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We study the impact on the primordial abundances of light elements created of a variation of
the quark masses at the time of Big Bang nucleosynthesis (BBN). In order to navigate through the
particle and nuclear physics required to connect quark masses to binding energies and reaction rates
in a model-independent way we use lattice QCD data and an hierarchy of effective field theories.
We find that the measured 4He abundances put a bound of δ− 1% . mq/mq . 0.7%. The effect of
quark mass variations on the deuterium abundances can be largely compensated by changes of the
baryon-to-photon ratio η. Including the bounds on the variation of η coming from WMAP results
and some additional assumptions narrows the range of allowed values of δmq/mq somewhat.

I. INTRODUCTION

In theories of physics beyond the standard model the
standard model parameters appear not as fundamental
constants but as derived quantities. In many of those
theories the possibility then arises that the values of the
standard model “constants” can vary over time [1]. It
is then important to understand which constraints the
successes of standard cosmology – which assumes time
independent constants – poses on this purported time
variation. A natural place to look for strong sensitivity
to fundamental constants variation is Big Bang nucle-
osynthesis (BBN) since it satisfies two important criteria.
First, BBN happened very early in the Universe’s history,
mostly when the Universe was between 3 seconds and 3
minutes old. Second, not only is standard BBN under-
stood at a few percent level but it is very sensitive to
microscopic parameters like nuclei binding energies and
reaction rates that are, themselves, very sensitive to the
certain standard model constants. It is no surprise then
that BBN has been used in the past to study the varia-
tion of fundamental constants [2]. The purpose of the
present paper is to explore the BBN constraints on the
variation of the mass of the two lightest quarks.

The binding of nucleons into light nuclei during BBN
proceeds through a number of reactions, some in equi-
librium with the expansion of the Universe, some not.
After the weak reactions like p + e− ↔ n + ν̄ are not
longer in equilibrium, the ratio of neutron to protons de-
creases due to neutron β-decay. If the formation of light
nuclei occurred in equilibrium, the most bound nuclei
(among the light ones this is 4He ) would form earlier
and more abundantly. The formation of 4He can, how-
ever, only occur after 2H , 3He and 3H are formed, since
multinucleon fusion reactions are essentially impossible
at the low densities prevailing then. Their number is
small on the account that their binding is small and it
is not energetically favorable for them to exist form until

the temperature is low enough to be comparable to their
binding energies. So the beginning of nucleosynthesis is
delayed by the shallowness of the deuteron binding. Since
this shallowness is a product of delicate cancellations be-
tween kinetic and potential energies, the binding of the
deuteron is an obvious place where a small change in
quark masses can significantly alter the primordial abun-
dances. Notice that the rate for the reaction n+p↔ d+γ
is not small; it is sufficient to keep the deuteron number
in thermal/chemical equilibrium. It is the equilibrium
deuteron number that is too small for them to collide and
be assembled in larger nuclei. After the deuteron num-
ber grows enough, the reactions leading to the formation
of 4He proceed quickly and essentially all the neutrons
present in the beginning of BBN are assembled into 4He
nuclei. The timing where this assembly starts (deter-
mined, among other things by the deuteron binding) is
crucial as the neutron numbers are fast decreasing due
to neutron β-decay. Small amounts of 2H , 3He and 3H
are left out of this process. Their numbers depend cru-
cially on chemical non-equilibrium physics and the rates
of the reactions, including the initial one n+ p→ d+ γ.
Current observation are not useful in measuring reliably
the primordial abundance of 3He and 3H . However, the
abundance of 2H and, specialy 4He , are well measured
and put a significant constraint on any change f the stan-
dard BBN scenario.

