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ABSTRACT 
 

The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the 

overall health of the work force.  Data collected from each participating site include health events and a 

roster file with demographic information.  The source data files are maintained in a relational data base, 

and are used to obtain stratified tables of health event counts and person time at risk that serve as the 

starting point for Poisson regression analysis.  The explanatory variables that define these tables are age, 

gender, occupational group, and time.  Typical response variables of interest are the number of absences 

due to illness or injury, i.e., the response variable is a count.  Poisson regression methods are used to 

describe the effect of the explanatory variables on the health event rates using a log-linear main effects 

model.  Results of fitting the main effects model are summarized in a tabular and graphical form and 

interpretation of model parameters is provided.  An analysis of deviance table is used to evaluate the 

importance of each of the explanatory variables on the event rate of interest and to determine if 

interaction terms should be considered in the analysis.  Although Poisson regression methods are widely 

used in the analysis of count data, there are situations in which over-dispersion occurs.  This could be due 

to lack-of-fit of the regression model, extra-Poisson variation, or both.  A score test statistic and 

regression diagnostics are used to identify over-dispersion.  A quasi-likelihood method of moments 

procedure is used to evaluate and adjust for extra-Poisson variation when necessary.  Two examples are 

presented using respiratory disease absence rates at two DOE sites to illustrate the methods and 

interpretation of the results.  In the first example the Poisson main effects model is adequate.  In the second 

example the score test indicates considerable over-dispersion and a more detailed analysis attributes the 

over-dispersion to extra-Poisson variation.  The R open source software environment for statistical 

computing and graphics is used for analysis.  Additional details about R and the data that were used in this 

report are provided in an Appendix.  Information on how to obtain R and utility functions that can be used to 

duplicate results in this report are provided. 
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INTRODUCTION 
 

The mission of the Department of Energy’s (DOE) Illness and Injury Surveillance Program (IISP) is to 

monitor morbidity and assess the overall health of the work force and to identify groups that may be at 

increased risk for occupation-related injury or illness.  The program provides a focus for interventions that 

reduce or eliminate risk.  The IISP also provides a means by which the effectiveness of corrective actions 

can be measured.  This is accomplished through the routine collection, analysis, and interpretation of 

selected morbidity, demographic and occupational exposure data on an annual basis for each of the sites 

that participate in the program.  To address issues of privacy and confidentiality, no identified worker data 

are ever transmitted off site.  All data transmitted to the Program's data center are accompanied only by 

encrypted identifiers, and only site personnel who are directly involved with the IISP at each participating 

site can identify data for an individual at their site using these identifiers.  In 2006 the IISP assessed the 

overall health of about 79,000 contractor workers at 13 DOE sites in the U.S. DOE IISP Worker Health 

Summary, 1995-2004 — see Strader and Richter (2007).  The Worker Health Summary and annual 

surveillance reports for the participating sites are available at DOE’s Office of Health, Safety, and 

Security internet site, or from the Office of Scientific and Technical Information (OSTI). 
 

This report reviews regression methods for the analysis of data when the response variable is a count, and 

describes how these methods can be used for the analysis of the IISP data.  The general count regression 

approach can be applied to any situation in which the response variable is non-negative integer valued with 

expectation that varies as a function of known covariates.  The IISP data are collected by coordinators at 

each site and submitted to the Epidemiologic Surveillance Data Center located at the Oak Ridge Institute 

for Science and Education (ORISE), where quality control and record linkage procedures are carried out.  

The source data files obtained from each facility are i) a roster, ii) a return to work (RTW)  absence file, 

and iii) an OSHA-Recordable events file.  Workers absent five or more consecutive workdays due to any 

illness or injury are cleared to return to work through the occupational medical clinics at each site (DOE 

10 CFR851).  The latter two files contain “health event” records .   There is at least one health event, 

i.e., a disease or injury diagnosis, associated with each health event record.  The event files and the roster 

are maintained in a relational data base and are used to generate stratified tables that serve as the starting 

point for Poisson regression analysis.  The explanatory variables that are used to define these tables are 

age, gender, occupational group and time.  Age at risk is represented as a factor with four levels (<30, 30-

39, 40-49, 50 or greater) and there are seven occupational groups.  Time is in one year intervals and the 

number of levels depends on the length of time the site has been in the program.  This choice of 

explanatory variables is based on programmatic and practical considerations.  Typical health events are 

respiratory disease, circulatory disease, and injuries, but any disease of interest as defined by the 

International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) (National 

Center for Health Statistics and Centers for Medicare & Medicaid Services, 2011) code can be specified 

as the response variable.  Each of the cells in the stratified table contains the number of events and 

person-time at risk for workers with the corresponding characteristics.  For the RTW data, an event is an 

absence of at least five consecutive workdays with an illness or injury as defined by the ICD-9-CM 

coding system, e.g., for respiratory illness the ICD-9-CM code is 460-519.  The event rate is the number 

of events divided by the person-time at risk in each stratum and is expressed in units of 1000 person-

years, i.e., if y is the number of events and n is the person-time at risk (in units of 1000), then r = y/n is 

the event rate for the stratum.   
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The number of events in a given stratum is the dependent, or response, variable and is assumed to follow 

a Poisson distribution.  The mean of the distribution is equal to the person-time at risk multiplied by the 

“rate function” which depends on the level of each of the explanatory variables.  In the IISP, occupational 

group and year are viewed as “exposure” variables of primary interest and age and gender are of 

secondary interest as potential confounding variables and/or effect modifiers.  The underlying rate 

function is represented by a “product model” in which the stratum specific rates are the product of 

parameters, one for each level of the explanatory variables (subject to some constraints).  For purposes of 

estimation the product model is re-parameterized as a log-linear model and the log scale parameters are 

estimated using standard options in the generalized linear model (GLM) function in the open source 

program R (2009).  In the log-linear parameterization the resulting model is equivalent to a “main effects 

model” (MEM), and Poisson regression is used to obtain maximum likelihood (ML) estimates of the 

parameters, their standard errors, and other relevant information.   The results are presented in a summary 

table and a “main effects plot”.  The summary table for the MEM includes parameter estimates, standard 

errors, estimates of the dispersion parameter, and a score tests for “over-dispersion”.  The summary table 

and the main effects plot facilitate the evaluation of the event rates for each event type of interest from the 

RTW and OSHA data bases for each of the thirteen sites.  An analysis of deviance table is obtained to 

evaluate the importance of each of the explanatory variables and each of the possible two factor 

interactions.  The two factor interactions may be of interest if there is an indication of over-dispersion for 

the MEM since over-dispersion may be due to lack of fit of the MEM and/or heterogeneity of variance of 

the counts under the Poisson assumption. 

 

The first application of Poisson regression was given by Cochran (1940) with wireworm counts from an 

agriculture experiment as the response variable and the regression function E(yi) = μi = (xi β)
2
 , where xi is 

the i
th
 row of the model matrix for a Latin square design.  This model is a GLM with a Poisson response 

and a “square root” link function — see Frome (1984) for additional details.  Jorgenson (1961) proposed 

Poisson regression with a linear rate function for use in consumer demand analyses and reliability.  

Nelder and Wedderburn (1972) described GLM for response variables in the regular exponential family 

— see also McCullagh and Nelder (1989, Chapter 6) for Poisson log-linear models.  Frome et al. (1973) 

described Poisson regression methods for general models with an emphasis on intrinsically nonlinear 

models.  Frome (1983) described the analysis of event rates for Poisson data and Frome and Checkoway 

(1985) considered applications of these methods in epidemiologic follow-up studies.  Breslow and Day 

(1987) described the use of Poisson regression in occupational cohort studies and Koch et al. (1986) gave 

a more complete review of Poisson regression methods and areas of applications.  Cameron and Trivedi 

(1986) discussed Poisson regression in econometric applications.  Richardson and Loomis (2004) 

reviewed the use of Poisson regression in occupational and environmental cohort studies and considered 

problems that may occur when person-time and events are tabulated by levels of an exposure variable that 

was originally measured on a continuous scale and has been categorized for analysis.   

 

Wing et al. (1991) and Frome et al. (1997) have applied these methods to mortality studies of nuclear 

industry employees.  Poisson regression has also been used extensively in mortality studies of atomic 

bomb survivors — see e.g. Pierce et al. (1996).  Preston et al. (1993) have developed special purpose 

software that supports the use of Poisson regression in the atomic bomb survivors’ studies and other 

situations that require Poisson regression with excess relative risk models. Poisson regression has been 

used extensively in the analysis of motor vehicle accidents — see e.g. Erlander et al. (1972),  Frome and 

Walton (1975), Gustavsson and Svensson (1976), Michner and Tighe (1992), Fridstrom et al. (1995), Li 

(2001), Lord et al. (2005).   
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The application of Poisson regression to the analysis of occupation injuries in various situations has also 

been considered.  Mohr and Clemmer (1989) evaluated occupational injury intervention programs in the 

petroleum drilling industry.  Mallick and Mukherjee (1996) studied accidents in mines; Bailer et al. 

(1997) presented a case study of injury rates in workers in agriculture, forestry, and fishing; and 

Richardson et al. (2004) evaluate fatal injury rates by race and ethnicity in southern and non-southern 

states.  Smitha et al. (2001) used Poisson regression to evaluate the effect of mandatory state workplace 

safety interventions on occupational injury rates during a five-year time interval.  Various economic, 

regulatory, and demographic covariates were included in their model.  Inclusion of these additional 

explanatory variables was important since state-to-state differences can be problematic when comparing 

occupational injury rates.  Melchlor et al. (2005) used Poisson regression models to evaluate sickness 

absences from work in the French GAZEL cohort study.  Absence rates in occupational classes were of 

primary interest and were adjusted for other explanatory variables (age, demographic characteristics, and 

health behaviors).  Karra (2005) used Poisson regression and related regression models to evaluate fatality 

and injury rates among operator and contractor employees in the underground and surface mining of 

various minerals.  Laaksonen et al. (2008) used Poisson regression to evaluate gender differences in 

sickness absence rates on municipal employees from Finland.  Explanatory variables included in the 

analysis were age, occupational class, health status measures, and working conditions  

 

In each of these situations, the dependent (response) variable is a count that may follow the Poisson 

distribution with a mean that varies as a function of several explanatory variables.  A regression function 

describes the relation between the count and the explanatory variables, and for a fixed set of explanatory 

variables the mean of the count variable is equal to the regression function times the person time at risk.  

Consider, for example, the number of events that occur in a group of workers that are classified by 

gender, age, and workplace characteristics over a specified period of time.  Suppose that xi represents the 

value of these explanatory variables for the i
th
 group with ni workers in the group and yi events occur.  

The expected value of  yi is equal to μi = ni λ(xi ,β) = ni λi ,  where λi =  λ(xi ,β) is a known function and β 

is an unknown vector of parameters.  As a general rule the ni are much larger than the yi (although this is 

not required), and λi is the event rate in the i
th
 group.  The regression function λ(xi ,β) represents the 

systematic variation in event rates that can be described by the explanatory variables.   

 

It was first observed by Bortkiewicz (1898) in his study of death by horse-kick in the Prussian army that 

the variation in y (with xi constant) can be described by the Poisson distribution, i.e., f(y|μ) = exp(-μ)μ
y
/y! 

