Activation Energy of Tantalum-Tungsten Oxide Thermite Reaction

PDF Version Also Available for Download.

Description

The activation energy of a high melting temperature sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the High Pressure Spark Plasma Sintering (HPSPS) technique to 300 and 400 C to produce pellets with dimensions of 5 mm diameter by 1.5 mm height. A custom built ignition setup was developed to measure ignition temperatures at high heating rates (500-2000 C {center_dot} min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Unlike the 400 C samples, results show that the samples consolidated to 300 ... continued below

Physical Description

PDF-file: 23 pages; size: 1 Mbytes

Creation Information

Cervantes, O.; Kuntz, J.; Gash, A. & Munir, Z. February 25, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 102 times , with 14 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The activation energy of a high melting temperature sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the High Pressure Spark Plasma Sintering (HPSPS) technique to 300 and 400 C to produce pellets with dimensions of 5 mm diameter by 1.5 mm height. A custom built ignition setup was developed to measure ignition temperatures at high heating rates (500-2000 C {center_dot} min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Unlike the 400 C samples, results show that the samples consolidated to 300 C undergo an abrupt change in temperature response prior to ignition. This change in temperature response has been attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465-670 C. The activation energy of the SG derived Ta-WO{sup 3} thermite composite consolidated to 300 and 400 C were determined to be 37.787 {+-} 1.58 kJ {center_dot} mol{sup -1} and 57.381 {+-} 2.26 kJ {center_dot} mol{sup -1}, respectively.

Physical Description

PDF-file: 23 pages; size: 1 Mbytes

Source

  • Journal Name: Combustion and Flame, vol. 158, no. 1, July 30, 2010, pp. 117-122; Journal Volume: 158; Journal Issue: 1

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LLNL-JRNL-425030
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 1010830
  • Archival Resource Key: ark:/67531/metadc832985

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 25, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 22, 2016, 3:03 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 14
Total Uses: 102

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Cervantes, O.; Kuntz, J.; Gash, A. & Munir, Z. Activation Energy of Tantalum-Tungsten Oxide Thermite Reaction, article, February 25, 2010; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc832985/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.