Evaluation and Modeling of Edge-Seal Materials for Photovoltaic Applications

PDF Version Also Available for Download.

Description

Because of the sensitivity of some photovoltaic devices to moisture-induced corrosion, they are packaged using impermeable front- and back-sheets along with an edge seal to prevent moisture ingress. Evaluation of edge seal materials can be difficult because of the low permeation rates involved and/or non-Fickian behavior. Here, using a Ca film deposited on a glass substrate, we demonstrate the evaluation of edge seal materials in a manner that effectively duplicates their use in a photovoltaic application and compare the results with standard methods for measuring water vapor transport. We demonstrate how moisture permeation data from polymer films can be used ... continued below

Physical Description

9 p.

Creation Information

Kempe, M. D.; Dameron, A. A.; Moricone, T. J. & Reese, M. O. February 1, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Because of the sensitivity of some photovoltaic devices to moisture-induced corrosion, they are packaged using impermeable front- and back-sheets along with an edge seal to prevent moisture ingress. Evaluation of edge seal materials can be difficult because of the low permeation rates involved and/or non-Fickian behavior. Here, using a Ca film deposited on a glass substrate, we demonstrate the evaluation of edge seal materials in a manner that effectively duplicates their use in a photovoltaic application and compare the results with standard methods for measuring water vapor transport. We demonstrate how moisture permeation data from polymer films can be used to estimate moisture ingress rates and compare the results of these two methods. Encapsulant materials were also evaluated for comparison and to highlight the need for edge seals. Of the materials studied, desiccant filled polyisobutylene materials demonstrate by far the best potential to keep moisture out for a 20 to 30 year lifetime.

Physical Description

9 p.

Source

  • 35th IEEE Photovoltaic Specialists Conference (PVSC '10), 20-25 June 2010, Honolulu, Hawaii

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NREL/CP-5200-47706
  • Grant Number: AC36-08GO28308
  • Office of Scientific & Technical Information Report Number: 1007341
  • Archival Resource Key: ark:/67531/metadc833222

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • April 6, 2017, 3:27 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kempe, M. D.; Dameron, A. A.; Moricone, T. J. & Reese, M. O. Evaluation and Modeling of Edge-Seal Materials for Photovoltaic Applications, article, February 1, 2011; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc833222/: accessed November 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.