— see also Preece et al. (1988) and Quine and Seneta (1987).   Haight (1967, Chapter 9) described the 

historical development of the Poisson and related distributions from 1781 to 1920 and notes that although 

Poisson discovered the mathematical expression, Bortkiewicz discovered its use as a probability 

distribution for discrete data.  He further claimed that the Poisson distribution is second in importance to 

the normal from both a theoretical and applied perspective.  Haigh (1967, Chapter 7) reviewed a number 

of areas where the Poisson distribution has been used to describe the distribution of counts based on both 

empirical and theoretical studies.  The important point to note here is that in the evaluation of health 

events of interest the variation in the counts yi (for fixed xi) is described by the Poisson distribution.  For 

example if there are say ni = 625 workers in the i
th
 group and the event rate is λi = 4/1000, then yi will 

follow the Poisson distribution with mean 2.5.  Consequently, under the Poisson model if  a large number 

of groups with the same characteristic were observed, the number of events would vary from zero 

approximately 8% of the time to as high as ten, and two events would occur most frequently.  Even 

though the relation and factors that describe the event rate potential are known, the number of events is 
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“random” in character, and we say that this “unexplained” variability is due to Poisson variation.  

Methods for testing the model assumptions concerning the regression function and Poisson variation are 

presented, and alternative methods are described for situations in which either or both of the assumptions 

is in question.  

 

 

2.  STATISTICAL METHODS 
 

In the IISP a response variable of interest is the number of events that occur during a specified 

period of time.  The number of events and corresponding time at risk are obtained for each 

combination of levels of the explanatory variables (also referred to as covariates, dependent variables, 

exogenous/endogones variables, and predictor variables).  In general, covariates can be continuous (e.g. 

age) or categorical (e.g. gender). In large observational studies such as IISP it is often convenient to 

use “grouped data” methods, i.e. age is categorized into four intervals and time is in one year 

intervals.  The use of grouped data methods in the analyses of rates and rate standardization is 

described by Breslow and Day (1987, Chapter 2).  Rostgaard (2008) presents a detailed discussion 

of computational issues involved in the creation of the event-time tables required for the grouped 

data methods.  The algorithm first described by Clayton — see Breslow and Day (1987, 

Appendix IV) — was used as the basis for several macros coded in SAS (2008), and the 

relationship to similar methods implemented in several other commercial packages and R is 

discussed.  Clayton and Hills (1993, Chapters 5 and 6) provide a detailed discussion of rate 

estimation in epidemiologic studies and the use of Lexis diagrams to obtain stratified tables in 

situations when multiple time scales (i.e. age and calendar time) are of interest.  They discuss the 

relationship between the instantaneous probability rate for an individual at a specified point in time 

and frequency of events in a group of individuals observed over time.  The estimated rate 

parameter is based on the experience of a group of workers who are assumed to have the same rate 

parameter over a specified period of time.  The event rate is obtained by dividing y, the number of 

events, by n, the (person) time at risk, for each possible combination of levels of all of the 

explanatory variables.  The Poisson regression model is based on the assumption that the event 

counts follow a Poisson distribution with expected value equal to the person time at risk times an 

underlying rate, i.e., E(yijkt) = nijkt λijkt  for each of the possible combinations of the explanatory 

variables. When the rate function λ is multiplicative (so that the “link” function is logarithmic) and 

the explanatory variables are categorical, a standard notation for a log-linear Poisson regression 

model with explanatory variables age, gender, occupational group, and year is: 

 

log(λijkt) = μ + αi + γj +θk + τt . (1) 

 

This MEM includes the four explanatory variables and no "interaction" terms.  In equation (1) the αi  

represent age effects, the γj represent gender effects, the θk represent occupational group effects, and 

the τt represent year effects, all on the log scale. The MEM is over-parameterized and the 

interpretation of μ (often referred to as the “intercept term”) depends on the procedure used to 

eliminate redundancy (see the Examples).  For practical reasons it is sometimes more convenient to 

write equation (1) as 

 

 log(rate) = m + ag + sx + og + yr (2) 
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where  

m is the intercept term,  

ag represents age group with 4 levels ag[i] , i = 1,2,3,4 , 

sx represents gender with sx[j] = 1 for females and sx[j] = 2 for males , 

og represents occupational group k = 1,...,7 (see Table 1 for names of occupational groups), and  

yr represents calendar year t=1 ,...,T (T depends on the DOE site)  

 

This notation corresponds to that used in statistical programs that fit Poisson regression models 

(e.g. GLIM, S-Plus, R). For example, in computer output the value of og[k] is the ML estimate of 

the log scale effect for the k
th

 occupational group (see Example 1 and Appendix 2 for details). 

 

For mathematical and notational convenience, let ri = yi/ni denote the event rate in the i
th

 group and 

consider the following weighted sum of squares 

 

 S(β) = Σi wi [ri  -λ(xi,β)]
2
 , (3) 

 

where the weight wi is inversely proportional to the variance of ri.  For the MEM xi is based on a 

row vector of “indicator variables” that is defined by the levels of the four explanatory variables in 

the i
th

 cell and λ(xi,β) = exp(xiβ) , where β = (α,γ,θ,τ)  is a vector that contains the unknown 

parameters as described in equation (1).  In matrix notation the log of the rate function is Xβ where 

X is an N by q matrix with rows xi, N is the number of cells in the stratified table, and q is the 

number of estimable parameters.  

 

If the yi are independent and follow the Poisson distribution the weights in equation (3) are 

wi=ni/λ(xi,β).  Since λ(xi,β) is, in general, nonlinear in the unknown parameters and the w i depend 

on β an iterative procedure can be used to obtain an estimate of β.  The rate function λ(x i,β) in (3) 

is replaced with the linear terms in a Taylor series expansion about an initial estimate β° and the 

resulting weighted least squares system of equations is solved for a correction vector δ°.  The 

initial estimate is updated, i.e. β
1
 = β°+δ° and the iterative weighted least squares (IWLS) 

continues until some convergence criteria are satisfied — see Frome et al, 1973, Frome (1983) for 

details.  Under the Poisson assumption the IWLS procedure is equivalent to using the method of 

scoring to find the ML estimate of β where the kernel of the log-likelihood function is L(β) = 

Σi[yilog{niλ(xiβ)}- niλ(xi,β)]. 

     

Maximizing L(β) is equivalent to minimizing the deviance  

 

 D(β) = 2[L(y) – L(β)] = 2 Σi[yilog(yi/μi) – (yi -μi)],  (4) 

 

where μi = ni(xi,β) and L(y) denotes the value of the log likelihood evaluated at λi = yi/ni.  This is 

called the saturated model since there is a parameter for each cell in the table.   Note that the IWLS 

procedure does not require calculation of the log-likelihood function since convergence can be 

defined in terms of the relative change of the parameter estimates (Frome et al 1973).  If a stable 

solution 


 is found, it will be the root of the likelihood equations, i.e. L(


) will be at its maximum 

and D(


) will be at its minimum value (Charnes et al, 1976).  The IWLS algorithm does not 

minimize the weighted sum of squares in equation (3) but rather is a solution to the estimating 

equations and consequently can be used for quasi-likelihood and resistant alternatives to ML — see 
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Green (1984) for a more detailed discussion of the IWLS procedure. When λ(x, β) is a generalized 

linear function, i.e., λ(xi, β) = exp(xiβ), and the response variable y is in the exponential family, the 

result is a GLM.  Nelder and Wedderburn (1972) showed that for GLMs the IWLS procedure is 

equivalent to ML.  This was the basis for the statistical package GLIM (Baker and Nelder, 1978).  

There are currently a number of statistical packages that support the analyses of count regression 

models ─ see e.g. Data Analysis Examples (2012) at the Statistical Computing website at UCLA 

Academic Technology Services, where five statistical packages that can be used to fit Poisson and 

other count regression models are described and illustrated with examples.  In this report the R 

(2012) open source language and environment for statistical computing is used for all data 

analysis, e.g. the R function glm( ) is used to fit Poisson log-linear models. 

 

The deviance (4) provides an absolute measure of residual variation and is asymptotically 

distributed as a chi-square with N-q degrees of freedom (df).  The difference of the deviance for 

nested models follows the chi-square distribution and is used to obtain an analysis of deviance 

table.  Also included in the analysis of deviance table is the value of the information criteria (IC)  

 

 IC = D + kqφ , (5) 

 

where D is the deviance, k is a constant, q is the number of estimable parameters, and φ is a 

dispersion parameter.  For the Poisson model φ = 1 and if k = 2 then equation (5) is known as the 

Akaike information criteria.  Atkinson (1981) suggests that k should range from 2 to 6.  McCullagh 

and Nelder (1989, Chapter 3.9) discuss the use of the IC in model selection and, following their 

suggestion, we use k = 4 unless stated otherwise.  This corresponds to use of the 5% point of the t 

(or F) distribution for a covariate with one df.  The IC is an optimality criterion that is used (with 

smaller values being preferred) to compare models.  Adding a term to a model will always decrease 

the deviance, so adding k times the number of parameters is a penalty for unnecessary terms.  The 

IC can be used in a model selection procedure that implicitly fits all possible hierarchical models 

and identifies good models for further consideration (Ostrouchov and Frome, 1993).   

 

The deviance can also be used to calculate a pseudo R-squared measure for Poisson models, 

 = 1 – D(


)/D( oλ


 ), where D( oλ


) denotes the deviance for the minimal one parameter model 

E(yi) = ni(λo).    represents the relative reduction in the deviance due to the covariates in the model and 

is similar to R
2
 measures used in linear regression.  If the sample size is small relative to the number of 

parameters in the full model  may be inflated.  A bias adjusted R-square measure for Poisson and 

quasi-poisson regression is given by    = 1 – [D(


) + q-1]/D( oλ


) = , where A is the “shrinkage 

factor” — see Heinzland and Mittlbock (2003) for further details.  

 

After reviewing the results from fitting a Poisson regression model, some type of model checking may be 

indicated.  There are a number of model-checking techniques that can be considered if there is some 

indication that the Poisson model is inadequate.  These techniques can be both formal and informal and 

usually involve the analysis of residuals, regression diagnostics, and the fitting of more complex models.  

Model checking methods are described in detail for count data by Cameron and Trivedi (1998, Chapter 5) 

and for GLMs by McCullagh and Nelder (1989, Chapter 12).  The two primary ways that the results 

obtained from Poisson regression may require further evaluations are lack-of-fit of the regression function 

(in this situation, the MEM) and extra-Poisson variation.  In either or both situations the counts may 

display over-dispersion relative to the Poisson model.  Pregibon (1981) first proposed that when 
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binomial logistic regression methods are used in observational studies diagnostic procedures 

similar to those used in standard linear regression should be used to check for outlying y values (as 

indicated by large values of the standardized residual) and extreme points in the model space.  

