Longitudinal space charge (LSC) forces may dominate microbunching gain at wavelengths shorter
than the electron bunch [21, 22, 23, 24]. Evidence of optical wavelength microbunching has been seen at
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LCLS, where optical transition radiation (OTR) screens downstream from the high-brightness injector have
recorded COTR from an uncompressed electron bunch [1]. At such short modulation wavelengths (less than
1µm), electron shot noise is the most probable source of the initial density fluctuations required to start the
instability.

Venturini noted [25] that the one-dimensional (1D) model of LSC impedance used in previous stud-
ies [21, 22, 23, 24] may fail at very short wavelengths, when the longitudinal shot noise modulations are
not transversely uniform. In Chapter 3 we present a six-dimensional (6D) analysis of LSC microbunching
starting from shot noise. Using a simplified machine model motivated by the LCLS setup, we calculate the
microbunching gain factor for short modulation wavelengths observed at small angles relative to the longitu-
dinal direction. We also compare these results with the LCLS COTR observations [26].

1.3 LCLS Gain Length and Harmonics Results

The Linac Coherent Light Source (LCLS) is the world’s first hard x-ray laser, producing radiation 10 billion
fold brighter than any other X-ray source in the world. LCLS achieved first lasing in April of 2009, and now
operates as a user facility with photon energies ranging from 550 eV to 9 keV [5]. In Chapter 4 we present
gain length measurements, which provide a metric for the health of the FEL microbunching process. We
describe the methods used to measure gain lengths and post-saturation power growth, and present results of
the first gain length measurements for LCLS.

Radiation at the fundamental wavelength of the FEL dominates in the experimental beamlines, but non-
negligible levels of radiation at higher harmonics are also present. These harmonics may be desirable as a
source of harder x-rays, but may also contribute backgrounds to user experiments. In Chapter 5 we present
measurements of the second and third harmonic content in the FEL at a range of photon energies. We measure
the harmonic dependence on the electron beam quality, and compare the results to simulations. We also
measure the photon energy cutoff of the soft x-ray mirrors to determine the extent to which higher harmonics
reach the experimental stations.

1.4 Compressed Harmonic Generation

A Free Electron Laser (FEL) [7] can theoretically produce fully coherent x-rays, a promising tool for the
fields of physics, chemistry and biology. However, current x-ray FELs in use or under construction rely on
SASE FELs, which are saddled by long saturation lengths and poor longitudinal coherence. In contrast, FELs
’seeded’ by optical or UV lasers promise full coherence and shorter FEL lengths. One leading seeded FEL
scheme is high gain harmonic generation (HGHG) [9, 27]. However, single-stage HGHG requires high laser
power (expensive and potentially problematic for the FEL process), and is limited to wavelengths around 20
nm [28]. Multiple-stage HGHG can reach shorter wavelengths, but is more technically challenging. A recent
and promising seeding scheme is echo enabled harmonic generation (EEHG), which manipulates hidden
structure in phase space to produce high harmonic seeding [29, 30].

Seeding the electron beam prior to bunch compression, which we will call compressed harmonic gen-
eration (CHG), is an alternative approach [31, 32, 33, 34]. In Chapter 6 we discuss a variation on CHG
in which dispersion from the compression stage smears out the longitudinal modulation, but the structure
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remains imprinted in phase space and can be revived later by a second dispersive region [33, 35].

We give an analytical description of the two-chicane CHG scheme, and extend the simulations of [35]
to include higher energies and smaller β-functions (desirable for sending the beam through a radiator). The
major drawback of compressed seeding is the need to preserve fine phase space structure across long accel-
erator regions. However, we show that the second dispersive region reverses second order effects from the
preceding accelerator section. Finally, we consider the technical requirements for effective transport of the
phase space modulation.

1.5 Steady-State Microbunching

In a radiation source driven by coherent electrons, particles group into microbunches spaced at the wavelength
of the desired light. The process may start from shot noise (as in the SASE FEL process) or from seeding (as
in CHG), but in either case the resulting coherent light can be orders of magnitude brighter than that of an
equivalent incoherent source.

For high average power light sources, duty-cycle shares the stage with coherence. Linac driven FELs
use each electron pulse once, leading to low duty cycles. (Energy recovery linacs, or ERLs, reach high duty
cycles by recovering the electron energy [36, 37, 38].) Storage rings, by contrast, naturally provide MHz
repetition rates, and fully filled rings can provide CW radiation. However, storage rings do not generally
support sustained microbunching (MB).

Ideally, we would produce a ring with both high duty cycle and coherent microbunching. Past proposals
have suggested employing FELs attached to either ERLs or storage rings. In Chapter 7, we propose to
modulate electrons in a storage ring with either RF or optical radiation, thereby driving MB during each
pass through the ring’s radiator. Though the electrons may appear smeared elsewhere in the ring, the MB is
permanent at the radiator, so we consider this steady-state microbunching (SSMB). The result is a coherent
radiation source with MHz to CW repetition rate. We present a mechanism for SSMB and show simulation
results for several example cases.

1.6 Longitudinal Space Charge

Current enhanced SASE (eSASE) was proposed as a method to improve peak power, timing, and pulse
length control in SASE FELs [39]. The scheme uses an optical laser and dispersive region to seed sub-
micron current spikes in the electron bunch. In eSASE, the spikes do not drive coherent radiation themselves
(as this radiation would be at very long wavelengths). Rather, the current spikes lase more efficiently than
the lower current regions, providing short bursts of ’unseeded’ SASE FEL radiation synched to the optical
laser pulse (i.e. coherent control). Coherent control is particularly useful for pump-probe experiments with
X-ray FELs, and eSASE has been proposed as an upgrade to LCLS [40]. However, the sharp current spikes
also exacerbate longitudinal space charge (LSC) induced energy spread in the electron beam. While LSC
is generally suppressed in electron beams by the relativistic Lorentz factor, γ = 1/

√
1− β2, Geloni et

al. showed that the suppression is more accurately given by γz = 1/
√
1− β2

z , with average longitudinal
velocity, βz [41]. In the LCLS undulators, γz # γ, and the LSC may have a strong effect on the FEL
process. In Chapter 8 we confirm Geloni’s result with a numerical integration of the retarded electromagnetic
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potentials.
In Chapter 8, we use a 2-D numerical approach to calculate the longitudinal self-field of an electron

bunch. In the first section, we describe the approach and derive the longitudinal component of the interaction
for arbitrary motion. We express the equations in polar coordinates to facilitate a numerical code written in
MATLAB. We then solve the equations for several simple examples, including a bunch traveling in uniform,
circular and sinusoidal motion. We use these examples to benchmark the code against known solutions, and
then finally confirm Geloni’s expression for LSC of a Gaussian bunch in an undulator.

1.7 Phase Shift Equivalence to Undulator Taper

Despite the projected six orders of magnitude increase in peak power during the SASE process, some XFEL
applications, including single molecule imaging, may require still higher photon flux [42]. Exponential power
growth is no longer possible once the FEL reaches saturation (when the bunching factor is maximal), but the
total FEL pulse energy may still increase linearly along the undulator; the electrons simply continue to radiate
as long as the microbunched electrons remain at the optimal phase relative to the radiation.

Tapering is a well known method for increasing power past saturation by shifting the undulator K value
to offset the electrons’ loss of energy. However, we can also view the undulator taper as an offsetting phase
shift (relative to the FEL radiation), so we may achieve the same goal by simply inserting electron phase
shifters (e.g. a chicane to delay the electrons).

Varfolomeev et al. first described the use of phase shifts to enhance power in 1998 [43]. (We learned
of this work following our study.) In Chapter 9, we undertake a detailed analytical and numerical study of
enhancing FEL power with phase shifters. We explore the relation between phase shifts and undulator tapers
to calculate optimal phase shifts for SASE FELs in the saturation regime and apply these shifts to simulations
with LCLS-like parameters. The phase shift method, while equivalent to tapering the undulator parameter,
provides an independent knob to maximize the FEL performance. Conversely, we may apply the same result
to employ an undulator taper as a phase shift. We demonstrate the effect by studying the gain length of the
LCLS beam line with undulators removed (section 4.3.4).
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Chapter 2

Shot Noise Suppression for Electron
Beams

2.1 Introduction

In a bunch of random (uncorrelated) electrons, the longitudinal density contains white noise fluctuations,
commonly called shot noise. While shot noise drives Self-Amplified Spontaneous Emission (SASE) Free
Electron Lasers (FELs), the same density fluctuations may adversely affect FEL operation. For example, the
microbunching instability, thought to originate from shot noise, can incapacitate diagnostics and degrade FEL
performance [18, 20, 1, 44, 45, 46, 47]. Shot noise also competes with external modulations in the operation
of seeded FELs [12, 13]. Recent papers have proposed schemes to decrease the noise level below that of shot
noise to aid the FEL process or for other applications [14, 15, 16]. In this chapter we use the approach of [17]
to study the evolution of noise as the beam travels through a system with interactions between the electrons as
well as dispersive regions. To simplify the analysis, we consider a model system of a generic self-interaction,
h, which changes the particle energies, followed by a dispersive region, R56, which converts the change
in energy to change in position (Fig. 2.1). We show that for a broad class of interactions, it is possible to
suppress density fluctuations below the shot noise level, and we provide 1D simulations to confirm the result.

Dispersion
e‐

Interac#on

),...,,,...,( 11 NNzz  )ˆ,...,ˆ,,...,( 11 NNzz  )ˆ,...,ˆ,ˆ,...,ˆ( 11 NNzz 0 a f

Figure 2.1: Schematic of our model system. Starting with an initial electron distribution function, Ψ0(z, η),
the interaction and dispersive regions produce a final distribution function, Ψf (ẑ, η̂). The dispersion may be
positive or negative.

7
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2.2 Analytical Model

2.2.1 Noise Factor

To characterize the level of noise at a wavevector, k, we define the noise factor

F (k, s) ≡ 1

N

∑

j,l

eik[zj(s)−zl(s)] (2.1)

where zj(s) is the longitudinal bunch coordinate of particle j at position s in the accelerator, and N is the
number of particles in the beam. We note that the noise factor can equivalently be defined by F (k, s) ≡
N |b(k, s)|2, with the bunching factor b(k, s) ≡

∑
j exp[ikzj(s)]/N .

The noise factor, F (k, s), is a measure of the correlations between particle coordinates at wavevector k.
If the particle positions are uncorrelated, we find the expectation value of shot noise, 〈F (k, s)〉 = 1. On the
other hand, if the positions are strongly correlated at wavevector k, we find 〈F (k, s)〉 ∼ N , with N ( 1

generally; such correlated (or ’bunched’) beams are found at the output of an FEL, and as the result of the
microbunching instability [46, 47]. We may also consider the case of an anti-correlated (or ’quiet’) beam,
with 〈F (k, s)〉 < 1, below the shot noise level. In this chapter, we investigate the possibility of producing
quiet beams.

Though the noise factor is defined as a function of accelerator position, s, we are particularly interested
in the noise level at the output of our system, F (k, sf ). Starting from an initial distribution function at s0, we
would like to determine the resulting final noise level at sf .

To facilitate an analytical solution, we will study the simplified system of Fig.2.1. We assume the particle
distribution is a function of position in the bunch, z(s), and relative, normalized energy, η(s) ≡ [E(s) −
E0]/E0, with average beam energy, E0. Though both z and η are functions of s, we are primarily interested
in the initial and final coordinates, so for brevity we define z, η ≡ z(s0), η(s0), ẑ, η̂ ≡ z(sf ), η(sf ) and
F (k) ≡ F (k, sf ). We can then describe the system as follows. We start with a simple N -particle initial
distribution of particles, Ψ0(z1, ..., zN , η1, ..., ηN ). After an interaction period, the energies are modified,
giving distribution Ψa(z1, ..., zN , η̂1, ..., η̂N ). A dispersive region (assumed to have zero interaction), then
changes the longitudinal positions, giving final distribution Ψf (ẑ1, ..., ẑN , η̂1, ..., η̂N ).

2.2.2 Expectation Value of Noise Factor

To calculate the expectation value, we break 〈F (k)〉 into incoherent (j = l) and coherent (j .= l) portions.
First, we treat the incoherent portion. With j = l, the phases cancel and we find N terms, all equal to 1,
giving

〈F (k)〉SN = 1 (2.2)

which is simply the noise level due to shot noise.
Next, we calculate the coherent portion. To find the expectation value at the final accelerator position,

we integrate F (k) over the final particle distributions, Ψf (ẑ1, ..., ẑN , η̂1, ..., η̂N ). In general, Ψf may be a
complicated function of all 2N variables. However, if we assume the electrons are initially uncorrelated, then
we can write the initial distribution function as

Ψ0(z1, ..., zN , η1, ..., ηN ) =
N∏

i

f (1)(zi, ηi) , (2.3)
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with the single particle distribution functions for a beam with Gaussian energy spread of ση and uniform
longitudinal density of length L given by

f (1)(z, η) =






e
−η2/2σ2

η√
2πσηL

for −L/2 < z < L/2

0 elsewhere
. (2.4)

We then express the final coordinates in terms of the initial coordinates (ẑ, η̂ → z, η), and integrate over the
product of N simple initial distributions, f (1).

In the interaction region, we assume the bunch is longitudinally frozen (z, η → z, η̂), and likewise in
the dispersive region we assume there is zero interaction (z, η̂ → ẑ, η̂). To further simplify the calculation,
we ignore any transverse effects. (The validity of the 1D approximation will depend on the interaction of
interest.) Our resulting map from initial to final coordinates then is

ηj → η̂j = ηj +
N∑

i=1

h(zj , zi)

zj → ẑj = zj +R56η̂j (2.5)

with dispersive strength R56, and h(zj , zi) the change in energy of particle j due to the interaction with
particle i. We can now write the coherent portion of F (k) in terms of the initial coordinates, and integrate
over each single particle distribution, Ψi ≡ f (1)(zi, ηi), to find the expectation value

〈F (k)〉C ≈ N

∫ L/2

−L/2
dz1dη1...

∫ L/2

−L/2
dzNdηNΨ1...ΨN

eik(z1−z2+R56(η1−η2)+R56[
∑N

i h(z1,zi)−
∑N

m h(z2,zm)]) (2.6)

where we have assumed the N2 −N ≈ N2 ( 1 coherent terms of the sum in Eq. 2.1 are identical, and we
have chosen j = 1, l = 2 without loss of generality.

Our approach (following [17]) will be to explicitly separate the z1, z2 terms. We assume the interac-
tion depends only on the distance between the particles, h(z1, z2) = h(z1 − z2), so we change variables,
z1, z2, zl, zm → ζ, Z, τl, τm with ζ ≡ z1 − z2, Z ≡ (z1 + z2)/2, and τl,m ≡ zl,m − z2. Finally, we assume
that the interaction is nonzero only within a characteristic distance, Lh, which is much shorter than the bunch
length, L. We can then integrate over Z and η1...ηN to find

〈F (k)〉C = n0e
−k2R2

56σ
2
η

∫ ∞

−∞
dζ

[
1

LN−2

∫
dτ3...

∫
dτN

eik(ζ+R56[h(ζ)−h(−ζ)]+R56
∑N

i=3[h(−τi+ζ)−h(−τi)])
]

(2.7)

where we have defined the 1D particle density n0 ≡ N/L and we have used Lh # L to both ignore edge
effects and set the ζ integral limits to infinity. First, we note that the N − 2 integrals over τi are separable and
identical. Second, we assume kR56h # 1 so we can linearize the exponentials, yielding

〈F (k)〉C ≈ n0e
−k2R2

56σ
2
η

∫ ∞

−∞
dζeikζ

[
1 + Γ1(ζ)

] [
1 +

1

N
Γ2(ζ)

]N−2

(2.8)
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with definitions

Γ1(ζ) ≡ ikR56[h(ζ)− h(−ζ)] + ...

Γ2(ζ) ≡ n0

∫ ∞

−∞
dτ

(
ikR56

[
h(−τ + ζ)− h(−τ)

]

− k2R2
56

2

[
h(−τ + ζ)− h(−τ)

]2
+ ...

)
(2.9)

where we have expanded Γ1 and Γ2 in powers of the small parameter, kR56h. For Γ1, the term linear
in kR56h is nonzero, so we drop all higher order terms. However, from our assumption of a long bunch,
the linear order terms in Γ2 cancel after the integration, so we must also keep the quadratic term for Γ2.
Combining the two square terms,

∫
dτh(−τ)2 =

∫
dτh(−τ + ζ)2, we find

Γ1(ζ) ≈ ikR56

[
h(ζ)− h(−ζ)

]

Γ2(ζ) ≈ n0k
2R2

56

∫ ∞

−∞
dτ

[
h(−τ + ζ)h(−τ)− h(−τ)2

]
. (2.10)

We may be tempted to drop Γ2, because it is second order in kR56h. However, Γ2 is also raised to the power
of N , and with N ( 1 generally, Γ2 may even be the dominant term (as for the microbunching instability,
see e.g. [46, 47]). In this chapter, we keep both terms, and will see that noise suppression occurs when Γ1

and Γ2 are comparable.

2.2.3 Analytical Expression: Weak Interaction

If we consider a weak interaction under the stronger assumption, Γ2 # 1, we can solve for the noise level
analytically. Adding in the shot noise term again and expanding Eq. 2.8, we find

〈F (k)〉 ≈ 1 + n0e
−k2R2

56σ
2
η

{∫ ∞

−∞
dζeikζ [Γ1(ζ) + Γ2(ζ)] + 2πδ(k)

}
. (2.11)

We are interested in k .= 0, and so will drop the δ function. (The δ function arises from our assumption of
L → ∞. For finite L, we will have a term that is nonzero for k < 1/L, but even so our focus is on much
shorter wavelengths.)

We can now identify the three regimes for 〈F (k)〉. For zero interaction, we are left with only the leading
shot noise term, 〈F (k)〉 = 1, which is simply the white noise of an uncorrelated bunch. The Γ2 contribution
is positive-definite, so for Γ2 ( Γ1, we find a correlated beam with 〈F (k)〉 > 1. Finally, for Γ1 ∼ Γ2,
the term linear in R56 cannot be neglected. If R56 is chosen so that Γ1 < 0, it is possible to create an anti-
correlated beam, with the noise factor suppressed below the shot noise level, 〈F (k)〉 < 1. In this chapter we
consider the third regime.

Identifying the ζ integral as a Fourier transform (FT), we rewrite the noise factor as

〈F (k)〉 ≈ 1 + in0kR56[h̃(k)− h̃(−k)]e−k2R2
56σ

2
η

+ n2
0k

2R2
56FT

{∫ ∞

−∞
dτ

[
h(−τ)h(−τ + ζ)− h(−τ)2

]}
e−k2R2

56σ
2
η (2.12)

where h̃(k) denotes FT{h(τ)}. We drop the second term in the remaining integral because it has no ζ

dependence, and so its Fourier transform is nonzero only for wavelengths longer than the bunch (k < 1/L).
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The first term is the autocorrelation of h(τ), which has Fourier transform |h̃(k)|2, yielding

〈F (k)〉 ≈ 1− 2n0kR56Im[h̃(k)]e−k2R2
56σ

2
η

+ n2
0k

2R2
56|h̃(k)|2e−k2R2

56σ
2
η . (2.13)

If the energy spread is small (ση → 0), and the interaction has purely imaginary Fourier transform, h̃(k), we
can write the noise factor as a perfect square

〈F (k)〉 ≈ (1−Υ)2 with Υ ≡ n0kR56Im[h̃(k)] . (2.14)

We suppress the noise factor below the shot noise level when the suppression parameter is in the range
0 < Υ < 2 and the noise disappears completely for Υ = 1. (We note that partial noise suppression is
possible even if the interaction contains a real component.) We are particularly interested in interactions that
can be approximated as step functions near ζ = 0: h(ζ) → AH(ζ)+ const, with Heaviside function H ,
and interaction strength, A. For such interactions, we find h̃(k) ∝ 1/k for high frequencies, so that Υ is
independent of k. We are then able to simultaneously suppress bunching at a wide range of frequencies.

We can draw a broad lesson from Eq. 2.13; a quiet beam is attainable from any interaction with primarily
imaginary Fourier transform, e.g. from step function interactions (for k .= 0). We will treat the special
cases of space charge and undulator interactions later, but here emphasize that any interaction with imaginary
Fourier transform will suffice, and any step function interaction will give broadband noise suppression. For
example, the wake from a linac with periodic structures also satisfies these conditions [48]. We have assumed
negligible energy spread here; see the appendix for a discussion of the effect of energy spread on noise
suppression.

For a physical interpretation of the requirement for imaginary Fourier transform, we consider a test par-
ticle in front of localized density spike of width 1/k. If h(τ) > 0 for τ > 0, the test particle will receive
positive energy change. A positive dispersive region then causes the test particle to move forward and away
from the dense region. Likewise, a test particle at the back of a dense region (τ < 0) loses energy relative
to the front particle for h̃(k) imaginary, and moves backward and away in a positive dispersive region. The
end result is a reduction in the density spike and thus a reduction in the noise. If h(τ) < 0 for τ > 0, as
is the case for an undulator, we have the identical argument, but require negative dispersion. The process is
illustrated in Fig. 2.2.

2.2.4 Numerical Approximation: Strong Interaction

For stronger interactions, we may not be able to approximate Γ2 # 1. If it is not possible to evaluate
Eq. 2.8 analytically for an arbitrary h, we can carry out the integrals numerically. Using the less stringent
approximation Γ2 # N (satisfied even for simulation parameters with relatively small N ) we take (1 +

Γ2/N)N ≈ exp(Γ2) to obtain

〈F (k)〉 = 1 + n0e
−k2R2

56σ
2
η

∫ ∞

−∞
dζeikζeΓ2(ζ)

[
1 + Γ1(ζ)

]
(2.15)

For physical interactions, Γ1 → 0 as ζ → ∞, so the second term, eΓ2(ζ)Γ1(ζ), converges and can be inte-
grated numerically. We cannot directly integrate the first term, exp[Γ2(ζ)], because the h2(−τ) in Eq. 2.10
has no ζ dependence; in the limit ζ → ∞, we find Γ2(ζ) → Γ̄2 .= 0, and the integral diverges. However, the
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Ez

density density

Space Charge Undulator

Figure 2.2: Schematic of an interaction near a density spike (solid green line). At left, for the space charge
case, particles in the front half of the spike gain energy, while particles in the back half lose energy, and in
positive dispersion, the density spike shrinks (dotted green line). We have a similar result for an interaction
due to undulator radiation (right). At high frequency (spike much shorter than undulator resonant wave-
length), all particles lose energy, but following a dispersive region with negative R56 we still find a reduction
in the density spike (dotted green line).

divergence occurs only for k = 0; otherwise, Γ̄2 exp[ikζ] integrates to zero (which is why we dropped the
h2(−τ) term from Eq. 2.12). Following the same reasoning here, with

Γ̄2 = −n0k
2R2

56

∫ ∞

−∞
dτh(−τ)2 (2.16)

we explicitly remove the constant term, exp[Γ̄2] to find

〈F (k)〉 = 1 + n0e
−k2R2

56σ
2
η

∫ ∞

−∞
dζ

[(
eΓ2(ζ) − eΓ̄2

)
cos(kζ) + ieΓ2(ζ)Γ1(ζ) sin(kζ)

]
(2.17)

where we’ve used Eq. 2.10 to see that Γ1(ζ) and Γ2(ζ) are respectively odd and even functions of ζ. We can
then integrate Eq. 2.17 numerically.

2.3 Space Charge Case

2.3.1 Space Charge Interaction

So far we have not specified the interaction term, constraining only that the energy change, h, is a function
of ζ, the distance between the particles. We now consider the Coulomb interaction between two particles.
We assume the interaction occurs over a distance La in the accelerator, during which the particles are frozen
longitudinally. We consider a 1D system, treating the particles as uniform, rigid sheets of charge with radius
a, valid in the limit a ( γ/k [25]. To calculate the relative change in energy due to the longitudinal E-field
(Ez), we integrate over the sheets of source and test particles,

hsc(ζ) =
sgn(ζ)

γmec2
q2La

4πε0S2

∫ a

0

∫ a

0

∫ 2π

0

∫ 2π

0

r1dr1r2dr2dθ1dθ2(γζ)
[
(γζ)2 + r21 + r22 − 2r1r2 cos(θ1 − θ2)

]3/2 (2.18)
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with average particle energy, γmc2, electron charge, e, area of sheet, S = πa2, and

sgn(ζ) ≡






1 ζ > 0

0 ζ = 0

−1 ζ < 0

. (2.19)

One of the θ integrals trivially gives a factor of 2π, and the remaining integrals can be solved numerically to
produce the interaction hsc(ζ) shown in Fig. 2.3. We note that the interaction will go to zero for ζ ( a/γ, as
required in our derivation of Eq. 2.7. In the limit of infinite sheets (a → ∞), the Ez field is simply

|Ez| =
e

2Sε0
, (2.20)

so that the interaction causes an energy change per charge, e, of

hsc(ζ) =
e2La

2ε0Sγmec2
sgn(ζ) =

2πreLa

Sγ
sgn(ζ) , (2.21)

with classical electron radius re ≡ e2/4πε0mec2.
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Figure 2.3: Space charge from a source sheet produces a change in energy (hsc) in a test sheet located at a
distance ζ. We calculate the energy modulation to the test sheet by averaging over the entire sheet (solid blue
curve). Though Ez (and thus hsc) is not constant everywhere in the test sheet, we note that there is relatively
little variation near the center of the sheet, as can be seen from hsc evaluated at radius r = 0 (dashed green
line) and r = a/2 (dotted red line).
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2.3.2 Space Charge Fourier Transform

In the simplified case of infinite sheets, the step function at ζ = 0 dominates h̃(k), and we find a purely
imaginary Fourier transform,

h̃(k) =
iAsc

k
, (2.22)

with definition

Asc ≡
4πreLa

Sγ
. (2.23)

Following Eq. 2.14, we then define the suppression parameter for space charge, Υsc ≡ n0R56Asc, and we
expect broadband suppression for Υsc = 1.

In the finite sheet model, when ζ ( a/γ the interaction falls off as 1/ζ2. The cutoff for h(ζ) as ζ → ∞
determines the noise suppression at low frequencies; the approximation of h̃(k) ∝ 1/k breaks and we expect
suppression to be frequency dependent for small k. Averaging the energy modulation across the disc gives
(see e.g. [49, 50] 1 )

h̃(k) =
iAsc

k

[
1− 2I1(k)K1(k)

]
, (2.24)

with modified Bessel functions I1(x),K1(x). As k → ∞, we find h̃(k) → iAsc/k, reproducing the result for
the infinite sheet (Eq. 2.22). However, as k → 0, we find h̃(k) → 0, and we expect weaker noise suppression.

2.3.3 Space Charge Simulation

To check our analytical result, we simulate the interaction between particles in a 1D code. We load N

particles randomly within a bunch length L, with initial energy spread, ση . A particle at location z0 interacts
with all particles within the range z0 − Lh < z < z0 + Lh, and we choose the interaction distance Lh so
that L ( Lh ( a/γ. To avoid edge effects from a finite bunch, we enforce periodic boundary conditions
on the interaction. Following the interaction, the longitudinal positions shift according to ẑ = z + R56η̂,
where the relative energy η̂ is solely determined by the interactions of the first stage. We can then calculate
the noise factor (or equivalently the FFT) of the resulting distribution, though even by eye it is apparent we
have suppressed high frequency noise (Fig. 2.4). In the limit of a cold beam, the 1D space charge interaction
results in regularly spaced particles, each separated by the local inverse density, 1/n0 (Fig. 2.5).

We check the analytical solution (Eqs. 2.13, 2.24) against the simulations in Fig. 2.6. For all space charge
simulations, units of length are normalized to the sheet radius, a, and for now we assume zero initial energy
spread, ση = 0.

2.3.4 Validity of 1D model

Throughout the chapter we use a 1D model of sheet particles (sheets distributed with random longitudinal
positions), so we would like to check that the resulting interaction, Eq. 2.24, is a reasonable approximation
of a 3D distribution of particles. We may look to Ref. [25], which studies the difference between 1D and
3D models of longitudinal space charge in the high frequency limit. Though the 1D and 3D distributions of

1In Eq. 2 of Reference [50], the Bessel function should be K1, not K0.



15

0 20 40

30

40

50

60

70

Initial Position, z/a

D
en

sit
y

0 20 40

30

40

50

60

70

Final Position, z/a

D
en

sit
y

^

Figure 2.4: On the left we show a histogram of particle density for particles loaded with random longitudinal
positions. At right, following the interaction and dispersive regions, we find a reduction in noise in the
equivalent histogram. (Example has n0a = 5× 102,Υ = 1).

longitudinal fields diverge at high frequency (see Eqs. 9,11-13 from Ref. [25]), we find that when averaged
transversely, the two models give approximately equal results (Section 2.11).

The assumption of rigid 1D sheets may also overestimate the noise suppression. Past work on noise
suppression resulting from plasma oscillations has found that 3D models lead to weaker noise suppression
[14, 15]. In our 1D model we assume a rigid sheet of charge that moves uniformly due to the average
longitudinal field, whereas in reality each particle moves independently. To check the validity of our 1D
model, we have written a 3D version of the space charge simulation. We confirm the existence of noise
suppression for Υ = 1, but with somewhat weaker level of suppression (Fig. 2.16).

2.4 Undulator Radiation Case

2.4.1 Undulator Radiation Interaction

As a second example, we consider the case of a beam traveling through an undulator. In the 1D limit, we
can write down a simple, closed form solution for the interaction due to a helical undulator [51], providing a
convenient system for studying noise suppression. For this reason, we neglect the space charge component
in the following analysis, though we will see that in the absence of an amplifier [16] the space charge effect
is generally dominant. We then find the undulator interaction

hu(ζ) =





−Au

(
1− ζ

Nuλ0

)
cos k0ζ 0 < ζ < Nuλ0

0 otherwise
(2.25)

with definition

Au ≡ 2π
e2K2Nuλ2

u

Sγ3mec2λ0
= 4π

reLu

Sγ

K2

1 +K2
. (2.26)
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Figure 2.5: Longitudinal distribution of particles in simulation before (×) and after (∗) the noise suppression
process. For ση # 1/R56n0 and a 1D beam, it is possible to show that the initially uncorrelated distribution
gives way to a regularly spaced beam with inter-particle spacing 1/n0 (see section 2.9). The regular struc-
ture amplifies bunching at very high frequencies, k = 2πn0 and its harmonics, while suppressing F (k) at
frequencies below 2πn0.

undulator strength parameter, K, length, Lu, period, λu, and resonant wavelength, λ0. This 1D expression is
valid in the limit

a ( γ

k
√
1 +K2

(2.27)

with a the transverse beam size.

2.4.2 Undulator Fourier Transform

From Eq. 2.13, noise suppression originates from the imaginary component of the Fourier transform. For the
undulator case,

h̃u(k) ≡
∫ ∞

−∞
dζeikζhu(ζ)

= −AuNuλ0

∫ 1

0
dζ̄

(
1− ζ̄

)
cosαζ̄eimαζ̄ (2.28)

with definitions ζ̄ ≡ ζ/Nuλ0, α ≡ 2πNu and m ≡ k/k0. Integrating gives

h̃u(k) = −iAuNuλ0

[
m

(m2 − 1)α
− i

(1 +m2)(1− eimα)

(m2 − 1)2α2

]
(2.29)

with Nu assumed to be an integer. At high frequencies (m ( 1), we neglect the second term, and find a
purely imaginary FT

h̃u(k) ≈ −i
Au

k
. (2.30)
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Figure 2.6: A comparison of simulation and analytical results shows noise suppression as a function of
frequency. With Υ ≈ 1 at high frequency, we find strong suppression. At low frequencies (k ! 2π/a), we
no longer have h̃u(k) ∝ 1/k, so suppression is weaker for the given parameters.

As in the space charge case, we use Eq. 2.14 to define the suppression parameter Υu = −Aun0R56. In
general, h̃u(k) is not purely imaginary, as stipulated in Eq. 2.13. However, at high frequencies, the undulator
interaction looks like a step function (with the purely imaginary Fourier transform in Eq. 2.30), and the
physical picture in Fig. 2.2 applies here as well. Again, Υu has no k dependence, so we expect broadband
suppression.

At low frequencies, the approximation in Eq. 2.30 fails and the Fourier transform will be complex. If we
take the limit of m → 1, then from Eq. 2.29 we find

h̃u(k = k0) = −AuNuλ0

(
1

4
+

i

4α

)
(2.31)

which is approximately real. We then find 〈F (k)〉 ∼ 1 + |h̃u(k0)|2 and consequently expect bunching
to increase at low frequencies. Note that |h̃u(k0)| = (Nuπ/2)Υu, so for Nu ( 1, we can expect an
enhancement of ∼ N2

uπ
2/4 at the fundamental when Υ =1 .

It is interesting to note that at high frequencies, the undulator interaction is strictly weaker than space
charge (Eq. 2.26 vs. Eq. 2.23). Because the interactions have opposite sign, the undulator would only act to
dampen the noise suppression from space charge.

2.4.3 Undulator Simulation

To check our analytical result, we again run the simulation code but with the undulator interaction (Eq. 2.25)
instead of space charge. We load N particles randomly within a length L ( Nuλ0, and for the undulator
case a particle at location z0 interacts with all particles within the range z0 −Nuλ0 < z < z0.
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The simulations confirm both the analytical solution (Eq. 2.13, valid for Γ2 # 1) and the numerical
integral (Eq. 2.17). In all undulator simulations, we normalize units of length to the resonant wavelength, λ0,
and we assume zero initial energy spread, ση = 0. (In section 2.10 we consider the effects of initial energy
spread and energy modulation to the beam.)

2.4.4 Undulator Numerical Integration

While we already know the noise factor in the weak-interaction limit from Eq. 2.14, we would like to calculate
Γ2 explicitly to evaluate the numerical integral. For Υ ≈ 1, we find the weak interaction limit is equivalent to
n0 ( k2Lu. While the weak approximation is valid for many realistic examples, to facilitate simulations we
use low particle numbers, where the approximation fails. For that reason, we use the numerical integration,
Eq. 2.17, to check our simulations without the assumption of weak interaction.

