CALC. TO DETERMINE NEED

FOR A

N2 PHASE SEPARATOR

D-ZERO ENGINEERING NOTE # 3823.115 -EN- 422

April 7, 1995

Russ Rucinski RD/DØ Mech. Approved : Kink Mem

.____ -

Summary

A nitrogen phase separator is recommended on the liquid supply line at the helium refrigerator plant. This engineering note documents the calculations done to reach that conclusion.

Method

The steady state liquid nitrogen consumption rate for the refrigerator, VLPC and solenoid systems is about 30 gal/hr. The estimated heat leak for the piping run to the refrigerator location is 50 watts.

The calculated quality at the refrigerator was 0.032. Given this quality, a two phase flow model based on Lockhart-Martinelli and also incorporating Baker diagram nomenclature was run on TK solver.¹ The result of this program was that without the use of a phase separator we could expect a slug flow pattern with a volume fraction of gas of 65%. Based on this, I recommend that we use a phase separator to siphon off the gas before the nitrogen is sent to a standard saver type subcooler. Including the phase separator will help ensure proper operation of the subcooler . The subcooler will help us attempt to deliver single phase liquid to the nitrogen control valves.

The raw calculations follow.

¹This TK solver program was developed a few years ago and was verified during the solenoid design report era. See D-Zero engineering note 3823.111-EN-338.

		RD/DD	PROJECT LHC R	EFRIG.	SERIAL-CATEO	. 115	page A2
	SUBJECT				uss Ri	JUCINS	KI
	LINZ PRASE SER.			DATE 4-7	-95	REVISION DA	TE
	$\chi_2 = \frac{h_2 - h_f}{h_g \cdot h_f} = \frac{-93.1}{-94}$	053+98.938 167+98.939	- = . 3	0321	+		· ·
	$\int_{2l}^{2} = \frac{1}{1.323} = 0.755$	86 - 5 × 190	log x d	<u>000</u> , 1 m ³		^w 3	
		6		1 4 41			
	$g_{2}g = \frac{1}{78.013} \frac{e_{g}}{g} = .0121$	82 % 3 = 1	2.82	2 ^{~ 9} / _M 3			
	PLUG NUMBERS INTO TK 2	2 PHASE FL	ດພຸມ	1006 1			
	PER; BAKER DIAGRAM W	ie are u	50	JG F	ాంగు	REGIN	16.
_	PER LOCK HART MARTI	NELL VOL	UME	FRACT	1025	ARE	2
	$V_{L} = 34.8$	%					
	Vzes = 65.2	· 1,					
	$\Delta P_{100 Fe} = C$ $\frac{1}{2} \frac{1}{2} \frac{1}{5} \frac{1}{2} \frac{1}{12} \frac{1}$).24 psi					
	I CONCLUDE WE SH BEFORE THE SUBCOOL	HULD PU; .ER.	r A	₽₩₽	5e 36	epara	TUR

~

'accurate

Name

valid

Comment.

Unit

Lockhart Martinelli correlation for two phase pressure drop through an adiabatic horizontal pipe

NITROGEN FOR REFRIG. UPGRADE Russ Rucinski 4/7/95

Steady state flow conditions Demonstrates need for phase separator

model validity flow 'turbulen flow type f .01692739 friction factor ; Must enter a guess .000005 epsilon ft pipe roughness .674 D in Pipe inside diameter, 1/2" sch. 10 pip 100 L ft Length of pipe Α .00023019 m² cross sectional area 23.56 mdot Total mass flow rate g/s 755.86 rhoL kg/m^3 Liquid density 12.82 rhog kq/m^3 density of the gas Liquid viscosity 10.5 muL µPa-s 6.12 muG µPa-s Gas viscosity .0062 sigmaL N/m Surface tension of liquid quality = mdotG/mdot .0324 х ReL 161500 Reynold's # for liquid mdotL .02279666 kg/s Mass flow rate for liquid Reynold's # for gas ReG 9277 mdotG .00076334 kg/s Mass flow rate for gas $\Delta P/\Delta L$ for the liquid dpdLL 6.4152443 Pa/m $\Delta P/\Delta L$ for the two phase dpdLTP 53.013559 Pa/m deltaP Total pressure drop for the pipe .23436336 psig phiL 2.8746626 Lockhart-Martinelli parameter Х 2.8025469 Lockhart-Martinelli parameter L-M constant; Look up in Table 7.19 .25 m L-M constant; Look up in Table 7.19 .2 n .316 CG L-M constant; Look up in Table 7.19 L-M constant; Look up in Table 7.19 .184 \mathbf{CL} С L-M constant; Look up in Table 7.19 20 Baker diagram dimensionless parameter 1ambda 2.8445187 density of air 1.2 rhoair kq/m^3 998 rhoH20 kg/m^3 density of water sigh 3.1030377 Baker diagram dimensionless parameter Surface tension of water .073 sigmaH2 N/m muH2O viscosity of water 1000 µPa~s 264 BakerXa X - axis value for Baker plot 860 lbm/hr-ft Y - axis value for Baker plot BakerYa С 1 М 1 .34786691 Volume fraction of liquid phase RsubL RsubG .65213309 Volume fraction of gas phase GasVel .39666047 m/s Gas velocity LiqVel .37665137 m/s Liquid velocity

416 CRYOGENIC-FLUID STORAGE AND TRANSFER SYSTEMS

	Liquid	Vapor		С	
	Laminar	Laminar	(00)	5	
	Turbulent	Laminar	(<i>tv</i>)	10	
	Laminar	Turbulent	(vt)	12	
->-	Turbulent	Turbulent	(11)	20	

The friction factor is calculated from eqn. (3.59) for laminar flow, or from eqn. (3.60) or eqn. (3.61) for turbulent flow, using the Reynolds number Re_L.