A number of authors have previously considered the
effect of a changing quark masses in the BBN pre-
dicted abundances [3][4] [5] [6][7][8][9] [10][11][12][13][14]
[15][16][17]. The main difficulty to be surmounted is that
the quark mass dependence of binding energies, reaction
cross sections and decay rates that are input into BBN
models are difficult to determine. For instance, mod-
ern nuclear potentials can describe very well nucleon-
nucleon phase shifts. They can also be used to compute
binding energies with enough precision (with the help of
phenomenologically motivated three-nucleon forces fit to
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some observables) and cross section for few-nucleon re-
actions. These potentials are, however, tuned to data
obtained from experiment where the quark mass has its
current value. What is usually done in estimating the
effect of quark mass variation is to change the param-
eters in these models where this dependence is easy to
track. For instance, the range of nuclear forces, given
by 1/mπ can be changed through the relation m2

π ∼ mq.
But the long distance part of the potential, sensitive to
this range, is actually a small part of the nucleon-nucleon
interaction. The medium and short range parts also have
a quark mass dependence and, while this dependence
is likely to be milder, its effect on the overall nucleon-
nucleon interactions is still large due to fine-tuned can-
cellations that are responsible for, among other things,
the shallowness of the deuteron. It is our goal in this pa-
per to avoid as much as possible this kind of modeling of
nucleon and nuclear forces properties and stick to what
is known about QCD/nuclear physics through more gen-
eral arguments. In particular we will use effective field
theories (and some lattice QCD data) to connect that
change in quark masses to the inputs in the BBN codes.

At momentum scalesQ below ΛQCD ≈ 1 GeV, the rele-
vant degrees of freedom in QCD are hadrons, not quarks
and gluons. Effective field theories for this momentum
range (chiral perturbation theory) were developed for the
meson, one and many-nucleon sectors. They are able to
predict physical observables as an expansion on the small
parameters Q/ΛQCD,mπ/ΛQCD taking as inputs a few
“low energy constants”, like pion decay constants and
the nucleon mass in the chiral (mπ = 0) limit, which are
obtained from analyses of experimental results. They
predict, for instance, the dependence of nucleon masses
on the value of the quark masses. It turns out that this
particular change is very small and can be neglected, ex-
cept for its effect on the phase space for the neutron de-
cay and related weak process (see below). Lattice QCD
calculations reinforce the believe in a small quark mass
dependence of nucleon masses [18] [19]. Chiral perturba-
tion theory for few-nucleon systems (referred to here as
χEFT) is in a less developed phase. First, there are con-
ceptual issues that preclude a reliable prediction of the
quark mass dependence of observables [20]. Second, it
has not been used extensively in multi-nucleon systems
and many reactions involving photons. To bypass this
difficulty we will use another effective theory for nuclear
systems. One can construct another effective theory (re-
ferred to here as “pionless EFT”) valid only for smaller
momenta Q, much smaller than the pion mass mπ. In
this theory all particles, including pions, are integrated
out and only nucleons (and photons, neutrinos) are kept
as explicit degrees of freedom. This theory can make
non-trivial predictions because some bound states (2H ,
3He , 4He ) are loosely bounded and the typical momenta
Q of their constituents is significantly below ∼ mπ, right
within the regime of validity of the pionless EFT. The
shallowness of these bound states is related to the fine

tuning in the s-wave twonucleon scattering. In fact, the
scattering length in the two spin channels 1S0 and 3S1