Plugging the undulator interaction into Eq. 2.10 yields (see section 2.8)

Γ(u)
2 (ζ̄) =

k2R2
56

L
A2

uNuλ0

(
1

6
+

1

4α2
+

1

12α3

[
α(1− ζ̄)

[
α2(ζ̄2 + ζ̄ − 2)− 3

]
cos(αζ̄)

+ 3
[
α2(1− ζ̄)− 1

]
sin(αζ̄)

])
, (2.32)

Plugging into Eq. 2.16 gives constant term for the undulator interaction

Γ̄(u)
2 =

n0αk0(mR56Au)2

N

[
1

6
+

1

4α2

]
, (2.33)

and then from Eq. 2.17 we find

〈F (k)〉 = 1 + 2n0αe
−k2R2

56σ
2
η

[
AumR56

∫ 1

0
dζ̄e−NΓ(u)

2 (1− ζ̄) cos(αζ̄) sin(mαζ̄)

+
1

k0

∫ 1

0
dζ̄

(
e−NΓ(u)

2 − e−N Γ̄(u)
2

)
cos(mαζ̄)

]
(2.34)

which can be integrated directly. Simulations for the case of Nu = 1 show good agreement with both
the analytical result, Eqs. 2.13 and 2.29, and the numerical integration of Eq. 2.34, though as expected the
analytical result fails for n0 ∼ k2Lu (Figs. 2.7, 2.8). For a case with a longer undulator (Nu = 10), the
numerical integration is essential for comparison with simulations (Fig. 2.9). At this point we can also
explicitly confirm the result from Section 2.2.3 by plugging h̃(k) and Γ(u)

2 (ζ̄) back into Eqs. 2.8 and 2.10
(see appendix, Section 2.8).

2.5 Example Parameters

Though the focus of this chapter is strictly theoretical, we calculate the interaction strength for SLAC’s Next
Linear Collider Test Accelerator (NLCTA) to illustrate the scale of parameters involved. For the case of space
charge over a length of La ∼ 10 m with beam cross section S ∼ 10−6m2 and energy γmc2 ∼ 100 MeV, we
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Figure 2.7: A comparison of simulation, analytical result and numerical integral shows noise suppression at
high frequency for Υ =1 . At low frequencies (m ∼ 1), we find h̃u(k) is approximately real (Eq. 2.31), and
bunching increases to F (k) ≈ 1− 2n0k0R56Im[h̃u(k0)] + (n0kR56)2|h̃u(k0)|2 ≈ 3.

find Asc ≡ 4πreLa
Sγ ≈ 2× 10−9. A beam of 20A (n0 = 4× 1011 m−1), then needs R56 ∼ 2 mm to produce

Υ =1 . We note that we are within the 1D limit even for optical wavelengths (k0σ/γ >∼ 25).

For the undulator radiation to dominate over the space charge interaction, we may use an amplifier, as
proposed by Litvinenko [16]. The increase in the interaction strength also has the benefit of decreasing the
required dispersion, R56, allowing for larger energy spreads and higher frequency suppression. However, the
larger modulation may increase the beam energy spread (see section 2.10).

2.6 Conclusion

We present a longitudinal 1D model of shot noise suppression for a simplified system of an interaction region
followed by a dispersive region. In the limit of small energy spread (|kR56ση| # 1), interactions with
primarily imaginary Fourier transforms can suppress the noise factor below the shot noise level. We work out
the specific cases of undulator and space charge interactions, and confirm both results with a 1D simulation.
We note that a wide range of imaginary impedances (e.g. linac wakefields) may also reduce shot noise. In the
1D limit with small energy spread, the suppression process may amplify bunching at very high frequencies
near the inter particle spacing, 1/n0.
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Figure 2.8: A close-up of Fig. 2.7 shows agreement with the analytical expression starts to fail for m >∼ 2,
but the numerical integral matches well everywhere.

2.8 Quadratic Term (Γ2) for Helical Undulator

We calculate Γ2 explicitly for use in the numerical integral (Eq. 2.34). Plugging Eq. 2.25 into Eq. 2.10 gives

Γ2(ζ) = n0k
2R2

56

[∫ 0

−Nuλ0

dτhu(−τ)2

−
∫ 0

−Nuλ0+ζ
dτhu(−τ + ζ)hu(−τ)]2

]
(2.35)

where we’ve used hu(x) = 0 outside of the range 0 < x < Nuλ0 to choose the integration limits. Plugging
in for hu, defining normalized variables τ̄ ≡ τ/Nuλ0, ζ̄ ≡ ζ/Nuλ0 and α ≡ 2πNu, we have

Γ2(ζ̄) = n0k
2R2

56A
2
uNuλ0

[∫ 0

−1
dτ̄ (1 + τ̄)2 cos(ατ̄)2

−
∫ 0

ζ̄−1
dτ̄

(
1 + τ̄ − ζ̄

)
(1 + τ̄) cos(α(τ̄ − ζ̄)) cos(ατ̄)

]
, (2.36)

We can then integrate to find

Γ2(ζ̄) = n0k
2R2

56A
2
uNuλ0

[
1

6
+

1

4α2
+

1

12α3

(
α(1− ζ̄)

[
α2(ζ̄2 + ζ̄ − 2)− 3

]
cos(αζ̄)+

3
[
α2(1− ζ̄)− 1

]
sin(αζ̄)

)]
, (2.37)

where we’ve assumed an integer number of undulator periods, Nu, to simplify the trigonometric functions.
Note that this expression is valid only for 0 < ζ̄ < 1; while Eq. 2.37 does not look symmetric about ζ = 0,
from Eq. 2.10 we know that Γ2 is an even function of ζ̄.

In the main text, we use Γ2 to evaluate Eq. 2.17. We can also use Γ2 to explicitly confirm the result from
Section 2.2.3 for the high frequency undulator case by plugging Eq. 2.37 into Eq. 2.11. With Γ2 an even
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Figure 2.9: A simulation example for 10 undulator periods shows good agreement with the numerical integral.

function, we can write the third (quadratic) term from Eq. 2.11 as

〈F2(k)〉 ≡ 2n0e
−k2R2

56σ
2
ηN2

uλ
2
0

∫ L

0
dζ̄ cos(mαζ̄)NΓ2(ζ̄) (2.38)

We are interested in k .= 0, so as in Eq. 2.17, we subtract off the two constant terms. By definition, the
product of interactions must disappear for ζ̄ > 1 (when at least one of z1 and z2 cannot interact with the test
charge), so we set the upper limit to 1 and integrate to find

〈F2(k)〉 = −2n2
0k

2R2
56A

2
uNuλ0e

−k2R2
56σ

2
η

1

4α4(m2 − 1)4
[
2m2α2(m2 − 1)2 + 4(m2 + 1)2(cos(mα)− 1)

+ 4mα(m4 − 1) sin(mα)

]
(2.39)

In the limit m ( 1 the result simplifies to

〈F2(k)〉 = n2
0k

2R2
56A

2
uN

2
uλ

2
0e

−k2R2
56σ

2
η

1

m2α2

= Υ2
ue

−k2R2
56σ

2
η , (2.40)

Adding in the first two terms of Eq. 2.13 and taking the limit of m ( 1 and ση = 0, we confirm 〈F (k)〉 =
(1−Υu)2.

2.9 Bunching at the Average Inter-Particle Spacing

In the cold, sheet-beam limit (treating each particle as a sheet), we show that an interaction, h(ζ), results in
nearly full bunching factor at the inter-sheet spacing if there is a step function at ζ = 0 (Fig. 2.5). To facilitate
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Figure 2.10: Simulations show the noise factor for both Nu = 1 and Nu = 10 as a function of Υ. When the
approximation k2Nuλ0/n0 ( 1 is valid, the noise scales as (1 − Υ)2. We have chosen m so that h̃u(k) is
approximately imaginary.

the calculation, we number our particles (sheets) such that zi < zk if i < k. The energy change for particles
k and k + 1 is given by

∆Ek =
N∑

i=1

h(zk − zi) , ∆Ek+1 =
N∑

i=1

h(zk+1 − zi) . (2.41)

To find the difference in energy modulations, ∆Ek+1 −∆Ek, we rewrite ∆Ek+1 in terms of ∆Ek,

∆Ek+1 = h(zk+1 − zk) +
N∑

i $=k

h(zk+1 − zk + zk − zi)

≈ h(∆zk) +
N∑

i $=k

h(zk − zi) +∆zk

N∑

i $=k

h′(zk − zi)

= ∆Ek +
[
h(∆zk)− h(−∆zk)

]
+∆zk

N∑

i $=k

h′(zk − zi) , (2.42)

where we’ve defined the initial distance between particles, ∆zk = zk+1 − zk, and assumed that the average
spacing, 〈∆z〉, is small to make the Taylor expansion in the second step. (Specifically, we assume [h(ζ +

∆)−h(ζ)]/h(ζ) # 1, everywhere except at the step function.) Hence the energy difference between the two
neighboring particles is

∆Ek+1 −∆Ek =
[
h(∆zk)− h(−∆zk)

]
+∆zk

N∑

i $=k

h′(zk − zi). (2.43)

To compute the last sum, we replace the summation by an integration (assuming, as before, a uniform longi-
tudinal distribution of particles in the beam). Skipping over the region where we’ve explicitly assumed there
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are no particles, for a longitudinally uniform beam we find
N∑

i=1

h′(zk − zi) ≈ n0

[∫ z−
k

−∞
dzh′(zk − z) +

∫ ∞

z+
k+1

dzh′(zk − z)

]

= n0

[∫ 0+

∞
(−dζ)h′(ζ) +

∫ −∞

−∆z+
k

(−dζ)h′(ζ)

]
≈ −n0[h(0

+)− h(0−)] . (2.44)

where we’ve approximated h(∆z±k ) ≈ h(0±). For an interaction with a step function at ζ = 0 of amplitude
A = [h(0+)− h(0−)], we can rewrite

∆Ek+1 −∆Ek = A(1− n0∆zk) . (2.45)

The energy difference, ∆Ek+1−∆Ek, depends linearly on the initial distance between the particles (Fig. 2.11).
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Figure 2.11: The relative modulation between neighboring particles, Ek+1−Ek, is proportional to the initial
distance between the particles (sheets), ∆z. Simulation is for the undulator interaction, with Υ =1 , n0λ0 =

103. Particles that are closer (farther) than the inter-particle spacing, ∆z < 1/n0, lose (gain) energy relative
to the previous particle, and move away (closer) in negative dispersion.

Following the dispersive section of strength R56, the new distance between particles k and k + 1 is

∆znewk = ∆zk +R56(∆Ek+1 −∆Ek)

= R56A+ (1−R56n0A)∆zk . (2.46)

At full suppression, Υ = R56n0A = 1, we obtain

∆znewk =
1

n0
, (2.47)
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giving a uniform structure with inter-particle spacing of 1/n0, as in a quasi-crystalline beam [52].

The increase in noise at low frequencies (Eq. 2.31) leads to variation in local density, and thus variation
in particle spacing. From simulations we confirm ∆znewk = 1/n̄0, where n̄0 is the local density over a region
of length Ln with 1/n0 # Ln # λ0/Nu. In reality, the beam is not transversely uniform as assumed in the
1D sheet model, so we do not expect a rigid quasi-crystalline structure. However, we still expect to find an
amplification of the bunching factor at the inverse of the inter-particle spacing. Though the uniform beam is
an intriguing theoretical result, due to the requirement of cold beam (ση # 1/n0R56) and a true step function
interaction, practical applications may prove elusive.

2.10 Effects of Energy Spread and Modulation

In the earlier sections we treated only the case of vanishing energy spread, ση → 0. When kR56ση
>∼ 1, the

energy spread factor, exp[−k2R2
56σ

2
η], washes out noise suppression; at high enough frequencies, noise sup-

pression fails. To suppress noise for larger k we must decrease the dispersive strength, R56. However, from
Υ ≡ R56n0A = 1, weak dispersion implies a strong interaction, A, which in turn heats the beam. To deter-
mine an upper limit on the interaction strength, we consider how the energy modulation in the suppression
process affects the energy spread of the beam.

2.10.1 Energy Modulation from Noise Suppression

The noise suppression process (interaction and dispersive regions) changes the particle energies, η → η̂

(Fig. 2.12). For the undulator case, the expected amplitude of the resulting energy modulation for a single
particle is

〈
h2
u(ζ)

〉
=

∫ Nuλ0

0

dζ

Nuλ0
h2
u(ζ)

= A2
u

∫ 1

0
dζ̄

(
1− ζ̄

)2
cos2 αζ̄

=
A2

u
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(
4 +

6

α2
− 2 sin 2α

α3

)
. (2.48)

With α ≡ 2πNu ≥ 2π, we drop the final two terms. We can then guess that if a particle interacts with on
average N̄ = n0Nuλ0 particles, the expected rms energy spread will be approximately

〈∆η〉 ≈
√
N̄ 〈h2

u(ζ)〉 ≈
√

n0Nuλ0

6
Au . (2.49)

Combined with the suppression condition, Υ = −n0R56Au ∼ 1, we have

〈∆η〉 ≈ −
√

Nuλ0

6n0

1

R56
(2.50)

for the case of maximum suppression (Fig. 2.13).
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Figure 2.12: Phase space of the particles following both the interaction and dispersive regions. Example is
for the undulator case with uniform initial energy, ση = 0.

2.10.2 Suppression Wavelength Limit

The energy spread washes out noise suppression for wavelengths below λmin ∼ 2πσηR56. Expressing λmin

in terms of the energy modulation, we find

λmin = 2π

√
Nuλ0

6n0

ση

〈∆η〉 . (2.51)

From Eq. 2.51, we note that suppression is possible even when the modulation amplitude is small compared
to the beam’s natural energy spread, 〈∆η〉 # ση (Fig. 2.14). Decreasing R56 extends suppression to shorter
wavelengths, but heats the beam. If we require that the interaction has negligible effect on the energy spread,
then we find a lower limit on λmin when 〈∆η〉 ∼ ση .

2.10.3 Energy Spread for FEL

Our goal is to create a quiet beam, so we would like to consider the extent to which reducing shot noise will
amplify energy noise. For example, FELs require energy spreads smaller than the Pierce parameter, ρ, giving
〈∆η〉 ! 10−3 for current XFEL designs [11].

Quiet beams may be useful for controlling FEL start-up, which is driven by noise, F (k), for SASE FELs,
and from an external radiation field for seeded FELs. However, there is also a contribution to the FEL start
up from the energy noise [53],

Fη(k) =
1

N

∑

j,l

η̂j η̂l
ρ2

eik[ẑj−ẑl] . (2.52)

We note that Fη(k) scales as η̂2, which is always small. However, if η̂j(z) is longitudinally periodic (as can
be seen in Fig. 2.12 for k = k0), Fη(k) will also scale as the number of particles, N , which is generally very
large. To claim a quiet start up for an FEL, we must ensure that Fη(k) ! F (k).
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Figure 2.13: RMS energy modulation, 〈∆η〉, induced by the interaction (Eq. 2.50) is compared to the result
of repeated simulations for the undulator case. The final energy spread is given as a function of the particle
per wavelength, n0λ0, for Nu = 1 and 10, and initial energy spread ση = 0.

2.11 Extension to 3D Model

The reader may wonder how accurately our 1D model matches 3D reality. In particular, Ref. [25] showed
that in the high frequency limit (a ( γλ) 3D longitudinal space charge fields deviate significantly from the
1D approximations. In this section we show that the longitudinal space charge fields are approximately equal
in the 1D and 3D models at high frequency, but only after we include transverse averaging across the beam
(see Eqs. 2.55 and 2.56 below). We also provide a fully 3D simulation showing that noise suppression occurs
even at high frequencies in a 3D system (Fig. 2.16).

However, even if the 1D longitudinal fields are a sufficiently accurate approximation of reality, there are
still differences between the 1D and 3D models. For example, the particles see slightly different longitudinal
fields at the center and edge of the beam (Fig. 2.3). Moreover, in our rigid 1D disc, all particles move
according to the average field seen across the whole disc. By contrast, in the 3D model, each particle moves
independently of the particles around it. (This could be stated as a deformation of the rigid disc of the 1D
model.) We then may guess that a 3D simulation will give weaker noise suppression, and indeed we see that
Fig. 2.16 shows less noise suppression than its 1D equivalent (Fig. 2.6). This may correspond to analogous
differences between 3D and 1D models in suppression through plasma oscillations [14, 15].

In the following sections we provide a detailed comparison of 1D vs. 3D models for the case of a space
charge interaction. In the first portion we use the approach of Ref. [25] to show that 1D models provide an
accurate representation of the average longitudinal space charge fields for a 3D system. Derivations of the
equations in section 2.11.1 are given in appendix, chapter A. In the second portion, we provide results from
a 3D simulation confirming that noise suppression is possible in a 3D system.
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2.11.1 Analytical Comparison of 1D and 3D models

Venturini calculates the quantity 〈Ek(r1)E∗
k(r2)〉, which is proportional to our noise factor, 〈F (k)〉. First,

we consider the 1D case. Evaluating at the center of the beam (r1 = r2 = 0), Venturini finds

〈ẼkẼ
∗
k〉1D:r1,r2=0 =

(
e

2π2ε0γrb

)2

Nb

(
1− ξbK1(ξb)

ξb

)2

. (2.53)

Venturini then repeats the calculation of 〈Ek(r1)E∗
k(r2)〉 at r1 = r2 = 0 with a 3D model (particles of

random transverse distribution) and finds (Eq. 11 of [25])

〈ẼkẼ
∗
k〉3D:r1,r2=0 =

(
e

2π2ε0γrb

)2

Nb
1 + ξ2b

[
K2

0 (ξb)−K2
1 (ξb)

]

4
. (2.54)

Venturini notes that the 1D and 3D models diverge in the high frequency limit, a ( γλ, as is evident in his
Fig. 1.

However, while Venturini evaluates the quantity at r1 = r2 = 0, we are interested in a transverse average
over r1 and r2; for the noise factor we require the longitudinal field experienced by each particle due to
every other particle in the bunch. (Summing over all particles in the calculation of F (k) is equivalent to
averaging F (k) over the transverse extent of the beam.) We then need to calculate the transverse average
∫
r1dr1

∫
r2dr2〈Ek(r1)E∗

k(r2)〉 rather than just evaluating at r1 = r2 = 0. If we assume a flat-top transverse
distribution (a uniform disc of charge) of radius rb, we find the transversely averaged result

〈
ẼkẼ

∗
k

〉

1D⊥
=

(
e

2π2ε0γrb

)2

Nb

(
1− 2K1(ξb)I1(ξb)

ξb

)2

(2.55)

equivalent to the expression in Eq. 2.24, but also found elsewhere (e.g. Refs. [49, 50]).

We can then repeat this average for the 3D model. Again assuming a uniform transverse distribution
function, but now with randomly distributed particles, we find (see appendix, chapter A)

〈
ẼkẼ

∗
k

〉

3D⊥
=

(
e

2π2ε0γrb

)2

Nb

[(
1− 2K1(ξb)I1(ξb)

ξ2b

)2

+ δ

]
(2.56)
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where we have defined

δ(x) ≡ K1(ξb)
2

(
ξbI1(ξb)I2(ξb) +

ξ2b
4

(
I2(ξb)

2 − I1(ξb)
2
))

(2.57)

to rewrite the 3D result in the same form as the 1D result (Eq. A.2). Comparing Eqs. A.2 and A.4, we see
that the 1D and 3D expressions are similar; the only difference is the δ term, which is generally small.

To better understand the comparison with the r1 = r2 = 0 results, we also formulate a numerical integral
that we can average for an arbitrary transverse portion of the beam. For this 3D result we follow Venturini’s
approach as an added check. We then numerically integrate over an arbitrary portion of the beam. So, for
example, to integrate from 0 to some radius r, we evaluate (again, see appendix, chapter A)

〈
ẼkẼ

∗
k

〉

3D⊥0→r
=

(
e

2π2ε0γrb

)2 4Nb

ξ4b

∫ r

0
dy

∫ r

y
dz zy

[
K0(y)K0(z)

y2

2

(
I0(y)

2 − I1(y)
2
)

+
I0(y)I0(z)

2

(
ξ2bK0(ξb)

2 − ξ2bK1(ξb)
2 − z2K0(z)

2 + z2K1(z)
2
)

+

∫ z

y
dx xI0(y)K0(z)I0(x)K0(x)

]
. (2.58)

Note that by removing the z, y integrals, and setting y → 0, and z → ξ, we recover Venturini’s Eq. 12.
We can now compare all of our 1D and 3D results (see Fig. 2.15 below). We confirm Venturini’s result

of a divergence between the 1D and 3D models for ξb > 1 when r1 = r2 = 0. However, for our noise
factor, 〈F (k)〉, we need to calculate the average over the entire beam, and in that limit we find that the results
are nearly identical for the 1D and 3D cases. Indeed, Venturini’s Eq. 12 hints at this result; he calculates
〈Ek(0)E∗

k(r)〉, and finds that this quantity falls steeply to zero in the 3D limit when kσ/γ ( 1 and r .= 0

(See Fig. 2 of Ref. [25]). While the 3D result predicts stronger correlations when r1 = r2 (Fig. 1 of Ref. [25]),
it predicts weaker correlations when r1 .= r2 (Fig.2 of Ref. [25]), and the average is in fact similar to the 1D
model. We then conclude that the 1D model is a good approximation of the 3D model in the high frequency
limit.

(We note that the precise difference between the 1D and 3D averages depends on the transverse beam dis-
tribution. The results given here assume a disc of uniform expectation value. However, a Gaussian transverse
distribution results in a difference of a factor of 4/3, as found in Chapter 3 in Section 3.6.2.)

2.11.2 3D Simulation

As the most direct test of the model we can simply carry out a 3D simulation. We modify our 1D code
to calculate the standard coulomb interaction between particles distributed in a longitudinally uniform and
transversely flat-top beam. The 3D code is severely limited by computational constraints; because we must
calculate the interaction between all particles, the number of operations scales as the square of the particle
number, and the 3D simulations require many more particles than the 1D simulations. However, we are able
to simulate approximately 104 particles in a length of L = a. Despite the computational constraints, we still
observe noise suppression at low frequencies (Fig. 2.16). (At high frequencies there are too few particles
per wavelength for an accurate calculation.) We see that the noise suppression improves as we increase the
number of particles in the simulation.
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Chapter 3

6D Shot Noise Model of Microbunching

3.1 Introduction

In a high-brightness linear accelerator, as used for a high-gain free electron laser (FEL), impedance effects
along the accelerator can drive a periodic microbunching instability that degrades the electron beam quali-
ties [6, 18, 19, 20, 21, 22, 23, 24]. Longitudinal space charge (LSC) forces may dominate microbunching
gain at wavelengths shorter than the electron bunch [21, 22, 23, 24]. LCLS has observed evidence of opti-
cal wavelength microbunching from optical transition radiation (OTR) screens. In particular, OTR screens
downstream from the high-brightness injector have recorded Coherent OTR (COTR) from an uncompressed
electron bunch [1]. At such short modulation wavelengths (less than 1µm), electron shot noise is the most
probable source of the initial density fluctuations required to start the instability.

Venturini noted [25] that the purely longitudinal model of LSC impedance used in previous studies [21,
22, 23, 24] may fail at very short wavelengths, when the longitudinal shot noise modulations are not trans-
versely uniform. In this paper, we present a six-dimensional (6D) analysis of LSC microbunching starting
from shot noise. Using a simplified machine model motivated by the LCLS setup, we calculate the mi-
crobunching gain factor for short modulation wavelengths observed at small angles relative to the longitu-
dinal direction. We also compare these results with the LCLS COTR observations [26]. The results of this
chapter were first presented as Ref. [46].

3.2 Model Assumptions

Our goal is to calculate microbunching derived from the electric fields of randomly distributed electrons. To
derive the bunching behavior, we start with a random distribution of electrons in full 6D phase space. The
unevenly distributed electrons produce LSC fields, which in turn cause energy modulations to accumulate
along the accelerator. A dispersive element with nonzero momentum compaction can then convert the energy
modulation to change in longitudinal position (Fig. 3.1). As a result, the longitudinal density distribution is
modified from the initial random distribution and may show enhancement at some frequency range, i.e., the
beam is microbunched at these frequencies.

In practice, we observe microbunching as COTR emitted from thin foils in the beam path. The radiated

31
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Figure 3.1: Schematic of the interaction-dispersion model system. Longitudinal space charge causes an
energy modulation, which then produces a density modulation following a dispersive region. The dispersion
may be positive or negative.

COTR has power given by (
d2I

dωdΩ

)

tot

=

(
d2I

dωdΩ

)

1

|b(k)|2 ,

with the single-electron angular spectrum
(

d2I

dωdΩ

)

1

∝
γ4(θ2x + θ2y)[

1 + γ2(θ2x + θ2y)
]2 . (3.1)

We will quantify the degree of bunching at position L in the accelerator by the bunching factor

b(k) =
1

N

∑

j

exp
[
−iK̃Xj(L)

]
exp [−ikδzj(L)] , (3.2)

with bunching wave vector

K̃ ≡ [kθx 0 kθy 0 k 0] , (3.3)

electron coordinates

X =





x

x′

y

y′

z

p





, (3.4)

and longitudinal deviation from space charge

δzj ≡
∫ L

0
ds

e

γsmc2
R(56)

s→LEz (R0→sX0j) . (3.5)

In these definitions a tilde denotes transpose, Ez is the electric field experienced by the jth electron at position
s in the accelerator, and the sum is over all electrons in the bunch. The final COTR scales as |b(k)|2, so our
task will be to find the expectation value

〈
|b(k)|2

〉
. Note that the bunching factor normalization here is

different from that given in Eq. 1.1, with b(k) ≡ f(k)/
√
N .
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3.3 Longitudinal Space Charge Field

Longitudinal space charge (LSC) forces derived from the electron bunch shot noise produce microbunching.
We are interested in the high-frequency microbunching regime, kσT /γ ( 1, when the transverse coherence
length is smaller than the transverse beam size, σT . Because the coherence length is only captured in a full
6D model of microbunching, we derive our LSC field from a 6D shot noise distribution, i.e., a sum of 6D
delta functions.

ρ(X) =
N∑

j

δ(x−xj)δ(y−yj)δ(z−zj)δ(x
′−x′

j)δ(y
′−y′j)δ(p−pj) . (3.6)

We assume the only space charge effect of interest is the energy modulation of the electrons by the LSC
electric fields

Ez(X1) =
e

4πε0

∫
dX2G(X1,X2)ρ(X2)

G(X1,X2) ≡
(z1 − z2)γ

[(x1 − x2)2 + (y1 − y2)2 + γ2(z1 − z2)2]3/2
, (3.7)

with electron energy, γ. From Eq. 3.7 and the 6D distribution, Eq. 3.6, we find the longitudinal E-field

Ej(X(s)) =
e

4πε0

N∑

i

[zj(s)− zi(s)]γ
(
[xj(s)− xi(s)]2 + [yj(s)− yi(s)]2 + γ2[zj(s)− zi(s)]2

)3/2
, (3.8)

with electron coordinate X(s) a function of accelerator position. Eq. 3.7 depends only on the instantaneous
particle positions, x, y and z, but we want to integrate the E-field all along the accelerator, and the general
particle positions x(s), y(s), and z(s) depend on the full initial phase space, x0, y0, z0, x′

0, y
′
0, p0. As a result,

we must keep the full 6D distribution.
The instantaneous LSC field affects the final z position of the j-th particle according to

dδzj(s)

ds
=

R(56)
s→LeE(Xj(s))

γsmc2
. (3.9)

We now further assume the space charge effect is weak enough that we need only carry it to first order in
all relevant quantities. Though we allow δzj(s) to vary along the accelerator, we will ignore any changes to
the LSC field from the microbunching process. We will designate X0j as the initial coordinates of the j-th
particle. The particle phase space coordinates, Xj(s), are determined only by the transfer matrix, R0→s, the
initial coordinates, X0j , and the resulting space charge induced energy modulation, which we keep only to
first order. The final coordinates of the jth particle at the observation point, L, are then given by

Xf
j ≈ R0→LX0j + δzj , (3.10)

with

δzj ≡
e

mc2

∫ L

0
ds





0

0

0

0

0
R(56)

s→L
γs

Ez (R0→sX0j)





, (3.11)
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with electron energy at position s of γsmc2, and impedance section of length L.
To facilitate the bunching calculation, we will use the longitudinal Fourier transform of our 6D shot noise

E-field, Eq. 3.8, which is of the form
∫

dke−ikz γz
(
|Y |2 + γ2z2

)3/2 =
−2ik

γ2
K0

(
k |Y |
γ

)
, (3.12)

where we have defined |Y | as the length of transverse coordinates Y both for brevity and also to emphasize
that the Bessel function depends only on particle positions, not angles.

Finally, in this LSC model we’ve made two assumptions that are violated in the ultra-relativistic regime.
First, we assume all particles travel in the z direction, so that the electric fields are not tilted with respect to
the motion of the electron bunch. This assumption holds so long as the angular motion is small, x′, y′ # 1/γ.
Second, we have determined the energy change to a particle at accelerator position (or time) s by calculating
the E-field from the other particle coordinates at the same time, s, rather than using the retarded time, sret.
This assumption holds if the catch-up distance 1/k(1−β) ≈ 2γ2/k is small compared to the electron motion
(e.g. the β function, waist size, etc.). (Note, for σT ( γ/k, we should replace the wavelength with the
transverse size in the previous relation.)

3.4 Expectation Value of Bunching Factor Squared

3.4.1 Weak Modulation Expansion

The main task at hand is the evaluation of the expectation value of the bunching factor squared,

〈
|b(k)|2

〉
=

1

N

〈
N∑

j

N∑

l

e−iK̃(Xj(L)−Xl(L))e−ik(
∑

i #=j δzji−
∑

i #=l δzli)

〉
, (3.13)

with expression for the energy modulation effect

N∑

i $=j

δzj,i =
N∑

i $=j

e

mc2
e

4πε0

∫
ds

R(56)
s→L

γs

∂

∂zi

1

|Xj(s)−Xi(s)|
. (3.14)

To find the expectation value, we start by separating the j = l and j .= l cases. We will start with the
incoherent portion, j = l. In setting the two indices equal we lose one summation, and we can see that the
phase terms all go to unity. The result is simply the shot noise of an electron beam

〈
|b(k)|2

〉

SN
=

1

N

N∑

j

1 = 1 . (3.15)

Next we have the coherent portion, with j .= l. To evaluate the expectation value, we integrate over
the final particle distribution function, ΨN (X1(L), ..., XN (L)). However, ΨN may be a complicated func-
tion of the N variables and the beam transfer matrices, R. Instead, we will rewrite our bunching factor in
terms of the initial coordinates through X(s) = R0→sX0, and then integrate over the simpler initial distribu-
tions, ΨN (X01, ...X0N ). In particular, we assume the initial beam is uncorrelated (random) so that we can
decompose

ΨN (X01, ..., X0N ) =
N∏

i

Ψ(X0i) , (3.16)
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with the single particle distribution functions, Ψ. (We blindly trust our laser experts who tell us the beam must
– MUST! – be longitudinally structureless coming off the cathode.) We assume all particles are identical, so
the sums over j and l each give a factor of N , and we can integrate over the single particle distributions to
find
〈
|b(k)|2

〉

C
≡ N

∫
dX01...dX0NΨ(X01)...Ψ(X0N )e−iK̃(R0→LX01−R0→LX02)e−ik(

∑
i #=1 δz1i−

∑
i #=2 δz2i) ,

(3.17)

where we have assigned j = 1, l = 2 without loss of generality and approximated N − 1 ≈ N . Following
Stupakov [17], our approach is to explicitly isolate the portions of the integrand which do not contain any
dependence on i .= 1, 2,

〈
|b(k)|2

〉

C
= N

∫
dX01...dX0NΨ(X01)...Ψ(X0N )e−iK̃(R0→LX01−R0→LX02)e−ik(δz1,2−δz2,1)

e−ik
∑N

i=3(δz1,i−δz2,i)

= N

∫
dX01

∫
dX02Ψ(X01)Ψ(X02)e

−iK̃(R0→LX01−R0→LX02)e−ik(δz1,2−δz2,1)

[∫
dX0iΨ(X0i)e

−ik(δz1,i−δz2,i)

](N−2)

, (3.18)

where we’ve again used the assumption of identical particles to convert the sum into a product of N − 2

identical integrals. To facilitate the calculation of the expectation value, we will assume the longitudinal
motion resulting from the modulation is small (|kδ| # 1), so that we can linearize the exponents

〈
|b(k)|2

〉

C
= N

∫
dX01

∫
dX02Ψ(X01)Ψ(X02)e

−iK̃(R0→LX01−R0→LX02) [1 + Γ1] [1 + Γ2/N ]N−2 .

(3.19)

with definitions expanded in powers of kδ

Γ1 ≡ −ik(δz1,2 − δz2,1)− k2(δz1,2 − δz2,1)
2 + ...

Γ2 ≡ N

∫
dX0iΨ(X0i)

(
−ik(δz1,i − δz2,i)−

1

2
[k(δz1,i − δz2,i)]

2 + ...

)
. (3.20)

Because δ is small, we will keep only the lowest order terms. We will assume that the interaction length,
Lint, of the space charge is small compared to the bunch length, L. (That is, for L ( |Xj − Xi| > Lint,
we find δzij → 0. This assumption also lets us ignore edge effects.) We then find 〈δz1,i〉 = 〈δz2,j〉 and the
linear order terms of Γ2 integrate to 0. Then keeping the lowest order non-zero terms for Γ1 (linear in kδ)
and Γ2 (quadratic in kδ) gives

Γ1 ≈ −ik(δz1,2 − δz2,1)

Γ2 ≈ −Nk2

2

∫
dX0iΨ(X0i) [(δz1,i − δz2,i)]

2 . (3.21)

Finally, when we plug back into Eq. 3.19, we will have a term with an integral over the phases exp[ikX01] and
exp[ikX02] multiplied by Γ2. Unless Γ2 cancels both phase factors, the integral must average to zero. Hence
the δz21,i and δz22,i terms (with no dependence on X02 and X01 respectively) must vanish for k .= 0, and we
drop them from Γ2. (Strictly speaking, these factors vanish only for k > 1/L, but we are not interested in the
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case k < 1/L anyway.) In the end we have two competing coherent terms:

Γ1 ≈ −ik(δz1,2 − δz2,1)

Γ2 ≈ Nk2
∫

dX0iΨ(X0i)δz1,iδz2,i . (3.22)

The first term (Γ1, henceforth the linear term) is linear in kδ, while the second term (Γ2, henceforth the
quadratic term) is quadratic in kδ. While kδ is presumed to be small, we cannot ignore the quadratic term
because it also contains a factor of N , which can be a billion or larger for the case of LCLS. We will instead
evaluate both terms, and decide from the particular machine parameters which term will dominate.

