Indiana University Final Report for the Center for
Simulation of Wave Interactions with
Magnetohydrodynamics (SWIM) project, DOE contract
ER2580-4

Randall Bramley
Department of Computer Science
School of Informatics
Indiana University
Bloomington, IN

August 2, 2012

1 Project Description

Indiana University’s SWIM activities have primarily been in three areas. All are completed, but
we are continuing to work on two of them because refinements are useful to both DoE laboratories
and the high performance computing community.

2 Linear Solver Interface (LISI)

The Linear Solver Interface (LISI) is a Common Component Architecture (CCA) compliant in-
terface to high performance solvers for sparse systems of linear equations. Those are requried by
several SWIM codes, and the MHD codes in particular rely heavily on the availability of such
solvers. A single solver method usually cannot succeed on every linear system generated even
within an MHD code, so the ability to rapidly test and switch to a different package when failures
occur is vital. This is easy to do and has been done for serial codes, but for parallel linear solver
packages a large amount of data decomposition, initial set up of distributed data structures, and
ways of establishing communications between processes for a linear solve make this kind of plug
and play capability difficult. Most codes are written to use one such system, and switching to a
different solver is difficult, error-prone, and time-consuming.

An former IU Ph.D. graduate, Fang (Cherry) Liu, has developed LISI in collaboration with
the Ames Iowa lab to address this problem, and now it encapsulates many of the most frequently
used parallel linear solver systems including Hypre (LLNL), PeTSC (ANL), Trilinos (Sandia),
SuperLU (Lawrence Berkeley Lab). LISI itself is not a linear system solver, but instead a simple
CCA interface to the solvers, which hides the differences between the solver implementations. This

1



makes experimentation and simulation easier and more robust. Changing a code like NIMROD to
use Hypre instead of PeTSC requires changing roughly 200 lines in the source code; with LISI the
user does not need to change any lines of code and can specify which solver to use as an input
parameter.

End users primarly only care about the solvers working accurately, reliably, and scalably par-
allel. Getting the solvers to work correctly is the task of numerical linear algebraists and scientific
computing experts. They in turn are greatly interested in the linear solve process itself, to find
limitations and design better algorithms. Hierarchical parallel solvers (e.g., Hypre and Trilinos)
in particular are still in development, since a failure to solve on a single level or single compo-
nent causes the entire solve to fail. To address both end users and linear solver experts, LISI has
delineated three user interface levels explicitly defined. It is still a single CCA interface, but that
interface can be subclassed to allow finer control over the solve process. Three levels of user
interface were defined together with Ames Lab and CCA participants and are

1. A level that just provides a minimalist invocation to a solver, which simply consists of a
call to a solver provider with only the linear system defined. In this case the solver provider
determines all of the method and parameter settings required.

2. Anintermediate level where an end user can choose particular solver methods (e.g., GMRES
with diagonal preconditioning) and other high-level control parameters.

3. An expert level which allows full control of all parameters and methods.

An end user can use any of those or use primarily a minimalist level with only a few parameters set.
The expert level in part is intended for researchers in numerical linear algebra who are working
with particular applications, where some knowledge of the underlying problem can help guide
those choices.

2.1 ISP Framework

The SWIM framework is the Integrated Plasma Simulator (ISP), a set of Python codes and inter-
faces that a plasma physicist uses to specify a simulation that involves multiple codes acting in-
depentdently. Python was chosen because it is available on all DOE high-performance platforms,
including some for which Java is not available. Python has also been widely adopted by end-user
scientists independently of the ISP, making the learning curve as flat as possible. The framework
provides an interface that allows physicists to formulate a combined simulation in a natural style,
using loops and other control structures which are familiar to Fortran programmers. Underneath
the ISP is an object-oriented Common Component Architecture (CCA) software component sys-
tem, which end users can manipulate and modify, but which no end user has to deal with. The ISP
is currently in use for production SWIM runs, and seems stable.

The ISP-related activity at IU was the development of the “sub-batch resource manager” (SBR).
When multiple interacting codes are used, they all need to be launched from a single MPI batch
job. If multiple batch jobs are launched, one for each code, a single code may wait for days in
the queue before being started. Because SWIM requires coupling codes in a tight time loop, this
makes using the batch system impractical.



The Fusion Simulation Project (FSP) codes also vary widely from serial to limited parallelism
to scalably parallel programs. To avoid having several thousand processors idle when a limited-
parallel code is running, the SBR has the opportunity to identify other tasks from the same run
which are waiting execution. Although all HPC batch managers allow launching a script instead of
a single parallel code, those scripts are static and cannot take advantage of execution opportunities
that occur during a run.