(as ≈ −22 fm and at ≈ 5.4 fm) are unnaturally large,
much larger than the naive expectation ≈ 1/mπ = 1.4
fm. The pionless EFT is very successful in predicting
observables in the three-nucleon sector and there is in-
dication that the same is true in the four-nucleon sec-
tor [21, 22]. Since the α-particle is the most bound of
the light nuclei, success of the pionless EFT in the α-
particle probably means that the theory can be useful in
studying larger nuclei. Since the pionless EFT makes no
use of the QCD chiral symmetry, it is incapable, how-
ever, to directly predict the quark mass dependence of
observables. But the parameters of the pionless EFT,
at the lowest orders in the low energy expansion, are
the threshold nucleon-nucleon scattering parameters like
scattering lengths, effective ranges, etc.. These few pa-
rameters have been studied using the χEFT and we can
use them to predict their variation with quark masses. In
addition, some lattice QCD results confirm and reinforce
the χEFT predictions for scattering length dependences
on quark masses. We will use these χEFT results as in-
put parameters for the pionless EFT. This allows us to
obtain estimates for the quark mass dependence of nu-
clear properties relevant to BBN. We will then use this
information in combination with a standard BBN code to
compute the light elements abundances in order to con-
straint the values of the quark masses during the Universe
first minutes. Our strategy of combining these two types
of effective theory is summarized in Fig. 1. We will now
describe the stages of our calculation.

A. Scattering length dependence on quark masses

Different verions of χEFT have been used by different
authors to study the quark mass variation of nucleon-
nucleon S-wave scattering lengths. The results depend
on the spin channel. In the spin singlet 1S0 channel and
at leading order (LO) on the mπ/ΛQCD expansion, the
calculation of the quark mass dependence of the scatter-
ing length in the version of χEFT used in [23] requires
as inputs the chiral limit values of the axial charge of the
nucleon gA, the decay constant of the pion fπ, the nu-
cleon mass M , the pion mass mπ and the coefficients of
a two-nucleon contact term C0

s , fit to the physical scat-
tering lengths. Only the value of these quantities at the
physical value of quark masses is precisely known but
the difference between them and their chiral limit val-
ues is a higher order effect that can be neglected in a
next-to-leading order (NLO) calculation. At NLO a new
constant D2

s appears, the coefficient of a two-nucleon op-
erator with no derivatives but one quark mass insertion,
as well as other constants contributing to the quark mass
dependence of fπ, gA and M . The value of D2

s is diffi-
cult to disentangle from C0

s as both contribute equally
to nucleon-nucleon scattering at the physical value of the
quark masses. They give, however, different extrapola-
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FIG. 1.

tions to other values of quark masses. They can be dis-
entagled only through a study of processes like deuteron-
pion scattering or by the use of lattice QCD data (see
below). The strategy used in dealing with the lack of
knowledge of the value of D2

s is to estimate it using naive
dimensional analysis arguments. It seems that the dif-
ference in the power counting schemes used in [23] and
[24] have little impact on the final numbers and the dis-
crepancy between them can be explained by the different
assumptions about the reasonable range of values for D2

s .
We will use the calculation described in [24] as those au-
thors computed the deuteron binding, not only the scat-
tering lengths, and the deuteron biding will be the most
important ingredient in the BBN calculation.

For a small variation of the quark mass we can read off
the figure 11 in [24] the slope (we use the more conserva-
tive estimate where the change of the axial constant gA
with quark masses, parametrized by d̄16 is included):

mq

B2

δB2

δmq
=

mπ

2B2

δB2

δmπ
=

mπ

2B2
(−0.085± 0.027), (1.1)

where mq is the average mass of the up and down quarks
and we made use of the relation m2

π ∼ mq. Similarly, we
use figure 12 in [24] to extract the variation of the spin
singlet 1S0 channel scattering length to find

δas
δmπ

=
2mq

mπ

δas
δmq

= (−1.4± 1.4)
fm

MeV
. (1.2)

Notice that a vanishing as variation is consistent with
these extrapolations, a feature also seen in the extrapo-
lation in [23]. If as were the only parameter determining
the change of abundances due to varying quark masses,
BBN would impose no constraint on possible quark mass
variations

