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Abstract 

 

The Method of Nearby Problems (MNP), a form of defect correction, is examined as 

a method for generating exact solutions to partial differential equations and as a 

discretization error estimator. For generating exact solutions, four-dimensional spline 

fitting procedures were developed and implemented into a MATLAB code for 

generating spline fits on structured domains with arbitrary levels of continuity 

between spline zones. For discretization error estimation, MNP/defect correction only 

requires a single additional numerical solution on the same grid (as compared to 

Richardson extrapolation which requires additional numerical solutions on 

systematically-refined grids). When used for error estimation, it was found that 

continuity between spline zones was not required. A number of cases were examined 

including 1D and 2D Burgers’ equation, the 2D compressible Euler equations, and the 

2D incompressible Navier-Stokes equations. The discretization error estimation 

results compared favorably to Richardson extrapolation and had the advantage of 

only requiring a single grid to be generated.  
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1.  INTRODUCTION 
 

High-fidelity computational simulations are playing an ever-increasing role in the design and 

development of engineering systems. It is thus critical to be able to quantify the uncertainty in 

the simulation predictions. Numerical error is an important factor in the overall uncertainty in the 

simulation prediction. A key component of the uncertainty is the explicit numerical error in the 

prediction itself. In addition, numerical error plays a more subtle role when significant numerical 

errors are present during the model validation phase. If too large, these numerical errors can 

yield “false positives” for the validation of the model. Furthermore, if large numerical errors are 

present during a model calibration step, then these errors will have propagated into the model.  

 

There are three components of the numerical error: round-off error, iterative error, and 

discretization error.
1,2

 Round-off error can be mitigated by simply using more significant digits 

in the computation. Iterative error can often be reduced by simply running additional iterations or 

monitoring convergence of the solution residuals. Discretization error is the most difficult aspect 

of numerical error to analyze, and is defined as the difference between the exact solution to the 

discretized equations and the exact solution to the original partial differential or integral 

equations (herein referred to collectively as the PDEs). Assuming iterative and round-off errors 

are negligible relative to the discretization error, the numerical solution can be used as a 

surrogate for the exact solution to the discrete equations when estimating the discretization error.  

 

The main difficulty in estimating the discretization error is finding a way to estimate the exact 

solution to the PDEs. Exact solutions exist for only the simplest equations or simplified versions 

of nonlinear, coupled partial differential equations. The most common way of estimating the 

exact solution to the PDEs is Richardson extrapolation,
2,3

 which uses numerical solutions on two 

or more grids to estimate the exact solution. Richardson extrapolation requires systematic 

refinement over the entire domain,
2
 and that both of the mesh levels be in the asymptotic grid 

convergence regime where errors are reduced at the rate dictated by the formal order of accuracy 

of the method (e.g., the rate found by evaluating the truncation error). A third grid is needed to 

confirm that the asymptotic regime has been reached. The requirement for three grid levels (all in 

the asymptotic regime) is difficult to achieve both because of the total number of grid points 

required and the burden on the grid generation tool to generate systematically refined grids. 

Another promising approach for estimating discretization errors is the adjoint method.
4
 While 

this approach can provide estimates of the discretization error in any quantity of interest, there is 

a great deal of overhead associated with the coding and solving of the adjoint system. This 

approach is thus very difficult from a code development point of view. Furthermore, adjoint 

methods have not yet been demonstrated for realistic engineering problems on complex 

geometries. 

 

The standard methods for evaluating the efficacy of error estimators involve the use of either 

exact solutions or benchmark numerical solutions. For complex PDEs (e.g., the Navier-Stokes 

equations), there are generally only a limited number of exact solutions available. Furthermore, 

these exact solutions often involve significant simplifications and do not exercise the general 

governing equations. For example, consider the flow between moving parallel plates separated 

by a small gap (Couette flow). Here the velocity gradient is linear and thus the diffusion term, a 

second derivative of velocity, is identically zero. The use of a benchmark numerical solution or 
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highly-refined “truth” mesh is also problematic since the accuracy of the benchmark solution is 

generally unknown. In addition, assessing the rate of convergence of the numerical method is 

difficult without a true exact solution. A method for generating exact solutions to complex partial 

differential equations in realistic parameter regimes and geometries would provide a useful 

framework for evaluating discretization error estimators. Furthermore, such exact solutions 

would be extremely useful in evaluating the efficacy of numerical schemes and solution 

adaptation techniques. 

 

In 2003, Roy and Hopkins
5
 proposed an approach for estimating discretization error and 

generating exact solutions called the Method of Nearby Problems (MNP). MNP requires two 

numerical solutions on the same grid, thereby eliminating the problems associated with 

generating multiple grids that are all within the asymptotic grid convergence regime. The steps 

associated with applying MNP as a single-grid discretization error estimator are: 

 

1. compute the original numerical solution on the chosen grid,  

2. generate an accurate curve fit to this numerical solution, thereby providing an analytic 

representation of the numerical solution, 

3. operate the governing partial differential equations on the curve fit from step 2 to 

generate small analytic source terms, 

4. compute the nearby problem (original problem plus analytic source terms) on the chosen 

grid, 

5. evaluate the exact discretization error (i.e., numerical solution minus the analytic curve 

fit) on the nearby problem, and 

6. assume that the discretization error in the nearby problem can be used to estimate the 

discretization error in the original problem of interest. 

 

The key point to this approach is that, by definition, the curve fit generated in step 2 is the exact 

solution to the nearby problem. If the source terms are sufficiently small, then the nearby 

problem is said to be sufficiently near the original problem. This technique is loosely related to 

the Method of Manufactured Solution for code verification
2,3

: however, in the present case, the 

solution must be a realistic solution (which is not a requirement for Manufactured Solutions). 

MNP is closely related to a type of defect correction technique known as differential correction 

(for more information, see the review by Skeel
6
). 

 

The purpose of this report is to detail the work that was performed under a five-year effort as part 

of the Principle Investigator’s Presidential Early Career Award for Scientists and Engineers 

(PECASE). The initial goal of the effort was to generate exact solutions to the three-dimensional, 

unsteady Navier-Stokes equations in order to assess numerical methods and subgrid turbulence 

closure models for turbulent flows. While this goal was not achieved in its entirety, several 

important developments were obtained. First, a methodology and MATLAB tool were developed 

which allowed for the spline fitting of up to four-dimensional (3D + time) data sets on 

curvilinear structured grids with arbitrary levels of solution continuity. Second, a framework was 

developed for investigating residual based methods (defect correction, error transport equations, 

and adjoint methods) for discretization error estimation. Finally, the MNP methodology, a form 
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of defect correction, was applied to a number of 1D and 2D fluid mechanics problems in order to 

provide discretization error estimates using a single grid. The range of problems examined 

includes Burgers’ equation (steady and unsteady), the Euler equations, and the incompressible 

Navier-Stokes equations.  
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2.  CURVE FITTING METHODS 
 

2.1. One-Dimensional Fits 
 

In our previous work
7
 we attempted to achieve good fits to the underlying numerical solution 

using global polynomials. These global polynomials tended to provide poor approximations of 

the numerical solution both at the boundaries and in the vicinity of sharp gradients. The poor 

agreement for global polynomials is demonstrated for both standard and Legendre polynomials
8
 

in Figure 1a for steady-state Burgers equation at a Reynolds number of 16 (see Ref. 7 for 

details). This lack of agreement is also evident in Figure 1b which gives L
2
 norms of the MNP 

source term and the curve fitting error as a function of the polynomial order. While the error in 

the curve fit does drop slowly with increasing polynomial order, the norms of the source term 

increase when evaluated over the whole domain (from -4 to 4), or stay nearly constant when the 

boundaries are removed from the norm calculation (from -3 to 3). Ideally, the norm of the source 

term would drop until the polynomial error is the same order as the discretization error in the 

original numerical solution (also shown in Figure 1b). Lee and Junkins
9
 also observed an 

increase in polynomial error near the boundaries using global Chebyshev polynomials. In the 

current work, we instead focus on spline fits, where piecewise-polynomial approximations are 

made by dividing the domain into a sequence of equally spaced zones with continuity constraints 

enforced at the zone boundaries. For curvilinear structured meshes in higher dimensions, the fits 

are performed in a Cartesian computational space. 
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a)         b) 

Figure 1.  Global polynomial fit for Burgers’ equation at a Reynolds number of 16: a) 
comparison of global 10th order polynomial curve fits with the underlying numerical 

solution and b) norm of the polynomial error and source term versus polynomial order. 

