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Disclaimer 

  

This report was prepared as an account of work sponsored by an agency of the United States 
Government.  Neither the United States Government nor any agency thereof, nor any of their 
emplyees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof.  The 
views and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 
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Abstract 

  

This report describes in detail the technical findings of the DOE Award entitled “Development, 
Verification, and Validation of Multiphase Models for Polydisperse Flows.”  The focus was on 
high-velocity, gas-solid flows with a range of particle sizes.  A complete mathematical model 
was developed based on first principles and incorporated into MFIX.  The solid-phase 
description took two forms: the Kinetic Theory of Granular Flows (KTGF) and Discrete 
Quadrature Method of Moments (DQMOM).  The gas-solid drag law for polydisperse flows was 
developed over a range of flow conditions using Discrete Numerical Simulations (DNS).  These 
models were verified via examination of a range of limiting cases and comparison with Discrete 
Element Method (DEM) data.  Validation took the form of comparison with both DEM and 
experimental data.  Experiments were conducted in three separate circulating fluidized beds 
(CFB’s), with emphasis on the riser section.  Measurements included bulk quantities like 
pressure drop and elutriation, as well as axial and radial measurements of bubble characteristics, 
cluster characteristics, solids flux, and differential pressure drops (axial only).  Monodisperse 
systems were compared to their binary and continuous particle size distribution (PSD) 
counterparts.  The continuous distributions examined included Gaussian, lognormal, and NETL-
provided data for a coal gasifier. 
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1. EXECUTIVE SUMMARY 
 
This report is the final technical report for the award DE-FC26-07NT43098 entitled 
“Development, Verification, and Validation of Multiphase Models for Polydisperse Flows.”  
Below is a summary of work completed under the grant for each of the major goals.   
 
Goal I:  Continuum Theory for Solid Phase 
 
Two separate and complementary continuum theories were derived to model polydisperse solids:  
the kinetic theory of granular flow (KTGF) and the discrete quadrature method of moments 
(DQMOM).  Both theories are based on first principles with no adjustable parameters.  The 
polydisperse KTGF and DQMOM were then encoded in MFIX, and underwent a wide range of 
verification testing to ensure, to the best possible extent, that no coding errors were present.  
These verification tests included both granular and gas-solid flows, including cases where an 
analytical solution and/or DEM (discrete element method) data and/or simple test cases.  For the 
case of KTGF, another set of constitutive equations were derived which rigorously incorporated 
the gas phase for a simplified case of monodisperse systems at low Reynolds numbers.  This 
derivation used the acceleration model developed  in Task 2 from direct numerical simulations 
(DNS) in the starting kinetic equation, and indicated the effect of the fluid phase on the resulting 
constitutive relations. 
 
Goal II:  Improved Gas-Particle Drag Laws – effect of particle size distribution 
 
In this portion of the effort, two types of direct numerical simulations (DNS) were used to extract 
the drag force experienced by particles in a polydisperse suspension.  These two methods, 
namely lattice-Boltzmann (LB) simulations and particle-resolved direct numerical simulations 
(PR-DNS), were used to cover the parameter space of interest to the operation of circulating 
fluidized beds (CFB’s).  Simulations were performed through assemblies of particles with zero 
and nonzero mean relative velocity between various species; in both cases particles had non-zero 
fluctuating velocities.  Simulations of freely evolving suspensions were also performed.  Based 
on the former set of simulations, a new drag law for polydisperse mixtures was obtained that is 
valid for low and moderate Reynolds numbers.  It was found that the effect of particle velocity 
fluctuations on the fluid-particle drag forces was found to be only of secondary importance even 
at moderate Reynolds numbers.  For simulations of evolving flows, it was found that clustering 
occurred for all cases, showing that clustering does not disappear when particle size distribution 
is present.  The formation of clusters complicates extraction of fluid-particle drag models from 
such simulation data.   In addition to the new polydisperse drag law, another outcome of the 
DNS-based simulations was an instantaneous particle acceleration model (as is used in the 
starting kinetic equation for derivation of continuum models) for the gas-solid interaction.  It was 
found that the drag force (acceleration) acting on the particles has a stochastic contribution from 
the neighbor particles, which is described according to a Langevin model.  The coefficients of 
this Langevin-based acceleration model are specified as functions of the solid volume fraction, 
mean flow Reynolds number and solid-fluid density ratio. 
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Goal III:  Gas-Phase Instabilities:  Turbulence Models for Polydisperse Systems 
 