Unquenched lattice QCD calculations of nucleon-
nucleon scattering lengths have appeared in the last few
years. They are still performed at higher values of quark
masses, too high for the effective theory approach to be
valid, so they are of limited value for our purposes. De-
spite that, an attempt was made in [25] to use χEFT
to find the quark mass dependence on scattering lengths
by interpolating the lowest pion mass lattice data and
the known experimental value of the scattering lengths
at the physical point. The deuteron binding energy is not
measured in the lattice. However, it is related, at lead-
ing order in the effective theory, to the triplet scattering
length that is measured. Using the extrapolation in [25]
and the leading order relation B2 = 1/(Ma2

t ) we find

mq

B2

dB2

dmπ
= −0.14± 0.13, (1.3)

in agreement with eq. (1.1). In the extrapolation done
in [25] another branch of allowed values of dB2/dmπ ap-
pears. This additional band is excluded from the purely
EFT extrapolations in [23] and [24] and will be disre-
garded in this paper.

The allowed values for the as quark mass dependence
extracted from the extrapolation in [25] , namely

das
dmπ

= (−0.75± 1.0)
fm

MeV
(1.4)

are consistent with the ones above but are too loose to
put any relevant constraint.

The remaining inputs of the pionless EFT like three-
nucleon forces, effective ranges, nucleon magnetic mo-
ments, etc., are not fine-tuned and vary much less dras-
tically with the quark masses. Their contribution to the
cross sections is also suppressed compared to B2 and as.
In the present paper we will take them to be independent
of the quark masses.

B. Binding energies, reactivities and lifetimes

We have used the pionless EFT to estimate the quark
mass variation of four quantities: the binding energies of
the deuteron, 3H , 3He , 4He and the reactivity of the
process n + p → d + γ. The binding energies of larger
nuclei, like 7Li , are important only for the abundances
for these larger nuclei. As it is not presently possible to
have a reliable estimate on the quark mass variation of
these binding energies we will keep them fixed and con-
centrate on the abundances for the lighter nuclei 2H and
4He , confident that they won’t be significantly affected
by the binding of A > 4 nuclei. We also only include the
variation of the reactivity of deuteron-neutron capture
as this is the reaction that starts off BBN and is more
likely to have an impact on abundances (but, as we will
see below, this impact is minimal). The binding energy
of the deuteron is taken to be given by eq. (1.1).

The calculation of three-nucleon and four-nucleon
properties in the pionless EFT requires as inputs the sin-
glet and triplet scattering lengths as well as one three-
body observable, usually taken to be the three-nucleon
binding energy. The three-body binding energy can be
traded by the value of a three-body force counterterm.
The tree-body force is also not fine tuned and has, there-
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fore, only a small variation with the quark masses that
we will consequently neglect. Changing the two-body in-
put while keeping the three-body counterterm fixed pro-
vides then the scattering length dependence of the three-
nucleon system. In other words, the binding energies of
the 3He , 3H and 4He nuclei are estimated by

mq

Bi

dBi
dmq

=
mq

Bi

(
das
dmq

dBi
das

+
dB2

dmq

dBi
dB2

)
(1.5)

where Bi stands for the binding energy of one of 3He ,
3H or 4He . The values of the derivatives appearing in
eq. (1.5) were computed using the pionless EFT:

as
B3

dB3

das
= 0.12,

B2

B3

dB4

dB3
= 1.41,

as
B4

dB4

das
= 0.037,

B2

B4

dB4

dB2
= 0.74, (1.6)

(1.7)

where B4 is the 4He binding and B3 the 3H or 3He bind-
ing energy. The weak dependence on as is easily under-
stood when one notices that the typical momenta in these
bound states is of order

√
MBi, which is much larger than

1/as. The dependence of Bi on as is a function of the
dimensionless parameter ∼

√
MBias � 1 and, on a first

approximation, we can take this parameter to vanish.
In order to account for the theoretical uncertainty in

the EFT calculation we assign an additional 10% random
variation to the bindings of 3He and 3H (computed at
NLO in EFT) and a 30% variation on the value of the
4He binding (computed at LO only), as will be shown
more explicitly below.

