Finite Element Analysis of EC Insert Plug

PDF Version Also Available for Download.

Description

The proposed EC calorimeter insert plug was modeled with ANSYS to verify that the shell thickness calculated with beam formulas are adequate. The finite element model and dimensions is shown in Fig. 1. The geometry and shell thicknesses used were the best numbers available as of 3/28/86. The model includes only the inner and outer shells and intermediate structural discs. The total weight of the plug is calculated to be 75000 lbs. The plug is supported against this weight at the four nodes indicated in Fig. 1. A vertical constraint was used. The calorimeter plates are not explicitly modeled. Their ... continued below

Physical Description

11 pages

Creation Information

Wands, R. April 1, 1986.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The proposed EC calorimeter insert plug was modeled with ANSYS to verify that the shell thickness calculated with beam formulas are adequate. The finite element model and dimensions is shown in Fig. 1. The geometry and shell thicknesses used were the best numbers available as of 3/28/86. The model includes only the inner and outer shells and intermediate structural discs. The total weight of the plug is calculated to be 75000 lbs. The plug is supported against this weight at the four nodes indicated in Fig. 1. A vertical constraint was used. The calorimeter plates are not explicitly modeled. Their weight is placed on the inner shell by giving the shell material an appropriate density and applying a global acceleration. In addition to the weight loading, there will also be a pressure loading applied to both end plates as a result of preloading the calorimeter plates compressively. This pressure is estimated to be 20 pSi, and was represented in the model as a uniform pressure applied across each end plate. The large axial force produced by this pressure precludes the possibility of attaching the inner shell to both end plates. Such attachments would be under unreasonably high stress as the plates were preloaded, and the inner shell would be under a state of tension in trying to resist the axial force. In the real structure, the inner shell will be attached to at most one of the end plates. The axial force is then developed solely in the outer shell, which has a considerable area of attachment. To emulate this in the finite model, nodal coupling was used to couple the shell laterally to both end plates and all intermediate discs to ensure weight transfer, but axially the shell was only coupled to one of the end plates. The materials used were assumed to be SS 3011 with a Young's modulus of 28.3 (10{sup 6}) psi. Stresses were evaluated according to the limits and claSSifications of the ASME Boiler and Pressure Vessel Code, Section VIII, Division 2, Appendix 11 assuming a maximum allowable stress intensity of 20000 psi for primary membrane stress.

Physical Description

11 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: FERMILAB-D0-EN-047
  • Grant Number: AC02-07CH11359
  • DOI: 10.2172/1030006 | External Link
  • Office of Scientific & Technical Information Report Number: 1030006
  • Archival Resource Key: ark:/67531/metadc831781

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1986

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 30, 2016, 4:20 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wands, R. Finite Element Analysis of EC Insert Plug, report, April 1, 1986; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc831781/: accessed October 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.