3.4.2 Initial Distribution

To carry out the integrals, we will need to specify the initial distribution, Ψ(X0). We will assume a decoupled
distribution Ψ(X0) = Ψ(Y0)Ψ(z0)Ψ(p0), with Y0 containing all transverse coordinates. We can then write

Ψ(X0) =
1

(2π)3
√
detU

exp

[
−1

2
X̃0U

−1X0

]
(3.23)

where U is the beam’s second-moment matrix (symmetric, positive definite) at initial position s = 0,

U =





〈x2〉 〈xx′〉 0 0 0 0

〈xx′〉 〈x′2〉 0 0 0 0

0 0 〈y2〉 〈yy′〉 0 0

0 0 〈yy′〉 〈y′2〉 0 0

0 0 0 0 〈z2〉 0

0 0 0 0 0 〈p2〉





. (3.24)

Though we start with a decoupled distribution, at any arbitrary position along the accelerator we will find
the longitudinal and transverse components mix together. In particular, the gaussian transverse distribution
will include a z component. If we assume the bunch is long compared to the wavelengths of interest, we can
drop the z2 term and separate out the z components. However, coupling between longitudinal and transverse
components implies a dispersive section, possibly violating our constraint of carrying the microbunching
modulation only to first order.

Instead, we will concentrate on the case of a dispersion-less interaction region followed by a single
interaction-free dispersive section (Fig. 2.1). We then have no longitudinal motion during the modulation
process and the longitudinal distribution decouples from the transverse distribution throughout the interac-
tion. If we further assume the bunch length is long relative to the wavelength of interest, we can approximate
the longitudinal distribution as a flat-top

Ψ(z) =

{
1/L, |z| ≤ σz

0, |z| > σz

. (3.25)

We will assume a flat-top distribution for the rest of the chapter.
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3.4.3 Weak LSC Limit

In the Section 3.4.1 we expanded the exponentials in the limit kδ # 1. If we further assume Γ2 # 1 we can
expand again to find

〈
|b(k)|2

〉

C
= N

∫
dX01

∫
dX02Ψ(X01)Ψ(X02)e

−iK̃(R0→LX01−R0→LX02) [Γ1 + Γ2] + f(k < 1/L) .

(3.26)

with the same definitions

Γ1 ≈ −ik(δz1,2 − δz2,1)

Γ2 ≈ Nk2
∫

dX0iΨ(X0i)δz1,iδz2,i . (3.27)

The function f(k < 1/L) comes from integrating over the phase factor for the leading (constant) term in the
argument 1 + Γ1 + Γ2 + .... We are interested in wavelengths shorter than the bunch (i.e., microbunching),
so we will drop f(k < 1/L).

In the following sections we will evaluate the linear and quadratic terms individually. We also note that
it is in principle possible to continue without the weak limit approximation. Using instead [1 + Γ2/N ]N ≈
exp[Γ2], we may still solve for the expectation value either analytically or numerically. We give an example
of such a solution in a 1D case for shot noise suppression (Chap. 2). While this approach may be necessary to
check simulations with small numbers of particles and thus large interaction strengths δz, for most practical
cases the weak limit approximation is valid.

3.4.4 Evaluating the Quadratic Term

Three Transformations

We are particularly interested in the quadratic term, which drives the microbunching instability. Pulling out
the quadratic term (Γ2) from Eq. 3.26, we can write down the increase in bunching at the final accelerator
position, s = L,

〈
|b(k)|2

〉

(δz2)
≡ N2

∫
dX01

∫
dX02Ψ(X01)Ψ(X02)e

−iK̃(R0→LX01−R0→LX02)Γ2(X01, X02) . (3.28)

As in Section 3.4.1, we’ve written the expression in terms of the initial coordinates, X0 ≡ RL→0X(L), the
first of three variable transformations we will make. It is now time to plug in for our particular δ in the case
of space charge

〈
|b(k)|2

〉

(δz2)
= (N − 1)2k2

∫
dX01Ψ(X01)

∫
dX02Ψ(X02)

∫
dX0iΨ(X0i)

e−iK̃(R0→LX01−R0→LX02)

(
e2

4πε0mc2

)2

∫
ds1

R(56)
s1→L

γ1

∂

∂z0i

1

|X01(s1)−X0i(s1)|

∫
ds2

R(56)
s2→L

γ2

∂

∂z0i

1

|X02(s2)−X0i(s2)|
(3.29)

The potential depends on only the difference between the two particle coordinates, so we can simplify the
expression by changing to difference variables, the second of our three transformations:
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ξ01,02 = X0i −X01,02 . (3.30)

This transformation allows us to separate out the X0i integrals

〈
|b(k)|2

〉

(δz2)
= N2k2

∫
dξ02

∫
dξ01e

−iK̃R0→L(ξ02−ξ01)

(
e2

4πε0mc2

)2

∫
ds1

R(56)
s1→L

γ1

∂

∂z01

1

|R0→s1ξ01|

∫
ds2

R(56)
s2→L

γ2

∂

∂z02

1

|R0→s2ξ02|∫
dX0iΨ(X0i)Ψ(X0i − ξ01)Ψ(X0i − ξ02) . (3.31)

The Coulomb field (Eq. 3.8) depends only on the particle positions (x, y, z), and not on the angles (x′, y′, z′);
at any given moment, the interaction dependence spans only half of the 6D phase space. However, at present
we have the field written in terms of the initial coordinates, X0, and the interaction will in general depend on
all six initial coordinates. To simplify, we transform variables a third time to a changing reference frame

ξ1,2 ≡ R0→s1,2ξ01,02 . (3.32)

(We call it changing because it varies as a function of longitudinal position in the accelerator, s.) In the
changing basis we have

〈
|b(k)|2

〉

(δz2)
= N2k2

(
e2

4πε0mc2

)2 ∫
ds1

∫
ds2

∫
dξ2
J2

∫
dξ1
J1

e−iK̃Rs→L(ξ2−ξ1)
R(56)

s1→L

γ1

R(56)
s2→L

γ2
∂

∂z1

1

|ξ1|
∂

∂z2

1

|ξ2|

∫
dX0iΨ(X0i)Ψ(X0i −Rs1→0ξ1)Ψ(X0i −Rs2→0ξ2) , (3.33)

with J the Jacobian of the transformation R0→s.

Twenty Integrals

Eq. 3.33 contains twenty integrals. Our strategy will be to separate out the E-field and accelerator position
dependence (x1, y1, x2, y2, s1, s2), and evaluate the remaining integrals first.

Taking the assumption of a long bunch (L ( 1/k), we use a flat-top distribution (Eq. 3.25). The z

components of the ξ1,2 integrations then become Fourier transforms, giving

〈
|b(k)|2

〉

(δz2)
= n2

0

(
e2k2

2πε0mc2

)2 ∫
ds1

∫
ds2

∫
dξ̄2
J2

∫
dξ̄1
J1

R(56)
s1→L

γ3
1

R(56)
s2→L

γ3
2

e−iK̃Rs→L(ξ̄2−ξ̄1)e−ik[R(51)
s→L(x2−x1)+R(52)

s→L(x′
2−x′

1)+R(56)
s→L(p2−p1)]

K0

(
|Y1|

k

γ1

)
K0

(
|Y2|

k

γ2

)∫
dX̄0iΨ(X̄0i)Ψ(X̄0i −Rs1→0ξ̄1)Ψ(X̄0i −Rs2→0ξ̄2) ,

(3.34)

with longitudinal density, n0 ≡ N/L, and where we’ve used Y to denote transverse coordinates, and barred
variables, ξ̄, X̄ , to denote all ξ, X components except for z (i.e., Y plus p). We note here that two factors of
γ1γ2 ≡ γ(s1)γ(s2) come from the E-field, but one factor comes from the normalization of R(56)

s→L, which is
defined in terms of relative energy; in practice, it may be desirable to take R(56)

s→L from an arbitrary accelerator
coordinate, s, even perhaps outside the integration range, but the energy factor must change accordingly.
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Carrying out the p1, p2 integrals, we find

〈
|b(k)|2

〉

(δz2)
= n2

0

(
e2k2

2πε0mc2

)2

e−k2R2
56p

2
0

∫
ds1

∫
ds2

∫
dY2

J2

∫
dY1

J1

R(56)
s1→L

γ3
1

R(56)
s2→L

γ3
2

e−iK̃Rs→L(Y2−Y1)

K0

(
|Y1|

k

γ1

)
K0

(
|Y2|

k

γ2

)∫
dY0iΨ(Y0i)Ψ(Y0i −Rs1→0Y1)Ψ(Y0i −Rs2→0Y2) ,

(3.35)

and are left with just transverse components (Y ).
Having chosen a transverse phase space distribution (Eq.3.23), we are in position to start evaluating the

remaining fourteen integrals in Eq.3.35. To start, we can write down the Gaussian Y0i integral, which is of
the form

IG =

∫
dVΨ(V − V1)Ψ(V − V2)Ψ(V )

=
(detU−1)3/2

(2π)6

∫
dV exp

[
−1

2
(Ṽ − Ṽ1)U

−1(V − V1)−
1

2
(Ṽ − Ṽ2)U

−1(V − V2)−
1

2
Ṽ U−1V

]
.

(3.36)

Making the change of variables W ≡
√
3V − (V1 + V2)/

√
3, we can rewrite the integral as

IG =
(detU−1)3/2

(2π)6

∫
dW

9
exp

[
−1

2
W̃U−1W − 1

3
(Ṽ1U

−1V1 + Ṽ2U
−1V2 − Ṽ1U

−1V2)

]
. (3.37)

Carrying out the integral over W , and plugging in for V1,2 = Rs1,2→0Y1,2, we find the Gaussian integral

IG(Y1, Y2) =

detU−1

9(2π)4
exp

[
−1

3
(Ỹ1R̃s1→0 − Ỹ2R̃s2→0)U

−1(Rs1→0Y1 −Rs2→0Y2)−
1

3
Ỹ1R̃s1→0U

−1Rs2→0Y2

]
.

(3.38)

We still have ten integrals (s1,2x1,2, y1,2, x′
1,2, y

′
1,2) remaining in Eq.3.35. The goal of our third transfor-

mation (to a changing basis) was to remove the angular dependence in the Bessel functions. We can then pull
these factors out of the angle integrals to find

〈
|b(k)|2

〉

(δz2)
= n2

0

(
e2k2

2πε0mc2

)2
detU−1

9(2π)4
e−k2R2

56p
2
0

∫
ds1

∫
ds2

R(56)
s1→L

γ3
1

R(56)
s2→L

γ3
2∫

r1dr1dθ1
J1

∫
r2dr2dθ2

J2
K0

(
r1k

γ1

)
K0

(
r2k

γ2

)
e−ikR(51)

s→L(r2 cos θ2−r1 cos θ1)G2 , (3.39)

with polar coordinate, r, defined as the length of vector Y , and Gaussian integral over angles

G2 ≡
∫

dx′
1dy

′
1

∫
dx′

2dy
′
2e

−iK̃[Rs2→LY2−Rs1→LY1]e−ikR(52)
s→L(x′

2−x′
1)

exp
1

3

[
Ỹ1R̃s1→0U

−1Rs2→0Y2 −
(
Ỹ1R̃s1→0 − Ỹ2R̃s2→0

)
U−1 (Rs1→0Y1 −Rs2→0Y2)

]
, (3.40)

where J is the Jacobian of the transformation R0→s and we’ve explicitly written out the R51 and R52 de-
pendence (which would otherwise be hidden in the RY terms). Though it looks intimidating, G2 is just a
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Gaussian integral which we can evaluate exactly after specifying the transverse motion Rs→0 and Rs→L.
After evaluating G2, we are left with only six integrals, r1,2, θ1,2ands1,2. We will see later it is often possi-
ble to evaluate the r1,2 and θ1,2 integrals analytically in certain limits, leaving just two s1,2 to be integrated
numerically.

3.4.5 Evaluating Linear Term Expectation Value

We now return to the linear term,
〈
|b(k)|2

〉

(δz)
≡ −N

∫
dX1

∫
dX2Ψ(X1)Ψ(X2)e

−iK̃(X1(L)−R0→LX2(L))Γ1(X1, X2) . (3.41)

Following the same approach as for the quadratic term, we begin by rewriting the bunching factor in terms of
initial coordinates,

〈
|b(k)|2

〉

(δz)
= −2N

∫
dX01

∫
dX02Ψ(X01)Ψ(X02)e

−iK̃(R0→LX01−R0→LX02)ik

e

mc2
e

4πε0

∫
ds

R(56)
s→L

γs

∂

∂z2

1

|R0→s1X01 −R0→s1X02|
, (3.42)

where we’ve used the odd symmetry of Eq. 3.8 to combine the two terms in Γ1. We then change to difference
variable, ξ01 ≡ X02 −X01, to find

〈
|b(k)|2

〉

(δz)
= −2N

∫
dξ01

∫
dX02Ψ(X02)Ψ(X02 − ξ01)e

iK̃(R0→Lξ01)ik

e

mc2
e

4πε0

∫
ds

R(56)
s→L

γs

∂

∂z1

1

|R0→s1ξ01|
, (3.43)

where we’ve swapped the derivative from X02 → ξ01 (using our new difference coordinate z2 − z1). Switch-
ing the integration variable to ξ1 ≡ R0→s1ξ01 we find

〈
|b(k)|2

〉

(δz)
= −2N

iek

mc2
e

4πε0

∫
ds

R(56)
s→L

J1γs

∫
dξ1e

iK̃(Rs→Lξ1) ∂

∂z1

1

|ξ1|∫
dX02Ψ(X02)Ψ(X02 −Rs→0ξ1) , (3.44)

with J the Jacobian of the transformation R0→s.
Assuming a longitudinally frozen beam we can separate out the transverse (Y ) and longitudinal (z, p)

components of the coordinates ξ, X . Then integrating over p and z (the latter a Fourier transform) we find
〈
|b(k)|2

〉

(δz)
= −2n0R56

ek2

mc2
e

2πε0
e−k2R2

56σ
2
p

∫
ds

J1γ3

∫
dY1e

iK̃(Rs→LY1)eikR51x1eikR52x
′
1K0

(
|Y1|

k

γ

)

∫
dY02Ψ(Y02)Ψ(Y02 −Rs→0Y1) , (3.45)

where we’ve plugged in Eq. 3.12. Rearranging factors we find
〈
|b(k)|2

〉

(δz)
= −2n0R56k

2e−k2R2
56σ

2
p
2I

IA

∫
ds

γ3

∫
r1dr1dθ1

J1
K0

(
r1k

γ

)
eikR51r1 cos θ1G1 , (3.46)

with current I = ecn0, Alfvén current IA = ec/re = 4πε0mc3/e, and Gaussian integral

G1 ≡
∫

dx′
1dy

′
1

∫
dY0je

iK̃(Rs→LY1)eikR52x
′
1Ψ(Y02)Ψ(Y02 −Rs→0Y1)

=
1

4(2π)2
√
detU

∫
dx′

1dy
′
1e

iK̃(Rs→LY1)eikR52x
′
1 exp

[
−1

4
Ỹ1R̃s→0U

−1Rs→0Y1

]
. (3.47)
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As in the quadratic case, G1 is a Gaussian integral that can be evaluated numerically if the transfer matrices
are known. The final expression, Eq. 3.46, then has three remaining integrals. We can now compare the
relative amplitudes of our linear term, Eq. 3.46, with the quadratic term, Eq. 3.39.

3.5 Results

3.5.1 Quadratic Term: Short Impedance Section

To evaluate the full bunching for a practical case, we will look at a simplified model that is satisfied by the
LCLS COTR observations. For this case we need only the quadratic term, Eq. 3.39, which dominates for
k2|δz|2 ( 1/N . (The linear term, Eq. 3.46, is just a small correction.)

To evaluate G2 (Eq. 3.40), we need to choose the transverse particle motion in the accelerator. In principle
we may evaluate Eq. 3.40 for any arbitrary accelerator motion:betatron oscillations with acceleration, laminar
flow, drift, etc. Here we present only the simplest case of a short impedance section of total length L # β.
We assume the impedance section is sufficiently short that we may approximate the beam as transversely
frozen, and drop the s integration. For the transfer matrices we then have R0→s = I and Rs→l = R0→l ≡ R

determined by the optics downstream of the impedance section. We focus on the spatial components of the
final coordinates, Xj

xj = R11x0 +R12x
′
0

yj = R33y0 +R34y
′
0

zj = z0 +R51x0 +R52x
′
0 +R56pm , (3.48)

assuming no coupling between x and y to match the LCLS case. We then find

K̃RX = k [z0 +R56p0 +R1x0

+R2x
′
0 + θyR33y0 + θyR34y

′
0]

R1 ≡ R51 + θxR11

R2 ≡ R52 + θxR12 . (3.49)

Finally, to simplify the algebra we assume a circular beam (σx = σy = σ). We can now carry out the angle
integration, G2, and switching to polar coordinates for the position variables, x, y → r,φ, we find

〈
|b(k)|2

〉

(δz2)
=

(
e2k2R56n0L

2πε0mc2γ3

)2
detU−1σ′4

3(2π)2
exp

[
−σ′2k2

(
R2

2 + θ2yR
2
34

)]

∫
dr1dr2 exp

[
−r21 + r22

σ2

]
r1K0

(
kr1
γ

)
r2K0

(
kr2
γ

)

∫
dφ1dφ2 exp

[
r1r2 cos(φ1 − φ2)

σ2

]

exp [ikR1(r1 cosφ1 − r2 cosφ2)] exp [ikθyR33(r1 sinφ1 − r2 sinφ2)] . (3.50)

Defining Rq ≡
√
R2

1 + θ2yR
2
33 and tan ν ≡ θyR33/R1 so that R1 cosφ+ θyR33φ = Rq cos(φ+ ν), we can

use eix cos(φ) =
∑

l Jl(x)e
il(φ+π/2) to move the φ dependence out of the exponent. Then, integrating over φ
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gives

〈
|b(k)|2

〉

(δz2)
=

1

3

(
e2k2R56n0L

2πε0mc2γ3σ2

)2

e[−σ′2k2(R2
2+θ2

yR
2
34)]

∫
dr1dr2 exp

[
−r21 + r22

σ2

]
r1K0

(
kr1
γ1

)
r2K0

(
kr2
γ2

)

∑

l

Il

(
−r1r2
σ2

)
Jl (kr1Rq) J−l (−kr2Rq) e

−k2R2
56σ

2
p . (3.51)

In the limit that kσ/γ ( 1, we need only integrate out to r ≈ γ/k, because K0(kr1/γ) decays exponentially
for large r. In this regime (r ≤ γ/k), the argument r1r2/σ2 is always small and only the I0 ≈ 1 term is
non-negligible. Setting l = 0, the r1 and r2 integrals separate, and we can use

∫ ∞

0
xK0(x)J0(ax) =

x

a2 + 1
[aJ1(ax)K0(x)− J0(ax)K1(x)]

∣∣∞
0

=
1

a2 + 1
(3.52)

to find expectation value of bunching

〈
|b(k)|2

〉
(δz2)

≈ 4

3

[
I

IAγ

R56L

σ2

]2e[−σ′2k2(R2
2+θ2

yR
2
34)−k2R2

56σ
2
p]

[γ2R2
q + 1]2

, (3.53)

with average current I0 = ecn0, and Alfvén current IA = ec/re = 4πε0mc3/e kA. If we include s-
dependence (for instance from a drift section, or beta-oscillation), then the position (R51, R11, R53) and
angle (R52, R12, R43) factors mix in both the suppression terms.

3.6 LCLS Results

The LCLS COTR observations in the absence of compression were initially described in Ref. [1] (see Fig. 44
and the paragraph above it). A schematic of the LCLS beamline through the first bunch compressor is given
in Fig. 3.2. Following the initial observations of Ref. [1], a transmission grating spectrometer was installed
in OTR12 in order to study COTR spectral content, and more data were collected in 2008 at 250 pC bunch
charge [26]. The integrated OTR signal maximizes at the QB quadrupole setting that makes the DL1 bend
system a perfect linear achromat (see Fig. 3.3). When QB is set off peak, the nonzero R51 and R52 wash out
the microbunching effect.

During this study, the spectral data were also collected at QB=10.7 kG (peak COTR intensity) and at
QB=11 kG (baseline incoherent level). Analyzing the spectral data and taking the ratio of the two spectra,
we obtain the OTR intensity gain as a function of the optical wavelength, shown in Fig. 3.5. We then use the
experimental beam parameters to determine the theoretical gain curve. We take γ0mc2 = 135 MeV, γ0ε = 1

µm, β0 = 1.2 m, and the DL1 R56 = 6.3 mm. We assume the waist in front of the dog leg dominates the
impedance effects due to the small beta function there, so we take Ld ≈ 2.5 m for the beam waist extending
±2 m from the waist at OTR2 (Fig. 3.4). The electron peak current is I0 ≈ 40 A for a 250 pC electron
bunch with an rms length of 750 µm. Using these parameters, kσx0/γ0 ≥ 2 for λ ≤ 1 µm, and hence the
high-frequency approximation is reasonable. We calculate the spectral gain by plugging Eq. 3.53 into

dW

dω
=

∫ θm/2

−θm/2
dθx

∫ θm/2

−θm/2
dθy

(
d2W

dωdΩ

)

1

[
N +N2|b(k)|2

]
, (3.54)
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Figure 3.2: Schematic of the LCLS beamline through the first bunch compressor at the time of measurements
(figure from Ref. [1]). The current beamline is nearly identical except for the addition of a laser heater in the
dogleg following L0b.

with the camera collection angle θm, setting R51 = R52 = 0 and using R11, R12, R33, R34 from the
LCLS design lattice. Because the gain depends sensitively on the slice energy spread σδ0 (experimentally
unknown), we match the theoretical gain curve to the experimental one using a slice rms energy spread
of 3 keV (Fig. 3.5). This 3 keV value is consistent with the typical slice energy spread measured from a
photocathode rf gun [54]. We suspect that the discrepancy at low energy arises from regions of smaller
energy spread in which the short wavelength microbunching survives.

We also use Eqs. (3.53) and (3.54) at different QB settings to calculate the width of the QB curve at
λ = 1 µm, near the long wavelength end of the OTR camera’s bandwidth. The absence of the transverse
beam size (σx) in the final 3D result lowers QB sensitivity, but we still predict a width about a factor of
2 narrower than in the measured QB curve (Fig. 3.3). We suspect the larger width may be related to the
non-smooth transverse electron distributions generated by laser and/or cathode non-uniformity.

3.6.1 Comparison of 6D and 2D Models

We would like to compare our 6D result to the equivalent prediction of a 2D model of shot noise. To do this,
we return to the short impedance approximation (Eq. 3.53). First, we quote the result of a self-consistent 2D
shot noise model; as in the 6D version, we use the same electron distribution for bunching and modulation,
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Figure 3.3: The integrated OTR signal as a function of the QB quadrupole strength at 250 pC bunch charge
(courtesy D. Dowell et al.).

but now with only longitudinal shot noise, and smooth transverse distribution, S(Y ),

ρ(X)2D =
S(Y )

NSn

N∑

zj

δ(z′ − zj) , (3.55)

with normalization Sn =
∫
dxdyS(Y ). Following the same calculation as for the 6D model we find

〈
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〉
2D

=
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p

]
exp
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2
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]]2
, (3.56)

and bunching in the high frequency limit

〈
|b(k)|2

〉
2D

=

[
I

IAγ

R56L

σ2

]2 e−k2[R2
56σ

2
p+

1
2σ

2(R2
1+R2

33θ
2
y)+σ′2(R2

2+R2
34θ

2
y)]

[
γ2R2

q

4 + 1
]2 . (3.57)

The sensitivity to off-diagonal elements in the R matrix is different, but the form is generally the same. We
may also imagine an even simpler 2D model, using a transverse Gaussian for the electrons, but a uniform
transverse E-field for modulation. The simpler E-field simplifies the algebra, giving

〈
|b(k)|2

〉
C
=

[
I

IAγ

R56L

σ2

]2
e−k2[R2

56σ
2
p+σ2(R2

1+R2
33θ

2
y)+σ′2(R2

2+R2
34θ

2
y)] . (3.58)

To compare the gain, we take the achromatic limit (only R56 .= 0 for both 6D (Eq.3.51) and 2D (Eq.3.56)
models (Fig.3.6). (Both 2D models predict the same gain curve.) For low frequency bunching, the 6D and
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Figure 3.4: Twiss parameters for the LCLS beamline showing the small waist in front of the dogleg. Exper-
imental attempts to decrease or increase the waist were not successful, likely because second order effects
resulting from changes to the large beta function in the dogleg dominate.

2D models converge, but in the high frequency limit the 6D model predicts stronger bunching by a factor of
4/3.

We can also guess that the models predict different sensitivity to chromatic affects. In particular, our
6D model has no exponential dependence on Rq ≡

√
R2

1 + θ2yR
2
33. When β is large, and thus σ′ = σ/β

is small, we can drop the R2 and R34 dependence. In this regime, we expect the Lorentzian dependence
of the 6D model to differ significantly from the 2D prediction. To experimentally validate the 6D results,
we require a beam with a short impedance section (to ignore s-dependence and transverse motion), large β

(to suppress angular effects), and low γ (to ensure 6D regime). However, we cannot have such low γ that
velocity bunching dominates.

3.6.2 Comparison of Linear and Quadratic Terms

We would like to compare the linear term to the quadratic term in the case of a short impedance section (for
simplicity). Taking the case of a transversely frozen beam (short impedance section), we drop the s integral
and take the same transport matrix as for the quadratic term. The angular component is just a Gaussian
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Figure 3.5: OTR intensity gain for 250 pC charge at OTR12 as a function of the optical wavelength.

integral, but with σ →
√
2σ. Integrating over both angular components (x′, y′) gives

〈
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, (3.59)

with the usual limit kσ/γ ( 1 and definitions Rq ≡
√
R2

1 + θ2yR
2
33, R1 ≡ R51+θxR11, R2 ≡ R52+θxR12.

We then find
〈

N∑

l $=j

N∑

j

e−iK̃R(Xj−Xl)ikR56δj

〉
= A
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56σ

2
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2
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′2]

γ2R2
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, (3.60)

with

A ≡ R56L

σ2

I

IAγ
. (3.61)

The complementary δl term is exactly equivalent, but with a sign change in the Fourier transform. (k → −k,
because the phase is now eikzl instead of e−ikzj .) With the sign flip, the δj and δl terms add in phase, and we
find

〈
N∑

l $=j

N∑

j

e−iK̃R(Xj−Xl)ikR56(δj − δl)

〉

6D

= 2A
e−k2[R2

56σ
2
p−(R2

2+θ2
yR

2
34)σ

′2]

γ2R2
q + 1

. (3.62)
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Figure 3.6: Total gain for 6D and 2D models (or 3D and 1D if we do not count angular components) is
roughly equivalent. In the high frequency limit, the gains differ by a factor of 4/3, due to our choice of
gaussian transverse distribution. For flat-top distributions, the difference is even smaller (Fig. 2.15).

By comparison, for the quadratic δjδl term we found previously
〈

N∑

l $=j

N∑

j

e−iK̃R(Xj−Xl)ikR56δjδl

〉

6D

≈ 4A2

3

e−k2[R2
56σ

2
p−(R2
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2
34)σ

′2]

[γ2R2
q + 1]2

. (3.63)

For the linear term to be comparable to the quadratic term in the limit of small suppression, we require
|A| ≈ 1. In general, this will be the case for large, low current beams at high energies. As a practical example,
we take the microbunching observed after the first dogleg at LCLS [46]. In this case, A ≈ 25, the Lorentzian
suppression term is approximately 1, and we can safely ignore the linear term.

When A < 0 (e.g. for a chicane), the linear term can actually suppress bunching below the shot noise
level. We then require not just A ≈ −1, but also e−k2R2

56σ
2
p ≈ 1. For a 135 MeV beam with 2.5 keV energy

spread (σp ≈ 2 ∗ 10−5) and R56 ≈ 5 mm, we can have n0 ≈ 600 nm−1. This sets a lower limit on the
wavelength range for which we could suppress microbunching. We note that with the LCLS parameters,
reducing the R56 by an order of magnitude would bring |A| ≈ 1 while simultaneously diminishing the
suppression term. We explore this concept more carefully in Chapter 2.

3.7 Transverse Motion Examples

We may apply Eqs. 3.39, 3.40 to predict the microbunching in a nearly arbitrary stretch of accelerator. The
only limitation is that we assume dispersion is present in only one stretch of the accelerator, and that the
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Figure 3.7: Suppression of shot noise from linear term. By setting R56 so that the linear term has a negative
contribution to the noise, we can suppress the bunching factor below the shot noise level.

impedance is negligible in that region. In principle, we can then apply our model to realistic accelerator
lattices and include transverse effects due to finite emittance. (We consider only first order transport here,
though it is possible to account for some second order effects as well.)

As a simple example including transverse motion, we first consider a drift space. Normalizing to the
beam waist for the accelerator coordinate, s̃ = s/β, and electron angle coordinates, x̃′, ỹ′ = βx′,βy′, we
have transfer function

R(0 → s̃) =





1 s 0 0

0 1 0 0

0 0 1 s

0 0 0 1




. (3.64)

As in the short impedance section, we have Jacobian J = 1. We can now plug R into Eq. 3.40, and solve
for the bunching factor. This analysis is partially complete, but due to the algebraic complexity we do not
present it here. We note that the equations, though involving many terms, are straightforward to integrate in
Mathematica.

At the beginning of the accelerator we are in the regime of strong acceleration. With γ = γ0(1+αs), we
have αs ( 1, but s # 1/kβ , and we find

x(s) ≈ xf − γf
γ0α

ln

(
γ(s)

γf

)
x′
f (3.65)

where γ0 is the initial energy, γf is the final energy, and α is the accelerating gradient. If we define G(s) ≡
γf

γ0α
ln
(

γf

γ(s)

)
, then we have

x(s) = xf + x′
fG(s) , (3.66)

which is the same form as for a drifting beam, but with the transformation s → G(s). We then expect that,
until we carry out the s integrals, the two results should be identical beyond this substitution.
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Finally, we take simple betatron motion (with acceleration). Again normalizing the accelerator coordi-
nate, s̃ = s/β, and electron angle coordinates, x̃′, ỹ′ = βx′,βy′, we have transfer function

R(0 → s̃) =

√
γ0
γs





cos(s̃) sin(s̃) 0 0

− sin(s̃) cos(s̃) 0 0

0 0 cos(s̃) sin(s̃)

0 0 − sin(s̃) cos(s̃)




(3.67)

giving Jacobian, J(s̃) = (γ0/γs)2. Again, we may plug into Eq. 3.40 and integrate directly in Mathematica.
These examples have not been pushed to completion due to the algebraic complexity and absence of

appropriate experimental comparison. However, in principle all cases may be evaluated with a combination
of analytical and numerical integrals.

3.8 Discussion

Though the transverse and longitudinal models converge in the low frequency limit, our 6D shot-noise model
predicts different properties in the high frequency regime. When the transverse coherence length is smaller
than the beam size (λ/γ # σ), we expect the bunching properties to be determined by the coherence length,
rather than the beam size, as predicted by the classic 2D model. In particular, the microbunching should
be less sensitive to spatial chromatic effects (R51, R53, etc.). Second, our model has the inherent benefit of
self-consistency; the same electron distribution is used for modulation and bunching. Finally, we note that in
principle the model can be used to calculate MBI effects for arbitrary beam elements (assuming no dispersive
regions), including emittance effects.
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Chapter 4

FEL Gain Length and Taper
Measurements at LCLS

4.1 Introduction

In this chapter we present gain length measurements from LCLS, the world’s first hard X-ray laser in oper-
ation since April, 2009 [55]. LCLS recorded first lasing on April 10th, 2009, with the first gain lengths and
FEL saturation measured four days later. In this paper we describe the methods used to measure gain lengths
and post-saturation power growth. We also present results of the first gain length measurements for LCLS.
The results of this chapter were first presented in Ref. [56].

4.2 Gain Length Measurements

In the linear regime, after the start-up from shot noise and before saturation, FEL theory predicts an expo-
nential growth in power, P (z) ∝ ez/LG , with gain length LG. In simple 1-D theory, the gain length can be
estimated as

LG = λu/4π
√

3ρ (4.1)

with Pierce parameter

ρ ≡
[

I

8πIA

(
K[JJ ]

1 +K2/2

)2 γλ2
r

2πσ2
x

]1/3

(4.2)

where we have used the undulator strength parameter, K = 0.94B0[Tesla]λu[cm], scaling parameter for
planar undulators, [JJ] = J0(K2/(4 + 2K2)) − J1(K2/(4 + 2K2)) defined in terms of Bessel functions,
J0, peak current, I , Alfvén current, IA, electron radius, σx, relativistic factor, γ, and resonant wavelength, λr

[11]. LCLS has a conservative beam design, with enough undulators to operate deep in the saturation region.
Due to the slow power growth in saturation, the final FEL power may not depend sensitively on the electron
beam quality. Instead, we use the gain length as a gauge of total FEL performance. FEL experiments may
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also work optimally near to saturation, so it is useful to know the power profile for both machine development
and user experiments. All measurements described in this chapter use the gain length GUI (Section 4.5).