Correspondingly, an informal procedure that is used to check for systematic departures from the 

Poisson MEM is based on plots of residuals versus the fitted values from the MEM.  Following 

McCullagh and Nelder (1989, Chapter 12) we plot the standardized deviance residuals (SDR) 

against the fitted rates from the MEM (see Section 3.2 for an example).  The SDR for the i
th

 

observation is obtained by dividing the signed deviance residual sign(y i - μi)di  by ih1 ,  where 

i


 
= ni i



= ni λ(xi,


), di = 2[yi log (yi/ i


)–(yi- i


)]
1/2

 , and hi is the i
th

 diagonal element from the 

leverage or “hat matrix” H — see Frome (1983).  Note that di
2
 is the value of the deviance in 

equation (4) for the i
th

 observation evaluated at the ML estimate 


.  In this plot the area of each 

square is proportional to the final weight w i=ni/λ(xi,


) in equation (3).  The SDRs outside the 99% 

limits are marked with a red x.  A second useful plot for model checking purposes is a normal Q -Q 

plot of the SDRs.  This plot is used to identify extreme values which would appear in the upper 

right and/or lower left portion of the plot.  McCallaugh and Nelder (1989) point out that residuals 

from data with many zero counts could result in many small residuals near zero which may appear 

as a plateau in the Gaussian Q-Q plot.  A third diagnostic plot is obtained by plotting the SDRs 

versus the scaled ih values /qnhh ii 


.  Thus nΣh i 


 since qhΣ ii  , and 2 h i 


 indicates high 

leverage (McCallagh and Nelder, 1989, Section 12.7).  The outlying points are identified in this 

residual-leverage plot by a red “x” at points with both 2 h i 


 (i.e. to the right of the solid vertical 

line) and SDRs that are outside the horizontal dashed lines at +/ - 2.58 (the 99% limits).  A fourth 

diagnostic plot of the absolute value of the SDRs against the fitted values gives an informal check 

of the adequacy of the assumed variance function.  The null pattern will not show a trend, and 

smoothing is used to identify a possible pattern.  These four plots are illustrated in Section 3.2, and 

these and additional diagnostic plots for Poisson models available in R are discussed by 

Maindonald and Braun (2007, Section 8.4).  

 

One of the main purposes of the diagnostic plots is to identify “outliers” and/or over-dispersion.  If 

outliers are not considered to be a problem then extra-Poisson variation is a potential reason for over-

dispersion.  Over-dispersion is a common complication in the analysis of count data using Poisson 

regression.  The occurrence of excess variation has little effect on the regression coefficients of primary 

interest, but can result in serious errors in estimated standard errors, test statistics, and confidence 

intervals.  One approach to dealing with over-dispersion is to consider a random effects mixed Poisson 

model in which the yi follow a Poisson distribution with mean ѵ iµi where the ѵi are continous 

independent positive-value random variables with mean one and finite variance.  If the distribution 

of yi  given ѵi and xi is Poisson (ѵiµi), then the marginal mean and variance of y i are 

  

 μi = ni λ(xi,β) and var(yi) = μi + δ
b
i  ,  (6) 

 

where b = 1 or 2 and δ > 0 is often referred to as the index of dispersion parameter.  If the ѵi follow 

the gamma distribution then the yi follow the negative binominal (NB) distribution (Lawless, 1987) 

and NB regression can be used to obtain ML estimates of the regression parameters β and the 

dispersion parameter δ.  The Poisson assumption can be tested using a likelihood ratio statistic for the 

null hypothesis δ = 0.  In this situation δ = 0 is on the boundary of the parameter space and the likelihood 

ratio test statistic has an asymptotic distribution with a probability mass of ½ at 0 and a ½ Χ
2
(1) 

distribution above 0.  Lawless (1987) indicates that the asymptotic distribution of the likelihood ratio and 
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related statistics substantially overestimate the significance level associated with these tests and indicates 

that a score test should be considered to test for extra-Poisson variation.  Dean and Lawless (1989) 

review various aspects of the mixed Poisson model with b = 2 in equation (6) and derive the 

following score test statistic for extra Poisson variation 

 

Ta = Σi{(yi - i


) – yi + hi i


} / (2 Σi

2

i


)
½
 .  (7) 

 

Large positive values of Ta indicate over-dispersion and for large datasets (n > 50) Ta is approximately 

distributed as standard normal variable.  Ta requires only the Poisson model be fitted to obtain i


and hi 

in (7).  Dean (1992) further describes Ta and two additional tests for over-dispersion both of which are 

designed to be powerful against arbitrary alternative mixture models where only the first two moments of 

the mixed distribution are specified. 

 

An alternative to the NB regression approach to dealing with over-dispersion is to use the quasi-

likelihood method of moments (QL/M) procedure (Breslow, 1990) based on the mean and variance 

structure as defined in equation (6).  The regression coefficients are estimated using the quasi-likelihood 

estimating equations and the variance parameter is estimated by the method of moments.  If a specific 

distribution for the ѵi is not known, then in the most widely used QL/M procedure we assume, as 

an approximation, that the mean and variance function are as stated in equation (6) with b=1 so 

that E(yi)=μi=niλ(xi,β) and var(yi)=(1+δ)μ=φμ for some constant φ (see McCullagh and Nelder, 

1989, Chapters 6 and 9).  They note that even relatively substantial errors in the assumed 

functional form of var(y) generally have only a small effect on the conclusions.  This approach is 

referred to here as QL/M1 regression and requires only a minor adjustment to the results from the 

Poisson model.  For the QL/M1 regression model the estimating equations for the parameters β are the 

same as the ML estimating equations and are not affected by the value of φ. The moment estimator 

of φ is the Pearson chi-square statistic divided by its df, i.e. ~  = [Σi(yi-


i)
2
/μi]/[n-q]).  The standard 

errors of the regression parameters are multiplied by ~ , and deviance differences are rescaled by this 

estimate.  Approximate F tests are used in the rescaled analysis of deviance table and the t distribution is 

used to obtain confidence intervals for parameter estimates using the adjusted standard errors.  These 

adjustments to account for over-dispersion using the QL/M1approach are discussed by Venables and 

Ripley (2002, Chapter 7) and are implemented in the R function quasipoisson( ). 

 

The second QL/M procedure is based on using the quadratic variance [i.e., b=2 in equation (6)].  This 

corresponds to the variance of a NB regression model as described by Lawless (1987).  This QL/M2 

procedure was proposed by Breslow (1984) as a method for dealing with extra-Poisson variation.  The 

QL/M2 estimates can be obtained using the IWLS procedure derived from equation (3) using weights that 

are based on equation (6) with b=2, i.e., wi = ni / var(yi) = ni / (µi + δμi
2
).  This requires an initial Poisson 

fit with δ=0 so the weights are wi = ni / μi  , where  μi is evaluated at 


.  The moment equation (Breslow, 

1990) 

  

 U(β, δ) = Σi{(yi - μi)
2
 /  (μi + δμi

2
) - (n-q)/n} = 0  , (8) 

 

(with μi  evaluated at the current estimate β
~

of β) is solved for δ.  The IWLS procedure is repeated with 

weights wi =  ni / (µi +  
~

 μi
2
), where 

~
 is the current estimate of δ obtained from equation (8) and µi is 

evaluated at β
~

.  This procedure can be implemented using standard software.  For example, using R, the 

Poisson regression is obtained using glm( ) function with the Poisson family and with prior weights  
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1/(1+ 
~

 μ
~

) , and the moment equation (8) is then solved using uniroot( ).  If solving the estimating 

equations leads to a negative value of 
~

, the estimate is set equal to 0 since δ is assumed to be 

nonnegative (Breslow, 1990).   Lawless (1987) provides a detailed discussion of both NB regression and 

the QL/M2 procedure.  Note that when δ is known, the NB distribution is in the regular exponential 

family, i.e. the IWLS procedure yields ML estimates of β.  Consequently, if in the QL/M2 procedure, the 

moment equation (8) is replaced with the ML equation for δ based on the NB distribution (assuming β is 

known), the iterative procedure will yield the ML estimates of β and δ – see also the R function 

glm.nb( ). 
  

 

3.  APPLICATIONS 
 

To illustrate the use of Poisson regression methods for the IISP data, we use respiratory events at 

two of the DOE sites described in the Worker Health Summary as the dependent count variable.  

Respiratory events include acute disorders such as the common cold, pneumonia, and influenza; 

chronic life-threatening diseases like emphysema and chronic beryllium disease; allergic reactions 

resulting from exposure to pollen, dust, and other environmental irritants.  This diagnosis was the 

most common reason for an absence among workers in the Worker Health Summary.  For each of 

the two sites a stratified table of respiratory events and person-years was obtained from the roster 

file and the RTW file for the four explanatory variables, age (4 levels) gender (2 levels), 

occupational group (7 levels), and years (10 levels).  The resulting file for each site was in text 

(CSV) format and was input to R as a data frame with columns having variable names ag, sx, og, 

yr, rsp.  Certain combinations of ag, sx, og, and yr had zero person-years (n=0) and, consequently, 

y (the number of respiratory events) must be zero for these cells.  These “empty cells” are not 

included in the data frames.  A data frame is the analytic data structure that is used in R to fit 

GLMs, and in this situation, additional health event counts would be added as columns to the data 

frame (see Appendix 2).  There are two kinds of empty cells.  Necessarily empty cells occur when 

a combination of factor levels is a priori impossible.  Accidently empty cells occur when a 

combination of factors is possible but does not occur in the observed data.  For cells that have n > 

0 the event count is a non-negative integer and an observed zero is a “sampling zero” (see 

McCullagh and Nelder, 1989, Sections 3.7.1 and 6.3.2 for further details).  Note that a similar 

situation occurs when Poisson regression is used in the log-linear analysis of sparse multi-

dimensional contingency tables, and zero counts are referred to as being either “sampling” or 

“structural” (see e.g. Brown and Fuchs, 1983, Haslett, 1990).  The terms structural zero and 

sampling zero are also used in the context of zero- altered Poisson regression models with a 

different interpretation (see Appendix 1). 

 

3.1  EXAMPLE 1 

 

For Site 1 the text file that was input to R had 537 rows.  Of the 560 possible cells 23 had zero 

person-years (n=0).  Table 1 shows the marginal table of respiratory events, person-years, and rates 

for occupation group and age at a DOE site.  For Site 1 the overall (crude) five-day absence rate is 

1226/73.681 = 16.64 events per 1,000 person-years. 
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Table 1. Respiratory Absences by Occupational Group and Age Group at Site 1 

 

OCCUPATION 
AGE 

16-29 30-39 40-40 50+ 

a) Number of Absences 

A-Administrative 11 72 156 171 

C-Crafts 2 17 34 31 

E-Fire and Security 1 7 11 3 

O-Line Operators 1 0 5 4 

P-Professionals(F I M) 7 78 184 163 

S-Service 2 20 35 30 

T-Technical Support-B 5 37 78 61 

b) Person Years 

A-Administrative 1,697 3,801 6,446 5,907 

C-Crafts 95  467 1,215 1,061 

E-Fire and Security 96  466  445  201 

O-Line Operators 66  315  398  186 

P-Professionals(F I M) 1,980 9,250 14,455 13,030 

S-Service 210 342 771 758 

T-Technical Support-B 583 2,330 4,124 2,986 

c) Respiratory Absence Event Rate Per 1000 Person Years 

A-Administrative 6.5 18.9 24.2 28.9 

C-Crafts 21.1 36.4 28.0 29.2 

E-Fire and Security 10.4 15.0 24.7 14.9 

O-Line Operators 15.2 0.0 12.6 21.5 

P-Professionals(F I M) 3.5 8.4 12.7 12.5 

S-Service 9.5 58.5 45.4 39.6 

T-Technical Support-B 8.6 15.9 18.9 20.4 

 
  

The results of fitting the MEM are summarized in Table 2.  The first line in Table  2 shows the 

deviance for the minimal (one parameter) model which is 937.16 with 536 df, and the crude rate on 

a linear and log scale is shown on line two.  The deviance, df, number of parameters (q), 

information criterion (IC), and the adjusted R-squared for the MEM are on line four of Table 2.  