This scheduling problem is familiar for multiprogram operating systems and Grid job manage-
ment tools like Kepler, but it occurs at a lower level at which those tools do not operate.

The IU Ph.D. graduate Samantha Foley has had primary responsibility for research on this
work, and it is now part of the SWIM toolset. The ISP has been written in a way that has allowed
the SBR to be introduced without requiring intervention from the end user. Further unfunded work
includes experimenting with different scheduling strategies such as guided self-scheduling.

3 Connecting Components with an MPI I/O Interface

Many existing methods for connecting independently running programs involve using file I/O. One
or more codes writes out a results file which is subsequently used as input for dependent waiting
codes. File I/O involves a major bottleneck — not from the actual time to write out or read in a
file, but from the implicit synchronization point required to have a single process (the process with
rank 0 in MPI) carry out the task. The MPI I/O interface was created to deal with that problem,
allowing users to read and write a single file in parallel. Furthermore, many end users are familiar
with the parallel I/O interface and all HPC users are accustomed to using MPI.

The IU Ph.D. candidate D. Kevin McGrath researched the mechanisms that will allow codes
that are connected by I/O to files, to instead be seamlessly shifted to using in-system network
communications that do not require actually writing to a file. End users do not have to modify their
source code, but instead the underlying I/O library handles the between- programs data flow. This
task is eased by Argonne National Lab’s ROMIO implementation of MPI 1/O. That library allows
easily including a new “abstract device” in its own directory, which then handles th actual data
transfer. Although intended for multi-network HPC clusters, the design of ROMIO has greatly
eased implementing this idea.

In related work, ANL has used the same mechanism for intercepting I/O to use a WAN for
connecting codes running across the Grid, but here the goal is for fully-parallel connections with
components simultaneously running on the same HPC platform. This is similar to the MxN prob-
lem that Felipe Bertrand implemented in the CCA. The MxN problem is that of connecting a set of
software components running on M processors to a second set running on N processors. However,
the design of CCA required initially creating M*N connections, then dropping those not needed.
Bertrand’s work showed that the idea was viable, but clearly it is not scalable — consider the case
when M = 20,000 and N = 64,000.

The research and devlopment at IU has eases the CCA restrictions, allowing the number of
connections established to be O(M + N) instead of O(M * N). ROMIO is the most common im-
plementation of parallel I/O, shared by several MPI implementations, including OpenMPI, LAM
MPI, and MPICH. This allows simply dropping in the new abstract device for any of those imple-
mentations.



4 Collaborations and Activities

4.1

People

Personal supported in whole or part by SWIM funding include:

Randall Bramley (PI)

Fang (Cherry) Liu (former Ph.D. student now at lowa Ames)
Samantha Foley (former Ph.D. student now at ORNL)

D. Kevin McGrath (Ph.D. student)

One undergraduate and three other graduate students have also worked on projects related to SWIM
but were funded from other sources.

S Papers

Papers and presentations about IU’s activities in SWIM include:

Wael R. Elwasif, Aniruddha G. Shet, David E. Bernholdt, Samantha S. Foley, Randall Bram-
ley, Donald B. Batchelor, and Lee A. Berry. The Design and Implementation of the SWIM
Integrated Plasma Simulator. In 18th Euromicro International Conference on Parallel, Dis-
tributed and Network-based Processing (PDP 2010), 2010.

Samantha S. Foley, Wael R. Elwasif, David E. Bernholdt, Aniruddha G. Shet, and Randall
Bramley. Extending the Concept of Component Interfaces: Experience with the Integrated
Plasma Simulator. In Component-Based High-Performance Computing (CBHPC), 2009.
Samantha S. Foley, Wael R. Elwasif, Aniruddha G. Shet, David E. Bernholdt, and Randall
Bramley. Incorporating Concurrent Component Execution in Loosely Coupled Integrated
Fusion Plasma Simulation. In Component-Based High-Performance Computing (CBHPC),
2008.

Samantha S. Foley, Wael R. Elwasif, David E. Bernholdt, Aniruddha G. Shet, and Randall
Bramley. Extending the Concept of Component Interfaces: Experience with the Integrated
Plasma Simulator. Component-Based High-Performance Computing (CBHPC), Portland,
OR, November 2009.

Samantha S. Foley. Experiences Building a Resource Manager for the IPS. Common Com-
ponent Architecture (CCA) Forum Meeting, Bloomington, IN, October 2009.



