Deeply Virtual Exclusive Reactions with CLAS

PDF Version Also Available for Download.

Description

Deeply virtual exclusive reactions offer an unique opportunity to study the structure of the nucleon at the parton level as one has access to Bjorken x{sub B} and momentum transfer to the nucleon t at the same time. Such processes can reveal much more information about the structure of the nucleon than either inclusive electroproduction or elastic form factors alone. Dedicated experiments to study Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) have been carried out in Hall B at Jefferson Lab. DVCS helicity–dependent and helicity–independent cross sections and beam spin asymmetries have been measured with CLAS, ... continued below

Physical Description

118-125

Creation Information

Kubarovsky, Valery November 1, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Deeply virtual exclusive reactions offer an unique opportunity to study the structure of the nucleon at the parton level as one has access to Bjorken x{sub B} and momentum transfer to the nucleon t at the same time. Such processes can reveal much more information about the structure of the nucleon than either inclusive electroproduction or elastic form factors alone. Dedicated experiments to study Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) have been carried out in Hall B at Jefferson Lab. DVCS helicity–dependent and helicity–independent cross sections and beam spin asymmetries have been measured with CLAS, as well as cross sections and asymmetries for the {pi}{sup #25;}0, {eta}#17;, {rho}{sup #26;}0, #26;{rho}{sup +}, {omega} and {phi}#30; for exclusive electroproduction. The data were taken in a wide kinematic range in Q{sup 2}=1–4.5 GeV{sup 2}, x{sub B}=0.1–0.5, and {absval t} up to 2 GeV{sup 2}. We will discuss the interpretation of these data in terms of traditional Regge and Generalized Parton Distributions (GPDs) models. The successful description of the recent CLAS pseudoscalar meson exclusive production data by GPD-based model provides a unique opportunity to access the transversity GPDs. We view the work presented in this report as leading into the program of the Jefferson Lab 12 GeV upgrade. The increased energy and luminosity will allow us to acquire data at much higher Q{sup 2} and x{sub B}, and perform Rosenbluth L/T separations of the cross sections.

Physical Description

118-125

Source

  • Journal Name: Nuclear Physics B - Proceedings Supplements; Journal Volume: 219-220; Conference: Hadron Structure '11,Tatranská Štrba, High Tatra Mountains, Slovak Republic, 27 June–1 July 2011

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-PHY-11-1421
  • Report No.: DOE/OR/23177-1777
  • Grant Number: AC05-06OR23177
  • DOI: 10.1016/j.nuclphysbps.2011.10.080 | External Link
  • Office of Scientific & Technical Information Report Number: 1038255
  • Archival Resource Key: ark:/67531/metadc832317

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 3, 2016, 3:04 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kubarovsky, Valery. Deeply Virtual Exclusive Reactions with CLAS, article, November 1, 2011; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc832317/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.