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Abstract 

 
Ensuring the security of a computer system requires the careful integration of many 
components.  Key among these is security monitoring.  Recent research trends show 
an increasing acceptance of external host-based monitoring techniques such as virtual 
machine introspection (VMI), a technique for viewing the runtime state of a virtual 
machine (VM).  VMI’s primary drawbacks include performance and the semantic gap 
problem (i.e., understanding the low-level information available through VMI).  This 
report describes work performed under an Early Career Laboratory Directed Research 
and Development (LDRD) project that aimed to address these two key challenges.  
Our results are promising, with significant performance improvements and a much 
more usable VMI programming environment.  This work resulted in the creation and 
release of LibVMI, an open source software project based on the author’s previous 
work with the XenAccess library. 
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NOMENCLATURE 
 
 
API application programming interface 
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KVM kernel-based virtual machine (see www.linux-kvm.org) 
PI principal investigator 
VM virtual machine 
VMI virtual machine introspection 
VMM virtual machine monitor, analogous to a hypervisor 
Xen open source hypervisor from Univ of Cambridge (see www.xen.org) 
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1.  INTRODUCTION 
 
 
Previous virtual machine introspection (VMI) research has focused on the underlying mechanics 
(e.g, accessing memory pages) or extracting higher-level semantics from software (e.g., memory 
analysis).  The work performed on this LDRD addressed the practical problems associated with 
VMI application development by bridging these two previous research areas.  We approached 
the problem through the creation of LibVMI, a virtual machine introspection library based on the 
related XenAccess library.  In addition, we provided integration between LibVMI and Volatility, 
a forensic memory analysis framework, to drastically simplify the creation of VMI applications. 
 
LibVMI provides a useful application programming interface (API) for reading to and writing 
from a virtual machine’s memory.  It also provides a variety of utility functions that are useful to 
VMI developers.  All of this functionality works for VMs running under either of the two most 
popular open source virtualization platforms: Xen and KVM.  LibVMI programs can also use a 
static memory snapshot as a data source.  This flexibility allows developers to create VMI 
applications once and have them work in each of these settings without modification.  We 
discuss LibVMI in Section 2. 
 
Volatility is an open source memory analysis framework.  It is popular in the forensic memory 
analysis community where the goal is to understand the information within a single, static 
memory snapshot.  Volatility can easily be extended to acquire its memory data from a source 
other than a file through a mechanism called address space plugins.  We wrote an address space 
plugin for Volatility that enabled using LibVMI for memory access.  Since Volatility is written 
in Python, this required also writing a Python wrapper for the LibVMI API.  With this 
functionality in place, one can easily write new VMI applications using Volatility.  We discuss 
the Volatility – LibVMI integration in Section 3. 
 
This LDRD ended earlier than scheduled because the principal investigator (PI) decided to leave 
Sandia National Labs to pursue another job.  This left some work unfinished.  In Section 4, we 
will talk about this unfinished work as potential future work. 
 
Finally, in Section 5 we provide some conclusions on this LDRD project. 
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2.  LIBVMI 
 
LibVMI provides a useful application programming interface (API) for reading to and writing 
from a virtual machine’s memory.  It also provides a variety of utility functions that are useful to 
VMI developers.  All of this functionality works for VMs running under either of the two most 
popular open source virtualization platforms: Xen and KVM.  LibVMI programs can also use a 
static memory snapshot as a data source.  This flexibility allows developers to create VMI 
applications once and have them work in each of these settings without modification, as shown 
in Figures 1 and 2. 

 
Figure 1  LibVMI enables the creation of a single VMI application that runs in multiple 
virtualization contexts.  LibVMI is extensible to support any virtualization platform, but 
currently supports Xen, KVM, and physical memory snapshots. 
 

 
Figure 2  LibVMI currently works with Xen, KVM, and physical memory snapshots. 

 
LibVMI evolved from the XenAccess project.  XenAccess provided lower-level VMI 
capabilities for VMs running in Xen.  With XenAccess, only 32-bit VM operating systems were 
supported.  Furthermore, access to memory required the VMI developer to use XenAccess to 
manually map guest VM pages, operate on the pages, and then unmap the pages.  The last 
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XenAccess release was version 0.5.  LibVMI used this release as a starting point.  Note that the 
PI for this LDRD, Bryan D. Payne, is also the creator of XenAccess. 

 
Figure 3  High-level view of the LibVMI software stack.  The portions in blue represent 
code written for this project. 

 
The key areas of improvement for LibVMI under the LDRD program include: 

 Refactoring the code to support KVM, and to make supporting other virtualization 
platforms very simple. 