The reaction n + p ↔ d + γ was extensively analyzed
in [26] using a NNNNLO calculation in pionless EFT.
The inputs at this order are the scattering length as, the
deuteron biding and effective range parameters, magnetic
moments and one two-nucleon-one-photon term fixed by
experimental value of cold capture. We use the variation
of B2 and as given in eqs. (1.1) and (1.2) to compute,
with the help of the explicit formula in [26], the relative
change in the reactivity as a function of the temperature
and used that as an input of the BBN code. In [5] it

was argued that the reactivity 〈σv〉 scales as ∼ B
5/2
2 a2

s.
We verified with the explicit formula from [26] that the

scaling with B
5/2
2 is indeed very well satisfied but the

scaling with a2
s doesn’t work so well.

Finally we discuss how quark mass changes affect the
neutron lifetime as well as the rates of other one-baryon
weak reactions such as p + e− ↔ n + ν. This influence
comes through a modified value for the axial charge gA
and the neutron and proton masses, changing the phase
space. In fact, the neutron width is given by [27]

Γ =
(GF cos θc)

2

2π3
m5
e(1 + 3g2

A)f

(
∆

me

)
, (1.8)

where ∆ and me are the mass splitting between neutron
and proton and the electron mass, gA ≈ 1.26 is the nu-
cleon axial decay constant, GF the Fermi constant and
θc the Cabibbo angle. f(∆/me) is the function

f(w0) =

∫ w0

1

dww
√
w2 − 1(w0−w)2 2πα√

w2 − 1

1

1− e
− 2πα√

w2−1

(1.9)
which describes the phase space and the Coulomb repul-
sion. The variation of Γ with the quark masses is given
then by

mq

Γ

dΓ

dmq
=

mq

f
(

∆
me

) df
(

∆
me

)
dmq

+
mq

1 + 3g2
A

d(1 + 3g2
A)

dmq
.

(1.10)
The dependence of gA with the quark mass is given, at
NLO in chiral perturbation theory, by [28]

gA = g0
A

[
1− 9g2

Am
2
π

32π2F 2
log(

mπ

Λ
) +

(g2
A − 4)m2

π

32π2F 2
log(

mπ

Λ′
)

]
,

(1.11)
where g0

A is the chiral value of gA, F ≈ 93 MeV and Λ,Λ′

are constants of order 1 GeV dependent on the Gasser-
Leutwyler coefficients. Numericaly we find

mq

1 + 3g2
A

d(1 + 3g2
A)

dmq
=

1

2

mπ

1 + 3g2
A

d(1 + 3g2
A)

dmπ
≈ 0.2.

(1.12)
The variation of the phase space f(∆/me) with the

quark mass can be estimate as

mq

f( ∆
me

)

f( ∆
me

)

dmq
=

mπ

2f( ∆
me

)

df( ∆
me

)

dmπ
(1.13)

=
mπ

2f(w0)

df(w0)

dw0
|w0= ∆

me

d∆/me

dmπ

The value of f(w0) and its derivative at w0 = ∆/me

can be found numerically to be 1.64 and 4.25, respec-
tively. The variation of ∆/me with mq can be estimated
by splitting ∆ into a strong interaction component ∆s

proportional to the up and down quark mass difference
(and, consequently, to the value of mq) and an electro-
magnetic piece ∆e.m., largely independent of mq. Un-
fortunately, the electromagnetic part is due to short dis-
tance effects and cannot be directly computed in a very
reliable way. The best handle we have on its value comes
from determining the up and down quark mass ratio us-
ing chiral perturbation theory and the meson spectrum
and using this value, together with the best estimate of
the nucleon σ−term, to extract ∆s. The value obtained
for ∆s this way is consistent with the obtained from
lattice QCD calculation [29].The difference between this
value of ∆s and the measured value of the neutron-proton
mass splitting gives ∆e.m. = −0.76± 0.30 [30].