4.2.1 Undulator Removal Method

To determine the gain length, we characterize the FEL pulse energy as a function of position along the
undulator line. Due to practical considerations, all diagnostics follow the last undulator, so we cannot measure
the pulse energy within the undulator line. Consequently, to determine power as a function of position, we
must disrupt the FEL process as the electrons travel along the undulators. With 3.35 m long undulator
segments and soft X-ray gain lengths as short as 1.5 m, we would ideally measure the pulse energy following
each undulator segment.

The most direct method for suppressing the FEL is to remove undulators sequentially, allowing the elec-
trons to drift through the remaining length of the undulator hall. Removing undulators has the added benefit
of decreasing the spontaneous background signal, which increases linearly with undulator length. The drop in
spontaneous background benefits measurements near the beginning of the undulator line, where FEL power
level is many orders of magnitude weaker than at saturation. However, each undulator requires 3 minutes
to remove (more than 90 minutes for a full P (z) scan), so initial concerns about the temporal FEL stability
prompted interest in an alternative method. Additionally, the gain length measurement was envisioned as a
performance gauge for the FEL, and even with current stable operation, 90 minutes is too long for a routine
operator measurement.

4.2.2 Transverse Kick Method

Rather than removing undulators, we can instead disrupt the FEL process. For example, introducing a dis-
tortion to the electron orbit suppresses the FEL by decreasing bunching and beam overlap [57] (Fig. 4.1).
The electrons still produce spontaneous radiation as they travel through the undulator line, but the poor orbit
disrupts the delicate FEL process. By kicking the beam transversely at sequential positions in the undulator
hall, we can then measure the FEL gain length.

Following each LCLS undulator segment, a pair of x and y dipole correctors can kick the beam by
approximately 15µrad in each plane. The requirement for FEL suppression is determined by the critical
angle, φc =

√
λr/LG, with FEL wavelength λr and gain length, LG. For hard X-rays at LCLS, φc ≈ 7µrad,

so the dipole correctors can strongly suppress the FEL process in the downstream undulators. The kick
method is less effective at longer wavelengths, when the beta function is smaller and the critical angle is
larger. Using the kick method, operators can complete a full P (z) scan in under 10 minutes. We show good
agreement between the two methods at 1.5 Å in Fig. 4.2.

4.2.3 Restarting FEL with Kick Method

Though the kick method is faster and generally equivalent in accuracy to the undulator removal method, we
note two drawbacks. First, the background signal at low power (when the beam is kicked early in the FEL
process) is larger than in the undulator removal method, where the spontaneous background is proportional
to the number of inserted undulators. Second, distorting the orbit near the beginning of the undulator hall
may allow the FEL process to restart, leading to secondary (though weak) FEL spots (Fig. 4.3). We observe
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Figure 4.1: A transverse dipole kick suppresses the FEL process. The electrons continue to travel through the
undulator line, but the kick smears the bunching and misaligns the radiation and electron motion.

restart occurring in two places: after a π/2 phase advance and further downstream when the orbit distortion
straightens (Fig. 4.4). An additional kick further down the undulator (for instance at slightly more than a
π/2 phase advance) effectively suppresses both secondary spots. Given the spatial separation of the spots (as
seen in the cartoon, Fig. 4.4), an alternative solution is to select a sufficiently small region of interest in the
camera, so that we only record the primary FEL spot.

4.2.4 X-ray Power Data Collection

To measure the FEL pulse energy, we insert a fluorescent YAG screen into the path of the FEL. The primary
diagnostic for the initial gain length measurements is the YAGXRAY screen located 50 m downstream from
the last undulator. We determine X-ray power by summing pixels within a 5σ region of interest around the
FEL spot. We also compare the simple summing analysis to various fitting methods (RMS, cut RMS, etc.)
and observe little difference. Two neutral density filters with a total transmission of 0.1% extend the camera’s
dynamic range to more than 4 orders of magnitude.

A more complex suite of diagnostics exists in the Front End Enclosure (FEE). The direct imager is a set
of YAG screens of thicknesses ranging from 5 µm to 1 mm. Two cameras, a narrow field of view (NFOV)
and wide field of view (WFOV), can image any of the screens. For gain length measurements we typically
use the 100 µm thick YAG screen, though the 1 mm screen is needed for harmonic measurements of hard
X-rays. In addition to the YAG screen there are two gas detectors, a total energy monitor (currently inactive)
and a group of solid and gas X-ray attenuators that prevent YAG saturation. The attenuators are particularly
important for soft X-ray measurements, when the intense FEL pulse (absorbed in the a thin surface layer) has
the potential to damage the YAG screen.

Though the direct imager was designed to be superior to the YAGXRAY imaging station, in practice
it is difficult to extract a power measurement from the direct imager. The circular aperture created by the
attenuators and gas detectors produces a disc of spontaneous radiation in the center of the direct imager
screen. The FEL appears as a bright spot in the middle of the spontaneous radiation; as a result, a line-out
shows the FEL spike raised above the pedestal of the spontaneous radiation. Due to contractual conflicts, the
image analysis software was never finished, and with no zoom function on the camera hardware, the standard
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Figure 4.2: Gain lengths measured with both the undulator removal and dipole corrector kick methods.
Distances are for total undulator length and do not include the breaks between segments.

peak finder must operate on the entire image (background, pedestal, and FEL spike). It is possible to subtract
off the spontaneous pedestal by taking a background image with the FEL process suppressed (as described in
section 4.2.2). However, the spontaneous subtraction is imperfect and slows the GUI. As a result, we prefer
to use the YAGXRAY screen whenever possible.

4.3 Results

4.3.1 LCLS Gain Length

Due to the danger of damaging the YAGXRAY screen at low energies, we primarily study the gain length at
1.5 Å radiation (13.6 GeV electron beam). After optimizing the electron beam parameters we measure gain
lengths as short as 2.85 ± 0.06 m at 250 pC electron pulse charge (Fig. 4.5). More typically, we measure
gain lengths between 3 and 4 m, which agree with Genesis [58] simulation results for a beam with 0.4 µm
normalized emittance (Fig. 4.6). The shortest gain lengths may result from regions of very low emittance
within the beam or from lasing in the wake-field induced current spikes (Fig. 4.7).

To measure gain lengths at 1.5 nm wavelength, we remove all but 9 undulators to reduce the overall
power hitting the YAG screen. The FEL is harder to suppress at longer wavelength with the corrector kick;
secondary FEL spots reflect off the beam pipe and overlap with the primary FEL. The undulator removal
method is slow, but remains effective at all wavelengths. We measure a gain length of 1.62 ± 0.15 m at 4.7
GeV beam energy (Fig. 4.8).
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Figure 4.3: At left, the primary FEL spot at saturation is centered near x = 0.25 mm. At right, after strongly
suppressing the main FEL peak (faintly visible around x ≈ 0.5 mm), secondary FEL spots emerge on either
side. (Though stronger than the main FEL peak, these spots are still several orders of magnitude weaker than
the saturated FEL). The left-hand secondary spot is aligned with the straight portion of the orbit distortion.

4.3.2 Gain Length vs. Energy Spread

With the kick method taking less than 10 minutes for a full P (z) scan, we can measure gain length as a
function of various electron beam parameters. In Fig. 4.9 we show one example: gain length vs. laser-heater
induced energy spread. The laser heater produces an energy spread in keV of ∆E ≈ 8

√
PL, with the laser

heater energy, PL, in µJ (Fig. 5.9) [4]. The final energy spread is then multiplied by the bunch compression
factor, ∼ 90 at 3 kA. The results are consistent with the Xie scaling [59] for 0.4-0.5 µm beam emittance. We
also note that the gain length with the laser heater off (0 keV) is approximately 1 m larger than at the nominal
heater value (20 keV). We attribute the increased gain length in the case of no laser heating to self-heating
from the microbunching instability [22].

4.3.3 Saturation Taper

Tapering the undulator K parameter near and beyond saturation can increase the final FEL power [60, 61].
The resonant wavelength, λr, of an undulator is given by

λr =
λu

2γ2

(
1 +K2/2

)
(4.3)

with undulator period, λu, undulator parameter K, and electron energy given by the relativistic factor γ. As
the electrons lose energy to the radiation field, the resonance condition moves towards longer wavelengths.
Changing the K value compensates for energy loss and keeps the resonance condition fixed. (Each undulator
has a K range of approximately 1%.) The energy loss may be due to incoherent effects (such as longitudinal
wakefields and incoherent spontaneous emission) or to the substantial loss of energy from the saturated FEL
process. We refer to tapering for the former as a ’gain’ taper, and for the latter as a ’saturation’ taper. The
incoherent losses require use of a linear K(z) gain taper across all undulators; we can calculate the optimal
gain taper slope from electron beam parameters. To compensate for the additional FEL-induced energy loss,
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Figure 4.4: Cartoon showing the difficulty of suppressing the soft X-ray FEL. The kick temporarily stops
the FEL process, but the bunching can either realign (lower spot) or can restart from shot noise during the
straight portion of the distorted orbit (upper spot), creating secondary FEL radiation. Additional kicks can
suppress this secondary radiation, or the camera region of interest can select only the primary central spot. In
this cartoon, down corresponds to positive X on the YAG screen

we empirically scan linear ’saturation’ tapers, changing both the slope and starting point, to find the optimal
K values (Fig. 4.10).

To evaluate our taper we use the same dipole corrector kick method as was used for the gain length
studies. The YAGXRAY screen saturates before the FEL does, so we must infer the FEL power from the
average electron energy loss, measured with beam position monitors (BPMs) in dispersive regions before
and after the undulator line [5]. The kick method does not affect either spontaneous radiation or wakefields;
consequently, any change in energy loss that correlates to a transverse kick must result from the FEL. The
FEL-induced energy loss before saturation is small relative to the measurement noise, so this method is not
effective for measuring the gain length.

Results from one such taper measurement, along with Genesis simulations [58] of the same LCLS param-
eters, are shown in Fig. 4.11. We compare the power gain relative to the un-tapered case for simulations and
experiments (Fig. 4.12). Experimentally we observe a gain factor of 2.4, somewhat smaller than the factor of
3.3 found in Genesis simulations.

We can also compare the FEL saturation taper to the measured electron energy loss. The change in K

corresponds to a change in energy through the resonant condition, Eq. 4.3. The saturation taper of Fig. 4.10
matches a 35 MeV change in electron energy, approximately four times the measured amplitude. The energy
difference suggests that the saturation taper is increasing the FEL power emitted only by a small portion
of the electron beam. We also observe that the total FEL power is relatively insensitive to the strength of
the saturation taper; we may guess that as the taper strength increases as we withdraw more power from a
small portion of the beam, leaving the total power unchanged. This picture is consistent with the results of
Ref. [60].

If the tapering is only effective for a small portion of the beam, we expect that the radiation bandwidth will
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Figure 4.5: Sample gain length taken with the GUI showing gain length of 2.85± 0.06 m at 13.6 GeV using
the dipole corrector method. The points within the dotted black lines are used to calculate the gain length
(shown as solid green line). The high power levels of the first two data points are due to a secondary FEL spot
as seen in Fig. 4.3. Colors of data points correspond to the state of the camera neutral density filters while
taking the data. Green boxes represent inserted undulators.

increase as the wavelengths of the tapered and un-tapered portions diverge. If true, users requiring narrow
bandwidths may choose to minimize the taper amplitude, or end the FEL process close to saturation. This
subject requires further investigation.

4.3.4 Undulator Gaps (self-seeding)

The LCLS undulators are each Lu = 3.4 m long. Following each undulator, vacuum pumps, BPMs and beam
finder wire diagnostics monitors occupy a gap of Lb ≈ 0.6 m before the next undulator. Because of the slight
velocity difference between the electron and radiation, while traversing each gap the electrons fall behind
the X-rays by ∆L = Lb(1/β − 1), with normalized electron velocity β ≡ ve/c. We can ignore the gap
slippage so long as the total difference, ∆L, is approximately an integer multiple of the resonant wavelength,
λr = λu

2γ2 (1+K2/2). Expressing the electron velocity in terms of the relativistic γ factor, 1/β ≈ 1+1/2γ2,
we then find a condition on the gap length of

Lb = nλu(1 +K2/2) (4.4)
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Figure 4.6: A gain length measurement of 3.3 m agrees well with Genesis simulations for a beam with 0.4
µm emittance.

for some integer n. Conveniently, the allowable gap lengths, Lb, do not depend on the electron energy, γ.
(Indeed this is a motivation for tuning wavelengths by shifting γ instead of shifting the undulator parameter
K.) Consequently, LCLS does not need phase shifters (a delay to the electrons) to ensure that the electrons
remain at the correct phase of the X-ray beam. With Lb ≈ 0.6 m (or n = 3) the electron maintains its
correct phase entering the next undulator section. Of course, the FEL power is constant in the drift section,
so simulations show flat power growth between each undulator. (In fact, due to diffraction of the radiation
during the gap, the power may even drop slightly. With only one measurement per undulator, it is not possible
to experimentally confirm the behavior between undulators.)

For a test of a self-seeding scheme, LCLS plans to remove one undulator section and install a diamond
crystal in its place [62]. During normal operation (crystal removed), the FEL then traverses one gap which
is 4 m longer than the others. We expect the FEL to lose some power due to both diffraction in the gap
as well as the mismatched phase following a gap which is no longer an integer multiple of λr. To test this
effect experimentally, we used the gain length GUI to measure the power growth while removing sequential
undulator sections. The results are given in Figs. 4.13.

As discussed above, changing the K parameter (i.e. tapering) can correct for energy loss during FEL
saturation. Alternatively, we can express the effect of the energy loss as a phase shift (see section 9). The
resonant wavelength shifts as the energy decreases, resulting in larger slippage λsat =

λu

2γ2
sat

(1+K2/2) > λr.
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Figure 4.7: Genesis simulation showing power as a function of longitudinal bunch position (left). The peak
power occurs in the current spikes (right). For this simulation, the spikes had emittances of 0.6 µm.

We can compensate the energy loss by either decreasing K or by inserting phase shifts after each undulator
section to maintain the phase relation between electrons and the original resonant X-ray wavelength.

Conversely, a region with constant energy, but with a shift in K, will result in a shift in electron phase.
From the resonant wavelength condition (Eq. 4.3), we find a phase shift rate of

dθ

dz
= ku − kr

2γ2
(1 +K(z)2/2) (4.5)

with ku ≡ 2π/λu and kr ≡ 2π/λr. For a shift in undulator parameter ∆K ≡ K −K0 over one undulator
length, we find

∆θ = −2ku
K0∆K

2 +K2
0

Lu ≈ −2π
2∆K

K0
Nu (4.6)

with Nu = 100 periods per undulator. By shifting the undulators before and after the gap, we can induce an
intentional phase shift, ∆θ, to compensate for the phase error from the missing undulator.

To test the effect of taper compensation, we scan the K value of the undulators before and after the
missing gap. We find that when the next undulator is inserted, shifting the K value has little effect, but when
the neighboring undulator is missing, shifting the K value enhances the FEL power considerably (Fig. 4.14).
The peak shift corresponds to shifting the electrons forward (relative to the X-ray phase) by approximately 50
degrees. (To amplify the effect, we measure FEL power just before saturation.) We then run the gain length
GUI for the original and modified K values, showing an improvement by detuning the undulator Fig. 4.15.

4.4 Conclusion

We have presented the first gain length and taper measurements from LCLS. We find gain lengths of ∼
2.9 − 3.3 m at λr = 1.5 Å , and 1.65 m at λr = 1.5 nm. We also can more than double the coherent, FEL
power over the saturation value by tapering the downstream undulators. Using the gain length measurements,
we also confirm that removing an undulator to insert a self-seeding scheme will not impede normal user
operations. We observe that tapering the undulators before and/or after the gap can recover some of the lost
FEL power due to the gap.
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Figure 4.8: Gain length of 1.62±0.15 m taken at 4.7 GeV using the undulator pull method and the YAGXRAY
screen. Only four points are used due to the time required to pull each undulator and the danger of damaging
YAGXRAY with high FEL power.

4.5 Gain Length GUI

The gain length GUI was designed as an operator tool for measuring gain length as part of routine FEL
characterization. The main purpose of the GUI is measure gain lengths by recording pulse energies on a YAG
screen. The GUI simultaneously measures FEL energy loss (to evaluate post-saturation performance, e.g.
taper) and can determine FEL spot size, location, and jitter from the YAG measurements. A screen shot of
the GUI is given in figure 4.16.

The GUI is designed to measure the FEL gain length with a single click by an operator, but also contains
a manual mode for acquiring single data points. A full measurement of all 33 undulators using the kick
method takes approximately 10 minutes. For normal operation at 1.5 Å, measurements of about 15 undulators
(taking 5 minutes) is usually sufficient to determine gain length. The undulator removal method requires three
minutes to remove each undulator. All undulators are reinserted simultaneously.

The measurement can use either the kick or undulator removed method, with the undulator range specified
by the user (defaulting to the full range of inserted undulators). The kick strength and direction (x or y) can be
altered by the user, but defaults to x-kicks (so as not to disturb energy loss measurements). The undulator kick
method uses two kicks, separated by approximately 90 degrees in the induced oscillation. At hard X-rays,
only one kick is needed for most of the measurement.

The GUI determines the location of the measurement by looking for either a missing undulator (removal
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Figure 4.9: Gain length as a function of energy spread following the laser heater, with Ming Xie scaling
shown for 0.4, 0.5µm emittances. We note the increased gain length with no laser heating (0 keV), hinting
at the importance of the laser heater to suppress the microbunching instability. The nominal heater value
induces a 20 keV energy spread.

method) or a dipole kick. To determine dipole kicks, the starting position is assumed to be ”zero” kick, since
it is possible that small non-zero dipole strengths may be used to correct errors along the beam path and these
should not be considered kicks. Deviations from the starting position are registered as kicks by the GUI. The
user can always reset the GUI to either return to the initial configuration (kicks and undulator position) or
to set the current settings as the stored ”zero” configuration. The current undulator configuration is plotted
beneath the measurement section, and updates following most GUI actions.

Following a measurement, all data stored in the GUI are saved whenever a plot is sent to the logbook.
If no data has changed since a previous save, additional logbook plots do not trigger a save. Unlike the
correlation plot GUI, it is possible to add new points to a previously saved file. In this case, sending plots
to the logbook will re-save the data in a new file. Saved files can be reloaded with the gain length GUI, or
analyzed with a separate file designed for printing plots for publications.

The data analysis uses Henrik Loos’s profmon GUI program to calculate peak sizes from images. Paul
Emma’s linear fitting function then determines the gain length (by taking the log of the pulse energies).
The user can select the range of points to be used for fitting (so as to avoid saturation and points below the
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Figure 4.10: Experimentally-optimized undulator taper yielding an FEL-induced average electron energy loss
of nearly 9 MeV with the electron beam energy at 13.5 GeV. (Measurement taken on May 4th, 2009.)

noise level). The user may select between the seven analysis methods of Henrik’s GUI, as well as a simple
pixel sum, and may choose to plot average power, max power, or all data points. The user may also plot
the FEL position (x, y), position jitter (∆x,∆y), spot size (σx,σy), and energy loss (Paul Emma’s E-loss
measurement), all as functions of longitudinal position in the undulator line. The user must choose between
YAGXRAY and the direct imager, though the GUI tries to guess which screen was used for the measurement.

The GUI changes the attenuator and camera settings automatically. If the GUI detects pulse energies that
could damage the direct imager screen, it inserts solid beryllium attenuators. As the power falls, the GUI
lowers the attenuation level. YAGXRAY has no attenuators, so this function works only for the direct imager.
If the GUI detects camera saturation (any locally averaged group of 9 pixels near the saturation level), the
GUI inserts a neutral density filter to protect the camera and avoid saturation. Both YAGXRAY and direct
imager cameras have neutral density filters.

Manual modes allow the user to move dipole correctors, and remove and insert undulators individually.
It is also possible to take a single data point; the GUI uses the undulator and dipole settings to determine
the location of the measurement. The user can select the number of shots per measurement, as well as the
strength and orientation (x vs. y) of the dipole kick. If the spontaneous background subtraction option is
selected, the GUI takes an image with the FEL suppressed by a kick following the first undulator. This image
should contain only spontaneous radiation (assuming no FEL restart), and is subtracted from all ensuing
measurement images. If the camera filter or attenuator settings change, the GUI retakes the spontaneous
image. Due to the need for extra dipole movements and images, using the spontaneous subtract slows the
GUI, but is essential for use of the direct imager. It is not recommended when using YAGXRAY.

The size of the region of interest (ROI) determines the speed of YAGXRAY images and processing. The
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Figure 4.11: Post-saturation FEL pulse energy for a taper with nearly 9 MeV final average electron energy
loss. Genesis simulations for a 0.4 µm emittance beam agree well, but have slightly lower FEL power.

user should set an ROI with the minimum size that includes the entire FEL spot, allowing some room for jitter
and steering. Setting a small ROI not only speeds the measurement, but also improves results by cutting out
the spontaneous background and secondary FEL spots. If the user forgets to set the ROI, the GUI will give
the user an opportunity to restart. At present, it is not possible to set the ROI of the direct imager cameras
through a GUI, though it can be done manually by sending pixel numbers to the camera.

The GUI stores data synchronously, so it is possible to throw out individual data points based on measured
electron properties (energy, peak current, BPM positions, etc.). However, due to the unexpectedly stable
operation of the FEL, this aspect is not essential to operation of the gain length measurement, and has not
been used extensively. The default is off.

The GUI uses Heinz-Dieter Nuhn’s Ming Xie scaling code to provide an expected gain length from the
beam parameters. The Ming Xie inputs come from the most recently recorded beam parameters, or the user
can also enter values manually.
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Figure 4.12: At left, measured FEL-induced electron energy loss as a function of dipole kick at undulator
11. The addition of a saturation taper can increase the FEL output by a factor of greater than 2. At right,
simulation results show a post-saturation taper increasing the FEL output by greater than a factor of 3.
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Figure 4.13: As expected, removing an undulator section suppresses the FEL growth. Without a phase error
(and ignoring diffraction effects), we would expect the gap to delay the gain length curve by one section.
However, we can see that removing one undulator (either 10 or 11), delays the gain curve by approximately
two sections, suggesting that an additional section is required to restore the correct phase relation between
electrons and X-rays. Removing two sections (10 and 11), has a much more deleterious effect.
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Figure 4.14: Scan of undulator 11 K parameter when all undulators are inserted (left) and with undulator
12 removed (right). We see that the optimal K parameter for undulator 11 is near the nominal value (0 mm
offset) when all of the undulators are inserted. However, the optimal K parameter shifts to smaller values
when undulator 11 is followed by a gap.
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power. We note that a perfect phase match can at best result in a one undulator section delay.
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Figure 4.16: Screen-grab of the gain length GUI.



Chapter 5

Second and Third Harmonic
Measurements at the Linac Coherent
Light Source

5.1 Introduction

LCLS started user commissioning in October of 2009, producing fundamental FEL radiation with photon
energies ranging from 550 eV to 9 keV [5]. Radiation at the fundamental wavelength of the FEL dominates
in the experimental beamlines, but non-negligible levels of radiation at higher harmonics are also present.
These harmonics may be desirable as a source of harder x-rays, but may also contribute backgrounds to user
experiments at the fundamental wavelength.

The SASE FEL interaction introduces both energy and density modulations of the electron beam at the
undulator’s fundamental wavelength. Close to saturation, strong bunching at this wavelength produces rich
harmonic bunching as well [63]. Three-dimensional simulations [64] and analytical results [65] show that sig-
nificant odd harmonic power can exist for a planar undulator at the FEL saturation. Previous short-wavelength
SASE FEL experiments, such as those at LEUTL, VISA, and FLASH, have observed third-harmonic emis-
sion as high as 1% of the fundamental power [66, 67].

While the harmonic bunching factor is largest at the second harmonic, the symmetry of planar undulators
prohibits on-axis radiation at even harmonics, so we expect the third harmonic to dominate the harmonic
emission. However, due to finite electron beam size, betatron motion and radiation angle, second harmonic
radiation may exist at non-negligible levels [64, 68, 69], and has also been observed experimentally [66, 67,
70].

In this paper we present measurements of the second and third harmonic content in the FEL at a range
of photon energies. To determine the extent to which higher harmonics reach the experimental stations, we
measure the photon energy cutoff of the x-ray mirrors. We also compare the results to simulations and study
the effect of electron beam quality on the harmonic power.

67
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5.2 Data Collection Methods

The primary goal of this chapter is to determine the relative pulse energy levels of the harmonics in the FEL
beam at LCLS. To measure the harmonic content, we separate the FEL components by photon energy. In
standard operation, the sum of all higher harmonics represents at most a few percent of the FEL beam, so we
take the total intensity measurements as an approximate measure of the fundamental pulse energy. We then
use mirrors and attenuators to separate out the second and third harmonics, which we measure by inserting
YAG screens into the x-ray beam. We measure the third harmonic at both soft and hard x-rays, and the second
harmonic at soft x-rays only.

5.2.1 Third Harmonic Method, Soft and Hard X-rays

To measure the third harmonic, we attenuate the x-ray beam with either N2 gas or solid sheets of beryllium or
zirconium (Fig. 5.1). The attenuation decreases at shorter wavelengths, allowing harmonic radiation to pass
while blocking the fundamental. As an example, with the fundamental set to 8 keV photons, the zirconium
filter (1 mm of silicon with 100 µm of zirconium) cuts the fundamental x-ray intensity by 10 orders of
magnitude, but cuts the third harmonic by less than two orders of magnitude [3]. The attenuator does not
suppress higher harmonics, but these are emitted at much lower levels in the FEL process, so we assume the
radiation remaining past the attenuator is primarily third harmonic. We can also independently confirm the
presence of the third harmonic by tuning the FEL to the zirconium K-edge (Section 5.3).

Figure 5.1: Schematic of the harmonic measurements. Attenuators block the fundamental and second har-
monic, allowing measurement of the third harmonic on the Direct Imager YAG screen. Alternatively, we
can isolate the second harmonic by measuring the intensity at the P3S1 YAG screen; the soft x-ray mirrors,
upstream of P3S1, absorb the third harmonic. We again rely on the attenuators to block the fundamental.

5.2.2 Second Harmonic Method, Soft X-Rays

We measure the second harmonic, sandwiched between the stronger first and third harmonics, in the experi-
mental beamlines. Solid or gas attenuators again block the fundamental, letting only higher harmonics pass.
However, the mirrors that direct the radiation to the experimental beamlines absorb most radiation above a
cutoff photon energy. By setting the FEL fundamental photon energy to between 1/3 and 1/2 of the cutoff,
the mirrors will pass the second harmonic while absorbing the third harmonic (Fig. 5.1). With the low energy
photons absorbed in the attenuators, and the high energy photons absorbed in the mirrors, only the second
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harmonic reaches the experimental beamlines. Due to the gradual energy cutoff for the hard x-ray mirrors
(Fig. 5.3), the second harmonic measurements work only for soft x-rays.

5.2.3 Intensity Measurement Methods

We obtain x-ray intensities from either a gas detector or a YAG screen [71]. For each YAG image, we average
up to 100 pulses from the FEL. Though we subtract a dark (no electron beam) background, spontaneous
radiation is present in all images. To determine the FEL pulse intensity, we fit a 2-D Gaussian profile to the
YAG image and calculate the volume under the FEL peak. Because the spontaneous radiation emits at a much
wider angle than the FEL, we assume the spontaneous components appears as a pedestal underneath the FEL
peak. We then expect the volume under the curve to represent the FEL pulse energy only.

5.2.4 Transport Mirror Cutoff

To determine the level of second harmonic reaching the experimental stations, we measure the photon cutoff
energy of the beamline mirrors. A series of three glancing incidence mirrors diverts the x-ray beam to the
soft x-ray experimental halls. The mirrors absorb hard x-ray radiation, which cannot reach the soft x-ray
experimental stations. YAG screens before and after the third mirror (P2S and P3S1 respectively) measure the
transmitted x-ray pulse energy. We determine the mirror cutoff energy by two methods. First, we measure the
ratio of intensities on P3S1 and P2S as a function of photon energy. Assuming all three mirrors are identical,
we plot the cube of this ratio as the total transmission of the mirrors. However, the transmission of each stage
may differ, for example if the mirror aperture cuts a portion of the beam. As a semi-independent method, we
also compare the signal on P3S1 to the total incoming power measured in the gas detectors, located upstream
of the mirrors. Fig. 5.2 diagrams both methods, and we plot the results in Fig. 5.3, showing a cutoff energy
of approximately 2.3 keV as expected [2].

A set of two mirrors directs high energy radiation to the hard x-ray hutches. The photon energy cutoff of
the hard x-ray line is far beyond the limit of the fundamental FEL, so we insert an attenuator that allows only
third harmonic radiation to pass. We again vary the photon energy while comparing the third harmonic power
seen before and after the final mirror (using screens P2H and P3H respectively). We compare the measured
and expected values in Fig. 5.3 [72]. The discrepancy between the curves is likely the result of a change in
the angle of the mirrors, which must move to redirect the beam to the far experimental hall. With a cutoff
approximately a factor of three above the maximum energy of the fundamental, we expect all of the second
harmonic to reach the hard x-ray experimental stations. Third harmonic radiation up to 25 keV will also pass
through to the hard x-ray lines.

5.3 Third Harmonic Measurements, Soft and Hard X-rays

5.3.1 Attenuator Scan

To measure the third harmonic, we block the fundamental with either beryllium or zirconium attenuators.
(The attenuation also blocks the weaker second harmonic.) To find the relative power of the third harmonic,
we can simply take the ratio of intensities on the YAG screen with a sufficiently thick attenuator inserted
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Figure 5.2: Schematic of the mirror cutoff measurement. For the soft x-ray line, the ratio of intensities
measured on YAG screens P3S1 and P2S gives the transmission for a single mirror, and the total transmission
is assumed to be the cube of this ratio. Alternatively, we can compare the intensity on P3S1 (downstream
of all mirrors) directly against the intensity at the gas detector (upstream of all mirrors). For the hard x-ray
line, attenuators block the fundamental, and we calculate the square of the ratio of third harmonic measured
before (P3H) and after (P2H) the second mirror.

(primarily third harmonic) and removed (primarily fundamental). For 0.9 keV and 1.7 keV fundamental
photons, we find approximately 2% and 3% harmonic content respectively.

We can also vary the level of attenuation, and fit the harmonic content to the resulting curve. By measuring
the transmission values for the filters, we simultaneously confirm the validity of the harmonic measurement.
The total intensity is proportional to

I(d) ∝ T1(d)P1 + T2(d)P2 + T3(d)P3 + higher harmonics , (5.1)

where, for harmonic h, we have attenuator transmission, Th(d), and FEL power Ph. We assume that the
transmission can be described by a simple exponential,

Th(d) = e−d/Λh , (5.2)

with the attenuation length, Λh, determined by the attenuator composition, the fundamental photon energy,
and the harmonic of interest. The attenuator parameter, d, can be either the thickness of a solid attenuator
(units of mm) or the pressure in a gas attenuator (units of torr). The attenuation length, Λh, then has units
of either mm for the solid attenuator or torr for the gas attenuator. Neglecting the weaker second and higher
harmonics, we expect

I(d) ∝ e−d/Λ1 + e−d/Λ3
P3

P1
. (5.3)

Measuring the intensity, I(d), for a range of d, we can then find the ratio of the harmonics, P3/P1, from a
one-parameter, linear fit.

The beryllium filter transmission is difficult to estimate from the composition of the filters; even low levels
of impurities of heavy elements can have a large impact on the absorption of hard x-rays. To confirm the
transmission values, we repeat the analysis with a three-parameter nonlinear fit of both attenuation lengths,
Λ1,Λ3 as well as the harmonic ratio, P3/P1. For data sets without multiple measurements per attenuator
setting, we assume a measurement error of 5% for each data point. To estimate error bars for the fit, we
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Figure 5.3: Transmission plots show the photon energy cutoffs of the soft x-ray (left plot) and hard x-ray
(right plot) experimental beamlines. On the left, blue circles show the cube of the ratio of intensities on
P3S1 and P2S, while the red diamonds give the ratio from P3S1 to the full pulse energy. Both results match
the expected transmission (dashed green curve) [2, 3]. On the right, blue circles give the square of the ratio
of intensities measured on P3H and P2H. The dashed curve gives the expected transmission at the nominal
0.0773 degree angle; however, we find a better match for 0.083 degree angle (dot-dash curve). Hard x-ray
measurements rely on the third harmonic, resulting in lower resolution than for the soft x-ray measurements.
In both cases, the experimental curves are normalized to one at the maximal value.

perform a monte carlo simulation, randomizing each data point according to its error and repeating the fit.
We find the attenuation lengths at the fundamental, Λ1, match the expected values reasonably well (Table 5.1).
Due to the long attenuation lengths for the third harmonic at high photon energies, the errors on Λ3 are large.
(However, we note that the harmonic ratio, P3/P1, is not sensitive to Λ3.)

At lower photon energies, we assume the YAG response to the fundamental and third harmonic is equiva-
lent. However, as the photon energy increases, the YAG screen may not fully absorb the third harmonic. For
the 6 keV fundamental measurement, a 100 µm YAG largely absorbs the third harmonic due to the yttrium
K-edge at 17 keV. At 8 keV fundamental, approximately 40% of the third harmonic passes through the 100
µm YAG, so we use a 1 mm YAG for this measurement.

Fig. 5.4 shows several sample measurements, with 0.8-2% third harmonic content at a range of photon
energies. We generally find slightly higher harmonic content with the fundamental set to longer wavelengths,
but the harmonic content at any particular wavelength may vary widely depending on the current beam prop-
erties.