 Improving the API to greatly simplify VMI development.  Specifically, replace manual 
memory mapping with read and write functions that behave as expected to a POSIX 
developer. 

 Improving the overall performance of the library. 
 Adding support for 64-bit VM guest operating systems. 
 Adding the pyvmi wrapper library (discussed in Section 3) 
 Improving Volatility integration (discussed in Section 3) 
 Fixing a variety of bugs ranging from correctness to memory leaks. 

 
We discuss the first four bullet points in more detail below. 
 
2.1  KVM Support 
While Xen is a widely deployed hypervisor, KVM has quickly grown in popularity.  Many 
people prefer KVM due to the ease of installation that comes from being a Type-2 VMM (i.e., it 
is integrated into the host operating system and can leverage the OS hardware support).  
Therefore, it makes sense to enable introspection capabilities for KVM.  Moving in this direction 
is what motivated the library name change from XenAccess to LibVMI. 
 
The original XenAccess software was built specifically for Xen – as the name implies.  
Therefore, function calls to interface with Xen were scattered throughout the code.  In order to 
support KVM, we first refactored the code to contain all Xen-specific interactions in a single 
“driver”.  Next, we wrote a new driver to support KVM.  And, finally, we setup LibVMI to 
dynamically determine which virtualization platform is available at startup; choosing the correct 
driver at that time. 
 
The other piece of the puzzle was to actually access the VM memory for KVM.  Unlike Xen, 
KVM does not provide any APIs to facilitate this access.  So, to support LibVMI, we created a 
patch for KVM that enabled memory access through a unix domain socket.  We used the libvirt 
library to gain the additional access that we needed (e.g., pausing and resuming the VM).  Since 
the patch is somewhat challenging for users to deploy, we also enabled a technique to access 
memory through a KVM VM’s GDB stub.  GDB is the GNU Debugger.  It provides a rich set of 
capabilities for viewing a running process or system.  In this case, we could dump memory 
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through a GDB network protocol.  But the resulting access is slower than using our KVM source 
code patch.  Users can now choose between a harder to install software patch that provides faster 
memory access, and an easier to install GDB connection that provides slower memory access. 
 
The end result is that LibVMI now support both Xen and KVM.  Furthermore, it would now be 
very easy to write a driver to support another virtualization platform in the future. 
 
2.2  API Improvements 
The older XenAccess API required developers to manually map and unmap VM memory pages.  
This turned out to be arduous and error prone.  Furthermore, developers often wrote code that 
abused this interface, resulting in large performance degradation.  The new LibVMI API 
abstracts this low-level page mapping away from the developers and instead provides a more 
intuitive API based on familiar feeling read and write functions.  Figure 4 shows a sampling of 
the current LibVMI API. 
 

 
The read and write memory functions transparently handle page boundaries so that the VMI 
developers can focus more on their programming task.  One side effect of this new API is that 
LibVMI must internally manage mapping and unmapping pages.  It must do this in a smart way 
so as to achieve good performance.  Section 2.3 describes the page cache and other caching 
techniques. 
 

status_t vmi_init (vmi_instance_t *vmi, uint32_t flags, char *name) 

status_t vmi_destroy (vmi_instance_t vmi) 

addr_t vmi_translate_kv2p (vmi_instance_t vmi, addr_t vaddr) 

addr_t vmi_translate_uv2p (vmi_instance_t vmi, addr_t vaddr, int pid) 

addr_t vmi_translate_ksym2v (vmi_instance_t vmi, char *symbol) 

addr_t vmi_pid_to_dtb (vmi_instance_t vmi, int pid) 

size_t vmi_read_ksym (vmi_instance_t vmi, char *sym, void *buf, size_t count) 

size_t vmi_read_va (vmi_instance_t vmi, addr_t vaddr, int pid, void *buf, size_t count) 

size_t vmi_read_pa (vmi_instance_t vmi, addr_t paddr, void *buf, size_t count)  

size_t vmi_write_ksym (vmi_instance_t vmi, char *sym, void *buf, size_t count) 

size_t vmi_write_va (vmi_instance_t vmi, addr_t vaddr, int pid, void *buf, size_t count) 

size_t vmi_write_pa (vmi_instance_t vmi, addr_t paddr, void *buf, size_t count) 

void vmi_print_hex (unsigned char *data, unsigned long length) 

unsigned long vmi_get_memsize (vmi_instance_t vmi) 

status_t vmi_get_vcpureg (vmi_instance_t vmi, reg_t *value, registers_t reg, unsigned long 

vcpu) 

