Water Management In PEM Fuel Cell -“ A Lattice-Boltzmann Modeling Approach

PDF Version Also Available for Download.

Description

In Proton Exchange Membrane Fuel Cells (PEMFCs), water management and the effective transport of water through the gas-diffusion-layer (GDL) are key issues for improved performance at high power density and for durability during freeze-thaw cycles. The diffusion layer is a thin (~150-350{micro}m), porous material typically composed of a web of carbon fibers and particles, and is usually coated with hydrophobic Teflon to remove the excess water through capillary action. In-situ diagnostics of water movement and gas-reactant transport through this thin opaque substrate is challenging. Numerical analyses are typically based on simplified assumptions, such as Darcy's Law and Leverett functions for ... continued below

Creation Information

Mukherjee, Shiladitya; Cole, James Vernon; Jain, Kunal & Gidwani, Ashok June 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 46 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In Proton Exchange Membrane Fuel Cells (PEMFCs), water management and the effective transport of water through the gas-diffusion-layer (GDL) are key issues for improved performance at high power density and for durability during freeze-thaw cycles. The diffusion layer is a thin (~150-350{micro}m), porous material typically composed of a web of carbon fibers and particles, and is usually coated with hydrophobic Teflon to remove the excess water through capillary action. In-situ diagnostics of water movement and gas-reactant transport through this thin opaque substrate is challenging. Numerical analyses are typically based on simplified assumptions, such as Darcy's Law and Leverett functions for the capillary pressure. The objective of this work is to develop a high fidelity CFD modeling and analysis tool to capture the details of multiphase transport through the porous GDL. The tool can be utilized to evaluate GDL material design concepts and optimize systems based on the interactions between cell design, materials, and operating conditions. The flow modeling is based on the Lattice Boltzmann Method (LBM). LBM is a powerful modeling tool to simulate multiphase flows. Its strength is in its kinetic theory based foundation, which provides a fundamental basis for incorporating intermolecular forces that lead to liquid-gas phase separation and capillary effects without resorting to expensive or ad-hoc interface reconstruction schemes. At the heart of the solution algorithm is a discrete form of the well-known Boltzmann Transport Equation (BTE) for molecular distribution, tailored to recover the continuum Navier-Stokes flow. The solution advances by a streaming and collision type algorithm, mimicking actual molecular physics, which makes it suitable for porous media involving complex boundaries. We developed a numerical scheme to reconstruct various porous GDL microstructures including Teflon loading. Single and multiphase LBM models are implemented to compute permeability. Predicted values are in good agreement with measured data. The present modeling approach resolves the GDL microstructures and captures the influence of fiber orientation on permeability and the influence of Teflon loading on the development of preferential flow paths through the GDL. These observations can potentially guide the development of novel GDL materials designed for efficient removal of water.

Source

  • ASME 2009 Seventh International Fuel Cell Science, Engineering, and Technology Conferenc e, FuelCell2009-85182,

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/GO/17010-8
  • Grant Number: FG36-07GO17010
  • Office of Scientific & Technical Information Report Number: 1050040
  • Archival Resource Key: ark:/67531/metadc832060

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2009

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • Dec. 2, 2016, 6:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 46

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mukherjee, Shiladitya; Cole, James Vernon; Jain, Kunal & Gidwani, Ashok. Water Management In PEM Fuel Cell -“ A Lattice-Boltzmann Modeling Approach, article, June 1, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc832060/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.