5.3.2 K-edge Scan

With the FEL fundamental photon energy tuned to 6 keV, we can confirm the third harmonic measurement by
inserting a zirconium filter and scanning the FEL photon energy around the K-edge (Fig. 5.5). A small shift
in energy of a few percent has little effect on the FEL performance, but changes the zirconium transmission
at 18 keV by more than two orders of magnitude; we conclude that any drop in measured intensity must come
from radiation at the 18 keV K-edge. With the zirconium filter inserted, the intensity drops by more than a
factor of 40 across the K-edge (Fig. 5.6), so we conclude that below the K-edge the measured signal consists
almost entirely of third harmonic.
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Figure 5.4: Examples of third harmonic measurements for fundamental FEL photon energies of 0.9 keV
(left), 6 keV (center) and 8 keV (right). Blue circles show the experimental data, red dotted lines show linear
one-parameter fits using the nominal attenuation lengths, while solid green lines show three-parameter fits
to both the harmonic content and attenuation lengths. The black dot-dash line shows the expected drop in
intensity for the fundamental only. We typically find around 2% third harmonic for soft x-rays, with between
0.2-2% third harmonic at hard x-rays. The 4% level found from the one-parameter fit at 8 keV (right plot)
is higher than expected, and may be artificially high due to a lack of measurement points dominated by the
fundamental.

To determine the third harmonic content, we set the third harmonic photon energy 300 eV below the
K-edge, and compare the signal with the zirconium filter inserted (primarily third harmonic) and removed
(combination of third harmonic and fundamental). To prevent YAG and camera saturation during the funda-
mental measurement, we insert a 4 mm Be filter. We can then find the harmonic content from the ratio of the
beryllium (I(Be)) and zirconium (I(Zr)) signals

I(Be)

I(Zr) =
T (Be)
1 P1 + T (Be)

3 P3

T (Zr)
1 P1 + T (Zr)

3 P3

≈ T (Be)
1

T (Zr)
3

P1

P3
+

T (Be)
3

T (Zr)
3

, (5.4)

with power, Ph, and transmission factors, Th, for both the zirconium and beryllium attenuators at harmonic,
h. Plugging in the known transmission values (the beryllium filter transmits 8% fundamental and nearly
100% third harmonic), we find approximately 2% third harmonic content, confirming the results of Fig. 5.4.

Photon Energy Nominal Λ1,Λ3 Nonlinear Fit Λ1,Λ3

0.9 keV 0.33, 7.42 torr 0.38±0.02, 9.4±1.8 torr
6 keV 2.0, 21 mm 1.9±0.1, 12.5±3.3 mm
8 keV 3.8, 28 mm 3.33±0.30, - mm
9 keV 5.1, 30 mm 5.2±0.1, - mm

Table 5.1: Nominal (middle column) and measured (right column) attenuation lengths for the fundamental
and third harmonic at three different photon energies. The nominal and fitted attenuation lengths match well
for the fundamental, but in general the fitted third harmonic values are lower than expected. Fitting for the
the third harmonic attenuation length at hard x-rays is not effective due to the low absorption of the third
harmonic.
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Figure 5.5: Transmission for the zirconium filter as a function of photon energy. The filter is made of 100 µm
of zirconium (dashed blue) and 1 mm silicon (dotted green), with the combined transmission given in solid
red. The zirconium K-edge manifests as a sharp drop in transmission at 18 keV.

5.4 Second Harmonic Measurements, Soft X-rays

We expect weaker second harmonic than third harmonic due to the symmetry of the planar LCLS undulators.
Though on-axis radiation is suppressed at even harmonics, the finite beam size and betatron oscillations lead
to non-negligible second harmonic content [64, 68, 69]. (We note that the bunching factor, a measure of the
longitudinal correlation of particles, is stronger for the second harmonic. Tuning a group of ’afterburner’
undulators to double the resonant frequency can exploit this bunching to produce even more power at the
second harmonic than would otherwise exist at the third harmonic [73]. In this chapter we assume the
undulators are tuned to the fundamental.) By measuring the beam intensity following the soft x-ray mirrors,
we are able to isolate the second harmonic. An example image (Fig. 5.7) shows the characteristic double lobe
structure expected for the second harmonic (e.g. [69]).

To measure the second harmonic component we again vary the attenuation and fit the ratio P2/P1 from
the intensity

I ∝ e−d/Λ1M3
1 + e−d/Λ2M3

2
P2

P1
+ e−d/Λ3M3

3
P3

P1

≈ e−d/Λ1 + e−d/Λ2
P2

P1
, (5.5)

where we have assumed the mirror transmission, Mh is perfect for the fundamental and second harmonic,
and zero for the third harmonic (Fig. 5.3).

The second harmonic measurements are especially sensitive to the N2 transmission value at the funda-
mental. When the attenuation is strongest, the harmonic dominates and the attenuation length at the funda-
mental has little effect. However, at the lowest attenuation levels when the fundamental dominates, the N2

still provides as many as six attenuation lengths at the fundamental. As a result, even small errors in the
attenuation length lead to large errors in the measured power level. (The need for heavy attenuation is due to
the small dynamic range of the P3S1 camera, which was not intended for this use.)
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Figure 5.6: Plot of measured intensity on the Direct Imager YAG screen (Y-axis) vs. photon energy (X-
axis), with the FEL tuned to near 6 keV fundamental and the zirconium attenuator inserted. The drop-off in
intensity as the fundamental photon energy crosses 6 keV corresponds to the zirconium K-edge at 18 keV;
we conclude that the drop in intensity is due to third harmonic content. With the zirconium filter blocking
the fundamental, we find that the remaining radiation is almost entirely third harmonic. Electron energy jitter
and FEL bandwidth broaden the otherwise sharp K-edge seen in Fig. 5.5.

To confirm the attenuation lengths, we again fit the measured intensities to two generic exponentials. The
measured and nominal attenuation lengths match reasonably well at the fundamental, but differ substantially
at the second harmonic (Table 5.2). Fig. 5.8 gives sample results for the second harmonic content.

Photon Energy Nominal Λ1,Λ2 Nonlinear Fit Λ1,Λ2

0.9 keV 0.31, 2.15 torr 0.28±0.02, 1.54±0.08 torr
1 keV 0.42, 2.95 torr 0.44±.07, 2.27±.47 torr

Table 5.2: Nominal (middle column) and measured (right column) second harmonic attenuation lengths for
the gas detector. The nominal and fitted attenuation lengths match well for the fundamental, but in general
the fitted second harmonic values are lower than expected.

5.5 Genesis Simulations

We compare our results to simulations from the 3D wiggler-averaged code Genesis [58], using the parameters
of Table 7.1. Simulations at FEL saturation predict approximately 3% third harmonic at soft x-rays (830 eV in
simulation), and approximately 2% third harmonic at hard x-rays (8.3 keV in simulation). For both energies,
the fifth harmonic is approximately an order of magnitude weaker in simulations, and thus could contribute
slightly to the third harmonic measurements. (We have not tried to separate the third harmonic from the higher
harmonic contributions.) We conclude that the measured third harmonic content is approximately consistent
with the level expected from theory and simulations, albeit with weaker harmonics than expected at high
energies [65, 74]. Second harmonic levels from Genesis are also in approximate agreement with results.
However, Genesis is a wiggler-averaged code (the beam centroid does not move off-axis), so comparisons
with second harmonic simulations require further study.
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Figure 5.7: An example image in the soft x-ray beam line (P3S1) shows the characteristic double lobe struc-
ture of the second harmonic. Though gas and solid (beryllium) attenuators strongly suppress the fundamental
in this image, a small amount of fundamental radiation remains (gaussian mode background). Diffraction
from the beryllium attenuators produces the uneven speckle pattern.

5.6 Sensitivity to Beam Quality

We expect the proportion of harmonics present to vary depending on the performance of the fundamental.
The lowest and highest harmonic contents in Fig. 5.4 were measured with 0.6 mJ and 1.5 mJ fundamental
pulse energy respectively. Due to the increased sensitivity to electron bunch quality at shorter wavelengths,
the correlation between low fundamental pulse energy and low harmonic content is not surprising. (Low
fundamental energy may indicate decreased bunching factor at the fundamental, which would have a larger
effect on the higher harmonics.)

To test the sensitivity of harmonics to beam quality, we repeat the third harmonic measurements while
intentionally degrading the beam quality. A convenient method for changing the beam quality is the laser
heater, which can increase the electron energy spread in a simple and measurable fashion. The laser heater
interacts with the beam in an undulator. By placing the undulator in the middle of a chicane, the sinusoidal
energy modulation washes out into an approximately uniform increase in energy spread [4]. The energy
spread increases as the square root of the laser power, allowing us to triple the energy spread in the beam
(Fig. 5.9). (At low laser power, a trickle heating causes a noticeable bump in the energy spread above the
expected level [4]. The trickle heating is due to an instability resulting from surviving energy modulation
downstream from the heater, a process analogous to the microbunching instability of chapter 3).

We then measure the 8 keV third harmonic content at each of the four laser heater strengths. To ensure that
we operate in the saturation region, we insert all 28 available undulators for each measurement and confirm
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Figure 5.8: We measure the harmonic component by varying the gas attenuator strength for 0.9 keV (left)
and 1 keV (right) fundamental photon energies. Blue circles show experimental data, red dotted lines show
one-parameter fits using the nominal attenuation lengths, and solid green lines show three-parameter fits to
both the harmonic content and attenuation lengths. The black dot-dash line shows the expected attenuation
of the fundamental only. We find approximately 0.05-0.1% second harmonic content.

that we reach saturation [56]. We find that as the FEL performance drops (determined by the total power in
the FEL beam), the proportion of power due to the third harmonic also drops (Fig 5.10). By increasing the
laser heater above the nominal setting, users may be able to suppress unwanted harmonics.

5.7 Conclusion

We present second and third harmonic measurements for LCLS. At low energies (below 1 keV fundamental)
we measure less than 0.1% second harmonic content. The second harmonic reaches the soft x-ray beam
line for fundamental photon energies below approximately 1.15 keV (cutoff around 2.3 keV). At low and
high energies, we measure third harmonic content ranging from 0.2% to 2.5%, which is consistent with

Soft X-Rays Hard X-Rays

Photon energy 0.83 keV 8.3 keV
Electron energy 4.3 GeV 13.6 GeV

Emit. (x,y, norm.) 0.4 µm 0.4 µm
Peak current 1 kA 1 kA

Energy spread 3×10−4 1×10−4

Third Harmonic Content 3% 2%

Table 5.3: Genesis simulation parameters given for soft and hard x-ray simulations. The simulations are
consistent with measurements for both soft and hard x-rays.
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Figure 5.9: Energy spread measured as a function of laser heater power. To determine energy spread, we
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Figure 5.10: Percentage of harmonic power vs. laser heater setting. As the FEL performance drops (dotted
red line), the percentage of third harmonic also drops (solid green), indicating enhanced sensitivity to beam
quality at higher harmonics. The FEL performance was determined by energy loss scans, which measure the
energy loss of the electrons due to the FEL process [5]. We note that even at the nominal heating level, the
harmonic content only reached 0.2%, likely due to the poor FEL performance on the day of the measurement.
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Photon Energy 2nd Harm. 3rd Harm.

Soft X-rays (near 1 keV) 0.04-0.1 % 2.0-2.5%
Hard X-rays (6-8 keV) 0.2-2%

Table 5.4: Summary of harmonic results. The second harmonic content in normal operation at soft x-ray
wavelengths is below 0.1%. The third harmonic content is as high as about 2% at normal operation, but can
drop by an order of magnitude or more due to poor beam quality.

expectations. We confirm that the proportion of third harmonic falls as the FEL performance degrades.
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Chapter 6

Two-Chicane Compressed Harmonic
Generation of Soft X-Rays

6.1 Introduction

In the first chapters of this work, we have treated microbunching phenomena arising from shot noise. We
looked at unwanted microbunching due to instabilities (chapter 3) as well as methods for removing shot noise
microbunching (chapter 2). We also described measurements on a LCLS, a free electron laser (FEL) driven by
the self-amplified spontaneous emission (SASE) process (chapters 4 and 5). A SASE FEL uses an undulator’s
resonant condition (Eq. 4.3) to select one wavelength from the broad bandwidth shot noise. Though SASE
FELs have proved extremely successful [5], they are saddled by long saturation lengths and poor longitudinal
coherence. In principle it is possible to drive microbunching from an external radiation source, such as an
optical or UV laser. This concept, called ’seeding,’ is the subject of the the next two chapters.

FELs ’seeded’ by optical or UV lasers promise full coherence and shorter (and cheaper) saturation lengths
than from SASE FELs. One leading seeded scheme is high gain harmonic generation (HGHG) [9, 27]. How-
ever, single-stage HGHG requires high laser power (expensive and potentially problematic for the FEL pro-
cess), and is limited to wavelengths around 20 nm [28]. Multiple-stage HGHG can reach shorter wavelengths,
but is more technically challenging. A recent and promising seeding scheme is echo enabled harmonic gener-
ation (EEHG), which manipulates hidden structure in phase space to produce high harmonic seeding [29, 30].

Seeding the electron beam prior to bunch compression, which we will call compressed harmonic gen-
eration (CHG), is an alternative approach [32, 31, 33, 34]. In this chapter we discuss a variation on CHG
in which dispersion from the compression stage smears out the longitudinal modulation, but the structure
remains imprinted in phase space and can be revived later [33, 35].

The scheme uses two dispersive sections, the first to compress the beam and the second to bunch the
modulation. Starting from the electron gun, an accelerator section brings the beam to energy Ea, while
adding a linear chirp, h. A laser then modulates the beam energy by AL cos(kLz). A dispersive section,
R(a)

56 , simultaneously compresses the bunch length by a factor of α = 1/(1 + R(a)
56 h), while also strongly

over-bunching the laser modulation. Another accelerator section flattens the beam with a second chirp, −αh,
while increasing the energy to Eb ≡ gEa. Finally, a second dispersive section with effective opposite sign,
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R(b)
56 ≈ −R(a)

56 g/α ± g/(ALα2kL), unwinds the over-bunched laser modulation, recovering a maximally
bunched beam at wavevector αkL. As an added benefit, the second dispersive region also reverses second
order effects from the preceding accelerator section. The full multi-step process is summarized in Fig. 6.1.

In this chapter we give an analytical description of the two-chicane CHG scheme, and extend the simu-
lations of [35] to include higher energies and smaller β-functions (desirable for sending the beam through a
radiator). The major drawback of compressed seeding is the need to preserve fine phase space structure across
long accelerator regions. In the final section we consider the technical requirements for effective transport of
this phase space modulation. This work was published as [75].

Laser Modulator BC1, R56
(a) 

R56
(b)

−αhh

RFb , EbRFa, Eae- Gun BC2 Ef

(a)

Laser Modulator BC1, R56
(a) 

−αhh

RFb , Eb
RFa, Eae- Gun BC2, R56

(b) Ef

(b)

Figure 6.1: Diagram of CHG scheme. a) The first accelerator section raises the particle energy to Ea and
introduces a linear chirp, h. After modulating with a laser, the first dispersive section, BC1, compresses the
beam and over-bunches the modulation. A second RF section accelerates the particles to Eb, and cancels the
chirp of the first section. The final dispersive section, BC2, unwinds the over-bunching. b) Operating BC1
in over-compression rotates the electron beam head-to-tail, allowing the use of a chicane for both BC1 and
BC2. In both cases it is possible to add a third accelerator section to reach a final energy of Ef .

6.2 Motivation

6.2.1 Advantages of Compressed Seeding

Seeding before compression offers several advantages. First, the bunch compressor reduces the final modu-
lation wavelength by a factor of α. Second, the RF phase controls α, so changing the phase tunes the final
wavelength. Third, the combination of chirp and bunch compressor amplifies the laser modulation by the
compression factor, reducing the required laser power by α2. CHG also requires relatively few components,
even for the two-chicane variation; the first chicane doubles as the bunch compressor (required to increase
current for all FELs), so we need only one additional modulator and chicane, the same as for single-stage
HGHG. Finally, the low power requirement allows seeding with short wavelength lasers.

6.2.2 Advantages of Two Chicane CHG

The simplest compressed seeding schemes use a single dispersive section to both compress the beam and
bunch the laser modulation [32, 31]. For simultaneous compression and bunching, the chirp slope must
match the modulation strength; i.e., the same dispersive section, of strength R56, both compresses the chirp
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(moving electrons on the order of the mm-scale bunch length) and maximizes the bunching (by compressing
the sub-µm-scale modulation). This matching condition implies a laser modulation approximately 1000
times weaker than the chirp, limiting the modulation amplitude to a few tens of eV. Such a small amplitude
is sufficient for the small energy spread of a thermionic gun (as used in [32]), but is far below the incoherent
energy spread in high current, photocathode beams.

To extend CHG to photocathode beams, we have considered the addition of a second dispersive section to
allow for larger modulation strengths [35]. The additional dispersive region, R(b)

56 , separates the compression,
carried out by the first dispersive section, R(a)

56 , and the bunching condition, determined by the modified sum,
R(T )

56 = R(a)
56 + α

gR
(b)
56 . As a side benefit, the second dispersive region corrects upstream errors, reversing

second order effects in the first chicane and subsequent accelerator sections. We note that two-chicane com-
pressed seeding was first suggested in [33]. A modified version of the scheme described in [35] was proposed
recently [76, 77].

The downside of compressed seeding is the need to preserve the modulation throughout the ensuing accel-
erator sections. A second dispersive region can help reverse smearing from certain effects (e.g. emittance),
but also requires strong dispersion with very tight tolerances. The advantages of CHG must be weighed
against these technical constraints.

6.3 Analytical Model

6.3.1 Bunching Factor

The seeding can be quantified by the bunching amplitude at the end of BC2,

bf (k) =

∫
dzf

∫
dpfe

ikzfΨf (zf , pf ) (6.1)

with final longitudinal particle position, zf , normalized energy, pf , and final distribution Ψf (zf , pf ). (For
a particle of energy, E, we define p ≡ (E − Eb)/Eb.) To evaluate Eq. 6.1 analytically, we assume an
initially uniform longitudinal distribution within the electron beam. We also assume an initial Guassian
energy distribution, Ψi(pi) ∝ exp[−p2i /2σ

2
p], with relative energy spread, σp ≡ σE0/Ea, defined in terms of

the absolute energy spread, σE0, and energy prior to the first bunch compressor, Ea.
We describe the CHG process as follows: 1. We chirp the beam and modulate with a laser. 2. The first

dispersive section (abbreviated BC1) compresses the beam. 3. We accelerate again and add a second chirp.
4. A second dispersive section (BC2) unwinds the over-bunching,

z1 = zi, p1 = pi +AL sin(kLzi) + hzi

z2 = z1 +R(a)
56 p1, p2 = p1

z3 = z2, p3 = (p2 − αhz2)/g

zf = z3 +R(b)
56 p3, pf = p3 . (6.2)

If we transform to the initial coordinates, dzfdpf → dzidpi/g, we can evaluate Eq. 6.1 by integrating over
the simple uncorrelated initial distribution, Ψi(pi). Solving for zf in terms of zi, we find

zf = z′ +R(T )
56 [pi +AL sin(kLαz

′)] (6.3)
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with definitions z′ ≡ zi/α and R(T )
56 ≡ R(a)

56 + R(b)
56 α/g. We note that Eq. 6.3 has the same form as from

a single modulation, but at compressed wavevector αkL, and with effective dispersive section, R(T )
56 , and

relative laser modulation amplitude, AL/σp. It is possible to set R(T )
56 # R(a)

56 , R(b)
56 , so that a small effec-

tive R(T )
56 bunches the short-wavelength modulation despite the strong dispersion of the bunch compressors.

Consequently, the two terms in R(T )
56 must have opposite signs, requiring either opposite sign dispersive sec-

tions (e.g. one chicane, one 2-bend dogleg), or negative α (over-compression) (Fig. 6.1). Chicanes have
relatively favorable geometric properties compared to doglegs, so for this chapter we choose negative α and
use chicanes for both dispersive regions.

Having changed dzfdpf → dzidpi/g, and Ψf → Ψi, we integrate Eq. 6.1 to find bunching at the
harmonics as in HGHG [9]

bf (mαkL) ∝ e−
(mαkLR

(T )
56 σp)

2

2 Jm(mαkLR
(T )
56 AL) (6.4)

with maxima at αkLR
(T )
56 AL ≈ ±1. To avoid suppression by the energy spread, we require |mαkLR

(T )
56 σp| <

1, giving significant bunching at the mth harmonic when AL > mσp.

We can now confirm the advantages of CHG. First, we produce radiation at the harmonics of the com-
pressed wavelength λL/α # λL. Second, the RF phase can shift |α|, tuning the final wavelength. Third, the
pre-compression energy spread, σp, rather than the larger post-compression energy spread, |α|σp, determines
the required laser modulation amplitude, AL. A 1D simulation with parameters from Table 7.1 illustrates the
process (Fig. 6.2).

6.3.2 Error Self-Correction from Second Dispersive Region

The primary appeal of employing two dispersive regions is the separation of the bunching and compression
requirements. However, the second dispersive region provides a second advantage by reversing longitudinal
smearing. In our simple model (Eq. 6.2), we assumed a longitudinally frozen beam outside of the dispersion
regions BC1 and BC2. In reality, longitudinal deviations, such as second order transport elements, will smear
out the phase space structure even outside of dispersive regions. The second chirp and dispersive region help
to cancel such effects.

We model the self-correction in 3 steps. 1. The jth particle acquires a longitudinal error, ∆zj , due to
second order effects following BC1. 2. The second chirp imparts a relative energy modulation of ∆Ej =

−α
g h∆zj . 3. BC2 produces a longitudinal shift, resulting in the final longitudinal error

∆z(F)
j = ∆zj −R(b)

56

α

g
h∆zj ≈ ∆zj/α (6.5)

where we have assumed R(a)
56 , R(b)

56 ( R(T )
56 so that we can approximate R(b)

56 ≈ −gR(a)
56 /α in the second

step. We find that the second chirp and dispersive regions effectively re-compress the phase space structure,
reducing smearing between the two chirps by the compression factor, |α|. (Smearing from within the chirps
and second chicane is suppressed more weakly, due to the decreased effective values of h and R(b)

56 .) This re-
compression of the fine density modulation is essential to CHG at short wavelengths. We consider a specific
case of error self-correction in Section 6.5.2.
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Figure 6.2: In the first step (upper left) we add a chirp and laser modulation. We show only one modulation
wavelength, so the chirp effect is small. After the first chicane, the modulation is over-bunched (zoom, upper
right). A second chirp reverses the first chirp (zoom, middle left, shows reversed slope in phase space).
After more acceleration, the second chicane revives bunching (middle right). Note the compression of the
wavelength by |α| = 10, and the increase in modulation amplitude by |α|/g = 2.5. We find strong bunching
past the 5th harmonic (bottom).

6.4 Simulations

6.4.1 Simulation Inputs

To test the practicality of a CHG scheme, we have constructed a sample accelerator lattice (Fig. 6.3) using
MAD [78]. We emphasize that we have not fully optimized the lattice, but use it merely as a demonstration
to study tolerances. We then simulate the CHG process by particle tracking in elegant [6]. The simulations
include incoherent synchrotron radiation (ISR) and first and second order transport elements for both longi-
tudinal and transverse motion. We have not simulated coherent effects (e.g. coherent synchrotron radiation
in the chicanes) due to computational constraints. To simulate the modulation, we use a 6 MW laser with
2 mm focal width, interacting with the beam over a 12 period, 50 cm long undulator. The undulator has
sufficient bandwidth to seed the entire beam even with a strong 2% chirp. We assume a 157 nm modulation
wavelength (corresponding to an F2 laser), so that with compression of |α| ≈ 10, we find 3 nm radiation at
the 5th harmonic of the density modulation (50th harmonic of the initial λL). By modulating at low energy
(250 MeV), the moderate laser power still produces a relative modulation of AL = 5 × 10−5. A partial list
of parameters used in the simulations can be found in Table 7.1 and simulation results are given in Figs. 6.4
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and 6.5.

Laser wavelength (λL) 157 nm
Laser power (PL) 6 MW
Laser modulation amplitude (AL) 5× 10−5

Uncorr. RMS E-spread before BC1 (σp) 1× 10−5

Norm. transverse emittance (εN ) 0.4µm
Initial energy spread (σE0) 2.5 keV
Initial bunch length (σz) 400 µm
Electron energy (Ea, Eb, Ef ) 0.25, 1.0, 3.5 GeV
BC1, BC2 dispersion (R(a)

56 , R(b)
56 ) 50 mm, 20 mm

Compression factor (|α|) 10
Linac RF Frequency 1.3, 3.9 GHz

Table 6.1: Parameter list for both 1D (MATLAB) and 3D (elegant) simulations. We choose L-band RF
frequencies because the larger diameter structures will mitigate the effect of wakefield fluctuations. We have
not listed bunch charge because without wakefield effects the simulations are charge-independent.

We divide both the first and second linac sections into two parts, with the first half providing acceleration
(phase ’on-crest’) and the second providing chirp (phase at ’zero-crossing’). We assume accelerating gradi-
ents of approximately 25 MV/m for each linac section. A third harmonic cavity linearizes the phase space
prior to the first bunch compressor, providing a flat central region (left plot, Fig. 6.4). We do not require a
third harmonic cavity in the second stage, because after compression, the bunch length (σz/|α| ∼ 40 µm) is
short compared to the RF wavelength (λrf ∼ 20 cm). We then find that the deviation due to RF curvature,
1− cos(krfσz/α), is negligible compared to the final energy spread (|α|AL ∼ 5× 10−4).

The compression and bunching of the modulation is evident in a zoom of the phase space (right plot,
Fig. 6.4). ’Standing up’ the modulation produces sharp density spikes with high harmonic bunching. To
calculate the bunching factor for bandwidth ∆λ/λ at a position z0, we sum the particle phases, b(k) =
∑

j exp ikzj , for all particles in the region z0 − λ/2∆λ < zj < z0 + λ/2∆λ. For bunching at the fifth
harmonic of the compressed modulation, we set k = 5|α|kL. The result is given in Fig. 6.5.

6.4.2 Radiation

With high levels of density modulation from the seeding process, we can pass the electron bunch directly into
a radiator. Assuming a 12% bunching factor and 30 meter β-function at the end of the lattice, feeding a 3.5
GeV, 1 kA beam through a 2.5 meter undulator with K = 3.5 and 4 cm period produces nearly 10 MW of
power. The beam could also feed a radiator directly following the second chicane, where the lower energy
and larger β-function are partially compensated by the higher bunching factor (above 15 %) and shorter
accelerator.

Alternatively, the final pre-modulated 3.5 GeV beam could drive an FEL. For the parameters of Table 7.1
with kA beam current we find a Pierce parameter of ρ ≈ 10−3 [11]. The strong initial bunching requires only
a few gain lengths of undulators to reach saturation, where Ming Xie scaling estimates nearly 5 GW of power
[79].
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Figure 6.3: Courant-Snyder parameters for 3D elegant simulations showing β-functions (solid and dotted
lines) and dispersion (ηx, dashed-dotted line). The weak second chicane is designed to minimize ISR ef-
fects. Following the second chicane, a third linac section increases the electron energy while simultaneously
decreasing the β function, enhancing the radiation power.

6.5 Feasibility

The drawback to compressed seeding is the need to preserve the phase space modulation across long accel-
erator regions. In particular, CHG is most sensitive to errors originating between the dispersive sections;
errors prior to the first chicane are largely canceled by the second chicane. In the following section we study
tolerances by estimating the effects of incoherent synchrotron radiation (ISR), dispersion errors, longitudinal
smearing from 3D effects, and changes to the bunching condition due to jitter in the second chirp strength.
Finally, we consider how modulating near the beginning of the accelerator may affect the microbunching
instability.

6.5.1 ISR Induced Energy Spread

Incoherent energy spread, ∆p(ISR), from ISR between the two dispersive sections could destroy the fine phase
space structure. To preserve high harmonics, we must limit the longitudinal broadening, ∆z(σp), from the
total energy spread to less than λL/2πm|α| ∼ 0.5 nm. We can estimate

∆z(σp) = R(a)
56 σp +R(b)

56

α

g
σp +R(b)

56 ∆p(ISR) (6.6)

where σp is the uncorrelated relative energy spread at BC1. The sum of the first two terms is small by design,
so for R(b)

56 = 20 mm, we find ∆p(ISR) ∼ 10−8 for each bend, achievable with weak dipoles in BC2 at 1 GeV
(Fig. 6.3). Fig. 6.5 shows bunching including ISR effects.

6.5.2 Second Order Lattice Effects

The laser modulation must survive transport through two strong chicanes, and approximately 60 m of ac-
celerator. Smearing from second order effects (e.g. emittance and curvature from energy modulation) could
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Figure 6.4: a) Particle phase space for elegant simulation of parameters in Table 7.1. The two horizontal
stripes of higher density are signatures of a sinusoidal modulation. A third-harmonic accelerating cavity
produces the flat central portion of the beam. b) A zoom of the phase space shows the compressed modulation
bunched to optimize higher harmonics. The vertical stripes (’standing up’ the modulation) in phase space
produce sharp density spikes that drive harmonic generation. The T566 component of the transfer matrix
causes slight scalloping.

broaden the fine 3 nm structure. An electron with coordinates X = [x, x′, y, y′, z, p] acquires a longitudinal
deviation of ∆z = X̃T5ijX , with T5ij the second order transport coefficient from the modulator to the be-
ginning of the second chirp. As described in Section 6.3.2, the second chirp helps to cancel such effects. The
chirp imparts a relative energy modulation of −α

g h∆z, reducing the longitudinal shift following the second
chicane by a factor of |α|. Though the re-compression is weaker for errors from further down the acceler-
ator, for our lattice (Fig. 6.3), the transverse components (T5ij) are dominated by the first chicane, where
we increase the beta function after the small beam radius of the modulator. As a result, we expect the error
self-correction effect to be significant for our sample lattice.

To estimate the size of the second order terms, we tracked a longitudinal delta slice (vanishing bunch
length and energy spread, but finite emittance) from the modulation to the end of the accelerator. We observe
that the acceleration following the first chicane broadens the slice, but also imparts a chirp. The second
chicane then re-compresses the slice, decreasing the smearing effect by approximately the compression factor,
|α| (Fig. 6.6).

6.5.3 RF Phase and Wakefield Stability

RF phase errors, wakefields, and RF curvature alter the linear chirp between dispersive sections and degrade
the final bunching. An error in the second, canceling chirp shifts the unwinding process and leaves the
modulation either under or over-bunched. (The first chirp is less problematic because the two dispersive
sections have canceling effects.)

To estimate the sensitivity to a linear chirp error, we repeat the earlier analysis, with the addition of an
error, ε, in the final chirp. Step three becomes

z3 = z2, p3 = (p2 − αhz2 − εz2)/g . (6.7)

Again solving for zf in terms of zi, we find

zf = z′ +
(
R(T )

56 − δR
)[

pi +AL sin

(
αkL
1− δk

z′
)]

(6.8)
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Figure 6.5: Bunching factor at two wavelengths with 0.15% bandwidth from elegant [6] simulation (param-
eters in Table 7.1). Bunching is lower than for the 1D case because of 2nd order effects (e.g. emittance and
T566), ISR and finite laser radius.

with definitions δk ≡ R(b)
56 ε/g, δR ≡ R(a)

56 R(b)
56 ε/g, and z′ ≡ zi(1 − δk)/α. The chirp error has two effects:

the wavevector shifts by the factor 1−δk and the R(T )
56 required to unwind the over-compression shifts by δR.

While the shift in wavevector is small, the second condition implies a tight constraint on the phase stability
of the second chirp; if the phase shifts, the effective R(T )

56 either over or under-bunches the modulation. To
maintain maximal bunching we need chirp error |ε| # gR(T )

56 /R(a)
56 R(b)

56 ≈ 0.2/m, requiring control of the
second chirp to better than 0.1%. The dot-dash curve in Fig. 6.7 shows bunching decreases to 10% with a ±
0.005 degrees phase error.

Longitudinal space charge wakefields produce an energy modulation that is proportional to the derivative
of the beam density profile. For a Gaussian bunch, we approximate the wakefield effect as an additional
linear chirp near the center of the beam. (There will be nonlinear effects at the edges, but we are primarily
interested in the central region where CHG is most effective). With charge fluctuations of ∼1%, we can only
ignore the wakefield if it contributes less than 10% of the chirp. To minimize the wakes, we assume L-band
superconducting structures with large geometric apertures.

6.5.4 Dispersion Leakage

The most serious technical limitations come from dispersion leakage in the first chicane, which can smear
the fine structure over the ensuing accelerator sections. For example, jitter in the dipole magnet strengths and
quadrupole terms in the magnets will both broaden the modulation. We study dispersion leakage by tracking
a longitudinal delta slice of finite emittance, but vanishing bunch length and energy spread (as we did for
second order effects). We then adjust the field strength and quadrupole terms of a bend magnet in the first
chicane, and observe the effect on the final bunch length. For the bend magnets in the middle of the chicane,
we find the quadrupole jitter must have geometric strengths below K = 10−5 (corresponding to fields of 0.1
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Figure 6.6: To demonstrate the emittance cancelation effect, we track a longitudinal delta slice (zero length)
following the laser modulation. Emittance effects increase the slice length before the second chicane, BC2,
(top left, x vs. z), but the off-crest accelerating section introduces a chirp to the beam (bottom left, energy
vs. z). The second chicane then re-compresses the bunch by the compression factor, |α| (center). Following
the final accelerator section, L3, the slice starts to spread out again (right). Bunch head is to the left.

G/m) to preserve 3 nm bunching. Likewise, jitter in the dipole strengths must be kept below 0.01%. Both
effects are primarily second order, so they decrease with shorter accelerating sections (i.e. higher accelerating
gradients), which can be achieved with higher frequency accelerating structures. We note that the laser chirp
method of Ref [76] may be less sensitive to dispersion errors due to the short distance between chicanes.
However, higher frequency structures and laser chirps may both be highly susceptible to phase errors, as
discussed in the previous section. Lowering the x-emittance (e.g. in 20 pC operation [80]) may also improve
the tolerances.

In a CHG scheme, the tolerances for the accelerator are comparable to those of an undulator in an FEL;
in both cases, preservation of the fine bunching is essential. For this reason, we also track a longitudinal delta
slice while shifting the position of individual dipoles and quadrupoles. We find longitudinal errors of below
1 mm in the bend magnets and individual quadrupole offsets below 300 µm have negligible smearing effect.
Finally, we note that all tolerances are looser if we place the radiator directly following BC2.