 

 

2.1.1. Cubic Spline Fits 
 

A one-dimensional cubic spline is constructed of piecewise third-order polynomials.
10

 A cubic 

spline is twice continuously differentiable (i.e., is C
2
 continuous) and depends on four 

parameters. It can be written as  
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32 )()()(:)( iiiiiiii xxdxxcxxbaxS   (1) 

for   

1,...,0],,[ 1   nixxx ii  

and a schematic of this spline system is shown in Figure 2. The domain is broken up into n+1 

nodes (0 to n) and therefore n spline zones (S0, S1, …, Sn-1). Equation (1) is used to represent the 

solution over each spline zone, subject to certain constraints. The conditions that are used to 

construct the cubic spline polynomials are: 

nixSxS

nixSxS

nixSxS
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iiii

iiii

iiii

iii

,...,1),()(

1,...,1),()(

,...,1),()(
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






 

where the first condition matches the given solution values at each node. The remaining 

conditions provide continuity of the solution and its derivatives (up to the second derivative) at 

the spline boundaries. Here we find it convenient to set 11 )(   nnn axS  and 11 2)(  
nnn cxS . The 

first derivatives at end points are also specified which provides two additional conditions and 

thus closes the system.  

 

 

Figure 2.  Schematic of the spline fitting system. 

 

 

 

2.1.2. Hermite Spline Fits 
 

A fifth degree Hermite spline is constructed of piecewise fifth-order polynomials.
10

 This spline 

polynomial is given by 

                          
5432 )()()()()(:)( iiiiiiiiiiii xxfxxexxdxxcxxbaxS   (2) 

for   

1i  2i  2 ni  1 ni  

i= 0 i= n 

S0 S1 Sn-2 Sn-1 
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1,...,0],,[ 1   nixxx ii  

where the same spline system given in Figure 2 is used. The conditions used to construct the fifth 

degree Hermite spline are 

1,...,1),()(
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where the first two conditions match values and derivatives of the given solution. The last four 

conditions match the solution value and derivatives up to the third derivative at the spline 

boundaries. Here we find it convenient to set 11 )(   nnn axS  and 11 )(  
nnn bxS .  

 

Fifth degree Hermite spline fits were used to approximate the numerical solution to Burgers 

equation.
11

 The results for steady-state Burgers equation with a Reynolds number of 64 are 

presented below in Figure 3. The numerical solution appears to be approximated quite well since 

the fifth-order Hermite spline fit with 65 spline points is visually indistinguishable from the 

underlying numerical solution. Note that even though the Reynolds number for this case is larger 

by a factor of four than the global polynomial fit shown in Figure 1 (thus resulting in a sharper 

gradient), the results are significantly better with the Hermite spline fit. 

 

 

Figure 3.  Fifth-order Hermite spline fit and underlying numerical solution for Burgers 
equation at a Reynolds number of 64 using 65 spline points. 
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2.1.3. Weighting Function Approach 
 

A weighting function approach is also examined following the work of Jancaitis and Junkins.
12

 

The basic idea is to employ a series of overlapping local fits over the domain which are then 

joined together in a continuous manner using weighting functions. This approach has the 

advantages that one can specify arbitrary levels of continuity in the spline fit (via the weighting 

functions) and that it can be readily extended to arbitrary dimensions.  

 

A simple example of this 1D weighting function approach is presented in Figure 4, where the 

original data used to generate the spline fit are simply 17 points sampled at equal intervals from 

the function )2sin( x . The goal of this example is to create a spline fit made up of four spline 

regions which exhibits C
2
 continuity at the spline zone interfaces. The first step is to generate 

five overlapping local fits Z1 through Z5, with each of the interior fits spanning two spline 

regions (see top of Figure 4). A least squares method is used to find a best fit quadratic function 

in each of the five regions: 

 
2)( xcxbaxZ nnnn   

Since each spline zone now has two different local fits, one from the left and the other from the 

right, these two local fits are combined together with the left and right weighting functions 

shown in Figure 4 (middle). The form of the 1D weighting function used here for C
2
 continuity is 

 

 23 61510)( xxxxWRIGHT   

and from symmetry we have WLEFT ( x ) = WRIGHT (1- x ). Thus the final fit in each region can be 

written as 

 

RIGHTRIGHTLEFTLEFT ZWZWyxF ),(  

For example, for region 2, one would have ZLEFT = Z2 and ZRIGHT = Z3. Note that in addition to 

providing the desired level of continuity at spline boundaries, the weighting functions are also 

useful in reducing the dependence on the extreme ends of the local fits where they often exhibit 

the poorest agreement with the original data. When these final fits are plotted (bottom of Figure 

4), we see that they are indeed C
2
 continuous, maintaining continuity of the function value, 

slope, and curvature at all three interior spline boundaries. Outer domain boundary conditions 

(Dirichlet and Neumann) can be satisfied exactly by using constrained local fits in the boundary 

regions. 
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Figure 4.  Simple one-dimensional example of the weighting function approach for 
combining local quadratic least squares fits to generate a C2 continuous spline fit: local 
fits (top), weighting functions (middle), and resulting C2 continuous spline fit (bottom). 

 

 

The right 1D weight functions for varying levels of continuity (C
0
 through C

6
) are given in Table 

1, and these weight functions are shown graphically in Figure 5. Note that the left weighting 

function can be found by simply inserting xLEFT = 1 – xRIGHT.  

 

 
Table 1.  One-dimensional weight functions 

 

Continuity 
Order 

Right Weight Function 

0 x  

1  322  xx  
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2  10156 23  xxx  

3  35847020 234  xxxx  

4  12642054031570 2345  xxxxx  

5  4621980346530801386252 23456  xxxxxx  

6  171690092002024024163806006924 234567  xxxxxxx  

 

 

 

 
Figure 5.  Right 1D weight functions: varying orders of continuity. 

 

 

2.2. Higher-Dimensional Fits 
 

The one-dimensional weighting function-based spline fitting procedure can be extended to 

higher dimensions using the approach of Junkins et al.
13

 For example, in 2D a series of 

overlapping 2D local curve fits Zn(x,y) are joined together with higher-order weighting functions 

Wn(x,y). In this case, the fitting function for a local region can be written as: 
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



4

1

),(),(),(
n

nn yxWyxZyxZ  

where the n index represents different fitting regions for the local curve fits and the overbars 

indicate that the independent variables in the weighting functions are normalized to go from zero 

to one on each local region, i.e.,  

 

10and,10  yx  

The basis functions for these local curve fits Zn can be chosen as needed, and thus can be 

modified to handle regions containing strong gradients or singularities. The weighting functions 

Wn are chosen such that an arbitrary level of continuity can be enforced between the fitting 

regions (function value, first derivative, second derivatives, etc.). In addition, these weighting 

functions ensure that the contribution from the local curve fits goes to zero at the boundaries of 

their local regions of applicability. For two-dimensional problems, these weighting functions are 

chosen such that the functions W2, W3, and W4 are simple coordinate transformations of W1: 

 

)1,(),(

)1,1(),(

),1(),(

14

13

12

yxWyxW

yxWyxW

yxWyxW







 

Additional constraints used to determine the form of the weighting functions in 2D are that the 

weighting function W1 and its k-derivatives must equal zero along the two lines x = 0 and y = 0, 

it must equal unity at ( x = 1, y = 1), and the sum of the weighting functions must be equal to 

unity 

 





4

1

1),(
n

n yxW  

for all 10and10  yx . For example, for C
1
 continuity (i.e., continuity of the function 

value and its first derivative) at local fitting boundaries, the weighting function W1 is 

 

 yxyxyxyxW 4669),( 22

1   

and the form for C
3
 continuity (used for most of the current results) is 

 

)400140016807001400490058802450

1680588070562940700245029401225(),(

332333322222

323244
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yxyxyxxyxyxyxx

yxyxyxxyyyyxyxW
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
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where again x  and y  are linearly scaled to vary between zero and one in each region. These two 

weighting functions are shown graphically in Figure 6 and are essentially one quadrant of a 

three-dimensional bell shape with a square base. Although possibly not unique, the general form 

of the 2D weighting function for C
k
 continuity is: 

 


 


k

i

k

j

ji

ji

kkk yxayxyxW
0 0

,

11

1 ),(  

where the ai,j coefficients are found using the constraints given above. It should be noted that 

once the series of local fits has been generated, they can be joined together with weighting 

functions of varying degree of continuity in order to provide the best overall fit on the domain. 