status_t vmi_pause_vm (vmi_instance_t vmi) 

status_t vmi_resume_vm (vmi_instance_t vmi) 

void vmi_v2pcache_flush (vmi_instance_t vmi) 

void vmi_v2pcache_add (vmi_instance_t vmi, addr_t va, addr_t dtb, addr_t pa)  
Figure 4  Sampling of the current LibVMI API.  The complete API contains a variety of 
additional convenience functions designed to make VMI development easier. 
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Other useful functions include those that read the current CPU registers, pause the VM, and 
resume the VM.  There are also a series of functions for managing the various LibVMI caches.  
Figure 3 shows two of these functions as an example.  These manage the virtual to physical 
address cache by allowing developers to manually add mappings and flush the cache. 
 
2.3  Performance 
LibVMI is built around the seemingly simple concept of accessing memory in the VM.  This 
operation is actually quite costly.  Therefore, naïve VMI applications tend to be very slow.  
LibVMI solves this problem by managing four different caches inside the library.  Three caches 
handle basic mappings: virtual address to physical address, virtual address to process identifier, 
and kernel symbol to virtual address.  The fourth cache is the page cache. 
 
The page cache handles mapping or copying VM memory pages into memory as needed to 
support LibVMI’s memory read and write functions.  Our first attempt at designing the page 
cache was to use a hash table.  The hash value would be derived from the physical page address.  
And the hash table entry could provide meta-data about the memory page, along with a pointer to 
the data itself.  This worked, but the performance was slower than expected because the hash 
table grew quickly, resulting in increasingly slow hash table lookups. 
 
We solved this problem by maintaining a second data structure.  This structure is a list that 
contains the hash values in the order accessed.  Specifically, the front of the list has the hash 
value associated with the most recently accessed page.  And the end of the list has the hash value 
associated with the least recently accessed page.  When the list grows beyond a predetermined 
size (experimentally we determined 512 entries was a good size, balancing the performance 
tradeoffs), the second half of the list is removed.  We also remove the related entries from the 
hash table at the same time.  This ensures that the freshest entries remain in the hash table, while 
still providing loose management for the overall hash table size.  Figure 5 provides a graphical 
representation of this page cache algorithm. 
 
The end result of this new page cache algorithm was a significant improvement in performance.  
Figures 6 and 7 show the before and after performance numbers for LibVMI.  Noting the 
logarithmic scale, we see a two orders of magnitude speedup in one of our test cases.  The graphs 
show the vmi_read_pa API call being used in two different ways.  The first is 1875 calls to read 
4 bytes each.  The second is 1 call to read 7.5k bytes.  Each call results in a final result of reading 
7.5k bytes, but they exercise the various cache algorithms within LibVMI differently.  Ideally, 
with all of the cache enabled, both calls should perform similarly.  Our results show that we 
achieved this goal.  This means that VMI developers can focus less on the performance impact of 
their code and more on the actual memory analysis tasks.  Therefore, we feel that this result is an 
important step towards simplifying VMI software development. 
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Figure 5  LibVMI's page cache algorithm balances memory overhead with performance, 
ensuring that the related data structures never grow too large. 
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Figure 6  LibVMI performance before our cache optimizations. 
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Figure 7  LibVMI performance after our cache optimizations. 

 
2.4  64-bit Guest Support 
XenAccess supported viewing the memory of 32-bit guests.  How ever, as 64-bit guests are 
becoming increasingly popular, we decided to extend LibVMI to support 64-bit guests as well.  
In order to understand the work involved for this addition, let’s step back and consider how 
LibVMI handles a basic read API function call. 
 

 
Figure 8  While the details in this picture are too small to read, the key point is that 
significant work happens for each API call.  In this case, the vmi_read_ksym call must 
handle reads around page boundaries, resolve the kernel symbol, translate the kernel 
symbol to a physical address, and perform the actual read from the VMM. 
 
Figure 8 shows the internal function calls performed by LibVMI for a call to the vmi_read_ksym 
function.  To support 64-bit guests, minor changes were needed in the PE parsing code that 
converts a Windows kernel symbol to a virtual address.  On the other hand, major changes were 
required to support translating a 64-bit virtual address to a  physical address.  This required 
implementing the 64-bit address translation algorithms as described in the Intel Architecture 
Manuals.  Finally, we had to ensure that all variables representing addresses throughout LibVMI 
could handle 64-bit values. 
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3.  PYVMI AND VOLATILITY INTEGRATION 
 
LibVMI is written in the C programming language.  This is useful for many applications, while 
also enabling the best possible performance.  However, many memory analysis tools are now 
beginning to use the Python programming language instead of C.  Python enables rapid 
prototyping and contains some language features that are particularly useful for VMI developers, 
such as the ability to control the semantics of attribute access through constructs like 
object.__getattr__(self, name). 
 