The difference in the deviance for the MEM and the minimal model is 451.7 with 19 df.  This is a 

test statistic for the hypothesis that all of the parameters for the explanatory variables in equation 

(1) are zero, and is compared to the chi-square distribution with 19 df (the 99.99 percentile of chi-

square with 19 df is 50.8).  Estimates of the Pearson chi-square statistic and corresponding 

dispersion parameter phi.p are on line five.  The score statistic Ta (see equation 6) is also shown on 

line five.  Under the Poisson MEM model, the dispersion parameter is assumed to be one and 

estimated values larger than one are taken as an indication of over-dispersion.  If the Poisson MEM 

provides a good fit, the dispersion statistic should be close to one.  Hilbe (2008, Chapter 4) 

provides a detailed discussion of over-dispersion and various methods for dealing with it.  One 

formal approach to evaluating over-dispersion is to compare the score statistic Ta to the standard 

normal distribution (see Methods).  It is important to note that over-dispersion may be due to  
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Table 2.  Poisson Regression Results for Respiratory Absences at Site 1 

 

Minimal Model: Deviance = 937.16,  n = 537  
 Rate(unadjusted)= 16.64 resp events/1000,  m = 2.812 
  
Main Effects Model: log(rate)= m + ag + sx + og + yr 
 
Deviance = 485.434,  df = 517,  q = 20,  IC = 565.43,  R

2
 = 46.2%  

Dispersion: phi.p = 1.37,  Pearson X
2
 = 707.9,  Score Ta = 0.33 

Rate(adjusted)= exp(m)= 17.28 resp events/1000,  m = 2.85   

 
a)  Age Groups:  ag[] Estimates 
      
  <30 30- 40- 50+ 
 Est_L% -124.67 -30.48 0.00 7.35 
 SE_L% 19.17 8.01 0.00 6.46 
 RR 0.29 0.74 1.00 1.08 
 AdjA 4.97 12.74 17.28 18.60 

 
b)  Gender:  sx[] Estimates  
      
  F M 
 Est_L% 72.34 0.00 
 SE_L% 6.45 0.00 
 RR 2.06 1.00 
 AdjG 35.63 17.28 

 
c)  Occupational Groups:  og[] Estimates   
   
  A  C E O P S T 
 Est_L% -14.77 50.74 13.90 -53.52 -60.47 70.04 -5.92 
 SE_L% 7.91 11.15 19.09 27.42 7.30 10.93 8.72 
 RR 0.86 1.66 1.15 0.59 0.55 2.01 0.94 
 AdjO 14.91 28.71 19.86 10.12 9.44 34.82 16.29 

 
d)   Year:         yr[] Estimates  
 
         1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
 Est_L% 40.79 31.97 -3.36 -20.67 17.16 -13.63 -10.80 -11.03 -9.40 -21.02 
  SE_L% 7.24 7.57 9.14 9.59 8.16 9.33 9.21 9.06 8.88 9.22 
  RR 1.50 1.38 0.97 0.81 1.19 0.87  0.90 0.90 0.91 0.81 
 AdjY 25.99 23.79 16.71 14.06 20.52 15.08 15.51 15.48 15.73 14.01 

 
*The Reference Group for Adjusted Rates is Males Age 40-49 

 

“heterogeneity of variance”, “lack-of-fit” of the regression function (i.e. misspecification of the λ i), 

or both — see Frome et al, (1973), Dean and Lawless (1989).  Misspecification of the regression 

function could occur, for example, if important interaction terms are not included in the model.   

 

The rest of Table 2 displays the ML estimates of parameters in the MEM.  The MEM is over -

parameterized and two general approaches have been used to eliminate redundancy.  In the first 

approach, a specific category is selected as the reference level, the corresponding parameter is set 

equal to zero, and each of the remaining parameters represents a comparison of that level with the 



12 

reference level.  If the levels of an explanatory variable correspond to exposure to a hazardous 

material with each level representing an increasing level of exposure, the first level is usually 

specified as the reference level — see Breslow and Day (1987, Chapter 4).  This approach to 

eliminating redundancy, referred to as the “contr.treatment” contrast in R, is used for gender with 

male as the reference level.  That is, in equation (1) γ2 = 0 and γ1 represents log of the rate ratio 

(RR) for female relative to male workers.  This contrast is also used for the age factor with level 

three (ages 40-49) as the reference level, i.e. α3 = 0 and αj (j ≠ 3) is the log of the relative effect of 

the j
th

 age group.  The age group 40-49 is representative of the workforce at IISP sites in DOE 

complex which has been stable but aging over time.  The average age of the workers increased 

from 42 in 1995 to 46 in 2004 (see Worker Health Summary, Chapter 2). 

 

The parameter μ in the MEM (see equation 1) is often referred to as the “intercept” term and 

represents the log of the rate at the reference level of age and gender, i.e., males age 40-49.  The 

ML estimate m= 2.85 of μ is in Table 2 on the line above panel a.  The age and gender adjusted 

rate, 17.28 respiratory events per 1000 person-years, is shown on the same line.  The ML estimates 

of the ag parameters are listed in Table 2-a (on the line that begins Est_L%) in logarithmic percent 

(L%) units (Tornqvist et al. 1985), i.e., the ML estimate ag[4] of α4 (workers 50 and older) is 

7.35L%.  The estimated standard error 6.46L% is shown below the parameter estimate on the line 

SE_L%.  The RR for males age 50 and older compared to age 40-49 is exp(0.0735) = 1.08 and is 

on the next line  of Table 2-a.  The adjusted rate AdjA = 

exp(m + ag[4]) = exp(2.85 + 0.0735) = 18.60 respiratory events per 1,000 person-years is on the 

last line of Table 2-a.  The ML estimate sx[1] of γ1 is 72.34L% with a standard error of 6.45L% — 

see Table 2(b).  The corresponding RR for females is 2.06 and the adjusted rate for females age 

40-49, 35.63 events per 1,000 person-years, is on the last line of Table 2-b. 

 

A second method that is used to deal with over-parameterization in the MEM is to require that the 

parameter estimates sum to zero.  This is called the “contr.sum” contrast in R.  The sum to zero 

contrast is used in the analysis of multidimensional contingency tables (Bishop et al, 1975) and 

was used by Cochran (1940) in the analysis of counts from a Latin square design.  Moore and 

Beckman (1988) used this constraint to evaluate the effect of five factors on the failure rate of 

nuclear reactor values. The sum to zero constraint is used here for occupational group, i.e. in 

equation (1) Σkθk = 0 or using the equation (2) naming convention Σk og[k] = 0.  The ML estimates 

og[k] of the θk are on the line in Table 2-c (labeled Est_L%), and the corresponding standard errors 

are on the line labeled SE_L%.  The RRs are on the next line of Table 2-c, and the adjusted rates 

for occupational groups are on the last line labeled AdjO.  Consider for example og[1] for 

administrative workers.  The adjusted respiratory absence rate for the male administrative workers 

age 40-49 is obtained as exp(m + og[1]/100) = exp(2.85 - 0.147) = 14.91, i.e. the absence rate is 

about 15% lower for administrative workers, other things being equal.  It is easy to see from Table 

2-c that respiratory absence rates are highest in service workers (og[6]  = 70.04 L%, adjusted 

rate = 34.8/1000) and lowest in professional workers (og[5] = - 60.49, adjusted rate = 9.44/1000), 

and that occupational group is an important explanatory variable for respiratory absence at this 

site.  This follows since the ratios of the estimates og[k] to their standard errors (approximate t -

tests for null hypothesis that θk = 0) are very large for most of the estimates.  A formal test of the 

hypothesis that there are no differences in absence rates among occupational groups (i.e.  θk = 0 for 

all k) is obtained as a likelihood ratio test (LRT) (see Table 3 line og).  The LRT is 171.31 with 6 

df indicating a large difference in occupation groups.  The use of the sum to zero constraint is a  
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Table 3. Analysis of Deviance for Respiratory Absence Data at Site 1  

 

 q Deviance IC df LRT LogO 

MEM 20 485.43 565.43 NA NA NA 

Dropping Terms 

ag 17 570.07 638.07 3 84.64 40.31 

og 14 656.74 712.74 6 171.31 77.42 

yr 11 545.25 589.25 9 59.81 20.35 

sx 19 608.40 684.40 1 122.96 64.12 

Adding Terms 

ag:og 38 462.04 614.04 18 23.39 1.54 

ag:yr 47 453.21 641.21 27 32.23 1.24 

ag:sx 23 480.56 572.56  3 4.87 1.51 

og:yr 74 425.92 721.92 54 59.51 0.93 

og:sx 26 473.13 577.13  6 12.31 2.84 

yr:sx 29 475.67 591.67 9 9.77 0.53 

q = number of estimable parameters 
IC = Deviance + q*4   
LRT = Likelihood ratio test     
LogO = log[(1-p)/p] where p is the p-value for LRT 

 

mathematical and practical convenience since there is no underlying reason for selecting a 

particular occupation group as the reference group that can be used for all event types at all 

facilities.  The sum to zero constraint is also used for the year explanatory variable.  The ML 

estimates of the year effects yr[t], standard errors, RRs, and adjusted rates are given in Table 2 -d.  

If in some situations one is interested in using a specific occupational group (say professional 

workers) as the reference group and a particular year (say 2000) as the reference year, then the 

contr.treatment contrast can be used.  The details of how this is done for any contrast are described 

by Venables and Ripley (2002, Chapter 6.2).  The methods used to implement the contrasts for 

each of the explanatory variables in the R function glm() used to fit the Poisson MEM are 

described in Appendix 2  see utility function make.h()  and in the R documentation. 

