Search for b-->u transitions in B- --> DK- and B- --> D*K- Decays

PDF Version Also Available for Download.

Description

We report results from an updated study of the suppressed decays B{sup -} --> DK{sup -} and B{sup -} --> D*K{sup -} followed by D --> K{sup +}{pi}{sup -}, where D{sup (*)} indicates a D{sup (*)0} or a {anti D}{sup (*)0} meson, and D{sup *} --> D{tau}{sup 0} or D{sup *} --> D{gamma}. These decays are sensitive to the CKM unitarity triangle angle {gamma} due to interference between the b --> c transition B{sup -} --> D{sup (*)0}K{sup -} followed by the double Cabibbo-suppressed decay D{sup 0} --> K{sup +}{pi}{sup -}, and the b --> u transition B{sup -} --> ... continued below

Physical Description

18 pages

Creation Information

del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP et al. August 11, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We report results from an updated study of the suppressed decays B{sup -} --> DK{sup -} and B{sup -} --> D*K{sup -} followed by D --> K{sup +}{pi}{sup -}, where D{sup (*)} indicates a D{sup (*)0} or a {anti D}{sup (*)0} meson, and D{sup *} --> D{tau}{sup 0} or D{sup *} --> D{gamma}. These decays are sensitive to the CKM unitarity triangle angle {gamma} due to interference between the b --> c transition B{sup -} --> D{sup (*)0}K{sup -} followed by the double Cabibbo-suppressed decay D{sup 0} --> K{sup +}{pi}{sup -}, and the b --> u transition B{sup -} --> {anti D}{sup (*)0}K{sup -} followed by the Cabibbo-favored decay {anti D}{sup 0} --> K{sup +}{pi}{sup -}. We also report an analysis of the decay B{sup -} --> D{sup (*)}{pi}{sup -} with the D decaying into the doubly Cabibbo-suppressed mode D --> K{sup +}{pi}{sup -}. Our results are based on 467 million {Upsilon}(4S) --> B{anti B} decays collected with the BABAR detector at SLAC. We measure the ratios R{sup (*)} of the suppressed ([K{sup +}{pi}{sup -}]{sub D}K{sup -}/{pi}{sup -}) to favored ([K{sup -}{pi}{sup +}]{sub D}K{sup -}/{pi}{sup -}) branching fractions as well as the CP asymmetries A{sup (*)} of those modes. We see indications of signals for the B{sup -} --> DK{sup -} and B{sup -} --> D{sup *}{sub D{pi}{sup 0}}K{sup -} suppressed modes, with statistical significances of 2.1 and 2.2{sigma}, respectively, and we measure: R{sub DK} = (1.1 {+-} 0.6 {+-} 0.2) x 10{sup -2}, A{sub DK} = -0.86 {+-} 0.47 {sup +0.12}{sub -0.16}, R{sup *}{sub (D{pi}{sup 0})K} = (1.8 {+-} 0.9 {+-} 0.4) x 10{sup -2}, A{sup *}{sub (D{pi}{sup 0})K} = +0.77 {+-} 0.35 {+-} 0.12, R{sup *}{sub (D{gamma})K} = (1.3 {+-} 1.4 {+-} 0.8) x 10{sup -2}, A{sup *}{sub (D{gamma})K} = +0.36 {+-} 0.94 {sup +0.25}{sub -0.41}, where the first uncertainty is statistical and the second is systematic. we use a frequentist approach to obtain the magnitude of the ratio r{sub B} {equivalent_to} {vert_bar}A(B{sup -} --> {anti D}{sup 0}K{sup -})/A(B{sup -} --> D{sup 0}K{sup -}){vert_bar} = (9.5{sup +5.1}{sub -4.1})%, with r{sub B} < 16.7% at 90% confidence level. In the case of B{sup -} --> D{sup *}K{sup -} we find r{sup *}{sub B} {equivalent_to} {vert_bar}A(B{sup -} --> {anti D}{sup *0}K{sup -})/A(B{sup -} --> D{sup *0}K{sup -}){vert_bar} = (9.6{sup +3.5}{sub 5.1})%, with r{sup *}{sub B} < 15.0% at 90% confidence level.

Physical Description

18 pages

Source

  • Journal Name: Phys.Rev.D82:072006,2010; Journal Volume: 82

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-14181
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 1023781
  • Archival Resource Key: ark:/67531/metadc833468

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 11, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 1, 2016, 6:52 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP et al. Search for b-->u transitions in B- --> DK- and B- --> D*K- Decays, article, August 11, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc833468/: accessed August 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.