 

 

 

a)             b) 

Figure 6.  Weighting functions  ),(1 yxW   for a) C1 continuity and b) C3 continuity. 

 

 

Higher-dimensional weight function can be constructed by multiplying 1D weight functions 

together (where the 1D functions have different independent variables), such as shown in 

Equation (3) for C
2
 continuous weight functions in 2D (see Ref. 14). 

 

     

     
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,
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2323
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yyyxxx

yWxWyxW
DDD

 (3) 

 

Three-dimensional weight functions follow the same general form as the one- and two-

dimensional weight function. Figure 7 shows six slices of a three-dimensional weight function. 

The slices are presented due to the difficulty of representing data that is dependent on three 

independent variables. Note that these weight functions could be used for a steady-state problem 

with three spatial dimensions or for a time-varying problem with two spatial and one time 

dimension. 
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Figure 7.  Six slices of a three-dimensional weight function. 

 

 

2.3. Four-Dimensional Spline Fitting Tool 
A MATLAB spline fitting package was written to generate up to four dimensional, arbitrary 

continuity global spline fits. The package is built around a MATLAB class designed to store and 

manipulate polynomials up to four dimensions. The polynomial class was designed so that 

common mathematical operators can be used to manipulate polynomials where the primary 

operations include polynomial multiplication and addition required for MNP procedures. Other 

important operations include coordinate transformation routines to transform a polynomial to 

different coordinate system. In addition to specifying arbitrary dimensions, data points per spline 

zone, continuity, and other MNP specific variables, the spline fitting package also allows for 

constrained fits to a constant value along a boundary. The constrained fits can be useful to ensure 

that the resulting spline fit is consistent with physical boundary conditions (e.g., zero normal 

velocity for a slip-wall boundary condition). Figure 8 shows a simplified flowchart of the spline 

fitting package, where the procedures outlined in red are part of the general package. There are 

two primary routines. Given the data to be fitted and a configuration variable, the first function 

performs the local least squares fits and returns a matrix storing the polynomials. This matrix is 

then assembled with the weight functions in the next routine returning a final matrix of 

continuous polynomials where each polynomials domain is [0,1] in all coordinate directions.  All 

other procedures are part of a wrapper required to setup the particular problem of interest by 

specifying problem dimension, continuity order, number of points per spline zone, etc. 
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Figure 8.  Flowchart of the Four-Dimensional Spline Fitting Tool. 
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3.  DISCRETIZATION ERROR ESTIMATION THEORY 
 

3.1. Residual-Based Error Estimation Framework 
 

A residual-based error estimation and adaptivity framework was developed by Roy
16

 where the 

Generalized Truncation Error Expression (GTEE) was formulated to relate the discrete equations 

(e.g., the finite volume method) to the partial differential or integral equations through the 

truncation error. However, the GTEE requires appropriate operators to prolong discrete 

quantities (e.g., finite volume solutions at cell centers) to continuous functions and to restrict 

continuous functions to cell center or nodal locations. We therefore introduce the interpolation 

function I  which can perform both prolongation and restriction operations. This interpolation 

function is designed to be read from bottom to top. Consider the following examples where hu  is 

a discrete numerical solution on a fine mesh with spacing h, hu2  is a discrete numerical solution 

on a coarse mesh with spacing 2h, and u~  is the continuous exact solution to the governing 

partial differential or integral equations: 

 prolongation of hu  to a continuous space: hhuI  

 prolongation of hu2  to mesh h:  h

h

huI 22  

 restriction of hu  to mesh 2h:   h

h

h uI 2
 

 restriction of u~ to mesh h:   uI h~  

When no subscript or superscript is present, a continuous function is implied. Using this 

interpolation operator, the GTEE can be rigorously recast for finite difference and finite volume 

schemes as 

)~()~()~( wTEwLIwIL h

hh

h   (4) 

where Lh() represents the discrete equations on mesh h, L() the partial differential (or integral) 

equations, TEh() is the truncation error on mesh h, and w~  is any general smooth function. The 

three terms in Equation (4) refer to nodal values for finite difference methods and cell center 

values for finite volume methods. In addition, the discretization error can be defined either 

continuously or discretely as 

uIuuuI h

hhhh
~or~   , (5) 

respectively. 

 

 

3.2. Continuous Defect Correction 
 

Defect correction methods were originally developed nearly 50 years ago in order to improve the 

accuracy of numerical solutions to ordinary differential equations.
17,18

 More recently, defect 

correction has been used in CFD to increase the accuracy of first order spatial discretization 

schemes.
19,20

 We are interested in using defect correction methods to estimate the discretization 

error in CFD solutions. There are two main types of defect correction
6
: differential correction 
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(referred to herein as continuous defect correction) and difference correction (referred to herein 

as discrete defect correction).  

 

The original problem that we start with is the PDE ( 0)( uL ) which is exactly solved by u~ . In 

general, we do not know u~  , but would like to estimate it. We use a numerical method to come 

up with an approximate problem ( 0)( hh uL ) which is the numerical approximation to the PDE 

(i.e., the discretization scheme) that we can solve. We now formulate a differential equation 

which is “nearby” our original equation by prolonging the numerical solution to a continuous 

space, operating the PDE onto it, and then adding it as a source term to the right-hand side of the 

PDE to give 

)()( hhuILuL   (6) 

with dependent variable u . We note that this differential equation will be exactly satisfied by the 

prolongation of hu  onto a continuous space, i.e., by the continuous function hhuI . We can also 

form an approximation of this “nearby” problem by discretizing the left-hand side of Equation 

(6) as 

)()( hh

h

hh uILIuL   (7) 

which can be solved numerically to give our approximate solution to the nearby problem hu . The 

key aspect of defect correction is that the error that arises by solving our approximation of the 

original problem should be very close to the error that arises by solving our approximation to the 

nearby problem since both simply involve the discretization of the PDE operator. Since the 

discretization error in the approximate solution to the nearby problem does not need to be 

estimated, but can be evaluated directly as 

hhh uu   (8) 

(where we have again assumed that hhh

h uuII  ), we can estimate the discretization error that 

occurs when approximately solving (i.e., discretizing) the original PDE as 

hhhh uu   . (9) 

Thus the continuous defect correction method requires an additional numerical solution, on the 

same mesh, to the approximate nearby problem given by Equation (7). This approximate nearby 

problem has the continuous residual (i.e., the PDE operating on the numerical solution which is 

an approximation of the truncation error) as a source term.  

 

A key issue in the continuous form of defect correction is related to the technique used to 

prolong the numerical solutions to the continuous space (i.e., the hI  operator). The weighting 

function-based MNP approach described earlier used sophisticated spline fits which allowed for 

arbitrary levels of continuity across spline zone boundaries and could be readily extended to 

multiple dimensions.
21

 However, the generation of such global functions is expensive and can 

lead to oscillations in regions with insufficient resolution. When using MNP/defect correction for 
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discretization error estimation purposes, global fits are likely not necessary, so the use of local 

fits will also be explored.  