6.5.5 Microbunching

The microbunching instability (MBI) can degrade linac and FEL performance [44]. Incoherent energy spread
damps the MBI effect by the exponential factor e−k2R2

56σ
2
p , suppressing radiation for kR56σp > 1. For the

parameters of Table 7.1, we expect suppression of MBI effects for λ < 3 µm. If long wavelength MBI is still
problematic, a laser heater could push the incoherent energy spread as high as 10 keV, damping radiation out
to wavelengths of 12 µm [21, 22].

While laser heaters have proved effective at suppressing MBI [4], the larger initial energy spread would
require higher seed laser power and enhance distortions from T566. Given the similarity between the laser
heater and the first stage of CHG, it is interesting to consider the extent to which the CHG process naturally
suppresses MBI without additional heating.
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Figure 6.7: Wide bandwidth bunching for two simulations with a 0.01 degree phase shift (solid and dotted
blue lines). An FEL would pick out a narrow ∆λ/λ = 0.15% bandwidth, leaving lower bunching (narrow
peak, red dot-dash line).To calculate the bunching factor at a position z0 and bandwidth ∆λ/λ, we sum
the phases of all particles in the region z0 − λ/2∆λ < z < z0 + λ/2∆λ. The high baseline in the wide
bandwidth curves is due to the relatively low number of particles per bunching calculation when λ/∆λ is
small. A bunched sine wave makes a sawtooth that may either be right-leaning, as in Fig. 6.4, or left-leaning,
depending on the sign of the effective dispersion, R(T )

56 . In our simulation, R(T )
56 changes as a function of

longitudinal beam position, resulting in the double peak seen in the wide bandwidth bunching.

We model the MBI in two steps; first, shot noise in the electron beam produces broadband space charge
forces that modulate the beam energy. Second, a dispersive region converts the energy modulation into
amplified density modulation. To evaluate the MBI amplitude, we rewrite the first line of Eq. 6.4 with the
addition of a shot noise driven energy term, Asn sin(ksnzi), with the understanding that the wavevector ksn
may take on any value, and the amplitude, Asn, is generally small. As in Section 6.3.1, our strategy is to use
the normalized initial coordinates, z′i ≡ zi/α, to express the coordinates following the first chicane,

zf = z′i +R56pi +R56

[
AL sin(αkLz

′
i) +Asn sin(αksnz

′
i)
]
. (6.9)

If we again assume a uniform longitudinal distribution with Gaussian energy spread, Ψi(pi), we find the
bunching factor (from Eq. 6.1) due to MBI

〈b(k)〉 ∝ e−
k2R2

56σ2
p

2 αksnR56Asn

∑

n

Jn(kR56AL)

∫
dz′ie

−ikz′
ieinαkLz′

i

(
eiαksnz

′
i − e−iαksnz

′
i

2

)
(6.10)

where we have used the Jacobi-Anger expansion on the laser modulation term, and we have assumed we are
operating in the regime ksnR56Asn # 1 to linearize the shot noise term. We expect significant bunching at
frequencies that satisfy k = nαkL ± αksn. The initial, uncorrelated, Gaussian energy spread again drives
the exponential pre-factor, while the smeared laser modulation provides additional suppression by way of the
Bessel function factor.
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If we consider only long wavelength MBI (n = 0, so that k = ksn), we reproduce Eq. 11 from Ref. [22];
the laser modulation suppresses the MBI by an additional factor of J0(kR56AL), so we now expect moderate
damping for kR56AL

>∼ 1.5. Compared to the exponential pre-factor, the laser suppression extends to longer
wavelengths by the ratio AL/σp, though the slower decay of the Bessel function weakens the effect. For the
parameters of Table 7.1, we find additional suppression at wavelengths as long as 10 µm even without the use
of a laser heater.

When n .= 0, there may be additional long wavelength MBI driven by frequency beating between the shot
noise and seed laser. For example, with n = −1, we have long wavelength k = −kL+ksn for kL ∼ ksn ( k.
Further studies are needed to fully characterize the microbunching instability in CHG.

It is worth noting that the weak Bessel suppression stems from the double-horn energy distribution of a
sinusoidal modulation [22]. A perfectly flat energy distribution (a longitudinal sawtooth) would maximize
both the microbunching suppression and high harmonic bunching. Even a two-frequency laser modulation
approximating a sawtooth would substantially improve the suppression over the single frequency case ana-
lyzed above (Fig. 6.8).
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Figure 6.8: Double-horn energy distribution, left, from a sinusoidal modulation. Approximating a sawtooth
with two frequencies gives the more uniform energy distribution at right.

6.6 Conclusion

Seeding an electron beam prior to the compression stage provides short wavelength bunching with relatively
low seed laser power. In this chapter, we have studied a scheme for two-stage CHG, which extends the method
to photocathode beams, and aids in the transport of the fine phase space structure. Through 3D simulations,
we have demonstrated that modulation of a beam with 0.4 µm emittance can survive an extended accelerator
region and still provide bunching at higher harmonics. We have also considered an effect by which smearing
errors may be suppressed. However, strict stability requirements on the RF phase (to suppress variation in the
chirp) and tight limits on dispersion leakage from the chicanes (to prevent smearing of the fine phase space
structure) may make practical implementation of CHG schemes challenging.
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Chapter 7

Steady-State Microbunching in a
Storage Ring for Generating Coherent
Radiation

7.1 Introduction

In a coherent electron-based radiation source, electrons group into microbunches spaced at the wavelength
of the output radiation. With all electrons radiating at the same phase, the electromagnetic field amplitudes
add in phase and the radiated power scales as the square of the number of electrons. The SASE FEL process,
for example, amplifies a narrow bandwidth of noise from a random stream of electrons to create a periodic
microbunching, which then radiates coherently. Alternatively, we may drive the microbunching with an
external radiation source, as described in Chapter 6. In both cases the resulting coherent light can be orders
of magnitude brighter than that of an equivalent incoherent source.

For high average power light sources, duty-cycle shares the stage with coherence. Linac driven FELs
use each electron pulse once, leading to low duty cycles. (Energy recovery linacs reach high duty cycles by
recovering the electron energy [36, 37, 38].) Storage rings, by contrast, naturally operate at MHz repetition
rates (determined by the revolution time of the electrons), and fully filled rings can provide CW radiation.
However, storage rings do not generally support sustained microbunching (MB).

Using an optical or RF modulation, we propose to microbunch stored electrons during each pass through
a radiator. Though the electrons may appear smeared elsewhere in the ring, the MB is permanent at the
radiator, so we consider this steady-state microbunching (SSMB). The result is a coherent radiation source
with MHz to CW repetition rate.

In a conventional storage ring, RF ‘buckets’ both accelerate and trap electrons. The RF modulation
accelerates electrons in front of the stable point more than those behind the stable point, so that all particles
tend to move toward the stable point due to the ring’s dispersion. Instead of a continuous stream of electrons,
we find a train of tightly ’bunched’ beamlets spaced at the RF wavelength. Replacing the RF with an optical
laser results in a beam bunched at optical wavelengths [81].

The drawback to bucket bunching is that the output radiation is limited to the initial radiation wavelength;
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to produce high power radiation at a wavelength, λout, we need bunching at λout, which in turn requires high
power radiation at λout to produce the bunching. Instead, we propose to modulate with an easily available
initial wavelength λin (e.g. optical), but generate stable points distributed at either a harmonic or a multiple
of λin. To distinguish harmonic or multiplied bunching from conventional RF buckets, we will refer to
trapping at λout .=λin as MB. For example, seeding with λin between 200 nm and 2 µm (easily available from
commercial sources), we can produce MB at wavelengths ranging from λout= 13.5 nm to 1 mm. We note
that single-shot versions of MB (λin .=λout) are mainstays of FEL seeding (see e.g.[9, 29]). Portions of this
chapter were published as [82].

7.2 SSMB Mechanism

7.2.1 Zero-Crossing SSMB

Our goal is to establish stable fixed points in phase space that will microbunch the electron beam. A particle
is at a fixed point in phase space if, after T turns around the ring, the particle returns to its initial coordinates;
with a one turn map M , a fixed point exists in phase space at X0 = (z, p) if MTX0 = X0. Each RF bucket
contains only one fixed point per wavelength (at z = m λin, p = 0, for integers m), so the standard RF
bucket generates bunching, not MB.

(In all discussions, energy, p ≡ (E − Ebeam)/Ebeam, and position, z, are given relative to the ideal
electron defined as pI ≡ 0, zI ≡ 0. We will consider the case of operation above transition. Below transition,
the slippage reverses.)

As an example of MB, we return to the particle at a zero-crossing of a sine modulation. Instead of p = 0,
we now consider a particle with a special energy p = ∆p, such that the particle slips backward by ∆z =λin

each turn due to dispersion. The particle does not return to its initial position, but because of the modulation’s
periodicity, the particle moves to an equivalent zero-crossing, so we still consider this to be a fixed point. At
each zero-crossing, we find a set of such fixed points arrayed at energies p = n∆p, for n = 0,±1,±2, etc.
Fixed points with positive (negative) energies slip backward (forward) n wavelengths per turn.

After a full turn, at the ring’s modulation point, the microbunches stack at z = m λin, with one stack per
modulation wavelength, i.e., the electrons are bunched at λin. However, after a fraction, 1/H , of a turn, the
fixed points have slipped only ∆z = n λin /H , and the particles are spaced at the Hth harmonic of λin, i.e.
are microbunched at λout=λin /H (Fig. 7.1).

7.2.2 Double Modulations

For a general account of the SSMB principle we describe a two-stage system; the second modulation and
dispersive region improves control of phase space at a small cost in complexity (Fig. 7.2). As in Chapter 6,
we break each turn into 4 steps:

z1 = z0, p1 = p0 + Fa(z0)

z2 = z1+ R(a)
56 p1, p2 = p1

z3 = z2, p3 = p2 + Fb(z2)

z4 = z3+ R(b)
56 p3, p4 = p3 . (7.1)
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Figure 7.1: An illustration of harmonic SSMB for H = 3. At top, we show particles in phase space at the
modulator. Each turn around the ring, particles slip forward or backward from dispersion, but the distribution
is stationary for a periodic modulation. At bottom, at an intermediate point in the ring (1/H the way around),
the microbunches are spaced by λin /H , i.e. the beam is microbunched with λout=λin /H .

In step 1, we apply a modulation to the beam energy, Fa(z0). In step 2, dispersion R(a)
56 converts the change

in energy to a change in position. We then repeat with a second modulation, Fb(z2), and dispersive section,
R(b)

56 . A single pass corresponds to the case of Chapter 6 (but without the chirp). For SSMB, we assume the
four steps repeat for each pass around the ring until the beam reaches its steady-state configuration. Taking
the case of T = 1, we then find fixed points whenever we satisfy the slippage condition:

∆zonepass =R(a)
56 p1+ R(b)

56 p3 = n λin

∆ponepass = Fa(z0) + Fb(z2) = 0 , (7.2)

for n = 0,±1,±2, etc.

Most generally, we are looking for any combination of R(a)
56 , R(b)

56 , Fa, Fb such that the resulting fixed
points have a clean, periodic structure. In our previous example (fixed points at the modulation zero-crossing),
we set Fa(z0) = Fb(z2) = 0 and R(a)

56 =R(b)
56 . However, other manipulations are possible (see Section 7.3.1).

Steady-state echo enabled harmonic generation (EEHG) may also be capable of driving SSMB at high har-
monics (Section 7.3.2) [29].

7.2.3 Analysis of Linearized Modulation

For simulations we consider modulations Fa,b = Va,b sin(kz). To study the zero-crossing fixed points ana-
lytically, we linearize the modulation, Fa,b(z) ≈ ha,bz, with ha,b ≡ Va,bk, and write the one turn map as a
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Figure 7.2: Example schematic for a two-stage system. A laser cavity and two undulators of length Lu

and 1.9Lu modulate the electron beam at opposite ends of a storage ring. SSMB from the modulation and
dispersion produces coherent light in a radiator. RF modules could replace the laser modulation to produce
long wavelengths, and an additional radiator could be placed at the same distance in front of Lu.

matrix

M =

(
1 R(b)

56

0 1

)(
1 0

hb 1

)(
1 R(a)

56

0 1

)(
1 0

ha 1

)

=

(
1 + s(2 + (1 + s)η) s

ha
(2 + sη)

ha(1 + (1 + s)η) 1 + sη

)
, (7.3)

with R(a)
56 =R(b)

56 ≡ s/ha and η ≡ hb/ha. The stability condition, |TrM | < 2, constrains

−4 < 2(s+ sη) + s2η < 0 . (7.4)

However, we note that it is also possible to operate SSMB in the regime of |TrM | > 2. The standard fixed
point bifurcates into two fixed points which exchange particles each turn through the map. This approach
could also generate SSMB [83].

We also write down an equilibrium bunch length using the Courant-Snyder parameters, 〈z2〉 = βε and
〈δ2〉 = γε, yielding

〈z2〉 = −s
2 + sη

(1 + η + sη)

〈δ2〉
h2
a

, (7.5)

suggesting that sη ∼ −2 can substantially reduce the island size, increasing the maximum possible harmonic.
In reality, energy changes from damping and quantum excitation, combined with dispersion, will increase
〈z2〉. However, in simulations we do observe moderate MB compression as sη → −2. If the MB size is not
a concern, it is also possible to modulate with a single stage SSMB scheme (Fig.7.3).
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Figure 7.3: Phase space for harmonic SSMB, with one-stage modulation on left and two-stage modulation
on right. The two-stage modulations provide a cleaner phase space with shorter stable regions, but the single
modulation also creates stacked, periodic stable islands.

7.3 Alternate Modes of SSMB

We emphasize that the zero-crossing condition is not the only, nor necessarily even an optimal, method of
modulation. Most generally, we are searching for solutions to the slippage condition, Eq. 7.2, that generate
clean harmonic structure; we would like to find combinations of R(a)

56 , R(b)
56 , Va, and Vb that produce fixed

points spaced evenly with respect to λin.

7.3.1 Modulation-Canceling Slippage Condition

In Section 7.2.1 we considered a simple example, constraining ourselves to the subset of Eq. 7.2 solutions
with p1 = p3 and modλ z2 =modλ z0 = 0. Because of the latter constraint, we call this the ’zero-crossing’
case. As a second example, we instead take the constraint p1 = 0, which in turn implies Fa = −Fb. Because
of the latter relation, we call this ’modulation-canceling;’ the two modulations must offset to return the energy
to its original state, pf = p0. Note that since we are no longer just looking at the zero-crossing, the linear
expansion no longer holds for a sinusoidal modulation. If we consider a sawtooth waveform we may again
assume a linear modulation at all fixed points.

We can write an equivalent transformation as that given in Eq. 7.3, though now with ha = hb ≡ h, and
R(a)

56 .=R(b)
56 . There is no constraint on the strength of R(a)

56 (since we have p1 = 0), but we have the same
requirement as before that R(b)

56 move each fixed point by an integer number of λin. Consequently, we again
find the energy separation between islands, ∆p = 2nπk/ R(b)

56 . Whereas for zero-crossing the islands are all
located at modλ z0 = 0, we now find longitudinal separation ∆z = ∆p/h, and harmonic bunching after a
full turn at H =R(b)

56 h/2nπk. We also find a new stability requirement,

0 <R(a)
56 R(b)

56 h2 < 4 . (7.6)
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So long as R(a)
56 is small, we can find stable manipulations with high harmonics, H .

We do not concentrate on modulation-canceling because of the unequal distribution for the case of a sine
wave modulation and the practical difficulty of producing a sawtooth manipulation (which would require
multiple modulation wavelengths). However, we may easily simulate an example (Fig. 7.4).

−0.5 0 0.5

−0.02

−0.01

0

0.01

0.02

−0.5 0 0.5

−0.02

−0.01

0

0.01

0.02

−0.5 0 0.5
0

10

20

30

40

0 50 100
0

0.2

0.4

0.6

0.8

1

z /in

z /inz /in

p
/p

p
/p

Harmonic of in

Bu
nc

hi
ng

 (F
FT

)

Figure 7.4: Example of an sawtooth manipulation to a coasting beam. Modulation has Va = Vb = 0.05,
R(a)

56 = 1 and R(b)
56 = 200. After 2× 105 loops, with damping of δ = 10−4, unmodulated equilibrium energy

spread of 10−4, and initial energy spread of 5%, we find bunching at the 10th harmonic. Phase space of
one wavelength is shown at upper left (after a full turn) and upper right (after R(a)

56 ). The bunching profile is
bottom left with the fourier transform bottom right.

7.3.2 Echo

Steady State Echo Condition

As a third example of a modulation method, we consider the EEHG modulation [29]. EEHG provided the
initial motivation for SSMB, so we may be curious if we can implement EEHG directly as a steady state
scheme. The EEHG process can be described as follows: an initial modulation and strong dispersive section
filaments the beam. A second modulation and dispersive section then bunches each filament individually.
The harmonic is determined by the separation of filaments (Fig. 7.5).

First we consider the case of a sawtooth modulation, F = Va modλ (z). We optimize the microbunching
by producing a vertical slope in each sawtooth filament. We can solve for the sawtooth bunching condition
from geometric arguments, by simply solving for the parameters that leave each segment with infinite slope
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Figure 7.5: Illustration of the Echo mechanism for a sawtooth modulation. We have chosen modulations
Va = −Vb = 10σδ to make the scheme easier to follow. The first dispersive section filaments the beam. The
second modulation and dispersive sections then individually bunch the filaments. The harmonic is determined
by the vertical separation of filaments (upper right), which will become horizontal separation after the final
dispersive section (bottom right). We may change the number of filaments independently of the harmonic
number.

(upright in phase space). We can trace the slope through each section as

S1 = Va/ λin

S2 =
Va

λin + R(a)
56 Va

S3 = S2 + Vb/ λin=
Va

λin + R(a)
56 Va

+
Vb

λin
, (7.7)

and we maximize bunching (final vertical segment) with

R(b)
56 = − 1

S3
= − λin + R(a)

56 Va

Va + Vb+ R(a)
56 VaVb/ λin

. (7.8)

The spacing between the delta functions in the density profile, ∆z, then determines the harmonic, H = 1/∆z.
From the slopes calculated above, we find

∆z =R(b)
56 ∆p =R(b)

56 S2 , (7.9)
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where ∆p is the vertical separation of filaments after the third stage. Plugging in for R(b)
56 and S2, we find

H =
1

∆z
= −(1 +

Vb

Va
+

R(a)
56 Vb

λin
) . (7.10)

If we consider Vb = −Va, we have harmonic H =R(a)
56 Vb/ λin.

We can apply our sawtooth model to a sine wave as well. While a single pass through EEHG has no
general analytical solution for optimizing microbunching, we may guess that we optimize the steady state
version by producing a vertical slope in each filament. Standing up the linear portion of the sine wave
approximately maximizes bunching, so we will use the same condition as for the sawtooth, but with our new
slope Va → ha ≡ Vak and Vb → hb ≡ Vbk, immediately giving

R(b)
56 =

λin + R(a)
56 ha

ha + hb+ R(a)
56 hahb/ λin

. (7.11)

We must be careful to allow for ha → ±ha, due to the two linear regions of a sine wave (phase 0 and π). For
given values of R(a)

56 and ha, we now find two slopes in the second stage,

S±2 =
ha

R(a)
56 Va± λin

. (7.12)

The result is a more complicated harmonic structure. If we choose a value of R(b)
56 to satisfy Eq. 7.8 for one

of the initial slopes, we now find two harmonics corresponding to the two initial slopes ±ha, resulting in

H± =
1

∆z
=

1

R(b)
56 S±2

= H
R(a)

56 ha± λin

R(a)
56 ha+ λin

, (7.13)

where H is the harmonic solution given for the sawtooth (Eq. 7.10). We then expect to find two harmonics,
as evident in a single pass simulation (Fig.7.6). Had we used the optimal single pass bunching condition
(which slightly over-bunches the modulation, see [29]), we would find enhancement of only one of the two
harmonics.

Steady State Implementation

We would now like to see if it possible to use the echo manipulation in a steady state configuration. We can
write down the linearized map

M =

(
0 −1/(ha + hb + hahb R

(b)
56 )

ha + hb+ R(a)
56 hahb 1+ R(a)

56 hb

)
, (7.14)

where we’ve used the bunching condition (Eq. 7.8) to remove the R(b)
56 dependence and we’ve defined λin= 1.

The stability condition is given by

−3 < hb R
(a)
56 < 1 . (7.15)

In general, we are interested in the case of producing multiple filaments from a single slope, so we must set
R(a)

56 ha (λin, or equivalently | R(a)
56 hb/ λin | ( |hb/ha|. However, we can see a contradiction with our

stability condition; in the multiple filament regime (|hb R
(a)
56 /λ| ( |hb/ha|) we cannot simultaneously have

stability (|hb R
(a)
56 | < 3) and high harmonic, H (Eqs.7.10,7.13).
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Figure 7.6: Illustration of the Echo mechanism for a sine modulation. We have chosen modulations V̄a=

− V̄b= 2σδ , and set R(a)
56 for the 10th harmonic. Because a sine has two zero crossings (ha = ±V k), we will

have two different solutions for R(b)
56 , giving two different harmonics H±. For the parameters above, we find

H+ = 10 and H− ≈ 8.

This analysis is valid only at the zero crossing and with the assumption that standing up the modulation
maximizes SSMB. Neither assumption is critical for echo, so it may still be possible to implement the echo
modulation as SSMB. We also may consider SSMB solutions that violate the stability condition as in [83].

7.3.3 Long Wavelength Beating

UV and x-ray radiation is the lifeblood of storage ring beamlines, so we have focused on generation of
short wavelength SSMB with λout#λin. However, there is growing scientific and industrial interest in THz
radiation, and storage rings in special configurations can generate these wavelengths as well [84]. Past work
has demonstrated single pass microbunching with λout(λin by beating two different input wavelengths,
λin1 .=λin2 [85]. In an analogous fashion, we wish to generate long wavelength SSMB with λout(λin.

We consider modulation with two wavelengths related by λin2= [b/(b− 1)] λin1. The frequency beating
results in periodicity at an output wavelength λout= b λin1, with the potential to set b ( 1.

Frequency beating can drive SSMB in either one or two stages (Fig. 7.7). First we consider a two stage
SSMB, with separate modulation and dispersive regions for each wavelength. With two modulations, fixed
points exist only at the stable phases of both modulations. Consequently, we expect particles to survive only
in regions where the modulation phases match. Elsewhere, where the phases do not match, one modulation
always ejects particles from the stable points of the other modulation. The result is sets of fixed points
separated by the beat wavelength, λout.

Alternatively, we can implement frequency beating with a single stage setup. In this case stable fixed
points survive across λout. However, if we rely on the modulation to replace the synchrotron radiation energy
loss, δ, fixed points only survive where the combined modulation, Va cos(kaz) + Vb cos(kbz), is larger than
δ. For δ ! Va + Vb, stable fixed points again remain only where the phases overlap, near modλout z = 0,
resulting in SSMB at the beat wavelength, λout. We compare the results of single and two stage frequency
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Figure 7.7: Frequency-beating drives SSMB in multiple configurations. At left, modulations are in separate
stages, and stable fixed points survive only where the phases overlap. At center, beating the laser prior to
modulation can also drive SSMB if the electrons rely on the modulation to replace energy lost to synchrotron
radiation. At right, the one-stage scheme is identical to a two-stage scheme with no dispersion between
modulations.

beating in Figs. 7.8 and 7.9.

As a side note, the one stage beating scheme provides a peculiar method for chirping the beam, described
in Fig. 7.10. It is possible to compress the beam using this chirp by using a large dispersive strength relative
to the R56 of the manipulation.

7.3.4 Linearized RF bucket

We can implement the long wavelength beating scheme as a CW source in a small, low-energy ring as
in the EUV case. If we use the modulation to accelerate the electrons as well, we can do away with the RF
modules entirely. Alternatively, we may consider a pulsed version, with RF buckets to accelerate the particles
(allowing lower power modulation lasers). To provide a uniform acceleration across the entire bunched beam,
we require an RF wave that is approximately constant over a length much longer than λout. However, with
radiation as long as λout∼ 1 mm, this requirement may fail for RF of wavelength λrf ∼ 100 mm.

Instead of using a single RF modulation, we consider two cavities, prime and double-prime, with different
wavevectors, krf ′′ .=krf

′, and arbitrary amplitudes and phases Vrf
′, Vrf

′′,αrf
′,αrf

′′. We have four constraints:
the total modulation is equal to the damping (δ), the linear term must be smaller than some desired slope, Srf ,
and the quadratic and cubic terms should disappear, to maximize the linear region. Expanding the sinusoidal
functions around the phases αrf

′,αrf
′′, we write the constraints as

Vrf
′ cos(αrf

′)+ Vrf
′′ cos(αrf

′′) = δ

Vrf
′krf

′ sin(αrf
′)+ Vrf

′′krf
′′ sin(αrf

′′) = 2S

Vrf
′krf

′2 cos(αrf
′)+ Vrf

′′krf
′′2 cos(αrf

′′) = 0

Vrf
′krf

′3 sin(αrf
′)+ Vrf

′′krf
′′3 sin(αrf

′′) = 0 , (7.16)

and find relations
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Figure 7.8: Example of a long wavelength beating modulation with b = 10. On the left, the two stage modu-
lation affects particles throughout the beam, but stable fixed points can only survive near the center where the
phases overlap. On the right, in a one stage modulation the two lasers beat together before interacting with
the beam, and the modulation has little effect where the phases cancel. The one stage modulation still results
in bunching when the combined modulation amplitude is less than the radiation loss (black line). Because the
electrons rely on the modulation to replace energy lost to radiation, stable islands only survive in the center
where the modulation is greater than the radiation loss.

tan(αrf
′) =

2S

krf
′ δ

, tan(αrf
′′) =

2S

krf
′′ δ

Vrf
′=

√
δ2 + (2S/ krf

′)2

1− krf
′2 / krf

′′2 , Vrf
′′=

√
δ2 + (2S/ krf

′′)2

1− krf
′′2 / krf

′2 . (7.17)

After choosing the frequencies, krf ′, krf ′′, slope, S, and damping, δ, we can solve for the corresponding
phases and amplitudes to optimize the RF acceleration for SSMB.

7.3.5 Hamiltonian View

As an alternative view of the SSMB process, we may consider the modulation process as a modification of
the unmodulated Hamiltonian. For example, we can picture the net effect of the RF bucket as generating a
wide valley in the Hamiltonian that traps particles in a single group at the center of the valley. In this view,
the roll of SSMB is to add a modulation to the floor of the Hamiltonian; the resulting washboard structure
then divides the large single group into periodic microbunches. In this sense, the particles are not a strict
steady-state solution (on an individual particle basis). Rather, the statistical distribution of particles due to
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Figure 7.9: Phase space for frequency beating (with b = 10) for both two-stage modulation (left) and one-
stage modulation (right). For two-stage modulations, the largest stable regions exist where the phases overlap.
In the one-stage case, we find phase space stable islands throughout λout= b λin, but radiative energy loss
removes the side islands.

the washboard Hamiltonian leads to strong bunching factors at short wavelengths, and these bunching factors
exist at steady state. This picture may help develop new algorithms for implementing SSMB.

7.4 Example Radiation Sources from SSMB

7.4.1 EUV Source

For each turn around the ring, the SSMB beam passes through a radiator (e.g. an undulator). Matching the
SSMB wavelength to the resonant wavelength of an undulator strongly amplifies the radiation brightness. As
a first example, we consider the feasibility of SSMB at the EUV lithography standard, 13.5 nm. To produce
a stable, high power CW modulation, we overlay the storage ring with a laser cavity and two modulation
undulators, with a third undulator to extract radiation (Fig. 7.2). In general, a laser modulation does not
involve any average energy transfer. However, in the absence of an RF bucket, the modulation process must
replace the radiative energy loss.

We illustrate the concept with a simulation that tracks the 4-D particle coordinates (z, p, x, x′) through a
large number of passes around the ring. The simulation includes both energy loss (δ) and quantum fluctu-
ations (ε) from synchrotron radiation, as well as first and second order momentum compaction (R56, T566)
and transverse transport elements (R51, R52). We model jitter errors by shifting the modulation relative to
the particles on a turn-by-turn basis. We assume an initially flat-top longitudinal distribution with Gaussian
transverse profile of radius σx,σx′ , though we note the two synchrotron radiation terms, δ and ε, will de-
termine the equilibrium unmodulated energy spread (σδ). Periodic boundary conditions allow for slippage
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Figure 7.10: In a system without RF, the modulation both drives SSMB and replaces the energy loss due
to synchrotron radiation. The stable islands of the one-stage modulation are centered at the intersection of
the synchrotron radiation (black line) and the combined beating modulation (blue line), with the intersection
points highlighted by the red circles. Modulating with just one of the two beating wavelengths (green, dotted
line) will modulate the stable islands by the level of the orange circles. We can see that this modulation chirps
the stable islands, because of a relative phase slippage. A dispersive region can then compress the bunches.
The sine wave shown (green) has the larger of the two beating wavelengths. Were we to have chosen the
shorter wavelength, the chirp would have the opposite sign.

across many wavelengths.

A laser with power PL will generate a modulation amplitude of

Va =

√
PL

P0

KLu

γ0σL
AJJ , (7.18)

with P0 = 8.7 GW and Bessel factor AJJ ≡ J0(Q) − J1(Q), Q ≡ K2/(4 + 2K2) for a planar undulator.
With undulator parameter K = 1 and lengths Lu = 1, 1.8 m for the two modulations, we need power of
around PL = 10 MW focused to roughly σL = 100 µ m to produce Va = 225 keV.

For a 13.5 nm source, we simulate a 500 MeV ring, modulated at λin= 200 nm and look for SSMB at
the 15th harmonic (Tab. 7.1). To maintain the short wavelength SSMB we require a large energy aperture
(±6%) and a laser cavity with a strong 50 MW stored power, though only with a few kW of CW input power.
Stability of the laser is assumed to be 0.005◦ in phase and 0.005% in amplitude. Choosing η = 1.9, after
10 million turns we then observe trapping of ∼15% of the particles with strong SSMB (Fig. 7.11). (A large
ring with weak bends may permit decreased laser power and energy aperture, but we have not explored ring
optimization.)

From Eq. 27 in Ref.[86], we can estimate the power of a thin electron beam (krσ2
x/Lu ( 1) from a
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Table 7.1: Example Parameters
EUV THz Pump-probe

Rad. wavelength (λout) 13.5 nm 500 µm NA

Seed wavelength (λin) 200 nm 2.0,2.008 µm 1 cm

Modulation amp. (Va) 1 MeV 350 keV 15 MeV

Dispersion (Ra +Rb) 30 µm 0.9 mm 0.6 m

Beam energy (E) 500 MeV 500 MeV 3 GeV

Damp. decrement (δ) 5× 10−6 5× 10−6 3× 10−4

Equil. E spread (σδ) 3× 10−4 5× 10−4 1× 10−3

bunched beam as

W = Wb
πB2

2

I

γIA

K2

2 +K2
NuAJJ , (7.19)

with electron beam power Wb, bunching factor B, electron current, I , Alfvén current, IA, and number of
undulator periods, Nu. Assuming a 450 MeV beam, with 500 mA current and 10 µm radius, a 2 m undulator
with 8 mm period can deliver nearly 800 W of continuous power. While many of these parameters (in
particular current, momentum compaction, laser stability, and unmodulated equilibrium energy spreads) are
at or beyond the current technological limit, a less aggressive design may still be of interest to the lithography
community. There is also trade off in various parameters (e.g., we can double the energy spread at the cost of
doubling the modulation amplitude). Technological advances could allow for wavelengths in the soft X-ray
region.
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Figure 7.11: Simulation of a two-stage manipulation to produce SSMB. After 10 million revolutions, we find
bunches stacked at steady-state in energy space (top left). After an additional dispersive section of R56/15,
we find SSMB at the 15th harmonic (top right). The density profile is shown bottom left, with the Fourier
transform bottom right.
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7.4.2 THz and Pump Probe Sources

We also provide two illustrations of long wavelength SSMB. Rings operating with low momentum com-
paction factors have produced coherent radiation from isolated, short pulses with σz <λout [84, 87]. With
a coherent train of pulses from frequency-beating SSMB, we propose to generate high average power THz
radiation. As an example, we simulate λin1= 2 µm and multiplying factor b = 250 for a 500 MeV ring with
realistic damping and energy spread (Tab. 7.1). With laser stability of 0.01◦ in phase and .01% in amplitude,
we find strong bunching at λout= 500 µm. Better laser stability would permit lower ring energy.

It is also possible to modulate with RF and use harmonic SSMB to reach THz. The long wavelength
modulation allows for much looser stability requirements, making practical implementation easier. As an
example, Ref. [83] considers the possibility of operating above the fixed point bifurcation to produce THz
from an RF modulation.

Alternatively, RF modulations could be used to drive pump-probe experiments, which use two pulses,
separated by a variable time delay, to study dynamical systems. Using SSMB to create two microbunches, a
variable dispersive strength between the modulation and the radiator would change the time delay between
pulses. While not coherent, an SSMB pump-probe at a multi-GeV ring (Tab. 7.1) would radiate in the X-ray
regime. As a side benefit, the difference in energy of the two bunches leads to slightly different radiation
wavelengths. Such ’two-color’ output helps users distinguish the pump and probe pulses. We note that
two-color double pulses have previously been observed from α buckets [88].

7.5 Technical Challenges

Operating modes with low momentum compaction factor produce short bunches, creating large ratios of peak
current to average current. To prevent the amplified peak currents from driving longitudinal instabilities, the
average currents are typically very low [84, 45, 89, 90]. However, the SSMB process spreads particles evenly
across many microbunches in each bucket, so that the ratio of peak to average current is approximately the
harmonic number, H , or smaller (Fig. 7.11). We then expect the SSMB process to support relatively large
average currents despite the small momentum compaction factor.

SSMB is relatively immune to static errors in laser phase (φ), modulation amplitude (V ), and dispersion
(R56) between the two stages. For steady-state solutions, static errors only shift the equilibrium fixed points.
From the EUV simulation we find ∆φ < 5◦, ∆V < 5%, ∆ R56< 1% and T566 !R56 do not inhibit SSMB.

