Waveguide Structures for RF Undulators with Applications to FELs and Storage Rings

PDF Version Also Available for Download.

Description

RF undulators, suggested a long time ago, have the advantage of fast dynamic control of polarization, undulator strength and wavelength. However, RF undulators require very strong RF fields in order to produce radiation of the same order as conventional static devices. Very high power RF energy confined inside a waveguide or a cavity can provide the necessary RF fields to undulate the electron beam. However, the wall losses in the waveguide should be low enough to make it practically feasible as a CW or quasi CW undulator and, hence, competitive with static devices for applications to storage rings and FELs. ... continued below

Physical Description

3 pages

Creation Information

Yeddulla, M.; Geng, H.G.; Huang, Z.; Ma, Z.; Tantawi, S.G. & /SLAC November 2, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

RF undulators, suggested a long time ago, have the advantage of fast dynamic control of polarization, undulator strength and wavelength. However, RF undulators require very strong RF fields in order to produce radiation of the same order as conventional static devices. Very high power RF energy confined inside a waveguide or a cavity can provide the necessary RF fields to undulate the electron beam. However, the wall losses in the waveguide should be low enough to make it practically feasible as a CW or quasi CW undulator and, hence, competitive with static devices for applications to storage rings and FELs. Here we present various waveguide structures such as smooth walled and corrugated walled waveguides and various RF modes. We will show that there are some advantages in operating with higher order modes and also with hybrid modes in the corrugated guide. We will show that the RF power requirement for some of these modes will permit a quasi CW operation of the undulator, thus permitting its operation in a storage ring.

Physical Description

3 pages

Source

  • Journal Name: Conf.Proc.C0806233:wepc136,2008; Conference: EPAC'08, 11th European Particle Accelerator Conference, 23-27 June 2008, Genoa, Italy

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-14670
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 1028701
  • Archival Resource Key: ark:/67531/metadc832935

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 2, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 8, 2016, 1:52 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Yeddulla, M.; Geng, H.G.; Huang, Z.; Ma, Z.; Tantawi, S.G. & /SLAC. Waveguide Structures for RF Undulators with Applications to FELs and Storage Rings, article, November 2, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc832935/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.