Spin and angular momentum in the nucleon

PDF Version Also Available for Download.

Description

Using the covariant spectator theory (CST), we present the results of a valence quark-diquark model calculation of the nucleon structure function f(x) measured in unpolarized deep inelastic scattering (DIS), and the structure functions g1(x) and g2(x) measured in DIS using polarized beams and targets. Parameters of the wave functions are adjusted to fit all the data. The fit fixes both the shape of the wave functions and the relative strength of each component. Two solutions are found that fit f(x) and g1(x), but only one of these gives a good description of g2(x). This fit requires the nucleon CST wave ... continued below

Physical Description

093006 (27 pages)

Creation Information

Franz Gross, Gilberto Ramalho, Teresa Pena May 1, 2012.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Using the covariant spectator theory (CST), we present the results of a valence quark-diquark model calculation of the nucleon structure function f(x) measured in unpolarized deep inelastic scattering (DIS), and the structure functions g1(x) and g2(x) measured in DIS using polarized beams and targets. Parameters of the wave functions are adjusted to fit all the data. The fit fixes both the shape of the wave functions and the relative strength of each component. Two solutions are found that fit f(x) and g1(x), but only one of these gives a good description of g2(x). This fit requires the nucleon CST wave functions contain a large D-wave component (about 35%) and a small P-wave component (about 0.6%). The significance of these results is discussed.

Physical Description

093006 (27 pages)

Source

  • Journal Name: Physical Review. D, Particles, Fields, Gravitation and Cosmology; Journal Volume: 85

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-THY-12-1489
  • Report No.: DOE/OR/23177-1994
  • Report No.: arXiv:1201.6337
  • Grant Number: AC05-06OR23177
  • DOI: 10.1103/PhysRevD.85.093006 | External Link
  • Office of Scientific & Technical Information Report Number: 1040696
  • Archival Resource Key: ark:/67531/metadc833097

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 3, 2016, 6 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Franz Gross, Gilberto Ramalho, Teresa Pena. Spin and angular momentum in the nucleon, article, May 1, 2012; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc833097/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.