 

Osborn (1975) considered a multiplicative model to study the effect of several factors on vital rates 

using a different set of constraints.  A similar approach was proposed by Mantel and Stark (1968) 

and Breslow and Day (1975) for the two factor case using an iterative indirect standardization 

technique.  This technique is equivalent to fitting a MEM with two explanatory variables using 

Poisson regression — see Frome (1983) and Breslow and Day (1987, Chapter 4).  The choice of 

constraints that is used results in parameters with different interpretations but does not change the 

value of the estimated rates for each cell in the table.  This approach can be useful in the analysis 

of very large multidimensional tables since the fitted values for a model can be obtained using the 

iterative proportional fitting algorithm — see R function loglin().  The fitted values can then be 

used to calculate starting values for the linear predictor for the R function glm() with the desired 

constraints and no iteration is required since the starting values are the optimal solution. 
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Table 2 illustrates the results of fitting a MEM to a DOE site for one event type.  The basic results 

are obtained from two R functions glm() and predict.glm(), and have been reformatted for 

convenience.  In practice there could be 6 to 12 event types from the RTW absence file and the 

OSHA event file for each of the 13 DOE sites that participate in the IISP.  In order to facilitate 

comparison of results, a graphical summary of parameter estimates for the MEM in Table 2 has 

been developed (see Figure 1).  The vertical axis of the MEM plot is in log units.  The dashed 

horizontal line is the estimated absence rate (17.28/1000) in the reference group (males age 40 -49) 

and is shown at the top of the MEM plot.  The estimated absence rates for each age group from the 

last line of Table 2-a (labeled AdjA) are shown as four green diamonds on the left side of Figure 1, 

and the corresponding names of the age groups are on the horizontal axis. The vertical distance 

from each diamond to the horizontal dashed line is proportional to the age effect estimates from the 

line Est_L% of Table 2-a, e.g. for the 30-39 age group the distance is proportional to -30.48 

corresponding to an estimated rate of 12.74/1000 on the vertical axis.  The gender estimates (F and 

M) are shown to the right of the age estimates.  Note that since males age 40-49 is the reference 

group the effect estimate is zero and the estimated rate is on the horizontal line.  The estimated 

effect for females is 73.34 L% (see line 2 Table 2-b) units and the vertical distance to the symbol F 

above the horizontal dashed line is proportional to this value.  This corresponds  to an estimated 

rate of 35.63 respiratory events/1000 person-years.  The next seven symbols (see Table 1 for 

definition of symbols) show the adjusted rates for each of the seven occupational groups from 

Table 2-c. The vertical distance from each symbol to the horizontal dashed line is proportional to 

the value on the Est_L% row of Table 2-c.  As was noted earlier, the estimated respiratory absence 

rate is highest in service worker and lowest in professional worker, shown as S and P in Figure 1.  

The estimated absence rates for years from Table 2-d are shown as squares on the right side of 

Figure 1 and the year names are on the horizontal axis.  From Figure 1 it appears that a decrease in 

the respiratory absence rate occurred during the first four years followed by an increase in 1999 , 

and then from 2000 to 2004 the rate leveled off at about 15 absences per 1000.  It is clear from the 

estimated standard errors for the effect estimates in Table 2 that all of the covariates in Figure 1 are 

strong explanatory variables.  This means that the corresponding RRs differ from one — e.g. the 

RR for female workers is 2.06 and the 95% confidence interval is  

exp[(72.34 +/-1.96(6.45))/100]  = (1.82, 2.34).   

 

It is also easy to see from the main effects plot that the maximum estimated rate occurs for female 

service workers over age 50 in 1995, i.e. the maximum log scale rate is  

 

                   m  + [max(ag[i]) + max(sx[j]) + max(og[k]) + max(yr[t])] / 100 

                2.85 + [   7.35       +   72.34       +    70.04       +  40.79      ] / 100 = 4.755,  

 

and the maximum estimated respiratory event rate is exp(4.755) = 116/1000.  The same result can 

be obtained graphically by adding the vertical distance from the horizontal line for female (F), 

service workers (S) and the year 1995 onto the triangle for the over 50 age group.  The lowest 

estimated rate occurs for professional male workers under age 30 in 2004,  i.e. the minimum log 

scale rate is 

                     m   + [min(ag[i]) + min(sx[i]) + min(og[k]) +   min(yr[t])] / 100 

                    2.85 + [ -124.67    +        0       +    -60.47     +     -21.02   ] / 100 = 0.788, 

  

and the estimated respiratory event rate is 2.2/1000. 

 



15 

 

 

Figure 1: Estimated Rates for Respiratory Absences at Site 1 

 

The Poisson analysis of deviance table is obtained by evaluating the deviance D(


)  (equation 4) for 

each of a series of models ( see Table 3).  In Table 3 column 1 describes the model, column 2 the number 

of parameters, and column 3 is the value of the deviance.  It also includes the IC (equation 5) for each 

model, and a likelihood ratio test (LRT) statistic that is used to evaluate the importance of each term in 

the MEM and each of the possible two factor interactions.  The first row in Table 3 (labeled MEM) lists 

the number of parameters, the deviance and the IC for the MEM.  The next four rows are obtained by 

dropping each of the explanatory variables from the MEM.  For example, row 3 (labeled og) shows the 

results of dropping the og term from the MEM.  The reduced model has 14 parameters, the deviance is 

656.74, and the IC is 656.74 + 4*14 = 712.74.  The likelihood ratio test for the null hypothesis that there 
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is no difference in absence rates for occupational groups is 171.31 (see row 3 column 6) with 6 df.  This is 

compared to the chi-square distribution with 6 df.  The last column in Table 3 gives the value of Log0 = 

log[(1-p)/p ], where p is the probability that a chi-square statistic with 6 df is greater than 171.31.  This 

ad-hoc statistic is the log odds of observing a likelihood ratio test that exceeds the calculated value if the 

null hypothesis is true.  For this example it is the log odds of observing a chi-square statistic with 6 df that 

exceeds 171.31 if there is no difference in respiratory absence rates for the occupational groups (note that 

the value of p is 2.372 x 10
-24

).  This shows that occupational group is a very strong explanatory variable 

for respiratory absence rates at this site, as are all of the terms in the MEM (as indicated by the Log0 

values in column 7).  This is also evident from the IC values in column 4, which are also considerably 

larger than the IC value for the MEM.  The next six rows show the effect of adding each of the possible 

two factor interactions to the MEM. For example, adding the og:yr interaction decreases the deviance by 

(485.43 – 425.92) = 59.51.  This is a LRT of the null hypothesis that the og:yr interactions are all zero.  

The LRT statistic follows a chi-square distribution with 54 df when the null hypothesis is true resulting in 

a p-value of 0.282 and Log0 = 0.93.  Rejecting the null hypothesis for p < 0.05 (or for p < 0.01) is 

equivalent to rejecting the null hypothesis for Log0 > 2.94 (or for Log0 > 4.60).   

 

The IC in column 4 is used to compare the goodness of fit of each of the models with an interaction 

term added to the MEM.  Adding a term to a model will always decrease the deviance so adding 

4*q to the deviance is a penalty for increasing the complexity of the model.  In this example the IC 

for the MEM (565.43) is the smallest IC value in the table.  This shows that all the explanatory 

variables in the MEM are important and that none of the two factor interactions are important as is 

also indicated by the Log0 values in column 7 for the likelihood ratio test statistics in column 6 of 

Table 3.  The value of the IC is used to identify interaction terms that may be important .  If the IC 

for one or more of the interaction terms is less than the IC for the MEM then further analysis is 

considered (see Discussion).   

         

3.2  EXAMPLE 2 

 

To further illustrate the use of Poisson regression methods, analysis of respiratory events at a 

second site described in the Worker Health Summary is presented.  The results from fitting the 

MEM to Site 2 are shown in Figure 2 and Tables 4 and 5.  The scale on the vertical axis in Figure 2 

is the same as in Figure 1.   
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Figure 2: Estimated Rates for Respiratory Absences at Site 2 

 

The estimated rates are about 50% higher at Site 2 than Site 1, and the RR for women is increased 

at both sites. The estimates for occupational groups A, C, E, P, and S follow a  

similar pattern at both sites, and the rates for O and T are relatively higher at Site 2.  The 

effects for year are also clearly different over the ten-year period.  Site 1 shows a decreasing trend 

over the first four years with a slight increase in 1999 followed by a level response over the last 

five years.  Site 2 also shows an initial decrease over the first four years followed by a strong 

increase in the respiratory absence rates (about 35L% per year) over the last six years [(127-(-

85))/6= 35].  These differences are more clearly determined from comparing the parameter and rate 

estimates in Tables 2 and 4.   
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Table 4. Poisson Regression Results for Respiratory Absences at Site 2 

 
Minimal Model: Deviance = 2192.86,  n = 554 
 Rate(unadjusted)= 47.31 resp events/1000,  m = 3.857 
 
Main Effects Model: log(rate)= m + ag + sx + og + yr 
 
Deviance = 635.685,  df = 534,  q = 20,  IC = 715.68,  R2 = 69.9%  
Dispersion: phi.p = 1.26,  Pearson X2 = 672.2,  Score Ta = 5.71 
Rate(adjusted)= exp(m)= 26.64 resp events/1000,  m = 3.282   

 
a)  Age Groups:  ag[] Estimates 
      
  <30 30- 40- 50+ 
 Est_L% -40.42 18.59 0.00 18.02 
 SE_L% 11.38 6.86 0.00 6.26 
 RR 0.67 1.20 1.00 1.20 
 AdjA 17.78 32.08 26.64 31.90

 
b)  Gender:  sx[] Estimates  
      
  F M 
 Est_L% 54.45 0.00 
 SE_L% 5.90 0.00 
 RR 1.72 1.00  
 AdjG 45.92 26.64

 
c)  Occupational Groups:  og[] Estimates   
   
  A  C E O P S T 
 Est_L% -14.77 50.74 13.90 -53.52 -60.47 70.04 -5.92 
 SE_L% 7.91 11.15 19.09 27.42 7.30 10.93 8.72 
 RR 0.86 1.66 1.15 0.59 0.55 2.01 0.94 
 AdjO 14.91 28.71 19.86 10.12 9.44 34.82 16.29 

 
d)   Year:  yr[] Estimates  
 
         1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
 Est_L% -20.74 1.13 -38.72 -143.30 -85.21 -97.44 26.39 92.42 138.36 127.11 
 SE_L% 10.37 9.36 11.24 19.47 14.85 15.83 8.82 6.80 5.99 6.15 
 RR 0.81 1.01 0.68 0.24 0.43 0.38 1.30 2.52 3.99 3.56 
 AdjY 21.65 26.94 18.09 6.36 11.36 10.05 34.69 67.13 106.27 94.97 

 
*The Reference Group for Adjusted Rates is Males Age 40-49 
 

The estimates of the dispersion parameter and score statistic Ta in Table 4 indicate over-

dispersion.  This could be due to lack-of-fit of the MEM, extra-Poisson variation, or both.  

The next step in the analysis would be to use model checking procedures to determine if 

there are a few outlying y values and/or model inadequacies that are having an undue 

influence on the test for over-dispersion.   

 

The results in the analysis of deviance table from Site 2 are shown in Table 5.  Log0 values 

greater than 2.94 indicate that several of the two-level interactions are significant at the 0.05 

level of significance.  This matter will be considered in Section 3.3.     
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Table 5: Analysis of Deviance for Respiratory Absence Data at Site 2  
 

 q Deviance IC df LRT LogO 

MEM 20 635.68 715.68 NA NA NA 

Dropping Terms 

ag 17 673.61 741.61 3 37.92 17.34 

og 14 1,063.66 1,119.66 6 427.98 203.94 

yr 11 1,638.38 1,682.38 9 1,002.69 482.03 

sx 19 717.39 793.39 1 81.71 43.29 

Adding Terms 

ag:og 38 554.89 706.89 18 80.80 21.20 

ag:yr 47 587.84 775.84 27 47.85 4.82 

ag:sx 23 628.26 720.26 3 7.42 2.76 

og:yr 74 546.61 842.61 54 89.08 6.28 

og:sx 26 606.05 710.05 6 29.63 9.98 

yr:sx 29 625.06 741.06 9 10.62 0.83 

q = number of estimable parameters 
IC = Deviance + q*4   
LRT = Likelihood ratio test     
LogO = log[(1-p)/p] where p is the p-value for LRT 

 

 
3.3  OVER-DISPERSION 

 

An informal procedure that is used to check for systematic departures from the Poisson MEM is based on 

four regression diagnostic plots (see Methods).  To illustrate this procedure, we use the results from the 

MEM for Example 2.  The score test Ta = 5.71 (p < 10
-6

) and estimates of the dispersion parameter greater 

than one seen in Table 4 and the Log0 values greater than 2.94 for two way interaction effects in Table 5 

indicate lack of fit of the MEM, heterogeneity of variance, or both. 