 

 

3.3. Discrete Defect Correction 
 

For the discrete form of defect correction, the PDE in the original problem from Section 3.2 is 

simply replaced by a discrete operator which has a higher order of accuracy than the discrete 

operator that we would like to solve. The nearby problem thus becomes 

 

)()( hhhh uLuL   (10) 

where )(hL  is a higher-order discrete operator, uh is the lower order numerical solution, and hu  is 

the numerical solution to the nearby problem. For example, if the underlying numerical method 

is second-order accurate, then this higher-order accurate operator should typically be at least 

fourth-order accurate. The numerical stability of this higher-order discretization is unimportant 

since it is not used to obtain numerical solutions, but only to compute a residual by operating it 

onto the solution from the lower order discretization.  
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4.  GOVERNING EQUATIONS AND EXACT SOLUTIONS 
 

 

4.1. One-Dimensional Burgers’ Equation 
 

Burgers’ equation is a quasi-linear, parabolic partial differential equation of the form 

  
2

2

x

u

x

u
u

t

u














  (11) 

where u(x,t) is a scalar field. Here the position is given by x, the time by t, and ν is the viscosity. 

We have selected Burgers equation because it is a scalar equation with a number of known exact 

solutions.
22

 Of these, we have chosen the steady-state viscous shock wave solution for our initial 

testing. This solution is chosen because it is smooth, non-trivial, and is in the real plane. Dirichlet 

boundary conditions are u  2 as x  - and u  -2 as x  . This solution is given by 

 
)cosh(

)sinh(2
)(

x

x
xu




  (12) 

where the prime denotes a dimensionless variable. The Reynolds number for Burgers equation 

can be defined as 

 


refref Lu
Re  (13) 

where uref is taken as the maximum value for u(x,t) in the domain (here uref = 2 m/s), Lref is the 

domain width (generally Lref = 8 m), and the choice for  specifies the Reynolds number.  

 

This solution is related to dimensional quantities by the following transformations: 

       /and/ refref uLuLxx   (14) 

Furthermore, the solutions are invariant to scaling by a constant : 

   uuxx   and/  

Using the above transformations, the exact solution to 1D steady Burgers’ equation for a viscous 

shock can be rewritten in terms of the Reynolds number as 











L

x
xu

2

Re
tanh2)(~  (15) 

This exact solution is represented by the curves in Figure 9 where x is on the ordinate and u the 

abscissa. Two different values for  are shown, corresponding to Reynolds numbers of 8 and 64. 
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Figure 9.  Exact and numerical solutions to Burgers equation for a steady, viscous shock 
wave at Reynolds numbers of 8 and 64. 

 

 

4.2. Two-Dimensional Problems 
 

4.2.1. Unsteady Burgers’ Equation 
 

The time-varying (unsteady) Burgers’ equation is shown in Equation (16) 

  

2

2

x

u

x

u
u

t

u














  (16) 

where t  is time, x  is spatial location, u  is velocity, and   is kinematic viscosity. One exact 

solution models viscous shock coalescence.
22

 Two shocks travel from opposite ends of the x-axis 

and meet at the center. The two viscous shocks merge to form the steady-state shock as time 

increases. This solution is given in Equation (17)  

 

 
  tex
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cosh

sinh2
 (17) 

where the prime coordinates represent non-dimensionalized coordinates. Another exact solution 

is pulse decay
22

 where two equal but opposite pulses are initiated at the origin and decay in time. 

This solution is given in Equation (18). 
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4.2.2. Compressible Euler Equations 
 

The Euler equations describe inviscid, compressible fluid flow. The set of four equations 

governing two-dimensional flow is given in differential, conservation form in Equation (19) 
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(19) 

where   is density, u  is velocity in the x-direction, v  is velocity in the y-direction, and p  is 

pressure. These four variables are referred to as the primitive variables. The te  term represents 

the total energy (internal plus kinetic) and is expressed in primitive variables as shown in 

Equation (20)  

 22
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1

1

1
vu

p
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



 (20) 

where   is the ratio of specific heats. The gas is assumed to be calorically perfect. 

 

4.2.2.1. Supersonic Vortex 

 

Supersonic vortex flow is an exact solution to the Euler equations and consists of flow around a 

90 degrees annulus. 

 

 

 

 

 
 

(21) 

 
 

 

 

The flow field is defined as a function of variables at the inner radius of the annulus denoted by 

the subscript i. For the problems examined herein, the inner radius, , is 2.0, the outer radius is 

3.0, the inner density, , is 1.0 kg/m
3
, and the inner Mach number, , is 2.0. See Ref. 23 for 

more information regarding supersonic vortex flow. 
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4.2.2.2. Ringleb’s Flow 

 

Ringleb's flow is an exact solution to the Euler equations for flow around a 180 degree turn.
24

 

The flow solution consists of both supersonic and subsonic regions; however, the domain was 

chosen so that only supersonic flow exists. The stream function for this flow is 

 

 

(22)   

where q is the normalized velocity of the flow and 

 

 

(23)  

Equations (22) and (23) are used to solve for the flow angle 

 

 

(24)   

The spatial locations are functions of q and k 

 

 

 

(25) 

 

 

(26)  

where 

 

 
 

(27)  

 

 

(28)  

 

 

(29)  

 

The Mach number is defined as 

 

 

 

(30) 

 

The maximum Mach number is a function of the ratio of specific heats γ. The flow field is 

defined in terms of k and q and the corresponding node locations are calculated. From the Mach 
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number and the flow angle, the primitive variables are calculated using isentropic relations for 

air at a pressure of p = 100,000 Pa and a temperature of T = 300 K. For the analysis presented 

herein, 1.1 < k < 1.6 and qmin = 1.05, which gives a supersonic Mach number range of 1.19 < M < 

2.29.  

 

 

4.2.3. Incompressible Navier-Stokes Equations 
 

The viscous, incompressible flow in a lid-driven cavity is also examined at a Reynolds number 

of 100. This flow can be described by a modified form of the incompressible Navier-Stokes 

equations, which for constant viscosity is given by 
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These equations are solved in finite-difference form on a co-located (i.e., non-staggered) 

Cartesian mesh by integrating in pseudo-time using Chorin’s artificial compressibility method.
25

 

In order to suppress odd-even decoupling (a common problem when solving the incompressible 

Navier-Stokes equations on non-staggered grids
26

), second- and fourth-derivative pressure 

damping (S2 and S4, respectively) are added to the mass conservation equation 
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where C2 = 1.0, C4 = -1×10
-4

, and  = 1×10
-10

 unless otherwise noted. This fourth derivative 

pressure damping is similar to that employed by Sotiropoulos and Abdallah.
27

 This modified 

form of the equations reduces to the steady-state incompressible Navier-Stokes equations in the 

limit as the mesh is refined and as a steady-state solution is obtained. Dirichlet boundary 

conditions are used for velocity (all velocities are zero except for the u-velocity is set to unity at 

the top wall) and the boundary pressure is found from the interior solution. 
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5.  RESULTS 
 

5.1. One-Dimensional Burgers’ Equation  
 

5.1.1. Hermite Spline Fit 
 

In our previous work
7
 we used global Legendre polynomial fits to the underlying numerical 

solution. An example for a Reynolds number of 16 was shown in Figure 1a. The solutions using 

global polynomials exhibit large oscillations, especially at the boundaries. The MNP source term 

can then be found by inserting the curve fit of the numerical solution into the PDE. The poor 

representation of the underlying numerical solution leads to large source terms near the 

boundaries with magnitudes on the order of 10, as shown in Figure 10. Furthermore, the source 

terms become larger at the boundaries as the polynomial order is increased. 
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Figure 10.  Source term distribution using different order Legendre polynomial fits for 
Burgers’ equation at a Reynolds number of 16. 