Chiral perturbation theory predicts a quark mass de-
pendence of ∆s of the form ∆s = Am2

π(md−mu)/(md+
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mu), a formula valid up to NLO as the leading loop
(NLO) contribution to the nucleon mass cancels between
the neutron and proton.

We then have

mq

f( ∆
me

)

f( ∆
me

)

dmq
=

1

f(w0)

df(w0)

dw0
|w0= ∆

me

mπ

2me
A
md −mu

md +mu
2mπ

=
1

f(w0)

df(w0)

dw0
|w0= ∆

me

∆s

me

≈ 10.4± 1.5. (1.14)

Notice that we are taking both the up and down mass to
vary while keeping the ratio md/mu fixed. The depen-
dence in Eq. (1.14) dominates over Eq. (1.12) we finally
find

mq

Γ

dΓ

dmq
= 10.6± 1.5. (1.15)

The quark mass variation of the neutron lifetime is rel-
evant for our calculation. In order to see that, let us
remember that the neutron number, after the weak in-
teraction are decoupled, decreases until BBN starts at
t ≈ 168 s. The suppression factor in standard BBN is
thus e−168/885 ≈ 0.827. A 5% increase of quark masses
(the range considered in this paper) would lead, accord-
ing to Eq. (1.14) to an increase of about 50% in the neu-
tron lifetime and the suppression factor would change to
e−252/885 ≈ 0.752, leading to a 4He abundance change of
about 2% in absolute terms.

The rate of other weak reaction changes in a similar
manner. The phase space integrals are more involved and
are, in BBN codes, computed “on the fly” taking the ratio
Q = ∆/me as an input. We calculated the variation of
Q as

mq

Q

dQ

dmq
=
mπ

2∆

d∆

dmπ
=

∆s

∆

≈ 1.59± 0.23. (1.16)

II. RESULTS

In order to deal with the highly non-linear dependence
of the final abundances on the quark masses and, at same
time, to include estimates of theoretical errors, we used a
stochastic procedure. More specifically, for a given quark
mass variation ∆mq/mq, we need to specify the binding
energies of 2H , 3H , 3He , 4He , the reactivity R for
n + p ↔ d + γ, the neutron lifetime τ and the phase
space parameter Q. All the other BBN parameters are
kept at their present values.

We randomly generated a set of 300 values of scattering
lengths as, deuteron bindings B2 with a gaussian distri-

bution with mean value and standard deviation given by

X̄ =

[
1 +

1

2

(
mq

X

dX

dmq
|+ +

mq

X

dX

dmq
|−
)

∆mq

mq

]
Xphys,

σX =

[
1 +

1

2

(
mq

X

dX

dmq
|+ −

mq

X

dX

dmq
|−
)

∆mq

mq

]
Xphys,(2.1)

where X stands for either as or B2 and the “+” and “-”
subscripts refer to the higher and lower values of dX/dmq

allowed by Eqs. (1.1) (1.2) . The variations of as and B2

are assumed to be uncorrelated. From the ensemble of
as, B2 obtained as above we compute a corresponding
ensemble of binding energies using Eq. (1.5) and added
to the result a random correction with standard deviation
of 10% (for 3H and 3He ) or 30% (for 4He ) in order to
take theoretical errors into account, as discussed in the
previous section. In other words, the binding energies of
3H , 3He and 4He are given by

Bi
Bphys

=

[
1 + (1 + tiξi)

(
as
Bi

dBi
das

+
B2

Bi

dBi
dB2

)
(as − aphys

s ))

]
,

(2.2)
where i indexes the three nuclei 3H , 3He and 4He , the
superscript “phys” stands for the present, experimental
values of the quantity, ξi are gaussian random variables
with central value 0 and standard deviation equal to 1and
ti is teh theoretical error of the extrapolation equal to 0.1
(for 3H and 3He ) and 0.3 (for 4He ).