 

Figure 3 contains the four regression diagnostic plots.  A plot of the SDRs against the fitted rates from the 

MEM is shown in Figure 3a.  The R function supsmu( ) was used to calculate the solid line, and the two 

dashed lines correspond to the 0.005 and 0.995 quantities of the standard normal distribution, i.e. if the 

SDRs are approximately N(0,1) about 99% of these residuals should be between the dashed lines. The 

seven SDRs outside the 99% limits are marked with a red x.  For model checking purposes, a normal Q-Q 

plot is used to identify extreme values which would appear in the upper right and/or lower left portion of 

the plot (see Figure 3b).  The solid line in Figure 3b corresponds to the standard normal distribution.  The 

SDR-Leverage plot in Figure 3c identifies four points with both 


ih > 2 (i.e. to the right of the solid 

vertical line) and SDRs that are outside the horizontal dashed lines at +/ - 2.58.  A plot of the 

absolute value of the SDRs against the fitted values (see Figure 3d) gives an informal check of on 

the adequacy of the assumed variance function.  The null pattern will not show a trend, and 

smoothing (shown by the solid line) is used to identify a possible pattern , in this case a positive 

trend. 

 



20 

The results for Example 2 in Tables 4 and 5 and Figure 3 indicate that MEM did not fit well.  The 

score static Ta = 5.71 and the apparent trend in Figure 3d both indicate over-dispersion, and the 

other three diagnostic plots do not indicate that “outliers” are a problem.  There are several 

possible explanations – lack-of-fit of the MEM, extra-Poisson variation or both.  The IC values in 

Table 5 suggest that adding the ag:og and/or the og:sx and/or the og:yr interaction terms may result 

in a “better” model.  It is also possible that higher order interactions may be important, e .g. the 

ag:og:sx three way interaction. 
      

 
Figure 3: Regression Diagnostics for Respiratory Absences at Site 2 

 

Venables and Ripley (2002, Chapter 6) describe various approaches to the analysis of Poisson data that 

can be used to evaluate the need for additional terms in the model.  The MEM serves as the starting point, 
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and the function requires a list defining the most complex and the simplest models to be considered.  The 

value k = 4 is used in the IC (see equation 5) and an additional argument “direction” is used to specify 

that the process should add terms or remove terms as needed.  This model selection procedure evaluates 

the effect of adding or dropping terms from the model subject to the “marginality restriction”, which 

imposes certain constraints on the underlying model matrix.  For example, if a two factor interaction, say 

ag:og is in a model, then both main effects ag and og must be in the model.  The algorithm evaluates the 

IC for each model and returns the model with the smallest IC value.  The call to stepAIC() appears as 

follows: 

 

stepAIC(MEM, scope=list(upper = 
~

 (ag+og+yr+sx) ^3, lower =  
~

 1, directions = “both”, k=4) 

 

The most complex model considered contains all possible three factor interactions (and due to marginality 

constraints all possible 2 factor interactions and all four main effects), and the simplest model is the one 

parameter minimal model.  The resulting “best” model for the second example is the MEM with two 

interaction terms ag:og and og:sx.  The deviance for this model is 527.44 with 510 df, the IC is 527.44 + 

4*44 = 703.44, and the score test for this model is Ta = 1.263 (p = 0.103) indicating that the apparent 

over-dispersion in this example could be attributed to lack-of-fit of MEM.  The effects package in R (Fox, 

2003) can be used to obtain a graphical display of terms in a complex GLM, i.e. in this situation, a model 

that contains interactions.  The effect display for the ag:og interaction is shown in Figure 4.  The 

estimated rates are on the vertical scale in log units as in the MEM plot in Figure 2.  The effect display in 

Figure 4 provides a visual representation of the interaction effects (see the help file for the effects 

package for details).   

 

An alternative way to evaluate a two factor interaction that may be of interest is to obtain a two-way 

marginal table of observed  yij  and expected  y


ij  values, where the expected values are obtained from 

the MEM.  The statistic (yij- y


ij) / ( y


ij)
1/2

 is calculated for each cell in the marginal table to identify the 

source of the interaction.  We also calculate log(rij / 


ij)*100 to obtain an approximate estimate of the 

interaction term for each cell in the table, where r ij = yij/nij is the observed marginal rate.  

 

The most common approach that is used to deal with over-dispersion is to assume that there is extra-

Poisson variation as described by the variance function in equation (6) with b=1, i.e. QL/M1 regression.  

For Example 2 we proceed under the assumption that the MEM is acceptable and that the over-dispersion 

is due to extra-Poisson variation.  From the Table 4 Dispersion line, ~  = 1.26.  The parameter estimates 

in Table 4 remain unchanged and the standard errors are multiplied by ~  = 1.122.  The likelihood ratio 

tests in Table 5 are converted to F tests and the adjusted IC (ICa) values based on equation (5) with φ = 

~  are calculated using the stepAIC() function with k = 4~ .  The adjusted analysis of deviance table that 

appears in Table 6 shows that the smallest ICa value occurs for the MEM. 
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Figure 4: Effect Plot for Occupational Group Interaction with Age Group 

 

To summarize the over-dispersion investigation based on the respiratory absences at Site 2, the score test 

for over-dispersion Ta is highly significant.  There are, however, two possible explanations.  The first 

explanation attributes the over-dispersion to lack-of-fit of the MEM due to the failure to include two 

interaction terms.  The second explanation is based on QL/M1 analysis and attributes the over-dispersion 

to extra-Poisson variation, and concludes that the MEM (with adjusted test statistic) is a reasonable 

model.  In the IISP the MEM is of primary interest since it facilitates the visual comparison of the event 

rates for a number of different event types from the RTW and OSHA files at each of the participating 

DOE sites.  Therefore, in the context of the IISP the second explanation is preferred since the inclusion of 

interaction terms does not result in substantial improvement over the MEM, i.e. the MEM is the preferred 

model unless there is strong evidence that it is not acceptable. 
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Table 6. Analysis of Deviance for Respiratory Absences at Site 2 Adjusted for Over-dispersion 
 

 q Deviance IC df LRT LogO 

MEM 20 635.68 736.39 NA NA NA 

Dropping Terms 

ag 17 673.61 759.20 3 10.04 13.17 

og 14 1,063.66 1,134.15 6 56.67 122.93 

yr 11 1,638.38 1,693.76 9 88.51 228.42 

sx 19 717.39 813.06 1 64.91 32.90 

Adding Terms 

ag:og 38 554.89 746.22 18 3.57 13.66 

ag:yr 47 587.84 824.48 27 1.41 2.38 

ag:sx 23 628.26 744.07 3 1.97 2.01 

og:yr 74 546.61 919.20 54 1.31 2.52 

og:sx 26 606.05 736.96 6 3.92 7.19 

yr:sx 29 625.06 771.08 9 0.94 0.03 

ICa = Deviance + q*4*1.259 
F= F Test 
LogO= log[(1-p)/p] where p is the p-value for LRT 

 

In a general context, if the initial analysis of the data indicates over-dispersion that could be explained by 

the addition of interaction terms to the MEM, then the results from the QL/M1 analysis can be extended 

to evaluate the importance of interaction terms, in addition to the usual informal model checking 

procedures.  For the QL/M1 analysis the parameter estimates are equal to the ML estimates under the 

Poisson assumption.  To determine if adding interaction or deleting main effect terms could result in a 

“better” model, one can use the IC based on the Poisson log-likelihood and increase the penalty for 

unnecessary terms by using the moment estimate ~  (calculated for the MEM) in the penalty term (see 

equation 5) calculated with the stepAIC() function with k = 4~ .  If the adjusted IC or corresponding F 

test indicates that one or more interaction terms are important then further analysis can be considered.  

This would occur, for example, if one of the main effects in the important interaction term is a weak 

explanatory variable as indicated by a small ICa value and a non-significant F test (i.e. a LogO < 2.94).   

 

 

4.  DISCUSSION 
 

Poisson regression models are widely used in the analysis of count data in many areas of data analysis as 

described in the Introduction.  In some situations there is over-dispersion and, when the primary interest is 

in the explanatory variables of the regression function, the analysis can be adjusted using the QL/M 

approach with a linear or quadratic variance function.  The counts for each observational unit are assumed 

to follow the Poisson distribution with means that vary as described by a mixing distribution (e.g. a 

gamma distribution).  Using QL/M requires only that the first two moments of the distribution of the 

counts be specified.  Dean (1994) describes the use of quasi-likelihood to estimate the regression 

parameters (β) and an additional estimating equation for the dispersion parameter δ.  Five methods for 

estimation of δ are presented and the advantages of this approach to handling over-dispersion are 

discussed.  Most of these methods are easy to implement with only minor adjustments to standard 

software using the IWLS approach (see Appendix 2).  Zeileis et al. (2008) describe the computational 
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aspects of fitting these models from an estimating function point of view and describe R model fitting 

functions and associated methods for diagnostics and inference. The properties of QL/M methods have 

been studied using asymptotic theory and Monte Carlo simulations--- see e.g. Lawless (1987), Moore 

(1986), Breslow (1990), Dean (1992), and Dean (1994).  Further extensions of this type of modeling by 

specifying low-order conditional moments of the dependent variable are described by Cameron and 

Trivedi (1998, Chapter 12).  Hilbe (2008, Chapter 4) provides a detailed discussion of over-dispersion and 

addition issues that may be useful when identifying and dealing with over-dispersion.  An alternative to 

QL/M when over-dispersion occurs is to replace the Poisson distribution with a two-parameter count 

distribution.  Puig and Valero (2006) characterize all two-parameter count distributions that are partially 

closed under addition and for which the sample mean is the ML estimate of the population mean.  Mixed 

Poisson models such as the NB satisfy this property and can be used to account for over-dispersion using 

the full ML approach.  Kim and Kriebel (2009) have proposed the use of NB regression for the analysis of 

health events surveillance data that may be over-dispersed.  In some situations with over-dispersion the 

ML estimate of the dispersion parameter may be zero and the NB estimates reduce to the Poisson 

estimates.  This is illustrated by Lawless (1987) using the ship damage data from McCullagh and Nelder 

(1989, Chapter 6), and it is noted that in this example that the QL/M1, QL/M2, and NB regression yield 

quite different estimates of the standard errors for the regression parameters.  There is no formal statistical 

way to choose between the two QL methods as far as we know.  Consequently, we use QL/M1 in 

situations where adjusting for over-dispersion is indicated.  

