Nuclear Resonance Fluorescence for Safeguards Applications

PDF Version Also Available for Download.

Description

In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external photon beam leading to the emission of {gamma} rays with specific energies that are characteristic of the emitting isotope. The promise of NRF as a non-destructive analysis technique (NDA) in safeguards applications lies in its potential to directly quantify a specific isotope in an assay target without the need for unfolding the combined responses of several fissile isotopes as often required by other NDA methods. The use of NRF for detection of sensitive nuclear materials and other contraband has been researched in the past. In the safeguards applications ... continued below

Physical Description

111

Creation Information

Ludewigt, Bernhard A; Quiter, Brian J & Ambers, Scott D February 4, 2011.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external photon beam leading to the emission of {gamma} rays with specific energies that are characteristic of the emitting isotope. The promise of NRF as a non-destructive analysis technique (NDA) in safeguards applications lies in its potential to directly quantify a specific isotope in an assay target without the need for unfolding the combined responses of several fissile isotopes as often required by other NDA methods. The use of NRF for detection of sensitive nuclear materials and other contraband has been researched in the past. In the safeguards applications considered here one has to go beyond mere detection and precisely quantify the isotopic content, a challenge that is discussed throughout this report. Basic NRF measurement methods, instrumentation, and the analytical calculation of NRF signal strengths are described in Section 2. Well understood modeling and simulation tools are needed for assessing the potential of NRF for safeguards and for designing measurement systems. All our simulations were performed with the radiation transport code MCNPX, a code that is widely used in the safeguards community. Our initial studies showed that MCNPX grossly underestimated the elastically scattered background at backwards angles due to an incorrect treatment of Rayleigh scattering. While new, corrected calculations based on ENDF form factors showed much better agreement with experimental data for the elastic scattering of photons on an uranium target, the elastic backscatter is still not rigorously treated. Photonuclear scattering processes (nuclear Thomson, Delbruck and Giant Dipole Resonance scattering), which are expected to play an important role at higher energies, are not yet included. These missing elastic scattering contributions were studied and their importance evaluated evaluated against data found in the literature as discussed in Section 3. A transmission experiment was performed in September 2009 to test and demonstrate the applicability of the method to the quantitative measurement of an isotope of interest embedded in a thick target. The experiment, data analysis, and results are described in Section 4. The broad goal of our NRF studies is to assess the potential of the technique in safeguards applications. Three examples are analyzed in Section 5: the isotopic assay of spent nuclear fuel (SNF), the measurement of {sup 235}U enrichment in UF{sub 6} cylinders, and the determination of {sup 239}Pu in mixed oxide (MOX) fuel. The study of NRF for the assay of SNF assemblies was supported by the Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy as part of a large multi-lab/university effort to quantify the plutonium (Pu) mass in spent nuclear fuel assemblies and to detect the diversion of pins with non-destructive assay (NDA) methods. NRF is one of 14 NDA techniques being researched. The methodology for performing and analyzing quantitative NRF measurements was developed for determining Pu mass in SNF and is extensively discussed in this report. The same methodology was applied to the assessment of NRF for the measurement of {sup 235}U enrichment and the determination of {sup 239}Pu in MOX fuel. The analysis centers on determining suitable NRF measurement methods, measurement capabilities that could be realized with currently available instrumentation, and photon source and detector requirements for achieving useful NDA capabilities.

Physical Description

111

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL-4350E
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.2172/1022713 | External Link
  • Office of Scientific & Technical Information Report Number: 1022713
  • Archival Resource Key: ark:/67531/metadc833330

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 4, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • June 15, 2016, 9:02 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ludewigt, Bernhard A; Quiter, Brian J & Ambers, Scott D. Nuclear Resonance Fluorescence for Safeguards Applications, report, February 4, 2011; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc833330/: accessed December 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.