In the first part of this effort, the level of pseudo-turbulent kinetic energy in the gas-phase was 
quantified using PR-DNS of monodisperse and bidisperse gas-solid systems with particles 
greater that the Kolmogorov length scale. These simulations were performed for gas-solid flows 
of both fixed and freely evolving assemblies.  In the second portion, an algebraic model is 
proposed for the gas-phase Reynolds stress in terms of solid volume fraction and mean flow 
Reynolds number.  In addition a suitable scaling for dissipation of fluid-phase pseudo-turbulence 
was proposed. 
 
Goal IV:  Data Collection and Model Validation 
 
Data was obtained via both DEM simulations and experiments in three fluidized beds, both low-
velocity (bubbling) and high-velocity (circulating).  The DEM data was used to determine how a 
continuous particles size distribution (PSD) could be approximated using a discrete number of 
particle sizes, as is used in the continuum models.  The experimental data demonstrated the 
effect of particle size distribution, both binary and continuous, on the local flow characteristics 
associated with both bubbles and clusters.  Measurements also included solids flux and velocity-
weighted particle size distribution as function of axial and radial position.  Surprisingly, the 
qualitative effect of increasing the widths of continuous size distributions on measured quantities 
(species segregation, elutriation, etc.) were often in contrast to the well-established trends of 
binary mixtures.  Finally, a challenge problem was issued to the modeling community and 
spearheaded by PSRI and NETL, the results of which will be reported in a journal publication. 
 
With regard to model predictions, grid-independent DQMOM predictions of hydrodynamic 
clusters were found, and the structure formation was found to be less evident than with 
hydrodynamic models.  Simulations in axially periodic domain were performed to compare with 
the PSRI data obtained in this project involving the study of polydispersity and segregation. The 
implementation of the electrostatic model into MFIX was completed and tested with a simple 
channel flow problem.  With regard to KTGF, a comparison of two KTGF models, using the 
polydisperse drag law developed here, indicated qualitatively similar gas-particle flow 
predictions.  In addition, results from two dimensional channel flow simulations were compared 
with the PSRI experimental data set obtained in this project.  Poor agreement was found between 
simulations and experimentally observed segregation profiles.  This lack of agreement is traced 
to azimuthal variations in particle volume fraction that cannot be account for in 2D channel flow 
simulations. 

 
Goal V:  Project Management 
 
The submission of this document represents the final reporting requirement of the project.  All 
milestones were met, and the budget was fully spent. 
 
The project resulted in 42 publications (journals and book chapters), 28 invited talks, and 53 
contributed conference presentations. 
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2. TECHNICAL DETAILS 
 
For each task in the project, the task description (as taken from the PMP) is shown in underlined 
italics for purposes of reference.  The non-italicized text immediately following the task 
description of work completed on that task. 
 
Goal I:  Continuum Theory for the Solid Phase 
 
Task 1.1:  Derivation of KTGF (Hrenya) 

The development of a kinetic theory for N particle species, which can differ in size and/or 
density, will be based on the Enskog equation for mixtures, and therefore will be applicable to 
both dilute and dense systems.  The approach will follow the Boltzmann-based approach (dilute 
systems only) of Garzó and Dufty (2002), who are current collaborators of the PI.  A rigorous 
Chapman-Enskog expansion about the “equilibrium” state will be followed (Chapman & 
Cowling, 1970), thereby precluding the need for limiting assumptions such as quasielastic 
collisions, equipartition of energy, etc.  The resulting governing equations and corresponding 
constitutive relations will be applicable to a wide range of restitution coefficients. 
 
 (Hrenya reporting.)  The kinetic theory for N particle species, which differ in size and/or 
density, has been derived in 2D and 3D via a Chapman-Enksog expansion about the revised 
Enskog equation for mixtures of inelastic grains.  A brief overview of the main features of the 
new theory is as follows.  Because the starting equation is the Enskog equation rather than the 
Boltzmann equation, the new theory is applicable to both dilute and dense systems.  The base 
state used for the expansion is the homogeneous cooling state rather than the elastic 
(Maxwellian) base state, which makes the resulting theory applicable to a wide range of 
restitution coefficients.  Furthermore, no limiting assumptions of a Maxwellian velocity 
distribution or an equipartition of energy are made as part of the derivation.  Finally, due to the 
recognition that the timescale associated with inelastic dissipation is hydrodynamic (slow) in 
nature, only the mixture momentum balance and the mixture energy equation are required.  Note 
that this form of the equations does not impose any restrictions on the resulting predictions 
relative to previous theories which include species momentum balances and/or species energy 
balances (e.g., segregation arises due to external forces as well as gradients in concentration and 
temperature).  On the other hand, the set of governing differential equations is reduced, which is 
expected to lead to a significant reduction in computational requirements. 

