Inclusion of Scatter in HADES: Final Report

PDF Version Also Available for Download.

Description

Covert nuclear attack is one of the foremost threats facing the United States and is a primary focus of the War on Terror. The Domestic Nuclear Detection Office (DNDO), within the Department of Homeland Security (DHS), is chartered to develop, and improve domestic systems to detect and interdict smuggling for the illicit use of a nuclear explosive device, fissile material or radiologica1 material. The CAARS (Cargo Advanced Automated Radiography System) program is a major part of the DHS effort to enhance US security by harnessing cutting-edge technologies to detect radiological and nuclear threats at points of entry to the United ... continued below

Physical Description

PDF-file: 19 pages; size: 0.5 Mbytes

Creation Information

Aufderheide, M B December 20, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Covert nuclear attack is one of the foremost threats facing the United States and is a primary focus of the War on Terror. The Domestic Nuclear Detection Office (DNDO), within the Department of Homeland Security (DHS), is chartered to develop, and improve domestic systems to detect and interdict smuggling for the illicit use of a nuclear explosive device, fissile material or radiologica1 material. The CAARS (Cargo Advanced Automated Radiography System) program is a major part of the DHS effort to enhance US security by harnessing cutting-edge technologies to detect radiological and nuclear threats at points of entry to the United States. DNDO has selected vendors to develop complete radiographic systems. It is crucial that the initial design and testing concepts for the systems be validated and compared prior to the substantial efforts to build and deploy prototypes and subsequent large-scale production. An important aspect of these systems is the scatter which interferes with imaging. Monte Carlo codes, such as MCNP (X-5 Monte Carlo Team, 2005 Revision) allow scatter to be calculatied, but these calculations are very time consuming. It would be useful to have a fast scatter estimation algorithm in a fast ray tracing code. We have been extending the HADES ray-tracing radiographic simulation code to model vendor systems in a flexible and quick fashion and to use this tool to study a variety of questions involving system performance and the comparative value of surrogates. To enable this work, HADES has been linked to the BRL-CAD library (BRL-CAD Open Source Project, 2010), in order to enable the inclusion of complex CAD geometries in simulations, scanner geometries have been implemented in HADES, and the novel detector responses have been included in HADES. A major extension of HADES which has been required by this effort is the inclusion of scatter in these radiographic simulations. Ray tracing codes generally do not easily allow the inclusion of scatter, because these codes define a source and a grid of detector pixels and only compute the attenuation along rays between these points. Scatter is an extremely complex set of processes which can involve rays which change directions many times between the source and detector. Scatter from outside the field of view of the imaging system, as well as within the field of view, can have an important role in image formation. In this report, we will describe how we implemented a treatment of scatter in HADES. We begin with a discussion of how we define scatter in Section 2, followed by a description of how single Compton scatter is now included in HADES in Section 3. In Section 4 we report a set of verification tests against MCNP and tests of how the technique scales with image size, number of scatters allowed and number of processors used in the calculations. In Section 5, we describe how we plan to extend this approach to other forms of scatter and conclude in Section 6. It should be emphasized that the purpose of this report is to show that a form of scatter has been implemented in HADES and has been verified against MCNP. Validation, the process of comparing simulation and experiment, is a future task.

Physical Description

PDF-file: 19 pages; size: 0.5 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LLNL-TR-464311
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/1018830 | External Link
  • Office of Scientific & Technical Information Report Number: 1018830
  • Archival Resource Key: ark:/67531/metadc833338

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 20, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 7, 2016, 3:33 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Aufderheide, M B. Inclusion of Scatter in HADES: Final Report, report, December 20, 2010; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc833338/: accessed December 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.