Perhaps the most popular memory analysis framework today is Volatility.  Volatility is written in 
Python for the reasons discussed above.  Also, effective with Volatility 2.0, it supports pluggable 
address spaces.  This means that the mechanism that Volatility uses to acquire memory data can 
be easily extended to support other memory capture techniques. 
 
In order to leverage both the growing use of Python and the rich memory analysis capabilities of 
Volatility, we extended LibVMI with a feature complete Python wrapper and a Volatility address 
space. 
 
3.1  PyVMI: A Python Wrapper for LibVMI 
Python has native support for extending the language with C libraries.  Therefore, writing a 
Python wrapper for LibVMI was straightforward.  Each function in the external LibVMI API has 
a semantically equivalent function in PyVMI.  In addition, we added a zread(…) function in 
PyVMI.  This function will read from the desired location, but will never fail.  Any bytes that 
can’t be read will simply be replaced with zeros.  While generally useful, the motivation for 
adding this specific function was to facilitate improved integration with Volatility.  Figure 9 
shows the updated software stack with PyVMI. 

 
Figure 9  Software stack with PyVMI wrapper on top of the C language LibVMI library.  
The portions in blue represent code written for this project. 

 
3.2  PyVMI Address Space for Volatility 
Volatility has an active development community.  This community has created many rich 
memory analysis capabilities.  Volatility is designed as an extensible framework.  Developers 
extend Volatility by writing plugins that perform new memory analysis tasks.  Some existing 
plugins perform tasks such as listing the running processes, listing the open network connections, 
listing the handles for each process, parsing the Windows registry, displaying VAD tree 
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information, and showing the SSDT entries.  The actual list of available plugins is long and 
grows quickly due to the strong development community. 
 
Volatility is designed to work on forensic memory snapshots.  In this mode, a forensic analyst 
would take a physical memory image from a target machine, and then use Volatility to extract 
useful information from that image.  However, since Volatility already contains significant 
information on the Windows memory layout and because Volatility greatly simplifies the 
development of memory analysis tools, we wanted to integrate Volatility with LibVMI to 
facilitate analysis on a running virtual machine. 
 
Thanks to Volatility’s address space plugins, this was a straightforward task.  We wrote an 
address space plugin that enabled Volatility to use PyVMI for its physical memory access.  The 
end result is the software stack seen in Figure 10. 

 
Figure 10  Software stack with Volatility address space plugin.  The portions in blue 
represent code written for this project. 

 
Now all of the plugins available for Volatility will work on a running virtual machine.  And, it is 
possible to leverage these plugins when designing new VMI applications.  We hope that this will 
help tie together the creative contributions from both the forensic memory analysis community 
and other runtime / dynamic analysis communities (e.g., malware analysis). 
 
. 
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4.  FUTURE WORK 
 
LibVMI as it exists today is very usable for a variety of VMI development tasks.  However, there 
are always areas for improvement.  This section explores some of the best steps for improving 
LibVMI by making it more capable and easier to use. 
 
Hypervisors are starting to include event notifications.  In the case of Xen, this includes 
notification when a marked page in memory has been read, written, or executed.  It also includes 
notification when certain VCPU registers change.  We would like to bring this functionality up 
into LibVMI as it is a natural complement to the existing introspection capabilities.  We would 
also like to include this functionality in PyVMI to allow Volatility plugins to benefit from events. 
 
The Volatility and KVM integration are both in the early stages.  More work is needed to remove 
bugs and improve performance in these components. 
 
Finally, it would be useful to have richer symbol access support.  Currently LibVMI provides 
access to Windows kernel symbols (found through memory analysis) and Linux kernel symbols 
(found in the System.map file).  We would like to extend this to include user-level process 
symbols and to locate the Linux kernel symbols in memory, which should improve performance. 
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5.  CONCLUSIONS 
 
LibVMI evolved from the XenAccess project.  Throughout the course of this LDRD, we 
improved LibVMI in a variety of ways with the overall goal of making VMI development easier.  
We succeeded in accomplishing this goal through API improvements to the library, support for 
other virtualization platforms, support for 64-bit guests, performance improvements, and 
integration with the Volatility memory analysis framework. 
 
At the time of this writing, we just released LibVMI Version 0.8.  This software is freely 
available under the GNU Lesser General Public License (LGPL).  For more information, please 
see the project website at http://code.google.com/p/vmitools/. 
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