D0 CC Cryostat Test Cooldown - Cooldown Time

PDF Version Also Available for Download.

Description

The D0 CC Cryostat is to be cold tested with LN{sub 2}. Calculations show that the time required for the 12.5 ton stainless steel inner vessel to reach equilibrium is around 5 hours if the vessel is cooled by introducing liquid into a nozzle at the bottom. The heat transfer calculations contain many assumptions. As a result, the vessel will be cooled by spraying LN{sub 2} through a nozzle at the vessel top, providing as fast a cooldown as desired. Although calculations of the bottom-fill cooldown method indicate a reasonable cooldown time, the assumption of uniform gas temperature (absence of ... continued below

Physical Description

10 pages

Creation Information

Fuerst, J. D. August 19, 1987.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The D0 CC Cryostat is to be cold tested with LN{sub 2}. Calculations show that the time required for the 12.5 ton stainless steel inner vessel to reach equilibrium is around 5 hours if the vessel is cooled by introducing liquid into a nozzle at the bottom. The heat transfer calculations contain many assumptions. As a result, the vessel will be cooled by spraying LN{sub 2} through a nozzle at the vessel top, providing as fast a cooldown as desired. Although calculations of the bottom-fill cooldown method indicate a reasonable cooldown time, the assumption of uniform gas temperature (absence of stratification) is vital to the analysis and in fast may not be valid. Initially, as liquid is introduced into the bottom of the vessel, it will boil rapidly creating large amounts of cold gas which then cool the walls above. As the vessel bottom cools and LN{sub 2} begins to pool, however, the boiloff rate could decrease significantly. Thus the cold gas assumed in the free convection calculations is not generated. For this reason and in the interest of a speedy cooldown it has been decided to fill the vessel by spraying LN{sub 2} in through a nozzle in the vessel top.

Physical Description

10 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: FERMILAB-D0-EN-107
  • Grant Number: AC02-07CH11359
  • DOI: 10.2172/1030712 | External Link
  • Office of Scientific & Technical Information Report Number: 1030712
  • Archival Resource Key: ark:/67531/metadc832931

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 19, 1987

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 30, 2016, 4:02 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Fuerst, J. D. D0 CC Cryostat Test Cooldown - Cooldown Time, report, August 19, 1987; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc832931/: accessed July 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.