Overview of Recent Tritium Experiments in TPE

PDF Version Also Available for Download.

Description

Tritium retention in plasma-facing components influences the design, operation, and lifetime of fusion devices such as ITER. Most of the retention studies were carried out with the use of either hydrogen or deuterium. Tritium Plasma Experiment is a unique linear plasma device that can handle radioactive fusion fuel of tritium, toxic material of beryllium, and neutron-irradiated material. A tritium depth profiling method up to mm range was developed using a tritium imaging plate and a diamond wire saw. A series of tritium experiments (T2/D2 ratio: 0.2 and 0.5 %) was performed to investigate tritium depth profiling in bulk tungsten, and ... continued below

Creation Information

Shimada, Masashi; Otsuka, T.; Pawelko, R. J.; Calderoni, P. & Sharpe, J. P. October 1, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Tritium retention in plasma-facing components influences the design, operation, and lifetime of fusion devices such as ITER. Most of the retention studies were carried out with the use of either hydrogen or deuterium. Tritium Plasma Experiment is a unique linear plasma device that can handle radioactive fusion fuel of tritium, toxic material of beryllium, and neutron-irradiated material. A tritium depth profiling method up to mm range was developed using a tritium imaging plate and a diamond wire saw. A series of tritium experiments (T2/D2 ratio: 0.2 and 0.5 %) was performed to investigate tritium depth profiling in bulk tungsten, and the results shows that tritium is migrated into bulk tungsten up to mm range.

Source

  • 9th International Conference on Tritium Science and Technology,Nara, Japan,10/24/2010,10/29/2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-10-20218
  • Grant Number: DE-AC07-05ID14517
  • Office of Scientific & Technical Information Report Number: 1027906
  • Archival Resource Key: ark:/67531/metadc832356

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 12, 2016, 7:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Shimada, Masashi; Otsuka, T.; Pawelko, R. J.; Calderoni, P. & Sharpe, J. P. Overview of Recent Tritium Experiments in TPE, article, October 1, 2010; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc832356/: accessed September 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.