 

A second problem that sometimes occurs in the analysis of counts is the occurrence of “too many zeros.”  

That is, in addition to or instead of extra-Poisson variation or lack-of-fit of the regression model being the 

source of over-dispersion, there may be too many zeros relative to a Poisson or NB regression model.  

The models that have been proposed to deal with this are described in Appendix 1, and are generally 

referred to as “zero-altered” models.  The application of these models to the IISP data would require an 

assumption that a health event  is described by a model in which it is expected that a zero count will occur 

more often than predicted based on a Poisson or NB regression model and the occurrence of zero counts 

requires special consideration.  There is no apparent logical basis for this situation to occur for the health 

events and related data structures of interest to the IISP program.  
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APPENDIX 1.  ZERO-ALTERED MODELS 
 

In the Methods and Discussion sections the issue of over-dispersion in Poisson regression analysis was 

examined and the QL/M and NB regression were considered to adjust the analysis for extra Poisson 

variation.  Another manifestation of over-dispersion that may occur when Poisson regression models are 

used is an excess number of zero counts, i.e., the observed number of zero events is much greater than the 

expected number of zeros based on the Poisson regression.  In some cases, the use of the NB distribution 

will resolve the situation.  When this is not the case two zero-altered (ZA) models – hurdle and zero 

inflated (ZI) models – have been proposed to deal with the count data having an excess of zero counts.  

Hilbe (2008, Chapter 8) and Cameron and Trivedi (1998, Chapter 4) described these ZA models and their 

relationship to other models for count data.  Application of these methods to injury count data have been 

described by Carrivick et al (2003), Lord et al (2005), Slymen et al (2006), Ullah et al (2010), and Kahn 

et al (2011).  Rose et al (2006) consider the use of these models in public health studies with the analysis 

of vaccine adverse event counts as a motivating example. 

 

In generic terms, there are two types of ZA models.  The first type of ZA model is based on the 

assumption that the process determining that an event occurs may differ from the process that determines 

how many events occur when there is at least one event.  These conditional models are also referred to as 

“two-part” models or “hurdle” models.  The second type of model is a mixture of a degenerate mass at 

zero and a Poisson (or NB) distribution, and is referred to as a zero inflated (ZI) model or a zero inflated 

Poisson model (ZIP) when the Poisson distribution is utilized.  The ZI model is also described as a “dual 

state process” model and differs from the hurdle model in that there may be either “structural” zeros or 

sampling zeros while hurdle models have only sampling zeros.  For illustrative purposes we use a 

propagation experiment in which the number of roots (y) produced by a plant cutting (micro-propagated 

shoots of an apple tree) during a period of time is the count variable of interest – see Ridout et al (2001) 

for additional details and a numerical example.  This example is used for discussion since the distinction 

between the two types of models would be based on realistic biological assumption, i.e. it does not make 

sense to fit hurdle and ZI models to the same data.  If only sampling zeros are possible, then a hurdle 

model is indicated.  The entomologist may believe that the mechanism that determines how many roots 

occur on cuttings differs from the mechanism that determines whether or not a cutting can root at all, 

which would indicate a hurdle model.  For this two part model, there is a probability π that a shoot fails to 

root, and for shoots that do root the distributions of the number of roots is described by a zero-truncated 

discrete distribution.  If the Poisson distribution is used for the positive counts the distribution of Y is 

defined as follows:   

 

 
where f(y) = exp(-λ) y  / y!  .    

 

The parameters λi and πi may depend on vectors of covariates xi and zi, respectively.  The first part of the 

model is described by a binomial probability that determines whether a count variable has a zero or 

positive value, e.g. a binomial logit GLM is the most intuitive specification.  If the value is positive, the 

counts are described by a zero-truncated Poisson distribution.  This “hurdle” model was originally 

proposed by Mullaby (1986), i.e. (1-πi) is the probability of “clearing the hurdle” and generating a non-

zero count.  Both the binomial model and the count model in equation (9) can be changed.  Hilbe (2008, 

Chapter 8) describes nine commonly used hurdle models.  Camron and Trivedi (1998, Chapter 4) provide 
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a good overview of hurdle models, their relationships to other count data models, and applications in 

economic studies.   

 

If, however, it is assumed that zero counts can occur as the result of a “dual state process” then ZI models 

have been proposed to explain the excess zeros.  Returning to the root propagation example above, the 

ZIP model is based on the assumption that there are two types of shoots.  The first type of shoot gives a 

Poisson-distributed count which may be zero.  The second type of shoot is not viable and always has zero 

roots (an assumption that is based on some biological principle for this type of plant cutting).  The key 

issue is a logical justification for the assumption that structural zeros are possible, i.e. there is some set of 

unobservable conditions that occur for certain observational units that will always lead to a zero count.  

The resulting model is a discrete mixture distribution with a proportion ω  of the counts being zero and 

the remainder of the counts following the Poisson distribution, i.e.  

 

 
 

where the parameters λi and ω i depend on vectors of covariates xi and zi, respectively.  Equation (10) is 

the ZIP regression model originally proposed by Lambert (1992).  ZI forms of the NB distribution (ZINB) 

are described by Ridout et al (2001) and Hilbe (2008, Chapter 8).  Lord et al (2005) provide a detailed 

account of the application of Poisson, NB, ZIP, and ZINB regression models to the analysis of motor 

vehicle crash-data.  They note that the ZI regression models (that have been used when the data contain 

too many zeros) assume that a dual-state process is responsible for generating the crash data.  This model 

assumes that event counts are being generated from two different states, a “virtually safe” true zero-count 

state in which events never occur and a normal count-process state (which may happen to record zero 

events) that follow a Poisson or NB distribution.  They use empirical data, theoretical principles, and 

simulation experiments to show that motor vehicle crash data characterized by a large number of zeros is 

not caused by a dual-state process and describe conditions that may explain the apparent excess zeros -- 

e.g., the omission of critical variables or the use of analysis sites characterized by a combination of low 

exposure, high risk, and heterogeneity.  In a subsequent report (Lord, et al. 2007) they propose that the 

justification of ZI models based on improved statistical fit is not appropriate (“the maximizing statistical 

fit fallacy”) unless the analyst can describe the conditions that characterize the two states.  The logical 

problem (assuming that counted events are derived from a dual state process) is to describe unobserved 

conditions that could justify the two-state assumption.  In highway safety studies (where the response 

variable is the number of crashes) this requires an explanation of observational units (e.g. a highway 

segment with known characteristics during a specified time period) that are in an inherently safe or non-

safe state.  Those observational units that have at least one event would be classified as unsafe; and the 

observational units with zero counts could be in either an inherently safe or unsafe state.  If a logical basis 

for an “inherently safe” (i.e., a structural zero) state cannot be provided, then the dual state process is an 

artificial construct that has been used to improve the statistical fit.  A ZI model does not seem reasonable 

unless it has been proposed a prior for the count variable of interest, e.g. the analyst should propose the 

ZIP model (10) for yi and covariates of interest before data analysis. 

 

Zeileis et al (2008) provide a detailed review of the conceptual and computational features of both the 

hurdle and ZI regression models.  The R package psc1 (Jackson, 2008) has functions hurdle( ) and 

zeroinfl( ) that can be used for data analysis.  The design of these functions and the methods for the fitted 

model objects follows that of base R functions glm( ) in the stats package glim.nb( ) in the MASS 

package. 
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> #               APPENDIX 2. COMPUTATIONAL DETAILS 

> # 

> # POISSON REGRESSION ANALYSIS OF ILLNESS AND INJURY SURVEILLANCE DATA 

> # Technical Report ORISE-09-OEWH-0176 (2012)   short name (PRA_IISP) 

> #    Available at URL  http://www.csm.ornl.gov/~frome/priisp 

> #    or mirror site http://home.comcast.net/~fromestat/priisp 

> #                File Name readdata.txt at Step 7 (this file) 

> #                To obtain results at Step 7 of website 

> # Line 9         RUN R and open a txt file using sink(), i.e. 

> #                sink("PRA_IISPdemo.txt")  

> #                then  SOURCE THIS FILE WITH echo=TRUE, i.e. 

> # line 12   source("readdata.txt",echo=TRUE,max.deparse.length =3000)  

> #  

> #  Input data frame drtw with IISP RTW data from binary file drtw.rda 

>            load("./RFIISP/drtw.rda") 

 

> #    with column names   

> #    "yr","fa","sx","og","ag","pyr","all","rsp","inj","hrt","msc") 

> # 

> #  see technical report PRA_IISP in Item 1 for additional Information 

>   

> #     "yr","fa","sx","og","ag"       are factor covariates 

> #     "all","rsp","inj","hrt","msc"  are counts of RTW health events  

> # 

> ##################################################################### 

> # 

> #  The folder RFIISP contains utility functions that were used to  

> #  obtain some of the numerical results in PRA_IISP--- see Example 1 

> #  NOTE: 

> #  THESE FUNCTIONS ARE PROVIDED FOR THE READERS CONVENIENCE AND 

> #  ARE SPECIFIC TO THE IISP DATA STRUCTURES AND METHODS 

> #-------------------------------------------------------------------- 

>   source("./RFIISP/read.RF.R") 

 

>   ogn7<-read.RF()# input R functions and Occupational Group long names 

 

>   library(MASS)   # attach MASS libraay 

 

> ##################################################################### 

> # 

> #     calculate marginal table of rsp events, person years, 

> #     and rsp event rates for Occupational and  Age Groups 

> #     for SNL--- see Table 1 in PRA_IISP report 

> #--------------------------------------------------------------------- 

>    evcount.oa(d=drtw,rfa="SNL",ryr="ALL",event="rsp",pc=F,ognames=ogn7) 

 

Number of  RSP RTW Absences  By Occupation and Age For SNL Year= ALL   

 

                       AGE 16-29 30-39 40-49 50+   

OCCUPATION                                         

A-Administrative              11    72   156   171 

C-Crafts                       2    17    34    31 

E-Fire and Security            1     7    11     3 
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O-Line Operators               1     0     5     4 

P-Professionals(F I M)         7    78   184   163 

S-Service                      2    20    35    30 

T-Technical Support-B          5    37    78    61 

------------------------------------------------------------  

 

Person Years By Occupation and Age  

                       AGE 16-29 30-39 40-49 50+   

OCCUPATION                                         

A-Administrative            1697  3801  6446  5907 

C-Crafts                      95   467  1215  1061 

E-Fire and Security           96   466   445   201 

O-Line Operators              66   315   398   186 

P-Professionals(F I M)      1980  9250 14455 13030 

S-Service                    210   342   771   758 

T-Technical Support-B        583  2330  4124  2986 

------------------------------------------------------------  

 

 RSP  Event Rate Per 1000 Person Years  

                       AGE 16-29 30-39 40-49 50+   

OCCUPATION                                         

A-Administrative             6.5  18.9  24.2  28.9 

C-Crafts                    21.1  36.4  28.0  29.2 

E-Fire and Security         10.4  15.0  24.7  14.9 

O-Line Operators            15.2   0.0  12.6  21.5 

P-Professionals(F I M)       3.5   8.4  12.7  12.5 

S-Service                    9.5  58.5  45.4  39.6 

T-Technical Support-B        8.6  15.9  18.9  20.4 

------------------------------------------------------------  

 