Similarly, the reactivity r(T ) of the n + p → d + γ
reaction was computed as a function of the temperature
for the ensemble of as, B2 values determined by eq. 2.1
using the explicit expression for the cross section from
[26]. This calculation is of very high order in the low
energy expansion and its very small theoretical errors
were neglected

We also generated, for each value of ∆mq/mq, a set
of 300 random values of τ and Q whose distribution
reflected the discussion of the previous section. More
specifically, these values were generated through the for-
mula

1

τ
=

1

τphys

[
1 + (10.6 + 1.5ξ)

∆mq

mq

]
,

Q = Qphys

[
1 + (1.59 + 0.23ξ)

∆mq

mq

]
, (2.3)

where ξ is a gaussian random variable with central value
0 and standard deviation 1. Notice that this ξ is indepen-
dent of the ξi used in the determination of the binding
energies but the same ξ is used in both τ and Q since the
leading theoretical uncertainties on both quantities stem
from the same rough determination of the σ-term.

For a given value of ∆mq/mq, a set of values for
B2, B3H , B3He, B4, r(T ) was paired one of set of τ and
Q values and used in a standard BBN code. The BBN
code we used in our analysis is based on Refs. [31, 32]
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FIG. 2. The yellow bands show the (1-σ allowed abundances
for 4He and 2H . The two clouds show the result of 300 sim-
ulations, both with ∆mq/mq = -1 % but two different values
of η10. The lower cloud (ochre online) is the result of taking
η10 = 6.23 and the upper cloud (burgundy online) the value
η10 = 4.60. There is very little change on the 4He yield but
the deuterium yield changes enough to render the deuterium
abundance useless in putting a constraint on ∆mq/mq.

and is publicly available [33]. The code was modified to
accept temperature-dependent variations in the reactiv-
ity corresponding to the n+ p→ d+ γ reaction and the
rate of weak interaction processes was changed accord-
ing to eq. (1.15) and eq. (1.16). The Q-values of all BBN
reactions with 2H , 3H , 3He , and 4He as either parent
or daughter products of reactions were allowed to vary in
accordance with the changes in binding energies of these
nuclei. The baryon-to-photon ratio η was changed over
a range discussed below. Otherwise, the standard input
parameters were used in our BBN simulations.

The main feature seen in the simulations is that a vari-
ation in η shifts the deuterium abundance but has little
effect on the 4He yields (see fig. (2)). A larger value
of η implies in a larger baryon density, a more complete
burning of the neutrons into 4He nuclei and a smaller deu-
terium abundance. As a consequence, in the absence of
a restriction on the value of η from other considerations,
the deuterium abundance does not put any constraint on
the range of allowed quark masses variations.

Additional constraints on the value of η comes from
studies of large-scale structure of the Universe. The
actual numerical value of the constraints, however, de-
pends on assumptions made in these analyses, includ-
ing assumptions on the initial spectrum of fluctuations.
For instance, the lower range of the determination of
η10 = 4.79 ± 0.019 in [34] and the central value of the
determination of η10 = 6.23± 0.17 in [35],are shown, for
∆mq/mq in fig. (2). A similar plot results for other val-
ues of ∆mq/mq. Consequently, any reasonable change
in the deuterium abundance can be accommodated by
a change in the value of η10. If we restrict ourselves to
the much narrower range η10 = 6.23± 0.17 [35], the deu-
terium abundances can play a role. However, the values
in the range η10 = 6.23 ± 0.17 are in tension witht he
observed deuterium abundances. BBN, by itself, prefers
the slightly lower range 5.1 < η10 < 6.5, at the 95% con-

0.20 0.22 0.24 0.26 0.28 0.30
Y40

0.00001

0.00002

0.00003

0.00004

Y2

FIG. 3. The yellow bands show the (1-σ allowed abundances
for 4He and 2H . The five clouds show the result of 300
simulations at each one of the values (from left to right):
∆mq/mq = 2% (green online), ∆mq/mq = 0.7% (blue on-
line), ∆mq/mq = −0.5% (purple online), ∆mq/mq = −1%
(ochre online), and ∆mq/mq = −2% (red online).

fidence level [36]. Thus, even with the current physical
values of mq, the predicted deuterium abundance lies just
outside the 1−σ band, making difficult to distinguish al-
lowed and forbidden values of mq based on Y2. For now,
let us disregard the deuterium abundances and look at
how the 4He abundances change with the quark masses.