However, SSMB is potentially sensitive to stability errors, especially for long damping times. Small jitters
in timing between the laser and electron bunch may accumulate and smear out the structure, requiring high
phase and amplitude stability. If the laser cavity cannot achieve the required stability, the electron bunch itself
could serve as the modulation source, intrinsically locking the electrons to the modulation. Self-modulation
is possible for manipulations which generate bunching at λin; in Fig. 7.11, we see nearly 100% bunching at
λin at the modulation point (top left). However, self-modulation will increase the amplitude jitter.

The tightest constraints come from transverse transfer elements, R51, R52, which will de-trap particles
and lengthen the SSMB unless R51σx, R52σx′ #λin,λout. Particles with the largest x, x′ values are lost,
which may result in shrinking of σx,σx′ . It is interesting to note that keeping the transverse coordinates fixed
(i.e., integer transverse tune, ν) adjusts the slippage condition (Eq. 7.2) by R56p → R56p + R51x + R52x′.
The constraints on R51σx and R52σx′ then relax, but practically it would be difficult to operate a ring close
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to an integer tune.

7.6 Conclusion

We present a mechanism for producing SSMB in a storage ring. The combination of dispersion and modula-
tion regions produces fixed points (and thus SSMB) at harmonics or multiples of the modulation wavelength.
We acknowledge that preserving fine SSMB will be challenging at short wavelengths, and briefly discuss
some potential technical requirements. A proof of principle may be possible at long wavelengths, and we
will address practical design issues in future studies.
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Chapter 8

Numerical Calculation of Longitudinal
Space-Charge in an Undulator

8.1 Introduction

Current enhanced SASE (eSASE) was proposed as a method to improve peak power, timing, and pulse length
control in SASE FELs [39]. The scheme uses an optical laser and dispersive region to create sub-micron
current spikes in the electron bunch. The current spikes lase more efficiently than the lower current regions,
providing short bursts of FEL radiation synched to an optical laser pulse (i.e. coherent control). Coherent
control is particularly useful for pump-probe experiments with X-ray FELs, and eSASE has been proposed
as an upgrade to LCLS [40]. However, the sharp current spikes also exacerbate longitudinal space charge
(LSC) induced energy spread in the electron beam. While LSC is generally suppressed in electron beams by
the relativistic Lorentz factor, γ = 1/

√
1− β2, Geloni et al. showed that the suppression is more accurately

given by γz = 1/
√
1− β2

z , with average longitudinal velocity, βz [41]. In an undulator, γz # γ, and the
LSC may have a strong effect on the FEL process. The motivation for this note was to confirm Geloni’s result
with a numerical integration of the retarded electromagnetic potentials.

In this note we use a 2-D numerical approach to calculate the longitudinal self-field of an electron bunch.
In the first section, we describe the approach and derive the longitudinal component of the interaction for
arbitrary motion. We express the equations in polar coordinates to facilitate a numerical code written in
MATLAB. We then solve the equations for several simple examples, including a bunch traveling in uniform,
circular and sinusoidal motion. We use these examples to benchmark the code against known solutions, and
then finally confirm Geloni’s expression for LSC of a Gaussian bunch in an undulator.

8.2 Field Components

We describe the electron beam with a cold fluid approximation. In this approximation, a fluid element lo-
cated at point r of the beam is represented by the charge density ρ(r, t) and the velocity of motion v(r, t),
while neglecting the finite emittance of the beam. The density and velocity functions are considered given,
determined by the initial conditions and the leading magnetic field of the system. The self field of the beam
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is considered as a perturbation.

8.2.1 Scalar Potential

The electric field of the bunch is given by the following equation

E(r, t) = −∇rφ− ∂A

∂t
(8.1)

with scalar and vector potentials

φ(r, t) =
1

4πε0

∫
dr′

ρ(r′, tret)

|r′ − r| ,

A(r, t) =
µ0

4π

∫
dr′

j(r′, tret)

|r′ − r| , (8.2)

where tret = t − |r − r′|/c, and ∇r is the gradient operator applied to the coordinates of the vector r. In
our approach, the current density, j, is equal to the product of the charge density and the velocity, j(r, t) =
v(r, t)ρ(r, t).

Our goal will be to calculate the change in energy of a particle in the beam

dW

dt
= q(v ·E) (8.3)

To find the contribution from the scalar potential to the electric field, we evaluate

∇rφ =
1

4πε0

∫
dr′

[
∇rρ(r′, tret)

|r′ − r| + ρ(r′, tret)∇r
1

|r′ − r|

]

=
1

4πε0

∫
dr′

[
∇rρ(r′, tret)

|r′ − r| − ρ(r′, tret)∇r′
1

|r′ − r|

]
, (8.4)

where in the second line we have changed to the gradient operator ∇r′ with respect to the vector r′. Using
the chain rule and integrating by parts gives

∇rφ =
1

4πε0

∫
dr′

[
∇rρ(r′, tret)

|r′ − r| −∇r′

(
ρ(r′, tret)

|r′ − r|

)
+

∇r′ρ(r′, tret)

|r′ − r|

]

=
1

4πε0

∫
dr′

∇rρ(r′, tret) +∇r′ρ(r′, tret)

|r′ − r|

=
1

4πε0

∫
dr′

|r′ − r|

[
∂ρ(r′, tret)

∂tret
∇rtret +

∂ρ(r′, tret)

∂r′
+

∂ρ(r′, tret)

∂tret
∇r′tret

]
, (8.5)

where we used the requirement that ρ must vanish at infinity in the second line, and expanded the operator
∇r′ in terms of partial derivatives in the final line. Using ∇rtret = −∇r′tret, we obtain

∇rφ =
1

4πε0

∫
dr′

|r′ − r|
∂ρ(r′, tret)

∂r′
. (8.6)

8.2.2 Vector Potential

For the vector potential we start from

A =
µ0

4π

∫
dr′v(r′, tret)

ρ(r′, tret)

|r′ − r| (8.7)
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to find
∂A

∂t
=

µ0

4π

∫
dr′

|r′ − r|

[
∂v(r′, tret)

∂t
ρ(r′, tret) + v(r′, tret)

∂ρ(r′, tret)

∂t

]

=
µ0

4π

∫
dr′

|r′ − r|

[
∂v(r′, tret)

∂t
ρ(r′, tret)− v(r′, tret) (∇r′ · [v(r′, tret)ρ(r′, tret)])

]
, (8.8)

where we have used the continuity equation ∂ρ/∂t = −div(ρv). We assume that the bunch length is much
smaller than the scale over which the velocity v varies—the latter is associated with the distance over which
the magnetic field changes, or the curvature of the trajectory. This allows us to neglect longitudinal derivatives
of the velocity in comparison with the derivatives of ρ, i.e. div(ρv) ≈ v · ∇ρ. We will also assume that v
does not depend on time; all beam particles pass a given point, r, with the same velocity regardless of their
arrival time at r. Hence ∂v/∂t = 0, and Eq. (8.8) is

∂A

∂t
= − 1

4πε0c2

∫
dr′

|r′ − r|v(r
′)

(
v(r′) · ∂ρ(r

′, tret)

∂r′

)
, (8.9)

where we have used µ0 ≡ 1/c2ε0.
Combining Eqs. (8.6) and (8.9) with Eq. (8.1) gives energy change

dW

dt
(r, t) =

q

4πε0

∫
dr′

|r′ − r|

[
1

c2

(
v(r) · v(r′)

)(
v(r′) · ∂ρ(r

′, tret)

∂r′

)
− v(r) · ∂ρ(r

′, tret)

∂r′

]
(8.10)

Note that this equation includes effects of both space charge and radiation—the former results only in energy
exchange between different parts of the beam, while the latter also causes energy loss.

For the case of straight motion with constant velocity, Eq. (8.10) reduces to

dW

dt
=

q(1− β2)

4πε0

∫
dr′

|r′ − r|

(
v · ∂ρ(r

′, tret)

∂r′

)
. (8.11)

To find the total change in energy, we then integrate dW/dt over time along the particle’s trajectory.

8.2.3 Bunch Shape and Integration

Integrating Eq. 8.10 numerically presents a challenge due to the apparent singularity at r = r′. Physically,
the singularity must disappear in the integration, so we can facilitate the numerical code by changing to polar
coordinates, which cancels the singularity before we integrate. Defining θ ≡ 0 in the positive ẑ direction, we
have transformation

r ≡ |r′ − r|

x′ − x = r sin(θ)

z′ − z = r cos(θ) (8.12)

Substituting for x′ and z′ in the expression for ρ and switching dz′dx′ → rdrdθ, the integration factor r
cancels the singularity |r′ − r|−1 in Eq.8.10.

Finally, we assume a Gaussian distribution, ρ, and without loss of generality normalize lengths to σz ≡ 1,
giving

ρ =
1

2πσz
exp[− (x′ − xc(tret))2

2σ2
x

− (z′ − zc(tret))2

2
] . (8.13)

Plugging into Eq.(8.10) above, we can then choose a specific bunch motion, v(r), and solve for dW/dt

numerically.
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8.3 Comparisons

8.3.1 Straight Motion along Z Axis

We bench-mark the code against several known analytical solutions, starting with the simplest case of a
bi-gaussian bunch in x̂ and ẑ, moving in the ẑ direction. The potential for a stationary bunch is given by [91]

φ(x, z) =

√
2

π

1

σxσz

∫ ∞

0
dλ

e
− x2λ2

2λ2σ2
x
− z2λ2

2λ2σ2
z

√
λ2 + σ−2

x

√
λ2 + σ−2

z

. (8.14)

Starting with reference points x, z and bunch parameter σz in the lab frame, we take (x, z) → (x, γz) and
(σx,σz) → (σx, γσz) to calculate the potential in the rest frame. Then differentiating in the rest frame
gives the fields E′

z, E
′
x. We are interested only in the longitudinal field, so in the lab frame we simply have

Ez = E′
z . Comparison to our code is given in Fig.8.1.

8.3.2 Straight Motion at an Angle

In the previous section, we assumed that the motion of the bunch was along the ẑ axis. More generally, we
can benchmark the code to the case of a bi-gaussian bunch moving at a constant velocity at an arbitrary angle
to the bunch. A bi-gaussian distribution can be described by an ellipse

x̃2

2σ2
x̃

+
z̃2

2σ2
z̃

− 1 = 0 (8.15)

with major and minor axes of
√
2σx and

√
2σz . The bunch moves in the ẑ direction, at an angle θ to the

bunch z̃ axis. Rotating to the ẑ, x̂ axes, and boosting (z → z/γ), we find the distribution in the rest frame
(
σ2
x̃ cos(θ)

2 + σ2
z̃ sin(θ)

2
)
z2 + 2

(
σ2
x̃ − σ2

z̃

)
cos(θ) sin(θ)xz +

(
σ2
z̃ cos(θ)

2 + σ2
x̃ sin(θ)

2
)
x2 − σ2

z̃σ
2
x̃/2 = 0

(8.16)

From the general description of a quadratic form, Az2 + 2Bxz + Cx2 +Dx+ Fz +G = 0, we define

A = σ2
x̃ cos(θ)

2 + σ2
z̃ sin(θ)

2

B = (σ2
x̃ − σz̃2) cos(θ) sin(θ)

C = σ2
z̃ cos(θ)

2 + σ2
x̃ sin(θ)

2

D = 0

F = 0

G = −σ2
z̃σ

2
x̃/2

(8.17)

giving the new angle of rotation between the rest frame ellipse axis, z̃′, and the direction of motion, ẑ,

θ′ =
1

2
cot−1(

C −A

2B
) (8.18)

as well as the new rest frame major and minor axes

σ′
z̃′ =

√
2(AF 2 + CD2 +GB2 − 2BDF −ACG)

(B2 −AC)((C −A)
√
1 + 4B2/(A− C)2 − (A+ C))

(8.19)
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σ′
x̃′ =

√
2(AF 2 + CD2 +GB2 − 2BDF −ACG)

(B2 −AC)((A− C)
√

1 + 4B2/(A− C)2 − (A+ C))
. (8.20)

We take simplest case of a reference point, (z, 0), lying along the lab frame z̃ axis. Then in the rest frame,
expressed in terms of the ellipse axes z̃′, x̃′, we have a new reference point (z′, x′), with

z′ = cos(θ′ − α′)z
√
γ2 cos(θ)2 + sin(θ)2

x′ = sin(θ′ − α′)z
√
γ2 cos(θ)2 + sin(θ)2 (8.21)

where

α′ = tan−1(tan(θ)/γ) . (8.22)

(It would be messy, but not difficult, to extend this to more general reference coordinates.)

Finally, with the new reference points x′, z′ and new distribution, σ′
x, σ′

z given for the rest frame, we can
use the analytical form, Eq.8.14, to calculate the rest frame potential, and then the rest frame fields E′

x′ and
E′

z′ . We are interested in the component along the direction of motion, Ev = E′
ẑ = cos(θ′)E′

z′ +sin(θ′)E′
x′ .

In Fig. 8.1, we’ve plotted the result from our code against this analytical result.
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Figure 8.1: Comparison of code to analytical result for straight motion and motion at an angle. The dotted
line shows the case, σx = 2,σz = 1 and θ = π/4.

8.3.3 Coherent Synchrotron Radiation: Circular Motion

As another benchmark, we check our code in the Coherent Synchrotron Radiation (CSR) limit of a pencil
bunch (σz ( σx) moving in circular motion. Working in polar coordinates, with the radius measured from
the center of the circle, and θ measured clockwise from the negative z direction, we have

vx = βc cos(θ) , vz = βc sin(θ) (8.23)
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with the bunch center at

xc(t) = R cos(
βc

R
t) , zc(t) = R sin(

βc

R
t) , θc = arctan(−xc

zc
) (8.24)

where θc is the angular position of the bunch at time, t. In the limit of a pencil beam following the circular
path, we can rewrite the bunch profile as

ρ(r, θ) =
1

2πσx
exp[− (r −R)2

2σ2
r

− R2(θ′ − θc)2

2σ2
z

] (8.25)

so that the bunch follows the circular path, and σx → σr. Then, plugging into Eq.8.10, we can solve for
dW/dt.

As a comparison, we use the well known solution [92, 93]

E||(z) = − 2

R2/331/3

∫ z

−∞
dz′

1

z′1/3
∂λ(z′)

∂z′
(8.26)

where λ(z) is a 1-D Gaussian distribution (σr → 0). We compare this field to the circular case for our code,
in the limit that R → ∞, γ → ∞, and σx → 0 (Fig. 8.2).
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Figure 8.2: Benchmark for circular motion in the CSR limit. We compare our numerical code to the analytical
solution (Eq. 8.26).

8.3.4 Coherent Synchrotron Radiation: Undulator Motion

We can also check the case of motion in a planar undulator in the CSR limit. The velocity, v, is given by

vx = −Kβc

γ
sin(kuz) , vz ≈ βc(1− K2

4γ2
) +

K2βc

4γ2
cos(2kuz) , (8.27)



115

where we’ve used vz =
√
1− v2x, expanded in the limit of small transverse velocity and used trig identities

to simplify vz . We can then integrate to find the bunch center at time, t

xc(t) =
K

kuγ
cos(kuβc(1−

K2

4γ2
)t)

zc(t) = βc(1− K2

4γ2
)t+

K2

8kuγ2
sin(2kuβc(1−

K2

4γ2
)t) . (8.28)

In the integration step, we need to calculate the density at position (x′, z′). We assume the beam snakes along
the undulator path, so that the vertical (x) beam center varies as a function of the z position in the bunch.
To calculate the E field, we need to find the charge density at the position of the source charge, z′. In the
z-direction, this distance is determined by the length of the undulator path, but for large γ it is approximately
equal to the longitudinal separation (z′ − zc(tr)), with zc(tr) the center of the bunch in retarded time. We
then find the z-dependence of the density is approximately ρ ∝ exp[(z′ − zc(tr))/σz]. For a fat beam, we
can make the same approximation for the transverse position, x, but in the pencil beam limit we need to take
ρ ∝ exp[(x′ − xu(z′))/σx], where xu(z′) is the center of the undulator path at longitudinal position z′.

For the pencil beam limit, a numerical integration over all space behaves poorly. Instead, we only integrate
a thin strip along the undulator path, with the vertical thickness determined by σx.

For the analytical check, we use the expression in [94]

dE

dt
= kw

∫ s

−∞
ds′G

(
(s− s′)γ2kw

K

)
dλ(s′)

ds′
(8.29)

with λ(s) = 1/
√
2π exp[−s2/2σ2

s ]. To solve for G(ζ), we split our integration into 3 regimes. For ζ ∼ 1,
we use Eq. 11 of [94]. In the asymptotic limits, we use

G(ζ) =





−0.99ζ−1/3 ζ # 1

1
2ζ

(∑∞
n=0

[
Jn

(
2n+1

2

)
− Jn+1

(
2n+1

2

)]2
cos(4ζ(2n+ 1))− 1

)
ζ ( 1

(8.30)

Eq. 8.29 is derived by explicitly removing the zero-acceleration space-charge component [95]. While space
charge falls off as 1/γ2, the radiative component falls off more slowly, so to compare to our numerical code,
we choose the limit of large γ. The comparison is given in Fig. 8.3.

8.3.5 Space Charge Limit: Undulator Motion

We now consider the space charge limit, σ2
xku ( σz to suppress CSR, in a plane undulator. The velocity v,

and bunch positions at time t are again given by Eqs. 8.27 and 8.28. After averaging over a full period, the
undulator motion should match the case of straight motion with γ → γz ≡ γ/

√
1 +K2/2 [41]. We compare

our code with energy γ to Eq. 8.14 with energy γz in Fig.8.4.

Effect on ESASE

Using γz instead of γ to calculate the longitudinal space charge effect, we can use a 1D simulation to check
the effect on an LCLS eSASE-like simulation. Results are given in Fig.8.5. The saturation length is slightly
longer, but the effect is minor. (The energy change from space charge counters the FEL-induced energy loss
at the front of the bunch. Due to slippage, the front of a short electron bunch produces most of the FEL power,
so the space charge induced electron energy loss at the rear has relatively little effect.)
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Figure 8.3: CSR check for undulator motion.

Undulator period (kw) .2
Undulator parameter (K) 3
Beam energy (γ) 13
Transverse beam size (σx) 25

Table 8.1: Parameters used for undulator space-charge simulation. All lengths normalized to units of longi-
tudinal bunch length, σz .

It is possible to adjust the undulator taper, or equivalently use a phase shift (see chapter 9), to offset the
energy change from space charge. In Fig. 8.6, we compensate for the space charge effect by shifting the
phase to match the resonant condition at the front of the bunch. (This worsens the phase match at the rear of
the bunch, but the FEL is relatively weak there in saturation.)

8.4 Extra Calculations

8.4.1 Integration Lengths

In practice, we do not need to integrate out to infinity in r, because the electron bunch is finite in length.
However, in the relativistic regime, the bunch appears to stretch backwards, so the integration limits can be
quite large in the negative direction. (That is, at retarded time, tret, the bunch center is far from r = 0.)
Practically, it is important to calculate this distance and set the integration limits accordingly.

Straight Drift

We want to integrate out far enough that,

z + r cos θ − zc(tret) = ∆
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Figure 8.4: Comparison of undulator space charge at γ to straight motion at γz .

where we arbitrarily choose ∆ ∼ 10σz . For straight motion, zc(tret) = βctret, tret = t − r/c. If we take
t = 0, z = 0, looking in the θ = π direction, we find an integration limit from −(1 − β)rmax = ∆, or
rmax = −∆

1−β . For β → 1, the numerical integral may fail for two reasons. First, the numerical integration
is slow, since the space charge contribution decays as a slow function of r. Second, the density falls off at
different rates depending on the angular direction (slowly for θ = π, quickly for θ = 0). To avoid the second
problem, we first integrate in θ, then in r. (If we integrate first in r, with r = 0 → 1/(1− β), the quadrature
looks many σz out in the positive direction and decides the function is zero everywhere.)

We may also implement the code in Cartesian coordinates, being careful to step around the singularity at
r2 = x2 + z2 = 0. In this case, we can use the smaller integration limits

∫ ∞

−∞
dz′

∫ ∞

−∞
dx′ →

∫ 10σz

− 10σz
1−β

dz′
∫ 10σz

−10σx

dx

Undulator Motion

For the undulator, we ignore the oscillation in ẑ velocity in setting the integration limits (since we integrate
over many undulator periods). The only change to the limits then, is that vz(t) → βc(1− K2

4γ2 ). So instead of
velocity, v = βc, we have an average velocity v̄ = βc(1− K2

4γ2 ) and find

rmax =
∆

1− β(1− K2

4γ2 )
(8.31)

Circular Motion

For circular motion, the maximum distance depends on geometric factors, and is independent of β. Assuming
the velocity is approximately equal to the speed of light, the particle falls behind the radiation because an arc
length (particle path) is longer than a chord (radiation path). We are interested in the angle at which the
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Figure 8.5: 1D FEL simulation for an 80nm bunch (LCLS parameters) when space charge produces a relative
energy spread of σδ/δ = 10−3 at saturation (dashed line). The resulting power is slightly lower than the
result without space charge γ (solid line). When the space charge effect increases to σδ/δ = 1.65 × 10−3

(dotted line), the power diminishes considerably.

particle falls a distance ∆ behind the radiation. (e.g., when ∆ = 10σ, we can stop the integration.) The
difference in path length, ∆ = ρΨ, is given by

∆ = ρθ − 2ρ sin
θ

2

≈ ρ(θ − 2(
θ

2
− θ3

48
)) = ρ

θ3

24

⇒ θ ≈ (24Ψ)1/3

with Ψ the angle over which the particle falls behind. (So the particle falls behind by ∆ = 10σz when
Ψ = 10σz/ρ, requiring integration out to θ = ( 240σz

ρ )1/3.

8.4.2 CSR Radiation

We would like to use the code to evaluate the space charge effect in the regime where we can ignore coherent
synchrotron radiation (CSR). The CSR radiation is only coherent if its wavelength, λ, is longer than the bunch
length, σz . Otherwise radiation from different parts of the bunch will add incoherently and cancel. We then
can ignore CSR when λ̄ > σz , with λ̄ ≡ λ/2π. For eSASE at LCLS, with σz ≈ 50 nm, and λ1 = 1.5 Å, we
have λ ( λ1. The off-axis undulator resonant wavelength is given by

λr =
λu

2γ2
(1 +

K2

2
+ γ2Ψ2) (8.32)

where Ψ is the angle between the radiation and the z axis. For the FEL radiation, γΨ < 1 and λ1 ≈
λu
2γ2 (1 +

K2

2 ). However, for the CSR radiation, λCSR ( λ1, so γΨ ( K2, and we find, up to a factor of 2,

λCSR ≈ λuΨ
2 (8.33)
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Figure 8.6: Phase shifts (dashed line) compensate for space charge effects and recover the resonant condition
at the front of the bunch even with strong space charge (σδ/δ = 2.5 × 10−3 at saturation). The phase shifts
(every 3 m) are not frequent enough to keep the correct phase for the 3rd harmonic (green lines).

(Note, however, that λu ≈ 3 cm, so λCSR # λu, and we still have Ψ # 1.)
The radiation must be coherent transversely as well. Looking from an angle Ψ, the radiation from the

center to a point on the bunch edge, at x = σx, the phases will differ by roughly Ψσx. For the radiation
to be coherent, we must have Ψσx < λCSR so that the phase difference is insignificant relative to λCSR.
Plugging in for Ψ using Eq.8.33, we find CSR radiation only when, σx <

√
λCSRλu, or, conversely, the

radiation is suppressed when σx >
√
λCSRλu. The dominant CSR radiation is on the order of σz , so we find

the condition
σ2
xku ( σz . (8.34)
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Chapter 9

Enhancing FEL Power with Phase
Shifters

9.1 Introduction

Photon-hungry single molecule imaging XFEL applications may require more power than is available even
from a saturated LCLS beam [42]. Exponential power growth is no longer possible once the FEL reaches
saturation (when the bunching factor is maximal), but the total FEL pulse energy may still increase linearly
along the undulator; the electrons simply continue to radiate as long as the microbunched electrons remain at
the optimal phase relative to the radiation. In this section we consider optimizing this linear growth through
the use of phase shifters.

A common method for increasing power past saturation is called ’tapering.’ As the FEL removes energy
from the electron beam, the resonant wavelength shifts away from the microbunching wavelength, stopping
energy growth. Physically, the electron slippage per undulator period defines the resonant wavelength. (At
this wavelength, the electrons radiate coherently with themselves.) As the electrons lose energy, they slip
farther each period, and the resonant wavelength grows longer. By ’tapering’ (decreasing the strength) of an
undulator, the weaker magnet strengths offset the loss of electron energy, and the slippage remains constant.

We may also view the excess slippage as a phase error; each period the electrons slip slightly more than
2π when the electron energy drops, and the result is an accumulated phase error. We can then view the
undulator taper as an offsetting phase shift. Alternatively, we can simply insert electron phase shifters (e.g.
a chicane to delay the electrons), which periodically restore the proper phase relation between the electron
bunching and the radiation.

Varfolomeev et al. first described the use of phase shifts to enhance power in 1998 [43]. (We learned of
this work following our study.) Past work has also considered the use of phase shifters to suppress power in the
fundamental wavelength, so as to allow continued growth of the harmonics [96]. In the following sections, we
undertake a detailed analytical and numerical study of enhancing FEL power with phase shifters. We explore
the relation between phase shifts and undulator tapers to calculate optimal phase shifts for SASE FELs in the
saturation regime and apply these shifts to simulations with LCLS-like parameters. The phase shift method,
while equivalent to tapering the undulator parameter, provides an independent knob to maximize the FEL
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performance. Conversely, we may consider the use of an undulator as phase shift, as demonstrated in gain
length studies with an undulator removed (chapter 4). The following results were first presented as Ref. [97].

9.2 One-Dimensional Analysis

The resonant condition
λr = λu

1 +K2/2

2γ2
0

, (9.1)

sets the radiation wavelength, λr for an FEL; after each undulator period, λu, the electron bunch slips behind
the radiation by exactly λr. It follows that when the resonant condition holds, the phase, Ψ, between the elec-
tron bunch and radiation stays constant (up to 2π). Near saturation, the bunch loses significant energy to the
FEL radiation, and the resonant condition begins to fail. As γ0 → γ < γ0, the resonant wavelength increases,
and the electrons slip more than one radiation wavelength during each undulator period. Introducing a phase
shift (by means of a small chicane) can correct for the increase in slippage by shifting the bunch backwards
into the previous bucket. (That is, if the electrons accumulate extra slippage of ∆θ, then the chicane shifts the
electrons an additional 2π−∆θ. There is no easy way to shift electrons forward.) After the shift, the electron
bunch is once again in phase with the radiation, preserving the resonant condition farther into saturation.

To solve for the optimal phase shift, we use a simplified 1-D FEL model. The slowly varying radiation
field ã is given by

dã

dz̄
= −〈e−iθj 〉 . (9.2)

The phases, θ ≡ (k+ku)z−ωt+const, are the longitudinal positions of the electrons relative to the electron
bunch given in units of λr/2π = 1/k. The variable z̄ ≡ 2kuρz, is the scaled position along the undulator.
Here ρ is the dimensionless FEL parameter [11]. Finally, the average in Eq. (9.2) is taken over all electrons.
Taking ã ≡ AeiΨ, with Ψ the phase of the radiation relative to the electron bunch, we can separate out the
magnitude and phase components of the radiation field:

dã

dz̄
= eiΨ

[
dA

dz̄
+ iA

dΨ

dz̄

]
. (9.3)

Inserting Eq. (9.3) into Eq. (9.2) and separating real and imaginary parts gives

dA

dz̄
=− 〈cos(θj +Ψ)〉 (9.4)

dΨ

dz̄
=

1

A
〈sin(θj +Ψ)〉 . (9.5)

Our strategy is to introduce an arbitrary phase shift, φ between the radiation and electrons, and then
maximize dA

dz̄ with respect to φ at all points along the undulator. Our goal, then, is to choose φ to maximize
the quantity −〈cos(θj +Ψ+ φ)〉.

Adding the phase shift, φ, gives

dA

dz̄
= 〈cos(θj +Ψ)〉 cos(φ)− 〈sin(θj +Ψ)〉 sin(φ) . (9.6)

To find the optimal phase shift, we differentiate with respect to φ to find

φmax(z̄) = arctan

[
− 〈sin(θj +Ψ)〉
〈cos(θj +Ψ)〉

]
. (9.7)
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Carrying out the maximization then requires the calculation of φmax(z̄) at all points past saturation along the
undulator. (The phase shift φ is a function of z̄, because θj and Ψ are also functions of z̄.)

We note that φmax < 0, which indicates that the electrons must move forward relative to the radiation.
Because chicanes can only shift the electrons backwards, in practice we must move the electrons by a phase
shift of 2π + φmax > 0.

Substituting the result from Eq. (9.7) into Eq. (9.6) we find, for 〈cos(θj +Ψ)〉 > 0,
(
dA

dz̄

)

max

=
√
〈cos(θj +Ψ)〉2 + 〈sin(θj +Ψ)〉2 ≡ |b| , (9.8)

where b is the bunching factor of the electrons evaluated at the resonant wavelength.
We originally motivated the phase shift by the need to maintain a constant Ψ, the phase between the

electron bunch and the radiation. We would like to check that our best phase, φmax, optimized to increase
the radiation amplitude, A, will simultaneously keep Ψ fixed. Returning to Eq. (9.5), now with an arbitrary
phase inserted, we have

dΨ

dz̄
∝ 〈sin(θj +Ψ)〉 cosφ+ 〈cos(θj +Ψ)〉 sinφ . (9.9)

Plugging in φmax from the optimization condition, Eq. (9.7), gives

dΨ

dz̄
∝〈sin(θj +Ψ)〉 − 〈cos(θj +Ψ)〉 〈sin(θj +Ψ)〉

〈cos(θj +Ψ)〉

= 0 . (9.10)

We find that implementing the phase shifts, φmax, does indeed keep the phase, Ψ, fixed, consistent with our
initial goal of maintaining the correct slippage length.

9.3 Equivalence to Undulator Taper

To find the optimal phases, Eq. (9.7), we can numerically evaluate 〈sin(θj +Ψ)〉 and 〈cos(θj +Ψ)〉 at each
desired phase shifter location. This, of course, is not very practical for an actual SASE FEL. However, we
motivated this approach by the need to maintain the resonant condition (Eq.9.1). Tapering the undulator, an
established method for optimizing FELs, works through the same principle [60]. From the resonant condition,
we see that shifting the phase is equivalent to decreasing the undulator parameter. To express a phase shift in
terms of a taper, we start with the ponderomotive phase equation

dθ

dz̄
= ku − k

[1 +K2/2]

2γ2
, (9.11)

relating the change in phase, φ = ∆θ, to the undulator parameter, K. An undulator taper is a small shift
K0 → K(z̄). Plugging into Eq. (9.11), dropping the second order term, and using the resonant condition,
ku/k = (1 +K2

0/2)/(2γ
2
r ) gives

dθ

dz̄
= ku − ku

γ2
r

γ2
+ ku

γ2
r

γ2

K0(K(z̄)−K0)

1 +K2
0/2

. (9.12)

Using the notation η = (γ − γr)/γr, |η| # 1 yields the usual FEL phase equation with a correction term
of order K0 −K(z̄):

dθ

dz̄
= 2ku

[
η − K0(K0 −K(z̄))

2 +K2
0

]
. (9.13)
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Thus we find a change, K0 → K(z̄), results in a change, θ → θ +∆θ, with accumulated phase shift

∆θ(z̄) = −2ku

∫ z̄

z̄0

K0(K0 −K(z̄′))

2 +K2
0

dz̄′ , (9.14)

where K(z̄) is some arbitrary function (i.e. an optimized taper) and the integral starts from the last phase
shift at position z̄0.

The advantage of deriving phase shifts in this manner is that SASE FEL undulator tapers are well un-
derstood, and the optimal function K(z̄) can be calculated from the FEL parameters, for example by the
GINGER self-taper algorithm [61]. With a predetermined taper function, we can plug into Eq. (9.14) and
calculate the optimal phase shifts for an arbitrary FEL.

We have shown that shifting the phase continuously is identical to tapering the undulator parameter.
However, a practical phase would be implemented discretely, with the taper from each undulator section
replaced by a single shift. In this case, the exact equivalence breaks down. The larger the shift, the more
time the FEL spends at a suboptimal phase, and for long undulators the accumulated difference K(z̄′)−K0

may significantly degrade the FEL power (Eq. 9.14). To determine the practicality of discrete shifts, we
use FEL parameters similar to the LCLS at 1.5 Å [98] for numerical examples (Table 9.1). Although LCLS
does not currently use periodic phase shifters, designs for similar projects such as the European XFELs [99]
have incorporated phase shifters between undulator sections. Using Eq. (9.14), we find the taper-equivalent
shifts for LCLS have ∆θ < 1, suggesting that the method of phase shifts will match the performance of an
undulator taper.

Table 9.1: SASE Simulation Parameters
Radiation wavelength (λr) 1.5 Å
Bunch current 3.4 kA
Undulator period (λu) 3 cm
Undulator parameter (K) 3.5
Electron energy 13.6 GeV
Relative RMS energy spread 1× 10−4

Normalized transverse emittance 1.2 µm
Beta function 25 m

9.4 Numerical Results

9.4.1 1-D Simulations

To simulate phase shifts, we started with a 1-D FEL code, including energy spread but not emittance effects.
We used four different types of optimization:

1. Phase scan,

2. Numerically optimized phase shifts,

3. Linear energy taper, and
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4. Phase shifts derived from a linear taper.

First we used a brute force phase scan. To determine the nth phase shift at position zn, we optimized the
power at position zn+1 by trying 5 (or more) different phase shifts. Then, picking the best phase for the nth

position, we optimized position zn+1.

