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Abstract

Four types ofheat flux gages (Gardon, SchmidBoelter, Directional Flame
Temperature, and High Temperature Heat Flux Sensor) were assessed and compared
under flux conditions ranging between 10000 kW/nf, such as those seen in
hydrocarbon fire or propellant fire conditions. Shortadiom step and pulse boundary
conditions were imposed using a -panel cylindrical array of higkemperature
tungsten lamps. Overall, agreement betweemyadjes wasacceptabldor the pulse

tests and also for the step tests. However, repeated testsh@itATHFS with
relatively long durations at temperatures approaching 1000°C showed a substantial
decrease(10-25%) in heat flux subsequent to the initial test, likely due to the
mounting techniqueNew HTHFS gages have been ordered to allow additionalgest

to determine the cause of the flux reduction.
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1. INTRODUCTION

Like many in the thermal test area, Sandia has a need to measure both temperature and heat flu
simultaneously in seve environments, such &om liquid hydrocarbon fuel fires goropellant fires.

Heat flux is the most challenging of the two desired measurements. In liquid fuel fires, fluxes of up to
about 400 kW/rhcan occur, given an intense enough fire. For propefies, 1 MW/nf is a common

flux level. Commercially available gages (e.g., Gardon and ScBoielter) work very well in liquid

fuel fires, but there are limitations. For propellant fires optical measurements are the most practical
method. In either case relatively higihcertainties are common due to several factors (soot-bypjld
convection, etc.).

There are a number ofdies with commercially availableages specific to Sandia testsBasic
configuration of many gages requires a hole in the test surface to mogag#é~1 inch diameter x48

inches long). Most of our units under test (UUT) cannot accommodate such a hole. There is also a
requirement for gage cooling (water cooled gages are the norm-&0 8tinute fires) and providing

that cooling can sometimes Q#ficult. In JP-8 fires soot deposition on the (relatively) cold face causes

the gage to foul. Convection in wistttiven fires sometimes is a nmegligible fraction of the total (e.g.,

25%). These issues sometimes have resulted in not being able th@aaKieix measurements at all in

some tests.

Several years ago Sandia contracted with Dr. Tom Diller (Virginia Tech) to try to develop a new gage
that had the following characteristics: 1) Flush mount the gage to the unit under test (UUT) without
requiring a hole (but could accommodate small holes for screw mounting), 2) No water cooling (or
cooling of any kind) 3) Not susceptible to soot depositjod) Could withstand temperatures of
~1000C, and 5) Measure net flux, and infer incident flux using a mog@glergy balance on gage
surface).Dr. Dillerand hist eam devel oped t he @ HIegnhs oTreon) pleichTaH FUS
Sandia habeen testing for the last several years.

This report ompare results ofthe HTHFS to other gage typeassing identical shi duration high heat

flux step and pulse boundary conditicmsobtainconfidence in gage performance in our applications.

The HTHFS was evaluatedor robustnessThefi hy br i do heat f | uxasdsedoa r e c
reducethe HTHFS net heat fluxdata Finally, terms were estimated tofen incident heat flux (our
applications require boundary conditions for code inputs; this in turn requires incident fluxes rather than
net, because net flux is dependent on the surface).

1) A Gardon type heat flux sensor

2) A MedthermSchmidtBoelter type heat flux sensor,

3) A HuksefluxSchmidtBoelter type heat flux sensor,

4) A Directional Flame Temperatu(®FT) heat fluxsensor,

5) A Thin Film heat flux sensor (determined to be broken, no results are reported), and

6) A HighTemperature Heat Flux Sensor (HTHFS).



2. TEST CONFIGURATION

The set setup consistefla 6sided radiant heat array amdscellaneougquipment. A Inconelshroud
typically used in radiant heat tests (the measured shroud temperature provides feedbatikl lamp
power) wasnot usedin order to achieve the desired step changes in heat3knSCRs(one for each
panel) were controlled to provide a profile based ordesired percent power. Eachvatercooled
aluminumlamp panel wwsamost fully lampedmissing 1 lamp at the bottom, yielding 62 lamps/panel).
Assuming each lamp is driven at the ratdd//lamp, each panekquires372 kW, and a 8ided array
requires ~2.2MW electrical power Note that each panel has an average heated area of (*Z420m
in%) and at full poweeach panel produces a heat flux of ~1372 k%/m

Each gage wastested separatelyrigure 1 shows the location of the gagat the panel baitm and
centered in the array (2 pase@re swung open fagageinstallation) All gages wereflush moungd,
facing upward, centered in an insulated bo@te array wa open at the top (no top hat or reflector).

Center location
for all gages

Figure 1 6-Panel Lamp Array

3. HEAT FLUX PROFILES

Each gage assubjected to two profilederein called a step profile aacpulse profile, and tested three
times at each profile.

