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Introduction

The investigation and design of new classes of materials for energy and catal-
ysis requires a multi-facetted approach to simulation. Multiple methods are
needed to study materials on the length scale 0.1 nm - 10 nm. For simula-
tions where the atomic (and electronic) degrees of freedom are relevant, the
methods of choice in the surface science, condensed matter physics, and ma-
terial science communities are classical molecular dynamics (CMD), Density
Functional Theory (DFT), and quantum Monte Carlo (QMC).

The original scope for this Early Science Program (ESP) project was to
perform fast-accurate DFT calculations on materials for energy and catalysis
using the GPAW[1, 2, 3] code on Blue Gene/Q. The types of calculations
included significantly reduced time-to-solution on systems sizes accessible
on Blue Gene/P (∼10, 0000 valence electrons), but also systems which were
were at least a factor of two larger (∼20, 000 valence electrons). GPAW is a
real-space DFT code using the projector augemented wave (PAW) method.
DFT calculations on Blue Gene/P were executed on over >100, 000 cores
using GPAW; thus it was consider a success on Mira’s predecessor system,
Intrepid.

One of the co-PIs (NAR), determined that the work necessary to allow
the GPAW code for these aformentioned types of calculations could not be
accomplish within the time frame of the ESP. This was not simply due to hu-
man time required to implement OpenMP parallelism, but also from intrinsic
algorithmic limitations in supporting libraries, most notably ScaLAPACK.
Additionally, the return-on-investment on O(N3) DFT code has become some
what tenable at best. NAR argues that what is really needed in prepara-
tion for exascale computing and to enable high-fidelity materials research is
robust reduced scaling, O(N) or O(N)log(N), DFT approaches.

Thus, in aggreement with the other co-PIs, the decision was made to purse
QMC as a complimentary method on Mira since it would be vaulable for the
scientific community and could easily leverage the massive parallelism that
would be provided by the Blue Gene/Q. We note that the two other atomic-
scale methods mentioned here, CMD and DFT, are being pursued by other
ESP projects on Mira. The remainder of this report will focus on our progress
on QMC.
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Beyond Density Function Theory

DFT provides qualitative accuracy for many well-behaved systems but lacks
quantitative accuracy for most materials. One example where DFT consis-
tently performs poorly is van der Waals dominated systems; additionally,
chemical accuracy, generally considered to be 1 kcal/mol (=4 kJ/mol or 1
meV) cannot be achieved. This accuracy can only be achieved by an accurate
description of the electronic correlations of the system and therefore making
it difficult to use mean field methods, such as DFT or Hartree Fock (HF).

Accurate many-body methods, such as Coupled Cluster (CC), provides
accurate estimates of the energies by solving the many body Schroedinger
equation, but becomes rapidly computationally intractable as the number
of electrons increases, scaling as poorly as N7. QMC, within the varia-
tional Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods are
”stochastic approaches for evaluating quantum mechanical expectation val-
ues with many-body Hamiltonians and wave functions. [..] The main attrac-
tion of these methods is that the computational cost scales as some reasonable
power (normally from N2 to N4) of the number of particles N. This scaling
makes it possible to deal with hundreds or even thousands of particles, al-
lowing applications to condensed matter.”[4]

We therefore solve the Schröedinger equation with the manybody Hamil-
tonian. QMC formalism is the usual Monte Carlo (MC) formalism in the
sense that it solves multi-dimensional integrals by sampling randomly the
space and allowing the system to evolve in the imaginary time using MC
steps. Only moves that lower the energy are accepted. The obtained total
energy comes at a cost of a variance and an error bar due to its stochastic
nature.

σ2 =
〈

E2

T

〉

− 〈ET 〉2, δ =
σ√
M

(1)

It becomes evident that to reduce the error bar, one should run the simulation
longer or simply increase the number of samples, which suits particularly well
large supercomputers systems.