Second, we used the results from Eq. (9.7) to calculate optimal phase shifts numerically. We calculate
the phase for 2 cases: shifts every 1 m and every 3 m. The 3 m shifts are less effective than the phase scan
because the shifts are infrequent, and ∆θ > 1. The results for the first two methods are given in Fig. 9.1.

45 50 55 60 65 70 75 80

109

1010

1011

z (m)

P
 (W

)

Phase Boost (Seeded Case)

 

 

Numerical phase 3m
No shift
Numerical phase 1m
Phase Scan 1m

Figure 9.1: Fundamental radiation power from phase shifts. Phases done 3 ways: numerical optimization
every 1 m (dark green), numerical optimization every 3 m (light green), phase scan every 1 m (red). The
fourth line (blue) has no phase shifts.

Third, we used a linear taper to boost the fundamental power. Fourth, we calculated the taper-equivalent
phase shifts (Eq. (9.14)), implemented every 1 m. The final two methods are computationally identical if the
phase is shifted on each iteration. However, the results still match for less frequent phase shifts, so long as the
shifts are small (∆θ < 1). Results for both seeded and SASE cases are given in Fig. 9.2. Performance is worse
for the third harmonic (green), because the shifts are relatively larger than in the case of the fundamental.

Finally, we compare phase shifts derived from the optimal linear taper to numerically optimized phase
shifts (Eq. (9.7)), and the results from the phase scan. The phase shifts are all well matched (Fig. 9.3),
confirming the equivalence of the four optimization methods.
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Figure 9.2: Comparison of taper and equivalent phase shifts every 3 m in 1D simulations for a Seeded FEL
(left) and SASE FEL (right). In both cases, the phase shift is less effective for the third harmonic, due to the
relatively larger phase errors.

9.4.2 3-D Simulations

We repeated the same study using the FEL code GINGER. To find an optimal undulator taper, ∆K(z), we
used GINGER’s self-taper algorithm [61]. With η defined above

dη

dz
= − 1

γ0

dγr
dz

− eK[JJ ]

2γ2
0mc2

E sin(θ +Ψ) , (9.15)

When the energy change is small (in the exponential regime), we can ignore the dγr

dz term. However, at
saturation, the energy loss is significant (of order ρ), and the resonant energy γr changes. Following [60], we
define a synchronous phase Ψr from

− 1

γ0

dγr
dz

≡ eK[JJ ]

2γ2
0mc2

E sin(Ψr) . (9.16)

with Ψr determined by both dγr

dz and K. Any particle with the synchronous phase will then define the center of
the bucket, with particles nearby in phase space performing a synchrotron oscillation around the synchronous
phase. (By definition, the energy η is constant.) An optimal phase Ψr is determined by optimizing bucket
size and dγr/dz, which together set the energy transferred from electrons to radiation. We can then find a
function K(z) to maintain the phase Ψr as a constant throughout the saturation regime. Alternatively, we
can manipulate the phase directly through periodic phase jumps, as described in Eq. (9.14) above. If the
phase jumps are frequent enough so that ∆θ < 1 (or equivalently, ∆Ψ), the FEL will effectively maintain the
resonant condition without resorting to altering K.

Using GINGER’s self-design taper function we create an optimal taper and then find the equivalent phase
shifts (Fig. 9.4). We confirm the 1-D results, showing an equivalence between a taper and phase shift for an
LCLS-like SASE FEL (Fig. 9.5, Table 9.1). The equivalence starts to fail at the very end of the undulator,
when ∆θ > 1.
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Figure 9.3: Phases determined by phase scan, numerical optimization and taper equivalent (Seeded case).

9.5 Conclusion

We demonstrate the equivalence between phase shifts and undulator tapers. If the required phase shifts are
small (∆θ < 1), then the shifts can be implemented discretely and still mimic the effect of an undulator
taper. In particular, we simulate phase shifts placed between undulator sections for an x-ray FEL and find the
results are equivalent to those of an optimized taper. The phase shift method could be useful as a replacement
or enhancement of undulator tapers when the use of tapers is constrained by technical issues. Tapering
undulators may also degrade the beam brightness by increasing the radiation bandwidth. Even when the
undulator parameter of each undulator section can be individually adjusted, placing phase shifters between
the undulator sections provides independent control and fine tuning capability over the FEL power as well as
possibly improved brightness.
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Appendix A

Comparison of 1D and 3D Models of
Longitudinal Space Charge

A.1 Summary of Results

Chapters 2 and 3 both focus on the effects of longitudinal space charge fields. In this appendix, we follow
on the work of Venturini [25] to consider the differences between 1D and 3D models of space charge. The
3D results closely parallel the results of chapter 3, though in the following section we consider flat-top, not
Gaussian, transverse distributions. We also see that the 3D and 1D models are quite similar in the relevant
limits for chapter 2.

Our goal, following [25], is to calculate the quantity 〈Ek(r1)E∗
k(r2)〉. This expression is closely related

to the bunching factor, b(k) from chapter 3 and the noise factor, F (k), from chapter 2. First, we consider the
1D case, calculated in full in [25]. Evaluating at the center of the beam (r1 = r2 = 0), Venturini finds

〈ẼkẼ
∗
k〉1D:r1,r2=0 =

(
e

2π2ε0γrb

)2

Nb

(
1− ξbK1(ξb)

ξb

)2

. (A.1)

(See Section A.2.1 for derivation.) However, for the noise factor, F (k), we are interested in average over
all particles in the beam, so we need the transverse average of 〈Ek(r1)Ek(r2)∗〉. If we assume a flat-top
transverse distribution (a disc of charge with particles distributed randomly) of radius rb, we can integrate to
find

〈
ẼkẼ

∗
k

〉

1D⊥
=

(
e

2π2ε0γrb

)2

Nb

(
1− 2K1(ξb)I1(ξb)

ξb

)2

(A.2)

equivalent to the expression given in Eq. 2.24. (See Section A.3.1 for derivation.)
We now would like to compare Eqs. A.1 and A.2 to the results for a 3D analysis. Evaluating at r = 0,

Venturini finds (Eq.11 of [25])

〈ẼkẼ
∗
k〉3D:r1,r2=0 =

(
e

2π2ε0γrb

)2

Nb
1 + ξ2b

[
K2

0 (ξb)−K2
1 (ξb)

]

4
. (A.3)

(See Section A.2.2 for derivation.) Once gain, we are interested in the transverse average, so we repeat
Venturini’s calculation but this time integrate over the beam’s transverse extent. Assuming the charge is
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distributed randomly across a disc of radius rb, we find

〈
ẼkẼ

∗
k

〉

3D⊥
=

(
e

2π2ε0γrb

)2

Nb

[(
1− 2K1(ξb)I1(ξb)

ξ2b

)2

+ δ

]
(A.4)

where we have defined

δ(x) ≡ K1(ξb)
2

(
ξbI1(ξb)I2(ξb) +

ξ2b
4

(
I2(ξb)

2 − I1(ξb)
2
))

(A.5)

to rewrite the 3D result in the same form as the 1D result (Eq. A.2). (Derivation is given in Section A.3.3.)
Comparing Eqs. A.2 and A.4, we see that the 1D and 3D expressions are quite similar; the only difference is
the δ term, which is generally small.

To better understand the comparison with the r = 0 results, we also formulate a numerical integral that
we can average for an arbitrary transverse portion of the beam. For this 3D result we follow the same method
as for the 1D calculation (as an additional check). We then numerically integrate over an arbitrary portion of
the beam. So, for example, to integrate from 0 to some radius r, we evaluate

〈
〈ẼkẼ

∗
k〉
〉

3D⊥0→r
=

(
e

2π2ε0γrb

)2 4Nb

ξ4b

∫ r

0
dy

∫ r

y
dz zy

[
K0(y)K0(z)

y2

2

(
I0(y)

2 − I1(y)
2
)

+
I0(y)I0(z)

2

(
ξ2bK0(ξb)

2 − ξ2bK1(ξb)
2 − z2K0(z)

2 + z2K1(z)
2
)

+

∫ z

y
dx xI0(y)K0(z)I0(x)K0(x)

]
. (A.6)

The derivation can be found in Section A.3.2.
Finally, we compare all of the results in Fig. 2.15. We confirm Venturini’s result of a divergence between

the 1D and 3D models for ξb > 1 when r = 0. However, if we calculate the average over the entire beam, we
find that the results are nearly identical for the 1D and 3D cases.

(The 1D and 3D models are not identical, though the difference is small. We note that the exact difference
depends on the transverse beam distribution. The results given here assume a disc of uniform expectation
value. However, a Gaussian transverse distribution results in a difference of a factor of 4/3, as seen in
Eqs. 3.62 and 3.63.)

A.2 Longitudinal Space Charge from Shot Noise

We begin by calculating the LSC for an electron density of form λρ(r,φ, z), where λ = Nb/L is the average
linear density over a bunch of Nb particles in length L. The longitudinal field is given by

Ez(x) =
eλ

4πε0

∫
dx′G(x,x′)ρ(x′) (A.7)

with Green’s function

G(x,x′) =
(z − z′)γ

[(x− x′)2 + (y − y′)2 + γ2(z − z′)2]3/2

=− i

πγ2

∞∑

m=−∞
eim(φ−φ′)

∫ ∞

−∞
dkeik(z−z′)kIm

(
kr<
γ

)
Km

(
kr>
γ

)
. (A.8)
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Plugging back in to Ez we find

Ez(x) =
eλ

4πε0

∫
dV ′ρ(r′,φ′, z′)

−i

πγ2

∞∑

m=−∞
eim(φ−φ′)

∫ ∞

−∞
dkeik(z−z′)kIm

(
kr<
γ

)
Km

(
kr>
γ

)
.

(A.9)

Taking the Fourier transform, Ẽz(k) = (2π)−1
∫
Ez(x)e−ik′zdz, gives

Ẽz(k
′) =

−ie

4πε0

λ

πγ2

∞∑

m=−∞
eim(φ−φ′)

∫
dV ′I<mK>

m
1

2π

∫
dze−ik′z

∫
dke−ikz

(
ρ(r′,φ′, z′)keikz

′
)

(A.10)

with I<m ≡ Im(kr
<

γ ) and K>
m ≡ Km(kr

<

γ ), and r< and r> denote the smaller and larger of r and r′. The
two fourier integrals then become an FT-IFT pair and cancel, so we find

Ẽz(k) = −i
e

4πε0

λ

πγ2

∞∑

m=−∞
×
∫

dV ′ρ(r′,φ′, z′)keim(φ−φ′)e−ikz′
I<mK>

m (A.11)

which matches Eq.2 in Marco’s paper, and is the starting point for both our 1D and 3D calculations.

A.2.1 1D LSC Model

We start with the explicit definition of ρ(x)

ρ1D(z) =






L
Nbπr2b

∑Nb

j δ(z − zj) if r ≤ rb,

0 if r > rb
(A.12)

where the normalization factor is chosen so that
∫ L/2
−L/2 λρ(z)dV = Nb. Using Eq. A.11, we can write down

an expression for the correlation, ẼkẼ∗
k . Plugging in for ρ1D = L

Nbπr2b

∑Nb

j δ(z − zj) from above we get

〈Ẽz(k1)Ẽ
∗
z (k2)〉 =

(
e

4πε0

λ

πγ2

)2 ∞∑

m′=−∞

∞∑

m′′=−∞

∫∫
r′r′′dr′dφ′dz′dr′′dφ′′dz′′

(
L

Nbπr2b

)2

eim
′(φ1−φ′)e−im′′(φ2−φ′′)

〈
Nb∑

j

Nb∑

l

δ(z′ − zj)δ(z
′′ − zl)k1k2e

−ik1z
′
eik2z

′′

〉
I<

′

m′1K
>′

m′1I
<′′

m′′2K
>′′

m′′2

(A.13)

where the Bessel function sub- and super-scripts show, for example, that I<
′

m′1 is the m′th Bessel function, and
depends on the lesser of kr1/γ and kr′/γ. The only dependence on φ comes from eimφ, so carrying out the
φ integrals, we are left only with a factor of 2π for each of m′,m′′ = 0. Finally, dividing the remaining sums
over j and l into coherent and incoherent portions,

∑Nb

j

∑Nb

l =
∑Nb

j=l +
∑Nb

j $=l, gives

〈Ẽz(k1)Ẽ
∗
z (k2)〉 =

(
e

4πε0

2λ

γ2

)2 ( L

Nbπr2b

)2 ∫∫
r′r′′dr′dz′dr′′dz′′k1k2e

−ik1z
′
eik2z

′′
I<

′

01 K
>′

01 I
<′′

02 K>′′

02

×
〈

Nb∑

j=l

δ(z′ − zj)δ(z
′′ − zj) +

Nb∑

j $=l

δ(z′ − zj)δ(z
′′ − zl)

〉
. (A.14)
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Integrating over dz′ and dz′′ takes care of the delta functions to give

〈Ẽz(k1)Ẽ
∗
z (k2)〉 =

(
e

4πε0

2λ

γ2

)2 ( L

Nbπr2b

)2 ∫∫
r′r′′dr′dr′′k1k2I

<′

01 K
>′

01 I
<′′

02 K>′′

02

×
〈

Nb∑

j=l

e−izj(k1−k2) +
Nb∑

j $=l

e−i(k1zj−k2zl)

〉
. (A.15)

If we take k1 = k2 .= 0, we can drop the second sum to find

〈Ẽz(k1)Ẽ
∗
z (k2)〉 =

(
e

2πε0γ2πr2b

)2

Nbk
2
1

(∫
r′dr′I<01K

>
01

)(∫
r′′dr′′I<02K

>
02

)
. (A.16)

We can solve the radial integrals by breaking them into 2 pieces, with, for instance, r1 > r′ and r1 < r′.
Defining x ≡ kr′/γ, ξ1 = kr1/γ we can rewrite each integral as

∫
r′dr′I<

′

01 K
>′

01 =
γ2

k21

[
K01(ξ1)

∫ ξ1

0
dxxI0(x) + I01(ξ1)

∫ ξb

ξ1

dxxK0(x)

]
(A.17)

and using
∫
x′I0(x′)dx′ = xI1(x),

∫
x′K0(x′)dx′ = −xK1(x), I1(0) = 0, we have

∫
r′dr′I<

′

01 K
>′

01 =
γ2

k21
[K0(ξ1)ξ1I1(ξ1) + I0(ξ1) [ξ1K1(ξ1)− ξbK1(ξb)]] . (A.18)

Next, we can use the identity K0I1 + I0K1 = 1/x to find
∫

r′dr′I<
′

01 K
>′

01 =
γ2

k21
[1− ξbI0(ξ1)K1(ξb)] . (A.19)

Plugging back in to Eq.A.16 then gives a final result

〈Ẽz(k1)Ẽ
∗
z (k2)〉 =

(
e

2πε0γπrb

)2 Nb

ξ2b
[1− ξbI0(ξ1)K1(ξb)] [1− ξbI0(ξ2)K1(ξb)] . (A.20)

Taking the special case, r1, r2 = 0 → ξ1, ξ2 = 0,

〈Ẽz(k1)Ẽ
∗
z (k2)〉r1,r2=0 =

(
e

2π2ε0γrb

)2

Nb

(
1− ξbK1(ξb)

ξb

)2

(A.21)

recovering the same result as in [25].

A.2.2 3D LSC Model

We now repeat the method from section A.2.1, this time with a 3D model for ρ(x).

ρ3D(z) =






L
Nb

∑Nb

j
1
r δ(r − rj)δ(φ− φj)δ(z − zj) if r ≤ rb,

0 if r > rb
(A.22)

where again the normalization factor is chosen so that
∫
λρ(z)dV = Nb

⇒ λ
L

Nb

Nb∑

j=1

∫
rdrdφdz

r
δ(r − rj)δ(φ− φj)δ(z − zj) =

NbλL

Nb
= Nb . (A.23)
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Plugging in to Eq.A.11 with ρ3D(z) we get

〈Ẽz(k1)Ẽ
∗
z (k2)〉 = ii∗

(
−e

4πε0

λ

πγ2

)2 ∑

m′

∑

m′′

∫∫
r′r′′dr′dφ′dz′dr′′dφ′′dz′′

(
L

Nb

)2

eim
′(φ1−φ′)e−im′′(φ2−φ′′)I<

′

m′1K
>′

m′1I
<′′

m′′2K
>′′

m′′2k1k2e
−ik1z

′
eik2z

′′

〈
Nb∑

j

Nb∑

l

1

r′r′′
δ(r′ − rj)δ(φ

′ − φj)δ(z
′ − zj)δ(r

′′ − rl)δ(φ
′′ − φl)δ(z

′′ − zl)

〉
. (A.24)

Again, dividing the sum into coherent and incoherent portions

Nb∑

j

Nb∑

l

=
Nb∑

j=l

+
Nb∑

j $=l

(A.25)

we find

〈Ẽz(k1)Ẽ
∗
z (k2)〉 =

(
e

4πε0

λ

πγ2

)2 ( L

Nb

)2 ∑

m′

∑

m′′

∫∫
r′r′′dr′dφ′dz′dr′′dφ′′dz′′

× k1k2e
−ik1z

′
eik2z

′′
I<

′

m′1K
>′

m′1I
<′′

m′′2K
>′′

m′′2e
im′(φ1−φ′)e−im′′(φ2−φ′′)

×
〈

Nb∑

j=l

1

r′r′′
δ(r′ − rj)δ(r

′′ − rl)δ(φ
′ − φj)δ(φ

′′ − φl)δ(z
′ − zj)δ(z

′′ − zl)

〉

+

〈
Nb∑

j $=l

1

r′r′′
δ(r′ − rj)δ(r

′′ − rl)δ(φ
′ − φj)δ(φ

′′ − φl)δ(z
′ − zj)δ(z

′′ − zl)

〉
. (A.26)

To treat the delta functions in the first term, we use the relation

〈
N∑

i=j

δ(r − ri)δ(r
′ − ri)

〉
=

〈
N∑

i=j

δ(r − ri)

〉
δ(r − r′) = δ(r − r′) 〈N(r)〉 . (A.27)

In the case of the 3D distribution, we can use this to rewrite the first term

〈
Nb∑

j=l

1

r′r′′
δ(r′ − rj)δ(r

′′ − rl)δ(φ
′ − φj)δ(φ

′′ − φl)δ(z
′ − zj)δ(z

′′ − zl)

〉

=

〈
δ(r′ − r′′)δ(φ′ − φ′′)δ(z′ − z′′)

r′′

Nb∑

j

δ(r′ − rj)δ(φ′ − φj)δ(z′ − zj)

r′

〉

=
δ(r′ − r′′)δ(φ′ − φ′′)δ(z′ − z′′)

r′′
〈ρ(r′,φ′, z′)〉 . (A.28)

Returning to Eq.A.26, and using Eq.A.28 to replace one set of delta functions in the first sum,
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〈Ẽz(k1)Ẽ
∗
z (k2)〉 =

(
e

4πε0

λ

πγ2

)2 ( L

Nb

)2 ∑

m′

∑

m′′

∫∫
r′r′′dr′dφ′dz′dr′′dφ′′dz′′

× k1k2e
−ik1z

′
eik2z

′′
I<

′

m′1K
>′

m′1I
<′′

m′′2K
>′′

m′′2e
im′(φ1−φ′)e−im′′(φ2−φ′′)

× δ(r′ − r′′)δ(φ′ − φ′′)δ(z′ − z′′)

r′′
〈ρ(r′,φ′, z′)〉

+

〈
Nb∑

j $=l

1

r′r′′
δ(r′ − rj)δ(r

′′ − rl)δ(φ
′ − φj)δ(φ

′′ − φl)δ(z
′ − zj)δ(z

′′ − zl)

〉
(A.29)

plugging in for 〈ρ〉 = Nb/πr2bL, canceling factors of r′′ and integrating over the delta functions, we find

〈Ẽz(k1)Ẽ
∗
z (k2)〉 =

(
e

4πε0

λ

πγ2

)2 ( L

Nb

)2 ∑

m′

∑

m′′

∫
r′dr′dφ′dz′k1k2I

<′

m′1K
>′

m′1I
<′′

m′′2K
>′′

m′′2e
im′(φ1−φ′)

× Nb

πr2bL
e−im′′(φ2−φ′)e−iz′(k1−k2)δr′,r′′δφ′,φ′′δz′,z′′

+

〈
Nb∑

j $=l

1

r′
δ(r′ − rj)δ(φ

′ − φj)δ(z
′ − zj)e

−im′′(φ2−φl)e−ik1z
′+ik2zl

〉
(A.30)

where the δr′,r′′ term indicates that all 4 Bessel functions for the first term have arguments that depend only
on r′. Integrating over z′, we find that the first term only contributes if k1 = k2, and the second term only
contributes if k1 = 0. With the assumption k1, k2 .= 0, we drop the second term and pick up a factor of L
from the first term.

〈Ẽz(k1)Ẽ
∗
z (k2)〉 =

(
e

4πε0

λk

πγ2

)2 ( L

Nb

)2 Nb

πr2b

∑

m′

∑

m′′

∫
r′dr′dφ′dz′

× I<
′

m′1K
>′

m′1I
<′

m′′2K
>′

m′′2e
i(m′φ1−m′′φ2)e−iφ′(m′−m′′)δk1,k2 . (A.31)

Finally, integrating over φ′, we get a factor of 2π for terms with m′ = m′′, and all other terms vanish.

〈Ẽz(k1)Ẽ
∗
z (k2)〉 =

(
e

4πε0

λk

πγ2

)2 ( L

Nb

)2 2πLNb

πr2bL
δk1,k2

∑

m′

eim
′(φ1−φ2)

∫
r′dr′I<

′

m′1K
>′

m′1I
<′

m′2K
>′

m′2 .

(A.32)

Combining factors and rewriting the arguments of the Bessel functions, we’re left with only the r′ integral

〈Ẽz(k1)Ẽ
∗
z (k2)〉 =

(
e

4π2ε0γ2

)2 2k21Nb

r2b
δk1,k2

∑

m′

eim
′(φ1−φ2)

∫
r′dr′Im′(

kr<1
γ

)Km′(
kr>1
γ

)Im′(
kr<2
γ

)Km′(
kr>2
γ

) . (A.33)

As before, we solve the r′ integral by breaking it into parts. This time we need 3 sections: r′ < r1, r2;
r1 < r′ < r2; and r1, r2 < r′. (In the 3rd case, it is also implied that r′ < rb, outside of which the beam
does not exist.)

∫ rb

0
r′dr′Im1Km1Im2Km2 = Km(

kr1
γ

)Km(
kr2
γ

)

∫ r1

0
r′dr′Im(

kr′

γ
)2

+ Im(
kr1
γ

)Km(
kr2
γ

)

∫ r2

r1

r′dr′Im(
kr′

γ
)Km(

kr′

γ
)

+ Im(
kr1
γ

)Im(
kr2
γ

)

∫ rb

r2

r′dr′Km(
kr′

γ
)2 . (A.34)
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Changing variables to x ≡ kr′/γ, and defining ξ = kr/γ, ξ1 = kr1/γ, etc.
∫ rb

0
r′dr′Im1Km1Im2Km2 = Km(ξ1)Km(ξ2)

∫ ξ1

0
xdx

γ2

k2
Im(x)2

+ Im(ξ1)Km(ξ2)

∫ ξ2

ξ1

xdx
γ2

k2
Im(x)Km(x)

+ Im(ξ1)Im(ξ2)

∫ ξb

ξ2

xdx
γ2

k2
Km(x)2 . (A.35)

Finally, taking the simpler case of r1, r2 = 0, the first two integrals vanish, I0(0) → 1, and m = 0 giving
∫ rb

0
r′dr′I01K01I02K02 =

γ2

k2

∫ ξb

0
dxxK0(x)

2 (A.36)

which can be solved using
∫ ξb

dx xK0(x)
2 =

ξ2b
[
K2

0 (ξb)−K2
1 (ξb)

]

2
. (A.37)

Evaluating at ξb = 0, the first term is 0 (since K0(ξ) ∝ ln(ξ) for small ξ), and the second term is just −1

(since K1(ξ) ∝ 1/ξ for small ξ). So we have
∫ rb

0
r′dr′I01K01I02K02 =

γ2

k2
ξ2b

[
1 +K2

0 (ξb)−K2
1 (ξb)

]

2
. (A.38)

Plugging all this back in to Eq.A.33 gives

〈Ẽz(k1)Ẽ
∗
z (k2)〉r1,r2=0 =

(
e

2π2ε0γrb

)2

Nb
1 + ξ2b

[
K2

0 (ξb)−K2
1 (ξb)

]

4
δk1,k2 (A.39)

as in Eq. (11) of [25].
Finally, we note that this result can be generalized for arbitrary r, r′, by substituting Eq.A.35 for the

penultimate factor in Eq.A.39. For example, taking the case r1 = 0, r2 .= 0, gives

∫ rb

0
r′dr′I01K01I02K02 = K0(ξ1)K0(ξ2)

∫ ξ1

0
xdx

γ2

k2
I0(x)

2

+ I0(ξ1)K0(ξ2)

∫ ξ2

ξ1

xdx
γ2

k2
I0(x)K0(x)

+ I0(ξ1)I0(ξ2)

∫ ξb

ξ2

xdx
γ2

k2
K0(x)

2

=
γ2

k2

(
K0(ξ2)

∫ ξ2

0
xI0(x)K0(x)dx+ I0(ξ2)

∫ ξb

ξ2

xK0(x)
2dx

)
. (A.40)

Replacing the final factor in Eq.A.39 with this result and using Venturini’s shorthand notation Ẽz(k1, r1) =

Ẽk(r1) we have

〈Ẽk(0)Ẽ
∗
k(r)〉 =

(
e

2π2ε0γrb

)2 Nb

2

[
K0(ξ)

∫ ξ

0
xI0(x)K0(x)dx+ I0(ξ)

∫ ξb

ξ
xK0(x)

2dx

]
(A.41)

which matches Eq.(12) of [25].
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A.3 Transverse Average

Venturini’s paper gives the expected energy modulation experienced at the center of the bunch (r = 0).
However, for our bunching calculations, we are interested in finding the transverse average, integrating
〈Ẽ(r1)Ẽ(r2)∗〉 over r1, r2,φ1,φ2.

A.3.1 Transverse Average: 1D Case

First, in the 1D case, we start from Eq.A.20,

〈Ẽk1(r1)Ẽ
∗
k2
(r2)〉 =

(
e

2πε0γ2πr2b

)2

Nbk
2
1

∫
r′dr′I<

′

01 K
>′

01

∫
r′′dr′′I<

′′

02 K>′′

02 δk1,k2

=

(
e

2πε0γπrb

)2 Nb

ξ2b
[1− ξbI0(ξ1)K1(ξb)] [1− ξbI0(ξ2)K1(ξb)] (A.42)

where we’ve again made the substitution ξ1 ≡ kr1/γ. Rather than looking just at the beam center, we want
to find the average value over all r1, r2, (πr2b )

−2
∫∫

r1r2dr1dr2dφ1dφ2〈ẼẼ∗〉. The φ integrals just give a
factor of 4π2. The r1 and r2 integrals can be separated, so we evaluate them independently

∫ rb

0
r1dr1

∫
r′dr′I<

′

01 K
>′

01 =
γ4

k4

∫ ξb

0
xdx [1− ξbI0(x)K1(ξb)] . (A.43)

Integrating over φ and plugging in the result from Eq.A.43 gives

(
1

πr2b

)2 ∫
r1dr1dφ1

∫
r2dr2dφ2〈Ẽk1(r1)Ẽ

∗
k2
(r2)〉

=

(
2π

πr2b

)2 ( e

2πε0γ2πr2b

)2

Nbk
2

(
γ4

k4

∫ ξb

0
xdx [1− ξbI0(x)K1(ξb)]

)2

=

(
e

2πε0γπrb

)2

4Nb

(
γ

krb

)6 (ξ2b
2

− ξ2bK1(ξb)I1(ξb)

)2

(A.44)

and we find

〈
ẼkẼ

∗
k

〉

1D⊥
=

(
e

2π2ε0γrb

)2 4Nb

ξ2b

(
1

2
−K1(ξb)I1(ξb)

)2

. (A.45)

A.3.2 Transverse Average: 3D Case, Numerical Approach

We can follow the same method for the 3D case, though the answer will be messier due to the inseparability
of the r1 and r2 integrals. Starting from Eq.A.33

〈Ẽk1(r1)Ẽ
∗
k2
(r2)〉 =

(
e

4π2ε0γ2

)2 2k21Nb

r2b
δk1,k2

∑

m′

eim
′(φ1−φ2)

∫
r′dr′Im′(

kr<1
γ

)Km′(
kr>1
γ

)Im′(
kr<2
γ

)Km′(
kr>2
γ

) (A.46)



139

we then average transversely by integrating over r1, r2,φ1, and φ2

〈
〈Ẽk1Ẽ

∗
k2
〉
〉

3D⊥
=

(
e

4π2ε0γ2

)2 2k21Nb

r2b
δk1,k2

(
1

πr2b

)2 ∫ 2π

0

∫ 2π

0
dφ1dφ2

∑

m′

eim
′(φ1−φ2)

∫ rb

0
r1dr1

∫ rb

0
r2dr2

∫
r′dr′Im′(

kr<1
γ

)Km′(
kr>1
γ

)Im′(
kr<2
γ

)Km′(
kr>2
γ

) . (A.47)

The φ integrals set m = 0 (all other terms disappear when we do the average) and pick up a factor of 4π2.
The r1, r2 integrals are messy, because the limits of the r′ integral are determined by the values of r1 and r2.
Since r1 and r2 are interchangeable, we can rewrite the integrals as

∫ rb

0
r1dr1

∫ rb

0
r2dr2 = 2

∫ rb

0
r2dr2

∫ r2

0
r1dr1 (A.48)

so that r1 is always less than r2. Using this result and plugging in Eq.A.34 for the r′ integral gives

〈
〈Ẽk1Ẽ

∗
k2
〉
〉

3D⊥
=

(
2

r2b

)2 ( e

4π2ε0γ2

)2 2k2Nb

r2b
δk1,k2 2

∫ rb

0
r2dr2

∫ r2

0
r1dr1

γ2

k2

[
K0(ξ1)K0(ξ2)

∫ ξ1

0
xdxI0(x)

2 + I0(ξ1)K0(ξ2)

∫ ξ2

ξ1

xdxI0(x)K0(x) + I0(ξ1)I0(ξ2)

∫ ξb

ξ2

xdxK0(x)
2

]
.

(A.49)

Making the same substitution we used for the r′ integral, we can define y ≡ kr1/γ = ξ1, and z ≡ kr2/γ = ξ2

to find

〈
〈Ẽk1Ẽ

∗
k2
〉
〉

3D⊥
=

(
e

2π2ε0γrb

)2

Nb
4

ξ4b

∫ ξb

0
dz

∫ z

0
dy

zy

[
K0(y)K0(z)

∫ y

0
dx xI0(x)

2 + I0(y)K0(z)

∫ z

y
dx xI0(x)K0(x) + I0(y)I0(z)

∫ ξb

z
dx xK0(x)

2

]
δk1,k2 .

(A.50)

To simplify the integration, we can evaluate the first and third x integrals analytically. Using
∫
dxxK0(x)2 =

x2

2

[
K0(x)2 −K1(x)2

]
and

∫
dx xI0(x)2 = x2

2

[
I0(x)2 − I1(x)2

]
, and xI0(0) = I1(0) = 0, we have

〈
〈Ẽk1Ẽ

∗
k2
〉
〉

3D⊥
=

(
e

2π2ε0γrb

)2 4Nb

ξ4b
δk1,k2

∫ ξb

0
dz

∫ z

0
dyzy × [

∫ z

y
dx xI0(y)K0(z)I0(x)K0(x) +

K0(y)K0(z)
y2

2

(
I0(y)

2 − I1(y)
2
)
+

I0(y)I0(z)

2

(
ξ2bK0(ξb)

2 − ξ2bK1(ξb)
2 − z2K0(z)

2 + z2K1(z)
2
)
] .

(A.51)

We then can compare our result to that of the 1D case,

〈
〈Ẽk1Ẽ

∗
k2
〉
〉

1D⊥
=

(
e

2π2ε0γrb

)2 4Nb

ξ2b

(
1

2
−K1(ξb)I1(ξb)

)2

δk1,k2 . (A.52)

Evaluating both numerically, we see they’re nearly identical (Fig. 2.15)! We can also check our math by
integrating numerically in the limit r1, r2 → 0, and see that we reproduce our previous result.
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A.3.3 Transverse Average: 3D Case, Analytical Approach

Having seen numerically that the 1D and 3D models match, we now try to show the same analytically. We
repeat this calculation for the 3D model, this time starting from the earlier Eq.A.29 and again integrating over
transverse coordinates φ1,φ2, r1, r2.

〈
〈Ẽk1Ẽ

∗
k2
〉
〉

3D⊥
=
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1

πr2b

)2 ( e
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The 1D and 3D LSC expressions (Eq. A.21, Eq. A.39) are different primarily because of these δ functions,
which in the 3D case combine the transverse dependence of Ẽ and Ẽ∗ into one integral. (This is what leads to
the coherence length mathematically.) The transverse averaging seems to wash out this coherence. (Instead
of looking at two points, and the coherence between them, we look at all transverse points.) Mathematically,
we can take advantage of the transverse averaging integrals to split up the r′ and r′′ integrals by integrating
over φ1,φ2, r1, r2 before evaluating the δ functions. We start with φ1 and φ2, giving
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where we’ve also dropped the (non-contributing) coherent term and carried out the now trivial φ′,φ′′, z′, z′′

integrals. Next, we integrate over r1, r2. This keeps the r′ and r′′ integrals separate, as in the 1D case, leaving
us integrals (similar to their 1D counterparts) of the form
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Plugging back in above and finally integrating over r′, r′′, we find
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Getting close! Now, using the recurrence formula Im(x) = 2(m+ 1)Im+1(x)/x+ Im+2(x), we find

x2I0(x)
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2 +
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2
]

(A.57)

so our transverse average can be written
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with
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Rewriting this to match the 1D case:
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as compared to the 1D result:
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We find δ(ξb) is small compared to the dominant terms (as we saw in Fig. 2.15), so we conclude that the 1D
and 3D transverse averages are nearly identical.
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