 

When the fifth-order Hermite splines are implemented,
11

 the magnitude of the source term is 

significantly smaller. The source term for the Reynolds number 8 case using 17 spline points is 

shown in Figure 11 along the entire domain. The source term is much smaller than that seen in 

the global polynomial fits (Figure 10), with maximum magnitudes over the entire domain 

approximately 0.0015. Similarly, source terms were also calculated for the Reynolds number 64 

case using Hermite spline fits. The distribution of the source term using 65 spline points is given 

in Figure 12. The maximum magnitude of the source term is on the order of 0.07 and occurs near 

the viscous shock wave (x = 0). The higher frequency seen in the Reynolds number 64 source 

term arises from the stronger gradients and increased number of spline points used as compared 

with the Reynolds number 8 case. 
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Figure 11.  Source term for the nearby problem with 17 Hermite spline points for a 
Reynolds number of 8. 

 

 

 

Figure 12.  Source term for the nearby problem with 65 Hermite spline points for a 
Reynolds number of 64. 
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The Reynolds number 8 case was also approximated using standard cubic splines. Figure 13 

shows the distribution of the source term along the domain using 17 spline points. While the 

magnitude of the source term is relatively small, the source term is no longer smooth. There are 

now slope discontinuities at each of the 15 boundaries between the spline zones, with the 

exception of the node at x = 0 due to the symmetry of the solution about this point.  

 

Figure 13.  Source term for the nearby problem with 17 cubic spline points for Burgers’ 
equation at a Reynolds number of 8. 

 

The discretization error for Burgers’ equation is estimated for the Reynolds number of 8 case 

using MNP as well as three extrapolation-based discretization error estimators
2,3

 and compared 

to the true error. The distribution of the various discretization error estimates are shown in Figure 

14 for a) a very fine mesh, b) a medium mesh, and c) a coarse mesh. For the fine mesh, all the 

error estimators agree well with the true error. As the mesh is coarsened, the mixed-order error 

estimator performs poorly, eventually under predicting the true error by a factor of two or more 

on the coarsest mesh. The same is true, but to a lesser extent, for Richardson extrapolation with 

the local order of accuracy, with the coarsest mesh under predicting the error by 10-15%. Both 

MNP and Richardson extrapolation using the formal order of accuracy provide good error 

estimates for this case. 
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Figure 14.  Discretization error estimates for Burgers’ equation with Reynolds number 8 
using a finest mesh of a) 257 nodes, b) 65 nodes, and c) 33 nodes. 

 

For the Reynolds number 64 case, the discretization error estimates are shown in Figure 15 for a) 

a 1025 node mesh, b) a 257 node mesh and c) a 65 node mesh. All of the approaches provide 

good error estimates for the fine grid case. For the 257 node mesh, the mixed-order error 

estimator greatly under predicts the error, Richardson extrapolation with the local order of 

accuracy slightly under predicts the error, and MNP and Richardson extrapolation using the 

formal order of accuracy provide good error estimates. The coarsest mesh that could be run 

without going unstable was 33 nodes. For the 65 node mesh, since only one coarser mesh 

solution is available, error estimates can be computed only by MNP and Richardson 

extrapolation with formal order of accuracy. As shown in Figure 15c, Richardson extrapolation 

gives error estimates that are nearly twice as large as the true error, while MNP gives estimates 



39 

that are within 20% of the true error. These results suggest that MNP can provide reasonable 

error estimates, even when the underlying mesh is not sufficiently refined enough to produce 

well-behaved asymptotic convergence.  
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Figure 15.  Discretization error estimates for Burgers’ equation with Reynolds number 64 
using a finest mesh of a) 1025, b) 257, and c) 65 nodes. 

 

 

5.1.2. Weighting Function Approach 
 

Weighting function-based fits are determined as described previously; the local least squares fits 

are merged with the weight functions to generate the piecewise final fit. This is done in 

MATLAB with symbolic expressions. This case is for a Reynolds number of 64, with 513 points 

in the numerical solution. 64 fit zones are used with fifth order local least squares fits and C
3
 

weight functions.
14

 Figure 16 shows the numerical solution and curve fit, along with the source 

term. 
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a) b) 

Figure 16.  Burgers’ equation: a) numerical solution and curve fit and b) source term. 

 

The source terms often have a high frequency oscillation present. The magnitude of this 

oscillation seems to decrease when the order of the local fits is increased. As an example, Figure 

17 shows the difference between the source terms resulting from sixth order local fits and 

seventh order local fits. The examples shown are for a Reynolds number of 64 and use 64 zones 

and C
3
 weight functions. 

 

 
 

a) b) 

Figure 17.  Effect of local fit order on source terms: a) 6th order and b) 7th order. 
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5.1.3. Local Fitting Approach 
 

We have also examined a form of MNP/defect correction for the case when only local fits are 

used (i.e., without any weighing functions).
28

 While this approach precludes the generation of a 

continuous exact solution, it can be used to provide discretization error estimates. For 1D steady 

Burgers’ equation on a uniform mesh continuous defect correction is employed using fourth 

order accurate local polynomial fits of the numerical solution which is equivalent to discrete 

defect correction using fourth-order accurate finite differences. Richardson extrapolation and 

discretization error transport equations using two different linearization approaches are also 

applied (see Ref. 28 for more details). As shown in Figure 18, Richardson extrapolation 

overpredicts the error by almost a factor of two due to the coarse grid being outside the 

asymptotic range. The error transport equations with the simple linearization underpredict the 

error by ~30%. Defect correction and the advanced linearization for error transport equations 

provide accurate estimates of the true discretization error. 
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Figure 18.  Burgers’ equation for a viscous shock: numerical and exact solution (left) and 

residual-based discretization error estimates (right). 

 

 

5.2. Two-Dimensional Cases 
 

5.2.1. Unsteady Burgers’ Equation 
 

5.2.1.1. Shock Coalescence 

 

Results for the shock coalescence case are shown in Figure 19 (see Refs. 14 and 15). The x-axis 

is the independent spatial axis varying from -4 m to 4 m and the t-axis represents time over a two 

second period. The u-axis measures the velocity, which varies from -2 m/s to 2 m/s. Note that 

two different grid levels are used in this section: a coarse grid with 65 points in each direction 

and a fine grid with 257 points in each direction. 
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Figure 19.  Shock coalescence curve fit surface plot. 

 

Two-dimensional contour plots comparing the numerical solution and the curve fit on the fine 

grid are shown in Figure 20. The local fits for all of these two-dimensional results are done with 

a weighted least squares approach. The weights come from the same weighting functions that are 

used to patch the local fits together. Using the weighted least squares approach in this manner is 

intended to improve the local fits at the critical regions. A comparison of the curve fit error on 

the different grid levels is shown in Figure 21, while a comparison of the source term is shown in 

Figure 22. Both of these quantities have the largest values along the sharp gradients in the curve 

fit, where there are oscillations present. By refining the grid, these oscillations can be reduced in 

magnitude. Increasing the number of grid points that cover the sharp gradient helps to improve 

the resolution of the numerical solution and also provides for a better curve fit. Equation (31) is 

used to compute percent curve fit error, with the maximum shown for both grids in Table 2. The 

maximum percent curve fit error drops over two magnitudes when the grid is refined by a factor 

of four. 

 

  

 
Figure 20.  Shock coalescence numerical solution and curve fit. 
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Figure 21.  Shock coalescence curve fit error comparison. 

 

 

  
 

Figure 22.  Shock coalescence source terms comparison. 

 

 

100*,%

ref

NSCF
CF

u

uu 
  (31) 

In this equation ,%CF  is percent curve fit error, CFu  is the curve fit, NSu  is the numerical 

solution, and refu  is the reference velocity of 2 m/s. The percentage curve fit error is defined this 

way with a reference velocity in the denominator for both Burgers’ equation cases because the 

velocities pass through zero. 

 
Table 2.  Shock coalescence maximum percentage curve fit errors 

 % CF Error 

Coarse Grid 0.13 

Fine Grid 0.00058 
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A comparison of the original problem and nearby problem discretization errors is presented in 

Figure 23, for the coarse grid. The fine grid results are shown in Figure 24 and x-y plots showing 

a slice at 1t  are given in Figure 25. The nearby problem discretization error matches the 

qualitative behavior of the original problem discretization error and the magnitudes are also close 

to one another. This holds true for both grid resolutions. However, the x-y plots show that the 

nearby problem discretization error exhibits noticeable oscillations near the shock region. These 

are minimized in the fine grid case. 