In fig. (3) we show the result of changing the quark
masses by five values: 2%, 0.7%,−0.5%,−1% and −2%,
all corresponding to η10 = 6.23. Each one of these val-
ues of ∆mq/mq is represented by a cloud of points in
the Y4× Y2 plane. The spread between the 300 points in
each cloud accounts for the theoretical uncertainties in
the extrapolation of the parameter inputs as described
by eqs. (2.2) and (2.3). The tendency is for a smaller Y4

for larger values of mq. Two main mechanisms account
for this general trend. First, large values of mq imply in
larger values of ∆, larger phase space for neutron decay
and shorter neutron lifetime. Consequently, more neu-
trons decay by the time BBN starts the assembly of 4He
and smaller 4He yield. In addition, eq. (1.1) shows that a
larger mq implies into a smaller B2. The deuteron, being
less bound, takes longer to form, delaying the onset of
4He formation, and giving even more time for the neu-
trons to decay, reducing further the 4He yield. There is
also a weak tendency to have smaller Y2 for smaller mq,
a trend not so easily explained.

Based on the data shown on fig. (3) we put a bound
on the allowed values of quark mass changes at

−1% .
∆mq

mq
. 0.7%, (2.4)

which is the main result of this paper. We will refrain
from assigning a numerical value to the uncertainty in
this estimate. An attempt in this direction would require
us to assign a precise statistical meaning to our theoret-
ical uncertainties. While there are reasons to take these
uncertainties seriously at the qualitative level and we be-
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lieve them to be superior to the model calculations used
previously, there is still some amount of judgement that
needs to be exercised that cannot be easily captured in
precise statistical terms.

III. CONCLUSION

We estimated the abundances of 2H and 4He produces
in the standard BBN scenario under the assumption that
the light quark masses were shifted at the BBN time from
present values. In order to perform this calculation we
used input from several kinds of effective field theories
as well as lattice QCD results to connect the quark mass
variation to the relevant nuclear physics. We found that

a variation beyond the −1% . ∆mq
mq

. 0.7% range to be

likely inconsistent with the observed abundances.
Two of the BBN parameters played the larger role in

changing the light element yields: the deuteron biding
energy (and the 3H , 3He and 4He bidings, strongly corre-
lated to 2H biding) and the neutron lifetime. The neutron
lifetime dependence on the quark mass values is well con-
strained by theory. The variation of the deuteron bind-
ing is, however, much more loosely constrained and sev-
eral venues of further progress are clearly visible. Lattice
QCD calculations of nucleon-nucleon interactions, even
if performed at unphysical values of mq, would go along

way in narrowing these constraints. As long as they are
performed with quark masses low enough to be within
the region of validity of the chiral nuclear EFT they can
nail down the value of parameters of the EFT necessary
for the extrapolation of the deuteron binding. The bind-
ings of 3H , 3He and, specially 4He , can and should also
be computed in the pionless nuclear EFT to higher or-
ders so the theoretical uncertainty associated with them
decreases. Finally, a better understanding of the quark
mass variation of other threshold parameters like effec-
tive ranges, ... , would also allow for more precisely con-
strained calculation of the biding energy on the larger
nuclei.

Since we are not presently able to obtain reliable val-
ues for the 7Li binding energies, the 7Li abundances we
compute are not very meaningful and were not used in
putting constraints in the quark mass variations. Fu-
ture advances in the nuclear pionless effective theory may
change this and allow us to address the “Lithium prob-
lem” as a signal of quark mass variation.
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