The new theory was published in Physical Review E in the form of two consecutive 
papers.  In the first paper, the formal Chapman Enskog expansion is carried out, resulting in 
constitutive relations in the form of collision integrals, except for the few in which the collision 
integrals can be evaluated exactly).  In the second paper, the remaining collision integrals are 
evaluated approximately using a truncated Sonine polynomial.  The preprints of the manuscripts 
are attached to this report (Appendix A), in which all of the detailed calculations and resulting 
equations can be found.  Due to the considerable length of this contribution, pointers to 
important pieces of information are given below for easy reference. 
 

1) An overview of the derivation is given in Section II of the first paper. 
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2) A listing of equation numbers for the final form of the governing equations and 
constitutive relations is contained in the first paragraph of Section IV of the second 
paper. 

3) A comprehensive discussion of the specific treatments used during the derivation 
process, along with a detailed comparison to previous theories, is provided in Section 
IV of the second paper.  A more concise overview of this information is available in 
Tables 1 and 2 of the second paper. 

 
Task 1.2:  Development of DQMOM (Fox) 

The DQMOM approach is an efficient mathematical approximation for polydisperse 
systems that starts with a closed transport equation for the NDF describing the system (Fox, 
2003, Marchisio & Fox, 2005, Fox, et al., in preparation, Fox, in press).  For gas-solid flows, a 
polydisperse version of the Enskog equation is the appropriate starting point. Once this equation 
has been closed, DQMOM will be directly applied to derive transport equations for the N 
number densities and N abscissas representing the properties of the system (e.g., size, density, 
velocity, etc.)   This process results in an N-solids model where each solid has its own continuity 
and momentum equation (Fan, et al., 2004).  However, it is different than the current N-solid 
model in MFIX in its treatment of the momentum equation, which is represented by N abscissas 
even for monodisperse particles.  The DQMOM approach will also be used to represent just the 
polydispersity in size (density, etc.) when combined with the KTGF to treat the velocity.  This 
combined KTGF-DQMOM approach will result in an N-solids model that is an extension of the 
current model in MFIX.   

 
(Fox reporting.)  A quadrature-based third-order moment closure has been developed for 

dilute gas-solid flows.  The derivation begins with the Boltzmann equation for monosized 
particles and includes terms for transport, gravity, drag, and particle-particle collisions.  Particle-
wall collisions appear in the boundary conditions.  Unlike the classical Chapman-Enskog 
expansion, the quadrature-based moment closure does not use expansions about the equilibrium 
state, and hence can be applied for arbitrary Knudsen number (including non-collisional flows 
far from equilibrium).  The third-order closure uses two-node quadrature in each direction of 
velocity phase space and hence uses eight nodes for three-dimensional velocity distribution 
function.  The key technical challenge when using quadrature-based moment methods is the 
inversion formula for computing the quadrature weights and abscissas from the finite set of 
transported moments.  The method was implemented in a computer code and tested for three 
canonical problems: (i) Riemann shock problem, (ii) impinging particle jets, and (iii) dilute 
vertical gas-solid channel flow with large Stokes number particles.  For the Riemann problem, 
we showed that the method can reproduce the classical shock structure in the limit of zero 
Knudsen number (i.e., the Euler equation), as well as the breakdown of the shock for increasing 
Knudsen number as observed in Discrete Simulation Monte Carlo (DSMC).  Although it arises 
from rarefied gas dynamics, the Riemann problem is relevant to gas-solid flows as it will arise 
whenever a large solid-volume fraction gradient exists in a flow (e.g. a particle mixing layer 
where the initial particle temperature is uniform, the initial mean solids velocity is zero, but the 
solids volume fractions are different on the two sides of the mixing layer.)  The impinging 
particle jets are a difficult problem of two-fluid models such as MFIX because in the dilute limit 
the particles at impact are far from equilibrium.  Two-fluid models will predict so-called “delta-
shocks” where the particles are all located at the shock structures, but unfortunately this behavior 
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in unphysical (i.e. it is not observed with DSMC).  The third example is directly relevant to riser 
flow because it includes gravity and particle-wall interactions.  Because of the high Stokes 
number, the particles are far from equilibrium and interact only with the mean gas-phase velocity 
(i.e., one-way coupling with the gas phase).   