 

  
 

Figure 23.  Shock coalescence discretization error comparison (coarse grid). 

 

 

  
 

Figure 24.  Shock coalescence discretization error comparison (fine grid). 

 

 

  
 

Figure 25.  Shock coalescence discretization error comparisons (x-y plots). 
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5.2.1.2. Pulse Decay 

 

The pulse decay case was also examined,
14

 and a curve fit of this solution is shown in (x, t) space 

in Figure 26. The axes are the same as for the previous case. The pulse decay is shown from 0.2 

seconds to 1 second. The numerical solution and curve fit are shown in Figure 27. Curve fit error 

on the coarse and fine grids are shown in Figure 28, while the source term is shown in Figure 29. 

The curve fit of the pulse decay is more difficult than that of the previous shock coalescence 

case. The pulse decay has sharp solution gradients where the initial pulses are formed. This 

represents a difficult region to fit accurately. In addition the pulses are strongest right at a 

boundary. The magnitude of the oscillations in the curve fit error and source term are decreased 

by refining the grid. The maximum percent curve fit errors are shown in Table 3, where grid 

refinement decreases the error by two orders of magnitude. 

 

 

 
Figure 26.  Pulse decay curve fit surface plot. 

 

 

  

Figure 27.  Pulse decay numerical solution and curve fit. 
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Figure 28.  Pulse decay curve fit error comparison. 

 

 
Table 3.  Shock coalescence maximum percentage curve fit errors 

 

 % CF Error 

Coarse Grid 0.37 

Fine Grid 0.0020 

 

 

  

Figure 29.  Pulse decay source term comparison. 

 

 

The discretization errors in the original and nearby problems are presented in Figure 30 for the 

coarse grid. The nearby problem discretization error matches the qualitative behavior of the 

original problem discretization error. The discretization errors on the fine grid are shown in 

Figure 31. This refined grid actually does a worse job at estimating the error in the original 

problem. The two complete oscillations seen in the original problem discretization error are 

represented by only one oscillation in the nearby problem discretization error. This behavior can 

also be seen in Figure 32 with x-y plots comparing the two discretization errors for both coarse 

and fine grids. The reasons for such poor estimates of the discretization error are not known, but 

may be related to the presence of the large gradients at the t = 0 domain boundary. 
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Figure 30.  Pulse decay comparison of discretization error (coarse grid). 

 

 

  

Figure 31.  Pulse decay comparison of discretization error (fine grid). 

 

 

  

 
Figure 32.  Pulse decay comparison of discretization error (x-y plots). 

 

 

5.2.2. Incompressible Navier-Stokes 
 

The incompressible Navier-Stokes equations are solved for the flow in a lid-driven cavity at a 

Reynolds number of 100 (see Ref. 21 for details). A contour plot of the u-velocity (i.e., the 



48 

velocity in the x-direction) from a numerical solution on a 257257 grid is given in Figure 33a. 

Also shown in the figure are streamlines which denote the overall clockwise circulation induced 

by the upper wall velocity (the upper wall moves from left to right), as well as the two counter-

clockwise rotating vortices in the bottom corners. A spline fit was generated using 3
rd

 order 

polynomials with C
3
 continuous weighting functions and 6464 spline zones. Note that while no 

additional boundary constraints are placed on the velocity components for the spline fit, the 

maximum deviations from the original boundary conditions are on the order of 1×10
-7

 m/s and 

are thus quite small. The u-velocity contours and streamlines for the spline fit are presented in 

Figure 33b. The fit solution is qualitatively the same as the underlying numerical solution. The 

streamlines were injected at exactly the same locations in both figures and are indistinguishable 

from each other. Furthermore, in both cases the streamlines near the center of the cavity follow 

the same path for multiple revolutions.  

 

 
a)             b) 

Figure 33.  Contours of u-velocity and streamlines for the driven cavity case at Reynolds 
number 100: a) 257x257 node numerical solution and b) C3 continuous spline fit using 

64x64 spline zones. 

 

One of the difficulties that arises in both solving the driven cavity problem and in generating 

spline fits of the resulting solutions is the presence of strong singularities at the two top corners 

where the moving lid meets the stationary walls. The flow stagnation in the top right corner leads 

to a strong pressure rise, while the flow acceleration in the top left corner leads to a strong 

pressure drop. Contours of static (gauge) pressure for the 257257 numerical solution are given 

in Figure 34a, while contours for the spline fit using 6464 zones are shown in Figure 34b. 

Again, these contours are qualitatively identical.  
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a)             b) 

Figure 34.  Contours of static gauge pressure for the driven cavity case at Reynolds 
number 100:  a) 257x257 node numerical solution and b) C3 continuous spline fit using 

64x64 spline zones. 

 

A more quantitative comparison between the underlying numerical solution and the spline fits is 

presented in Figure 35 which shows the spline fitting error relative to the numerical solution as a 

function of the number of spline zones in each direction. For the u-velocity (Figure 35a), the 

average error magnitude (L1 norm) decreases from 1×10
-3

 m/s to 3×10
-6

 m/s with increasing 

number of spline zones from 88 to 6464, while the maximum error (L norm) decreases from 

0.7 m/s to 0.01 m/s. For the static pressure (Figure 35b), the average error magnitude decreases 

from 1×10
-3

 N/m
2
 to 5×10

-6
 N/m

2
 with increasing number of spline zones, while the maximum 

error decreases from 1 N/m
2
 to nearly 0.01 N/m

2
.  

 
a)             b) 

Figure 35.  Variation of the error between the spline fits and the underlying 257x257 
numerical solution as a function of the number of spline zones in each direction for the 

driven cavity: a) u-velocity and b) pressure. 
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In addition to using the spline fitting approach to generate exact solutions, MNP has been 

employed to estimate the discretization error in the original driven cavity numerical solution. As 

discussed previously, if the nearby problem is “near enough” to the original problem of interest, 

then the discretization error in the nearby problem (which can be evaluated exactly) can serve as 

an estimate of the error in the original problem of interest. The estimated discretization error at 

the mid-height of the cavity using MNP for the 6565 nodes solution is presented in Figure 36 

along with error estimates from Richardson extrapolation (which also requires the solution on a 

coarser 3333 node mesh). In order to judge which error estimation approach is more accurate, a 

numerical solution is also computed on a very fine 257257 node mesh, with the resulting 

solution used to approximate the “true error” which is displayed as symbols in Figure 36. The 

discretization error estimates using MNP are generally not as good as those from Richardson 

extrapolation when the nominal value of the second-derivative damping coefficient (C2 = 1.0) is 

used in the nearby problem; however, as this coefficient is reduced to 0.1 and then ultimately to 

zero (i.e., no second-derivative damping), the error estimates from MNP improve dramatically 

and are somewhat better than those found from Richardson extrapolation. In this case the nearby 

problem is likely smoother than the original problem, especially near the singular corners. Thus 

the nearby problem does not require the second derivative damping (whereas the original 

problem was unstable without some second derivative damping). In addition, these damping 

terms act as additional terms in the governing equations which are being neglected when 

computing the source term for the nearby problem. Table 4 gives the maximum difference 

between the different discretization error estimates and the true error as judged by the “truth” 

mesh, which can also be considered as the error in the error estimate. While Richardson 

extrapolation consistently out-performs the baseline MNP approach, as the second-derivative 

damping coefficient (C2) is reduced, the error estimates from MNP are significantly improved 

relative to Richardson extrapolation. 

 

 

Figure 36.  Discretization error for the standard driven cavity along the line y = 0.025 m 
(cavity centerline) showing the true error (estimated from a 257x257 grid), Richardson 
extrapolation (using grids of 65x65 and 33x33 nodes), and MNP using varying second-

derivative damping constants. 
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Table 4.  Maximum error magnitude in the discretization error estimate for the driven 

cavity case. 

