Electrostatic microvalves utilizing conductive nanoparticles for improved speed, lower power, and higher force actuation.

PDF Version Also Available for Download.

Description

We have designed and built electrostatically actuated microvalves compatible with integration into a PDMS based microfluidic system. The key innovation for electrostatic actuation was the incorporation of carbon nanotubes into the PDMS valve membrane, allowing for electrostatic charging of the PDMS layer and subsequent discharging, while still allowing for significant distention of the valveseat for low voltage control of the system. Nanoparticles were applied to semi-cured PDMS using a stamp transfer method, and then cured fully to make the valve seats. DC actuation in air of these valves yielded operational voltages as low as 15V, by using a supporting structure ... continued below

Physical Description

47 p.

Creation Information

Ten Eyck, Gregory A.; Branson, Eric D.; Kenis, Paul J. A. (University of Illinois, Champaign Urbana); Desai, Amit (University of Illinois, Champaign Urbana); Schudel, Ben (University of Illinois, Champaign Urbana); Givler, Richard C. et al. September 1, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We have designed and built electrostatically actuated microvalves compatible with integration into a PDMS based microfluidic system. The key innovation for electrostatic actuation was the incorporation of carbon nanotubes into the PDMS valve membrane, allowing for electrostatic charging of the PDMS layer and subsequent discharging, while still allowing for significant distention of the valveseat for low voltage control of the system. Nanoparticles were applied to semi-cured PDMS using a stamp transfer method, and then cured fully to make the valve seats. DC actuation in air of these valves yielded operational voltages as low as 15V, by using a supporting structure above the valve seat that allowed sufficient restoring forces to be applied while not enhancing actuation forces to raise the valve actuation potential. Both actuate to open and actuate to close valves have been demonstrated, and integrated into a microfluidic platform, and demonstrated fluidic control using electrostatic valves.

Physical Description

47 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2009-6329
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/1028940 | External Link
  • Office of Scientific & Technical Information Report Number: 1028940
  • Archival Resource Key: ark:/67531/metadc832754

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2009

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 23, 2016, 6:05 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ten Eyck, Gregory A.; Branson, Eric D.; Kenis, Paul J. A. (University of Illinois, Champaign Urbana); Desai, Amit (University of Illinois, Champaign Urbana); Schudel, Ben (University of Illinois, Champaign Urbana); Givler, Richard C. et al. Electrostatic microvalves utilizing conductive nanoparticles for improved speed, lower power, and higher force actuation., report, September 1, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc832754/: accessed September 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.