A good sampling requires starting close to the right answer. In order to do
so, we use a trial wave function that is created from a Slater determinant of
single-particle orbitals (obtained from a previous DFT calculation) in com-
bination with Slater-Jastrow parameter that explicty incorporate electron
correlation effects.
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Splines Single-particle orbitals (SPO) are a set of functions in (R3), one
function per orbital that describes its quantum state. During simulation, a
walker (R3N) samples spatial regions for the many-body state at that point,
requiring an evaluation of all orbital functions. The Slater determinant of
single-particle orbitals depends on the choice of basis set (molecular orbitals,
plane waves etc...). For the class of materials we are interested in, the most
practical choice is the use of plane waves. The B-pline approximation in
QMC reports significant reduction of time of calculation while maintaining
plane wave level of precision. The mesh size in the X, Y, and Z dimensions
determines the accuracy of the representation. When a point in space is
evaluated, a minicube of coefficients (64 coefficients) surrounding that point
is required to interpolate its value.

Twists Generating a QMC trial wavefunction can be accomplished by gen-
erating a DFT wavefunction that contains all of the k-points necessary to
express the many-body wavefunction with the different boundary conditions
in the QMC simulation cell. Then the resulting QMC calculations will be
performed with all of these different boundary conditions. Practically speak-
ing, one needs to specify the boundary conditions for the QMC calculations
using a k-point grid of n×n×n twists. This also has the effect to change
the type of the wave function from real when no twists are used, to complex
when they are present.

Workflow

A common workflow for QMC consists on generating a trial Slater-Jastrow
wave function, running a VMC optimization and finally running a DMC to
reach the desired accuracy. VMC treats the square of the wave function
as the probability distribution on which to do Monte Carlo. This means
the form of the wave function limits the minimum energy you can reach in
VMC. DMC, uses a branching, birth/death process based on the imaginary-
time version of the Schröedinger equation to guide the random walkers in
their random walk. Its minimum energy is limited only by the nodal surface,
derived from the trial wave function, which prevents random walkers from
moving between different-signed areas of the configuration space.
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Figure 1: QMC workflow chart.

QMCPACK on MIRA

We use the QMCPACK[5, 6] simulation package for this project. The code
was developed starting 2002 by the Ceperley Group at UIUC. Since then,
the community of developers led by Dr. Jeongnim Kim (ORNL) has grown
and spread amongst different institutions and National Laboratories.

QMCPACK is a heavily templated C++ code using all aspects of object-
oriented coding, STL libraries and MPI and OpenMP for communication.
This should have made it ready for porting on BGQ, however, as we ex-
perienced with our early access, many C++ standard were not compatible
between different compilers and the use of OpenMP led to some serious prob-
lems (race conditions and thread unsafe regions) that had to be addressed
before going further.

Once we were certain that the code was producing the right answers we
proceeded to optimizing it.

Profiling We used HPM and GPROF as main profiling tools. Most of
the systems of importance to us use twists and therefore we focused on the
complex-valued wave functions which exercises the complex-valed code paths
in QMCPACK.
Running GPROF showed that 71% of the application time was spent in
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the spline evaluation of the wavefunction. This time was spread between
two functions, Eval-Z evaluating the spline and Eval-Z-VGH evaluating the
spline, the gradient and the hessian. (These functions exist also for the real-
valued type in two versions, a double precision and a single precision version).
Computationally, each function consists on 4 nested loops (4×4×4×N) where
4×4×4 corresponds to the number of coefficients in the minicube and N is
the number of orbitals in the system, as described in the splines section.
In order to optimize the code we modified these two types of algorithms (for
complex type and double/single precision type) using two general algorithms,
then adding a layer of QPX and finally prefetching when it was possible.

Algo M. Algorithm M. consists of fusing the 4×4×4 loops and unrolling
the inner loop with a stride of 8. For Mira, we used QPX instructions to
manually load and store data after using the fused multiply-add functions.
As a last step we added prefetching on the spline-only evaluation function to
improve memory management.

Algo B. Algorithm B. consists on reversing the order of the loops to N×4
and unrolling the other loops. The mathematical expression of the problem
is modified decreasing substantially the number of floating-point operations.
For Mira we managed to use a similar algorithm to replace most of the in-
structions by QPX functions but were not able to benefit from prefetching.

