EFFECTS OF TRITIUM GAS EXPOSURE ON POLYMERS

PDF Version Also Available for Download.

Description

Effects of tritium gas exposure on various polymers have been studied over the last several years. Despite the deleterious effects of beta exposure on many material properties, structural polymers continued to be used in tritium systems. Improved understanding of the tritium effects will allow more resistant materials to be selected. Currently polymers find use mainly in tritium gas sealing applications (eg. valve stem tips, O-rings). Future uses being evaluated including polymeric based cracking of tritiated water, and polymer-based sensors of tritium.

Creation Information

Clark, E.; Fox, E.; Kane, M. & Staack, G. January 7, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 21 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Effects of tritium gas exposure on various polymers have been studied over the last several years. Despite the deleterious effects of beta exposure on many material properties, structural polymers continued to be used in tritium systems. Improved understanding of the tritium effects will allow more resistant materials to be selected. Currently polymers find use mainly in tritium gas sealing applications (eg. valve stem tips, O-rings). Future uses being evaluated including polymeric based cracking of tritiated water, and polymer-based sensors of tritium.

Notes

available

Source

  • 9th International Conference on Tritium Science and Technology

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SRNL-STI-2010-00111
  • Grant Number: DE-AC09-08SR22470
  • Office of Scientific & Technical Information Report Number: 1001426
  • Archival Resource Key: ark:/67531/metadc833648

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 7, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 12, 2016, 5:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 21

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Clark, E.; Fox, E.; Kane, M. & Staack, G. EFFECTS OF TRITIUM GAS EXPOSURE ON POLYMERS, article, January 7, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc833648/: accessed August 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.