> ###################################################################### 

> # 

> #     Fit the Main Effects Model(MEM) to RTW rsp event data 

> #     --- see Table 2 in PRA_IISP Technical Report 

> #--------------------------------------------------------------------- 

>   h <- make.h(drtw,rfa="SNL",event="rsp") 

 

>   make.h  #  this function extracts an event at facility rfa 

function(d=drtw,rfa="SNL",event="rsp"){ 

#      make data frame for Poisson regression using 

#      constraints described in PRA_IISP report  

#      Technical Report ORISE-09-OEWH-0176 (2012) 

# 

        if(rfa!="ALL")d<-d[d$fa==rfa,]  

         y <- d[[event]]   

  nn<- d$pyr/1000  

 h <-  data.frame(y,nn,d[,1:5]) 

     contrasts(h$ag)<-contr.treatment(4,3) 

     contrasts(h$sx)<-contr.treatment(2,2) 

     contrasts(h$og)<-contr.sum(7) 

     contrasts(h$yr)<-contr.sum(10) 

h 

} 
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> ###################################################################### 

> # 

> #  fit the MEM using R function glm()--- see glm help file for details 

> # 

> #-------------------------------------------------------------------- 

>      mf<- glm(y ~ ag+sx+og+yr,fa=poisson,data=h,offset= log(nn) ) 

 

>      summary(mf) 

 

Call: 

glm(formula = y ~ ag + sx + og + yr, family = poisson, data = h,  

    offset = log(nn)) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-2.7576  -0.6823  -0.3376   0.4012   2.9285   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|) 

(Intercept)  2.84978    0.07284  39.126  < 2e-16 

ag1         -1.24668    0.19173  -6.502 7.92e-11 

ag2         -0.30478    0.08009  -3.805 0.000142 

ag4          0.07349    0.06459   1.138 0.255229 

sx1          0.72337    0.06447  11.220  < 2e-16 

og1         -0.14766    0.07907  -1.868 0.061829 

og2          0.50737    0.11151   4.550 5.36e-06 

og3          0.13896    0.19095   0.728 0.466771 

og4         -0.53522    0.27418  -1.952 0.050931 

og5         -0.60470    0.07300  -8.284  < 2e-16 

og6          0.70041    0.10933   6.407 1.49e-10 

yr1          0.40790    0.07235   5.638 1.72e-08 

yr2          0.31967    0.07569   4.223 2.41e-05 

yr3         -0.03362    0.09136  -0.368 0.712891 

yr4         -0.20668    0.09590  -2.155 0.031148 

yr5          0.17161    0.08159   2.103 0.035429 

yr6         -0.13629    0.09330  -1.461 0.144088 

yr7         -0.10801    0.09209  -1.173 0.240847 

yr8         -0.11033    0.09057  -1.218 0.223142 

yr9         -0.09401    0.08880  -1.059 0.289787 

 

(Dispersion parameter for poisson family taken to be 1) 

 

    Null deviance: 937.16  on 536  degrees of freedom 

Residual deviance: 485.43  on 517  degrees of freedom 

AIC: 1380.4 

 

Number of Fisher Scoring iterations: 6 

 

 

> ##################################################################### 

> # 

> #  calculate analysis of deviance table for facility SNL rsp events 

> #            see Table 3 in PRA_IISP report  

> #--------------------------------------------------------------------- 
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>      aodme4(drtw,"SNL") 

       q Deviance   IC   Df    LRT  LogO 

MEM   20   485.43 565.43 NA     NA    NA 

ag    17   570.07 638.07  3  84.64 40.31 

og    14   656.74 712.74  6 171.31 77.42 

yr    11   545.25 589.25  9  59.81 20.35 

sx    19   608.40 684.40  1 122.96 64.12 

ag:og 38   462.04 614.04 18  23.39  1.54 

ag:yr 47   453.21 641.21 27  32.23  1.24 

ag:sx 23   480.56 572.56  3   4.87  1.51 

og:yr 74   425.92 721.92 54  59.51  0.93 

og:sx 26   473.13 577.13  6  12.31  2.84 

yr:sx 29   475.67 591.67  9   9.77  0.53 

 

> ##################################################################### 

> # 

> #      Use utility function compare.estimates() --- see listing below 

> #      TO COMPARE PARAMETER ESTIMATES AND STANDARD ERRORS 

> #      FOR FOUR METHODS BASED ON IWLS ALGORITHM 

> #  

> #      1) Poisson ML    2) QL/M1     3) NB ML and    4) QL/M2 

> # 

> #      for IISP data for facility= "PTX"  event= "rsp" 

> # 

> #      THIS IS EXAMPLE 2 IN TECHNICAL REPORT PRA_IISP. 

> #------------------------------------------------------------------- 

>     compare.estimates(drtw,rfa="PTX",event="rsp",mf=NA) 

$coef 

             ML-Po  QLM_1   ML_NB  QLM_2 

(Intercept)  3.282  3.282   3.310  3.315 

ag1         -0.404 -0.404  -0.414 -0.416 

ag2          0.186  0.186   0.172  0.166 

ag4          0.180  0.180   0.158  0.156 

sx1          0.545  0.545   0.515  0.510 

og1         -0.262 -0.262  -0.321 -0.337 

og2          0.159  0.159   0.188  0.196 

og3         -0.124 -0.124  -0.112 -0.105 

og4          0.605  0.605   0.604  0.604 

og5         -1.102 -1.102  -1.127 -1.134 

og6          0.407  0.407   0.448  0.457 

yr1         -0.207 -0.207  -0.210 -0.212 

yr2          0.011  0.011   0.010  0.007 

yr3         -0.387 -0.387  -0.394 -0.397 

yr4         -1.433 -1.433  -1.422 -1.417 

yr5         -0.852 -0.852  -0.844 -0.841 

yr6         -0.974 -0.974  -0.970 -0.969 

yr7          0.264  0.264   0.259  0.256 

yr8          0.924  0.924   0.908  0.902 

yr9          1.384  1.384   1.388  1.392 

 

$ster 

            ML-Po QLM_1   ML_NB QLM_2 

(Intercept) 0.059 0.066   0.068 0.072 

ag1         0.114 0.128   0.127 0.132 
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ag2         0.069 0.077   0.083 0.089 

ag4         0.063 0.070   0.079 0.085 

sx1         0.059 0.066   0.070 0.074 

og1         0.058 0.065   0.071 0.076 

og2         0.080 0.089   0.093 0.099 

og3         0.065 0.073   0.079 0.084 

og4         0.051 0.058   0.065 0.070 

og5         0.076 0.085   0.088 0.093 

og6         0.086 0.097   0.101 0.107 

yr1         0.104 0.116   0.114 0.118 

yr2         0.094 0.105   0.105 0.109 

yr3         0.112 0.126   0.122 0.126 

yr4         0.195 0.218   0.200 0.202 

yr5         0.148 0.167   0.156 0.159 

yr6         0.158 0.178   0.165 0.168 

yr7         0.088 0.099   0.099 0.104 

yr8         0.068 0.076   0.082 0.087 

yr9         0.060 0.067   0.074 0.080 

 

$disp 

[1] 1.00000 0.25876 0.07183 0.10762 

 

$m2ll 

        ML-Po QLM_1   ML_NB QLM_2 

logLik 1597.8    NA  1578.9    NA 

Df       20.0    20    21.0    20 

 

$mfit 

[1] "rsp events at PTX y ~ ag + sx + og + yr" 

 

 

> ##################################################################### 

> # 

> #      List R utility function compare.estimates() 

> #------------------------------------------------------------------- 

>    compare.estimates 

function(d=drtw,rfa="PTX",event="rsp",mf=NA){ 

#   

#     COMPARE PARAMETER ESTIMATES AND STANDARD ERRORS 

#     for four methods based on IWLS algorithm 

#  

#       1)Poisson ML 2) QL/M1 3) NB ML and 4) QL/M2 

#  for IISP data for facility= rfa heath event=event model = mf  

#     [see PRA_IISP equation (6) and related text for details ] 

# 

# ARGUMENTS: 

#           d data frame with IISP data  

#           rfa facility  

#           event health event for summary table 

#           mf model DEFAULTS to y~ ag +sx+og+yr 

# 

# USAGE: compare.estimates(drtw,rfa="PTX",event="rsp",mf=NA) 

# 

# VALUE: a list with components 



38 

#       coef  parameter estimates for each method 

#       ster  estimated standard errors for each method 

#       disp  estimate dispersion parameter 

#       m2ll -2*loglikelihood (for models with likelihood) 

#       mfit  describes data and model fit 

# 

#  REQUIRES utility functions 

#        make.h(d,rfa,event) 

#        iwls.qm2(mf,h) 

#        

#        make.h() to make data frame for regression  

      h<- make.h(d,rfa,event) 

#        determine model formula ( see glm help file) 

      if(is.na(mf) ) mf<-"y ~ ag +sx+og+yr" 

      fmp <- as.formula(mf) 

      fmnb<- as.formula( paste(mf,"+offset(log(nn))") ) 

 

#        fit Poisson model 

   f_p   <- glm(fmp , fa=poisson, data = h,offset= log(nn) ) 

#        fit QL/M1 quasi-likelihood method of moments 1 model 

   f_qm1 <- glm(fmp, fa=quasipoisson, data = h,offset= log(nn) ) 

#        chi-sq dispersion statistic for QL/M1 

   phi.p<- sum( residuals(f_qm1,type="pearson")^2 )/f_qm1$df.residual 

#        fit NB model using glm.nb in package MASS 

   f_nb<-glm.nb( fmnb,data=h,maxit=100,epsilon=1e-05) 

#        fit QL/M2 quasi-likelihood method of moments 2 model 

#        see comments in utility function iwls.qm2() 

   f_a2 <-iwls.qm2(mf,h) 

   f_qm2 <- f_a2$f 

#   

    fm <- list("ML-Po" =f_p,"QLM_1"=f_qm1  ,"  ML_NB" = f_nb,"QLM_2"=f_qm2 

) 

    np<-length(f_p$coef) 

#########  coefficients for each model 

coef<-  round( sapply(fm, function(x) coef(x)[1:np]), 3) 

 

#########   standard errors for each model 

    ster <- round( sapply(fm, function(x) sqrt(diag(vcov(x)))[1:np]),3) 

    ster <- round(ster,3) 

#########   calculate dispersion parameter for each model 

disp<-round( c(1,phi.p-1,1/f_nb$theta, f_a2$delta),5 ) 

#########  calculate  log-likelihood for Poisson and NB models 

logl<-rbind(logLik = -2*sapply(fm, function(x) round(logLik(x), digits = 

2)), 

  Df = sapply(fm, function(x) attr(logLik(x), "df"))) 

    logl[1,4]<- NA 

    mfit<-paste(event,"events at",rfa,deparse(f_p$formula) ) 

out<-list(coef=coef,ster=ster,disp=disp,m2ll=logl,mfit=mfit) 

out 

} 

> # 

> #    Close file PRA_IISPdemo.txt and exit R Dec 1 2012 

> #---------------------------------------------------------------------- 

>      sink()  