 

 RE MNP MNP (C2=0.1) MNP (C2=0.0) 

u-velocity 33% 66% 15% 8% 

v-velocity 14% 32% 10% 16% 

Pressure 20% 28% 6% 8% 

 

Contour plots of the discretization error in the v-velocity are presented in Figure 37 for a) the 

“true” error (approximated using the 257257 node mesh), b) MNP with C2 = 0, and c) 

Richardson extrapolation. The MNP approach clearly provides a more accurate representation of 

the true error in the center of the cavity; however, Richardson extrapolation does appear to be 

more accurate near the two corner singularities.  

 

 
     a)         b)     c)  

Figure 37.  Contours of the discretization error in u-velocity for the standard driven 
cavity: a) true error estimated from a 257x257 grid, b) error estimate from the MNP 

procedure with C2 = 0.0, and c) error estimate from Richardson extrapolation. 

 

 

5.2.3. Compressible Euler Equations 
 

The compressible Euler equations are discretized using a cell-centered finite volume method. 

Roe’s method
29

 is used for calculating the interface fluxes. MUSCL extrapolation
30

 is used for a 

second-order accurate, fully upwinded scheme. A simple explicit scheme is used with local time 

stepping. All simulations were done in double precision and the iterative residuals were 

converged to machine zero. The code has been fully verified using the method of manufactured 

solutions.
2,3

 Additional details on the numerical method can be found in Refs. 14 and 28.  
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5.2.3.1. Manufactured Solution: Curvilinear Grid A 

 

Two different manufactured solutions are studied on a general curvilinear mesh (called 

Curvilinear Grid A).
28

 The first is a supersonic solution and the second is a subsonic solution. 

The problems are identical with the exception of the exact solution, the corresponding source 

term, and the boundary conditions. Both solutions are shown in Figure 38a and Figure 38b, 

respectively. The finest mesh is 129129 and corresponds to a mesh size parameter of h = 1. A 

family of grids is created by systematically coarsening the original grid by a factor of two (i.e. 

removing every other point) where the coarsest mesh is 99 (corresponding to h = 16). 
 

 
 

 

 
 

a)             b) 

Figure 38.  Manufactured solution showing the conserved variable  and streamlines on 
the 33x33 mesh: a) supersonic solution and b) subsonic solution. 

 

To compare the local estimates, a slice extracted from the subsonic manufactured solution is 

shown in Figure 39. The defect correction methods and Richardson extrapolation compare 

qualitatively well with the exact error with neither showing clearly better results. All three defect 

corrections methods have the same trends. A similar cross-section for the supersonic 

manufactured solution is given in Figure 40 and shows very accurate estimates for all methods. 
 

 
 

Figure 39.  Slice through the subsonic manufactured solution along the j=17 node 
location for the 33x33 grid. 
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Figure 40.  Slice through the supersonic manufactured solution along the j=17 node 
location for 33x33 grid. 

 

 

5.2.3.2. Manufactured Solution: Curvilinear Grid B 

 

Manufactured solutions
2,3

 were examined on two different grids in Refs. 14 and 15 to investigate 

the effect of grid quality on the MNP process: a highly skewed grid (Curvilinear Grid A) and a 

mildly skewed grid (Curvilinear Grid B). The second grid, Curvilinear Grid B, covers a similar 

domain in physical space, but has less stretching, skewing and curvature than Curvilinear Grid 

A. Curvilinear Grid B is pictured in Figure 41. 

 

 

Figure 41.  Curvilinear Grid B. 

 

 

Figure 42 shows a comparison of the numerical solution and curve fit for pressure. The curve fits 

for all primitive variables are shown in Figure 43. The results are shown for a 129129 grid, with 

32 zones in each direction, 3
rd

 order least squares fits, and C
3
 weight functions. The curve fits do 
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a good job of matching the underlying numerical solution. The curve fit errors are presented in 

Figure 44 with percent error shown in Table 5. The curve fit errors are smooth which is expected 

as this is the nature of the numerical solution and curve fits. The percent curve fit errors are less 

than those for Curvilinear Grid A, which is evidence that grid quality affects the curve fit 

accuracy. See Ref. 14 for more details. 

 

  

 
Figure 42.  Curvilinear Grid B numerical solution and curve fit. 
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Figure 43.  Curvilinear Grid B curve fits. 
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Figure 44.  Curvilinear Grid B curve fit error. 
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Table 5.  Curvilinear Grid B maximum percentage curve fit errors. 

 

   u  v  p  
te  

% CF Error 0.00187 0.00167 0.000586 0.0152 0.00325 

 

 

Extracted distributions of the curve fit and curve fit error for density are shown in Figure 45 for a 

slice at 5.0y  m. There is a spike in the curve fit error at both boundaries, which indicates that 

even for a smooth solution, the boundaries of the problem are a more difficult region to fit. 

 

  

 
Figure 45.  Curvilinear Grid B slices of curve fit and error. 

 

 

The source terms in Figure 46 exhibit the greatest magnitude near the boundaries. Figure 47 is an 

x-y plot of the mass source term, at a slice through the domain. The spike in source term 

magnitude at the boundaries can be seen clearly. This is related to the curve fit error at the 

boundaries. 
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Figure 46.  Curvilinear Grid B MNP source terms. 
 

 

Figure 47.  Curvilinear Grid B slice of mass source term. 

 

A comparison between original problem discretization error and nearby problem discretization 

error is given in Figure 48. The nearby problem discretization error provides a good estimate of 

the error in the original problem. A slice comparison of the discretization error is provided in 

Figure 49. 
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Figure 48.  Curvilinear Grid B discretization error comparison: original problem (left) and 

nearby problem (right). 

 

 

 

 
Figure 49.  Curvilinear Grid B slice discretization error comparison. 

 

 

The effect of refining the number of grid points and zones is shown in Figure 50. Both the 

previous results for Curvilinear Grid A (see Ref. 14) and the above results for Curvilinear Grid B 

are shown for comparison. As both grid points and zones are refined, the curve fit error and 

source term both drop in magnitude at a constant rate. The effect of changing only the number of 

zones while holding grid points constant is given in Figure 51. The curve fit error drops as the 

number of zones is increased, but shows the biggest drop between 8 zones and 16 zones. The 

source term norms give a conflicting picture of the effect of zone refinement. It appears that 

increasing the number of zones does not significantly decrease the source term magnitude. Even 

with a small number of zones, the problem may be smooth enough that using more zones simply 

is not necessary. Figure 52 shows the effects of changing the order of the local least squares fits. 

Increasing the order of the least squares fits causes the curve fit error norms and source term 

norms to drop, with the greatest reduction between first and second order fits. Again, with 
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sufficiently small zones the numerical solution will approach a linear behavior over each zone, 

where a higher order least-squares fit may not improve the accuracy of the fit. One important 

observation to note is that for most of the trends observed, the norms for Curvilinear Grid B are 

smaller than for Curvilinear Grid A. This indicates that grid quality has an effect on the curve fits 

and source terms for the MNP. 

 

  

Figure 50.  Curvilinear Grid B effect of grid/zone refinement. 

 

 

  

Figure 51.  Curvilinear Grid B effect of zone refinement only. 
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Figure 52.  Curvilinear Grid B effect of least squares fit order. 

 

 

5.2.3.3. Supersonic Vortex 

 

The supersonic vortex problem is solved on a series of five systematically-refined meshes.
28

 The 

finest grid is 257129 and is refined by a factor of 2 to the coarsest grid of 179. The conserved 

energy variable, streamlines, and a coarse grid are shown in Figure 53.  

 

 
 

 
Figure 53.  Supersonic vortex flow showing the conserved variable  and streamlines 

on the 33x17 mesh. 

 

The true discretization error for this problem is shown in Figure 54 as both a contour plot and as 

an extracted x-y plot along the outer wall. The defect correction methods do not provide accurate 

representations of the discretization error for this case, possibly due to deficiencies in the 

boundary conditions. All three defect correction methods show almost identical result with large 

oscillations in the error estimate compared to the true error. Contours of the discretization error 
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for the defect correction methods, Richardson extrapolation, and the true error are shown in 

Figure 55. Oscillations are also evident along the two inviscid walls.  

