Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant

PDF Version Also Available for Download.

Description

The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The ... continued below

Creation Information

Creator: Unknown. December 1, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Creator

  • We've been unable to identify the creator(s) of this report.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: INL/EXT-10-20619
  • Grant Number: DE-AC07-05ID14517
  • DOI: 10.2172/1004237 | External Link
  • Office of Scientific & Technical Information Report Number: 1004237
  • Archival Resource Key: ark:/67531/metadc833229

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 29, 2016, 8:16 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 14

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant, report, December 1, 2010; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc833229/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.