The step profile increased SCR power in 10@réements from 0% to 50% and back to 0% with a 20 s
duration between stepBigure2 shows that the profile was programmed to change the power between
stepsinls.

1C
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Figure 2 Heat Flux Step Profile

The pulse profile first increased SCR power to 10% power (used to preheat the cold tungsten lamps to
prevent thermal shock failure) for 15 s, then increased power to 50% and held for 20 sckherilb&o

power for 15 s (and then offlrigure 3 shows that the profile was programmed to changeptbwer
between steps in 1 soke that the Hukseflux sensor hasugper hat flux limit of 200 kW/nf; both the

step and the pulgwofile peak powers arereducedor that sensor.
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50 1 f
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SCR % Power
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T T
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Figure 3 Heat Flux Pulse Profile
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4. GARDON TYPE HEAT FLUX SENSOR

The Gardon type heat flux sens¢figure 4, Medtherm Model 640018 (0100 BTU/fs (0-1.14

MW/m?), Ser.# 175671, smooth body, narftje, water cooled, 180° view.91 absorptangeneasured
total hea flux. It had afull scale outpubf 12.98 mV at 1000 kW/f(yielding aninverse responsivitgf

77.04 kW/nf/mV).

Figure 4 Gardon Total Heat Flux Gage

The Gardon gage, shown Figure 5, was mounted flush with the insulated board surface, facing
upward. A portable chiller was used for cooling water, with the chiller water temperature set to
approximately 20°C. Output from éhGardon gage was calibrated to incident heat flux by the
manufacturer. Data reduction was based on the

e AN

Figure 5 Gardon Gage Mounted inside the 6-Panel Array

In these tests, thenwas no forcedconvection, and free convection is minimized by facing the gage
upward. However, based on correlations for a flat disc facing upwarmdsassuming the gage
temperature is 20°C, a convective contribution could be about 10 k¥/mfree stream temperaguf
600°C and about 20 kW/natt a free stream temperature of at 1000°C.

12



Manufacturerodds | iterature for Gardon type gages
only applies for the calibration which is performed in a radiative enlyironment. When used in real
applications, with small but nemegligible convection, the overall uncertainty can rise significantly.
These factors combine to raise the uncertainty of Gardon type gages in fire environments to ~ +30%
(Nakos 200% Resultsfrom the FORUM ound robin calibration (Pitts 20P4howed the uncertainties

of SB gages to be ~*84%. It will be assumed that the Gardon gage and the Huksgdlgehave

similar uncertainties and the larger value from the FORUM report is appropritis work.

4.1 Gardon Gage Test Results
4.1.1 Step Test Results

As theGardongageresults were nearly identical for each oé threesteptests, only theletaileddata
from one stemrofile are presentedrigure6 shows thegageheat flux as a function of the SCR power. It
alsoshowsthe Gardonheat fluxgage(HFG) temperatur@and cmling water return temperature.

The methodology for collecting andmparing the heat flux results for glhges was to visually identify
the time at the end of a step or pulse change, subtract one second, and average the previous four secon:
of data.These collection times are indicated by the averaging interval shdvigure6 and inTablel.

G1 S3 Test 3-9-12
700 70
1 \ —flux
——SCR power kW
600 ——averaging intervals- 60
] ——hfg temp
1 water return
\%: 500 50
3 ] ~
E S
& ] ™ ?
o I
o 400 1 40 %
) 9]
5] 1 |t —_— g
£ | all e
S 300 ~ 30 o
<3 1 g
3 1 \ o
= 1 L
w
& 200 el N 20
I |
o J L'.\\%_ )
0 ] e T T T T T r T T T T T T T T T r L T T T T T 0
0 10 20 30 40 50 60 70 80 90 100110120130 140 150 160 170 180 190 200 210 220 230 240 250
Time (s)

Figure 6 Representative Gardon Gage Step Heat Flux and SCR Power

Figure7 shows the SCR current and power for the Garglagetest; the red line at 64 s indicates the
end of the 30% stefigure 8 presentdhe SCR voltage for the Gardgagetest. SCR power (in kW)
was calculated by the summation of the SCR current times the SCR voltage, divided dyadteabat

the SCRs energized at slightly different times and were small differences between SCR pai@meter
steadystate (thought to be a function of the hardware and control software).
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G1 S3 Test 3-B9-12
700

T T T T —
—scCr 1 amps

=—SCr 2 amps

600 ——scr 3 amps
——scr 4 amps

—sCr 5 amps
500

——SCr 6 amps
~———SCR power kY

400

300

SCR Amperes or Power (kW)

> J
d00 S
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Figure 7 Representative Gardon Gage Step SCR Current and Power

Figure 8 Representative Gardon Gage Step SCR Voltage

Table 1 presents thaverage and standard deviation (essentially the time variance) lnéah&uxand
the averag&CR power over each of the nineeeaging intervals.
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