 

 
 

Figure 54.  Slice along the outer wall for supersonic vortex flow for 33x17 grid. 

 

 

 
Figure 55.  Contour plots of error for supersonic vortex flow on the 33x17 mesh. 

 

 

5.2.3.4. Ringleb’s Flow 

 

Ringleb’s flow (see Figure 56) is computed on three systematically-refined meshes.
28

 The finest 

grid is 6565 and is coarsened by a factor of 2 to the coarsest grid of 1717. Similar to 

supersonic vortex flow, the bounding streamlines are modeled as a wall. While Ringleb’s flow 

and supersonic vortex flow are both fully supersonic problems with non-penetration boundary 

conditions, the defect correction error estimates performed very differently as illustrated by the 

slice along the outer wall for supersonic vortex flow shown in Figure 54 compared to a slice 
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through the Ringleb’s flow shown in Figure 57. Ringleb’s flow matches the true error very well 

and performs significantly better than Richardson extrapolation. These results are further 

confirmed by examining contour plots of the discretization error given in Figure 58.  

 

 
 
Figure 56.  Ringlebs flow solution showing the conserved variable  and streamlines on 

the 33x33 mesh. 

 
 

 
 

 

Figure 57.  Slice through Ringleb's flow on the 33x33 grid. 
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Figure 58.  Contour plot of discretization error for Ringleb's flow on the 33x33 mesh. 

 

 

5.2.3.5. Subsonic Airfoil 

 

The Euler equations are used to solve for the inviscid flow over a subsonic airfoil
14,15

 which, in 

this case, has no exact solution. The airfoil is run at sea level atmospheric conditions with a 

Mach number of 0.5 and 4 degrees angle of attack. The domain is decomposed using a structured 

“C” shaped grid, which wraps around the airfoil. The fine grid is 129257 and is shown in 

Figure 59. 

 

 
 

Figure 59.  Airfoil grid. 
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The curve fits of the primitive variables and the energy term are presented in Figure 60. The 

curve fit errors are presented in Figure 61. These plots show the domain around the airfoil as 

well as a close-up view of the nose region. The curve fit error is largest near the top of the 

leading edge (x = 0). The curve fit error plots use different contour levels between the overview 

and close-up to show the behavior throughout the domain. Large oscillations are seen in the plots 

of the curve fitting errors, possibly due to the large gradients present near the airfoil boundary. 

Maximum absolute percent curve fit errors are given in Table 6 for density, pressure, and energy. 

The velocities are omitted from the table because they both cross through zero at some point in 

the domain which causes large percent curve fit errors even though the absolute error is not 

necessarily large. 
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Figure 60.  Airfoil numerical solution (left) and curve fits (right). 
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Figure 61.  Airfoil curve fit errors. 
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Table 6.  Subsonic airfoil maximum percentage absolute curve fit errors 

   u  v  p  
te  

% CF Error 1.981 - - 2.741 0.2878 

 

 

The source terms are shown in Figure 62. The source terms are concentrated at the surface of the 

airfoil, which is expected as this is where the solution changes most rapidly. This causes some 

curve fitting errors which translate into source terms. Some cells near the nose of the airfoil have 

significantly higher values than anywhere else within the domain. 

 

  

  

Figure 62.  Airfoil MNP source terms. 

 

 

The exact discretization error in the original problem cannot be calculated, as the exact solution 

to the original problem in not known. The discretization error in the nearby problem is shown in 

Figure 63, but is likely to be a poor approximation of the actual discretization error due to the 

large curve fitting errors and MNP source terms. 
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Figure 63.  Airfoil nearby problem discretization errors. 

 

 

Several x-y line plots are shown in Figure 64, showing the pressure discretization error for a 

constant 0y . One is an enlargement of the interesting behavior, while the other shows an 

overview. There is a large oscillation in the discretization error just before the flow reaches the 

surface of the airfoil. This is not unexpected as there is a sharp pressure gradient here, with the 

stagnation point close by. The region around the stagnation point is a difficult region to resolve 

with the current, relatively coarse grid. There is no data shown behind the airfoil, due to the 

nature of the grid. The values plotted are cell-centered. Another set of x-y line plots are shown in 

Figure 65. This time the pressure discretization error is shown for a constant x/c = 0.05. There 

are some oscillations as near the surface of the airfoil, as expected.  
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Figure 64.  Airfoil x-y plot of pressure discretization error (slice at y=0). 

 

 

  

Figure 65.  Airfoil x-y plot of pressure discretization error (slice at x/c=0.05). 

 

 

Richardson extrapolation was also performed on the airfoil problem. This calculation uses the 

fine grid (129257) and coarse grid (65129), for a refinement factor of two. The formal order of 

accuracy of two was also used. Equation (32) shows the expression for the Richardson 

extrapolation error estimate in the fine solution 

1




p

rhh

h
r

ff
ff  

(32) 

where f  is the estimated exact solution, h  is the fine grid spacing parameter, r  is the grid 

refinement factor, and p  is the formal order of accuracy. It follows that hf  is the fine grid 

solution and rhf  is the coarse grid solution. The Richardson extrapolation error estimates are 
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shown in Figure 66. The Richardson extrapolation error estimates seem to be on the same order 

of magnitude as the MNP nearby problem discretization errors. Richard extrapolation also 

suggests that the location of maximum discretization error tends to be on the upper surface of the 

airfoil leading edge. 

 

  

  

Figure 66.  Airfoil Richardson extrapolation error estimate. 
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6.  CONCLUSIONS 
 
The Method of Nearby Problems (MNP) has been developed to generate exact solutions to 

partial differential equations and as a single grid discretization error estimator. When used in the 

generation of exact solutions, local spline-type fits were required to overcome limitations of 

global curve fitting. A weighting function approach was further developed which uses a series of 

overlapping local fits which are combined together using the weighting functions. These 

weighting functions can be tailored to provide arbitrary levels of continuity along the spline 

fitting boundaries. While this approach is extendable to an arbitrary number of dimensions 

(which may be useful for optimization or uncertainty quantification), the tool we developed is 

capable of handling four-dimensional problems (i.e.., three spatial dimensions and time). While 

the tool is limited to Cartesian domains, curvilinear structured grid problems are addressed by 

formulating the fitting in a Cartesian computational space. Initial testing of this approach in one- 

and two-dimensions indicated that regions of high gradients, especially near the domain 

boundaries, led to oscillations in the spline approximation. In order to overcome this problem, 

additional work is needed on structured mesh adaptation and advanced local fitting procedures. 

 

A residual-based error estimation framework was developed based on the Generalized 

Truncation Error Expression (GTEE). This framework is particularly useful for developing 

residual-based error estimators for finite difference and finite volume methods. Within this 

framework, a number of residual-based error estimators can be examined including defect 

correction, error transport equations, and adjoint methods. The defect correction approach was 

developed in both continuous and discrete forms. MNP is in fact a form of continuous defect 

correction where numerical solutions are fit in a continuous manner before being operated on by 

the partial differential equation (PDE). However, when the goal is discretization error estimation, 

continuity is not required between the local fits and simpler, local fits can be used.  

 

We have examined MNP/defect correction for discretization error estimation on a series of 

problems including 1D and 2D Burgers’ equation, the compressible Euler equations, and the 

incompressible Navier-Stokes equations. The error estimation results were quite promising, 

especially with only local fits were used (i.e., when the weighting functions were omitted). The 

key advantage to MNP/defect correction is that it only requires a single additional solution on the 

same grid, as opposed to approaches such as Richardson extrapolation which require numerical 

solutions on multiple grids which have been systematically refined. Issues still remaining to be 

addressed include extensions to unstructured grids (which are now possible since the weighting 

functions are no longer deemed necessary) and the proper treatment of the truncation error at the 

boundaries. 
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