Development of an instrument for non-destructive identification of Unexploded Ordnance using tagged neutrons - a proof of concept study

PDF Version Also Available for Download.

Description

Range clearance operations at munitions testing grounds must discriminate Unexploded Ordnance (UXO) from clutter items and distinguish UXO filled with High Explosives (HE) from those with inert fillers. Non-destructive technologies are thus necessary for the cost-effective disposal of UXO during remediation of such sites. The only technique showing promise so far for the non-destructive elemental characterization of UXO fillers utilizes neutron interactions with the material to detect carbon (C), nitrogen (N) and oxygen (O) which have unique ratios in HE. However, several unresolved issues hinder the wide application of this potentially very suitable technique. The most important one is that ... continued below

Creation Information

Mitra, S. & Dioszegi, I. October 23, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Range clearance operations at munitions testing grounds must discriminate Unexploded Ordnance (UXO) from clutter items and distinguish UXO filled with High Explosives (HE) from those with inert fillers. Non-destructive technologies are thus necessary for the cost-effective disposal of UXO during remediation of such sites. The only technique showing promise so far for the non-destructive elemental characterization of UXO fillers utilizes neutron interactions with the material to detect carbon (C), nitrogen (N) and oxygen (O) which have unique ratios in HE. However, several unresolved issues hinder the wide application of this potentially very suitable technique. The most important one is that neutrons interact with all surrounding matter in addition to the interrogated material, leading to a very high gamma-ray background in the detector. Systems requiring bulky shielding and having poor signal-to-noise ratios (SNRs) for measuring elements are unsuitable for field deployment. The inadequacies of conventional neutron interrogation methods are overcome by using the tagged-neutron approach, and the availability of compact sealed neutron generators exploiting this technique offers field deployment of non-intrusive measurement systems for detecting threat materials, like explosives and drugs. By accelerating deuterium ions into a tritium target, the subsequent fusion reaction generates nearly back-to-back emissions of neutrons and alpha particles of energy 14.1 and 3.5 MeV respectively. A position-sensitive detector recognizes the associated alpha particle, thus furnishing the direction of the neutron. The tagged neutrons interact with the nuclei of the interrogated object, producing element-specific prompt gamma-rays that the gamma detectors recognize. Measuring the delay between the detections of the alpha particle and the gamma-ray determines where the reaction occurred along the axis of the neutron beam (14.1 MeV neutrons travel at 5 cm/nanosecond, while gamma rays cover 30 cm/nanosecond). The main advantage of the technique is its ability to simultaneously provide 2D and 3D imaging of objects and their elemental composition. This work reports on the efficacy of using 14 MeV neutrons tagged by the associated particle neutron time-of-flight technique (APnTOF) to extract neutron induced characteristic gamma-rays from an object-of-interest with high SNR and without interference from nearby clutter.

Source

  • IEEE Nuclear Science Symposium and Medical Imaging Conference; Valencia, Spain; 20111023 through 20111029

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--96139-2011-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 1027439
  • Archival Resource Key: ark:/67531/metadc832230

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 23, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 26, 2016, 4:19 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mitra, S. & Dioszegi, I. Development of an instrument for non-destructive identification of Unexploded Ordnance using tagged neutrons - a proof of concept study, article, October 23, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc832230/: accessed July 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.