Comparative Analysis of Twelve Dothideomycete Plant Pathogens

Robin Ohm¹, Andrea Aerts¹, Asaf Salamov¹, Steven Goodwin² and Igor Grigoriev¹

¹DOE Joint Genome Institute and ²USDA ARS Purdue University Campus

¹To whom correspondence may be addressed. E-mail: raohm@lbl.gov.

March 14, 2011

ACKNOWLEDGMENTS:
The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Additionally, we wish to thank and acknowledge the following for their efforts: Rosie Bradshaw, Lynda Ciuffetti, Richard Hamelin, Barbara Howlett, Gert Kema, Christopher Lawrence, Richard Oliver, Joey Spatafora & Gillian Turgeon.

DISCLAIMER:

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.
Comparative analysis of twelve Dothideomycete plant pathogens

Robin A. Ohm1, Andrea Aerts1, Asaf Salamov1, Stephen B. Goodwin2, Igor V. Grigoriev1
rao@lbl.gov
1 DOE - Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
2 USDA-ARS, Crop Production and Pest Control Research Unit, 915 West State Street, Purdue University campus, West Lafayette, IN 47907-2054, USA

Introduction

The Dothideomycetes are one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related Dothideomycete species can have very diverse host plants. Twelve Dothideomycete genomes have currently been sequenced by the Joint Genome Institute and other sequencing centers. They can be accessed via Mycocosm which has tools for comparative analysis.

Mycosphaerella graminicola

Mycosphaerella graminicola

Lepotosphaeria maculans

Mycosphaerella fijiensis

Dispersable chromosomes. *M. graminicola* has experimentally been shown to have chromosomes that are dispensable (not necessary for survival). These chromosomes have lower GC content, higher repeat content, lower gene density and a lower percentage of proteins with a PFAM domain. As an example, chromosome 14 is shown. Similar chromosomes (or scaffolds) have been computationally identified in other Dothideomycetes. Examples are shown here. Their dispensability will have to be confirmed in the lab.

Comparative transcriptomics. Microarray data is available for *M. graminicola* (pathogen of wheat; Keen et al. 2005 and 2007) and *L. maculans* (pathogen of oil seed rape plants; Rouzel et al. 2011). In both cases gene expression was analyzed during early and late stage of infection, allowing comparative analysis. There are 17 annotation terms that were over-represented in this group (p < 10⁻⁴), meaning that they may be involved in the pathogenesis process.

Conclusions.

- Genome size and repeat content vary widely in the twelve Dothideomycete genomes which are now available via Mycocosm.
- Many intra-chromosomal, but few inter-chromosomal rearrangements have occurred during evolution. This observation is called ‘mesosynteny’ and is observed in all 12 Dothideomycetes. The mechanism behind it is unknown.
- A large part of the Dothideomycete protein families (as determined by MCL clustering) has been implicated in fungus-plant interactions in several cases, for example during pathogenesis or ectomycorrhizal symbiosis. Within the Dothideomycetes there are large differences in numbers of PFAMs. The definition of SSP that was used here is < 200 amino acids, presence of a secretion signal and absence of a transmembrane domain.

Acknowledgements. Rosie Bradshaw, Lynda Ciuflotti, Steve Goodwin, Richard Hamelin, Barbara Howlett, Gert Kema, Christopher Lawrence, Richard Oliver, Joey Spaitafora & Gillian Turgeon

The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.