As said previously, according to the type of system one can study (solid,
nanocluster, molecules etc...) the use of twists will make the wavefunction
either complex or real. This will exert 2 different parts of the code, a complex-
valued type and a real-valued type (with a double precision and a single
precision version). We applied the same methodology to optimize the spline
evaluation functions and show the results in table-1. Results show that Algo.
M is more efficient for the simple evaluation of the spline, while Algo B. is
more efficient when spline, gradient and hessian are evaluated. The increased
latency in Algo B. is hidden by the very important decrease of the total
number of instructions (see table-2. However, Algo M doesn’t have a better
management of memory access and does not reduce as effectively the number
of instructions, but for a smaller function, it is far more efficient than Algo.
B.

When profiling the same problem with the new optimized algorithms we
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Speed up Eval-Z Eval-D Eval-S
Algo. B 0.38 0.81 0.39
Algo. M 2.48 0.91 1.02

Algo. (X)
with QPX 3.94 (M) 1.08 (M) 1.26 (M)

QPX +
Prefetch. 4.5 1.23 1.81

Speed up Eval-Z-VGH Eval-D-VGH Eval-S-VGH
Algo. B 1.59 0.93 1.62
Algo. M 2.15 1.01 0.95

Algo. (X)
with QPX 7.62 (B) 1.58 (B) 1.31 (B)

Table 1: QMCPACK speed up for three different types of wave functions
exerting the complex-valued part (Eval-Z, Eval-Z-VGH),the real part (double
precision) (Eval-D and Eval-D-VGH) and its single precision version (Eval-S
and Eval-S-VGH).

see that the percentage of peak, the memory management and the number of
instructions per cycle completed per core dropped significantly (see table-2).
However, the number of instructions has decreased significantly which hides
the latency in the memory management and most of all, the time spent on
the spline evaluation and the time to solution was reduced by a factor 2.67
(see Fig-2). We selected the most efficient algorithms and applied them to
QMCPACK. Results are shown in Fig-2.

Conclusion

Quantum Monte Carlo algorithms (due to their stochastic nature and the
independence between samples) can benefits greatly from massively parallel
supercomputers. The large number of cores on Mira can be leverage by
QMC to study very large systems at chemical accuracy in extremely short
time by using a very large number of samples, corresponding to a very large
number of cores. The use of QPX and prefetching improved substantially the
time to solution making the code even more efficient with a 2.67 speedup.
Working with QMCPACK on BGQ Mira allows us to study a larger spectrum
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Profiling Original Version Mira Optimized
Time spent on Spline evaluation 70.97 (%) 22.33 (%)

Percentage of Peak 6.55 % 5.33%
All XU Instructions (in Billion) 27,644 8,581

All AXU Instructions (in Billion) 22,786 4,896
FP Operations (in Billion) 43,043 13,017

Instructions/cycle completed/core 0.6138 0.4417
L1 d-cache hits 94.03 (%) 88.60 (%)
L1P buffer hits 5.36(%) 5.92 (%)
L2 cache hits 0.35 (%) 4.50 (%)

DDR hits 0.26 (%) 0.98 (%)

Table 2: Performance Comparison between Original version of QMCPACK
and Mira modified version of QMCPACK

Figure 2: QMCPACK Speed up using compared to the original version us-
ing our cross platform algorithm (NoQPX) and QPX for all three types of
wavefunctions.

of materials at the chemical accuracy which is a great achievement. Many
applications, from material design to biochemistry are being investigated and
should soon be submitted to high impact journals.

The work on QMCPACK, specially on Mira is far from being over. As
one can notice on this report, most of the efforts were focused on porting
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Figure 3: Pt solids and
Nanoclusters for Cataly-
sis

Figure 4: Ar, Kr and
Xe Solid (Simulation of
Van der Waals domi-
nated solids

Figure 5: Molecule of El-
lipticine with DNA frag-
ments

the code to BGQ, optimizing the main kernel using QPX and ”prefetching”.
However very little has been done in implementing nested open OpenMp
(hybrid paralellization) which in theory, could reduce the time to solution by
a factor 4. Hopefully this next step will be undertaken in the near future.
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J. Stausholm-Möller, M. Strange, G. A. Tritsaris, M. Vanin, M. Wal-
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