CDF Run-II Silicon Detector: Operations and Aging

PDF Version Also Available for Download.

Description

The CDF Run-II silicon microstrip detector has seen almost 12 fb{sup -1} of proton-antiproton collisions over the last 10 years. It has shown remarkable performance, with 80% of its channels still operating error-free, and only one of its eight layers approaching the operational limits for full depletion. The measured depletion voltage and signal-to-noise ratio of these sensors give unique information about the behavior of sensors irradiated slowly over a long period of time. Data from heavily irradiated, double-sided sensors excludes a monotonic electric field inside the sensor and is instead consistent with a doubly-peaked field that is lower in the ... continued below

Physical Description

10 pages

Creation Information

Stancari, Michelle September 10, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The CDF Run-II silicon microstrip detector has seen almost 12 fb{sup -1} of proton-antiproton collisions over the last 10 years. It has shown remarkable performance, with 80% of its channels still operating error-free, and only one of its eight layers approaching the operational limits for full depletion. The measured depletion voltage and signal-to-noise ratio of these sensors give unique information about the behavior of sensors irradiated slowly over a long period of time. Data from heavily irradiated, double-sided sensors excludes a monotonic electric field inside the sensor and is instead consistent with a doubly-peaked field that is lower in the center of the sensor and higher at the edges.

Physical Description

10 pages

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-CONF-11-447-PPD
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 1033325
  • Archival Resource Key: ark:/67531/metadc833657

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 10, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 30, 2016, 3:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Stancari, Michelle. CDF Run-II Silicon Detector: Operations and Aging, article, September 10, 2011; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc833657/: accessed September 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.