For diabatic flow (flow with heat transfer to or from the system), the pressure gradient at each point within the tube is given by a modification of eqn. (7.56) (Martinelli and Nelson 1948):

$$(dp/dL)_{TP} = (1 - x)^{2 - n} \phi_L^2 (dp/dL)_0$$
(7.61)

where x is the local value of the fluid quality and $(dp/dL)_0$ is the pressure drop per unit length that would exist if the liquid were flowing alone at the total mass flow rate $(\dot{m}_L + \dot{m}_G)$.

Because the addition of heat causes a change in the fluid quality along the length of the tube, the total frictional pressure drop must be determined by numerical integration of eqn. (7.61), or

$$\Delta p_f = \int_0^L \left(\frac{dp}{dL}\right)_{TP} dL = \left(\frac{dp}{dL}\right)_0 \int_0^L (1-x)^{2-n} \phi_L^2 dL$$

If the axial heat flux is constant (as is frequently the case for cryogenicfluid transfer lines), we may write

$$dx/dL = (x_2 - x_1)/L$$

Table 7.19.	Lockhart-Martinelli	correlation	constants
-------------	---------------------	-------------	-----------

·······	Laminar Re < 2000	Turbulen	it
Constant		$3000 < \text{Re} < 50\ 000$	Re > 50 000
m (vapor)	1	0.25	0.20
n (liquid)	- 1	0.25	0.20
C _c (vapor)	64	0.316	0.184
C_L (liquid)	64	0.316	0.184

The four possible combinations are:

υυ = laminar liquid, laminar vapor

vt = laminar liquid, turublent vapor

to = turbulent liquid, laminar vapor

tt = turbulent liquid, turbulent vapor

Re, = 1615cc

 $Re_{000} = 9277$

where subscript 1 refer With this substitution,

 $\Delta p_f =$

Because of the change bulk fluid velocity, the as a result of the accele momentum pressure dr

Δ

where the momentum-

$$\phi_M = \frac{(1-x_2)^2}{R_{L,2}} - \frac{(1-x_2)^2}{R_{L,2}}$$

The quantity R_L is the denotes inlet condition: parameter is a function

The total pressure drop tional and momentum c

Example 7.8. Determine phase hydrogen in a 150-m mass flow rate of 4.00 kg/s hydrogen is flowing at an a the line is 160 m (525 ft).

For hydrogen at 354.6 k find the following fluid pro-

 $\mu_L = 10.34 \ \mu Pa$ $\mu_G = 1.367 \ \mu Pa$ $\sigma_L = 1.120 \ mN$

The cross-sectional area for

$$A = \frac{1}{4\pi}$$

The total mass flow rate per

- m/A =

The Reynolds numbers for .

 $\operatorname{Re}_{L} = (0.1627)(19)$ $\operatorname{Re}_{G} = (0.1627)(19)$

and the Constant or any

 $\lambda = [(\rho_G/\rho_a)(\rho_L/\rho_m)]^{1/2}$ $\psi = (\sigma_m/\sigma_L)[(\mu_L/\mu_m)(\rho_m/\rho_L)^2]^{1/3}$ $L = \text{liquid mass flow rate per unit area, lb_m/hr-ft²$ $G = \text{vapor mass flow rate per unit area, lb_m/hr-ft²$ $\rho_G = \text{vapor density}$ $\rho_L = \text{liquid density}$ $\rho_a = \text{density of air} = 1.20 \text{ kg/m}^3 = 0.075 \text{ lb}_m/ft^3$ $\rho_w = \text{density of water} = 998 \text{ kg/m}^3 = 62.3 \text{ lb}_m/ft^3$ $\sigma_L = \text{surface tension}$ $\sigma_w = \text{water surface tension} = 0.073 \text{ N/m}$ $\mu_L = \text{liquid viscosity}$

 μ_w = water viscosity = 0.001 Pa-s = 1 centipoise

disintegrates into a mist or spray dispersed within the vapor phase; thus, *mist flow* results.

For low-quality flow, vapor bubbles are formed within the liquid phase, and *bubble flow* is achieved. For horizontal flow, the bubbles are usually concentrated in the upper portion of the tube; however, in vertical flow, the bubbles may be dispersed throughout the liquid. Increasing the vapor content of the flowing stream causes the bubbles to collect together into plugs of vapor that flow at intervals along the top of the pipe; hence, the name plug flow is applied to this flow pattern. where $(\Delta p/\Delta L)_{TP}$ i: and $(\Delta p/\Delta L)_L$ and would exist if the 1 alone. In the expre and Re_g are calcul

Re_L:

where D = tube in $\mu =$ viscos A = crossm = mass f

The constants C_L . These parameters the individual pha The Lockhart-! expression:

where the constant for liquid alone in