Granular Flow.  The quadrature-based moment closure for granular flows with particle-
particle collisions has been tested for a series of test cases.  The latter were designed to test the 
important physics appearing in the kinetic equation (kinetic transport, collisions, and boundary 
conditions).  By varying the average particle volume fraction, the relative importance of the 
collision term was investigated for both elastic and inelastic particle-particle collisions.  The 
numerical implementation of the quadrature-based third-order moment closure was found to be 
robust over the entire range of Knudsen (collisions) numbers.  The quadrature-based closure was 
shown to yield physically realistic solutions to highly non-equilibrium granular flows that cannot 
be accurately handled by “standard” KTGF. 

Further testing of the quadrature-based moment closure was performed with particle-
particle and particle-wall collisions described in detail in the manuscript by Fox (2008).  The 
novelty of this method is that it provides a direct solution of the Boltzmann equation for the one-
particle density function with collisions for the entire range of  Knudsen numbers.  In 
comparison, closures based on “equilibrium” kinetic theory approaches (e.g., the KTGF) cannot 
treat cases that are not dominated by collisions (i.e. the Knudsen number must be very close to 
zero.)  The principal technical challenge is the development of a robust inversion algorithm to 
compute the eight weights and eight velocity abscissas from the twenty moments (in 3D) up to 
third order in the components of particle velocity.  For collision-dominated systems, the 
Boltzmann equation reduces to the Euler equation for compressible inviscid flow.  A robust 
algorithm for inverting the twenty moments must work in the Maxwell limit, as well as for 
deviations from this limit where the weights and abscissas deviate strongly from their 
Maxwellian values.  

The first test considered was the classical Riemann shock problem, a standard test case 
for compressible flow solvers. The temperature-contour results for the quadrature-based solver 
are shown in Fig. 1 for three Knudsen numbers.  For Kn=0, the classical solution to the Euler 
equation is recovered.  Two non-equilibrium cases (Kn= 0.1 and 10) are shown at the same time 
instant.  These results are in good agreement with those found using a direct Boltzmann equation 
solver.  We should note that the results in Fig. 1 are found using the BGK collision term.  Test 
runs using the Boltzmann collision operator have also been carried out and differ qualitatively at 
intermediate Knudsen numbers. It is noteworthy that using the Boltzmann collision operator is 
relatively straightforward in the context of quadrature, while it is quite problematic with other 
moment closures since the collision terms in moment equations are not closed. 

Dilute Gas-Particle Flow.  The second test considered is vertical gas-particle channel 
flow with elastic collisions. One-way coupling is assumed (due to the large Stokes number of the 
particles, and the gas-phase mean velocity profile is taken as an input to the simulations of the 
particle-phase moments.  The particle-wall collisions are assumed to be elastic.  We should note 
that the wall boundary conditions are easily implemented in terms of the weights and abscissas, 
which is not the case for other moment methods (e.g. Grad’s 13-moment system).  In the absence 
of particle-particle collisions (i.e. extremely low particle volume fractions), this flow reaches a 
steady state where the particle temperature is null (i.e. dissipation due to the drag term removes 
all particle velocity fluctuations.)  For dilute systems, particle-particle collisions, combined with 
the non-uniform gas-velocity profile, lead to a non-uniform particle temperature (and number 
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density).  The shape of the number density profile depends on the Stokes and Knudsen numbers.  
However, because the particle temperature is maximum near (but not at) the walls and minimum 
at the centerline, a core-annular profile is usually observed. 

Sample results for the channel flow with an average solids volume fraction of 2 percent 
are shown in Fig. 2.  These results were found by running a time-dependent simulation of the 
moment equations until the fields reached a steady state.  From the weights, it can be clearly 
observed that Knudsen layers are formed at the channel walls because collisions are not strong 
enough to eliminate anisotropy generated by the boundary conditions.  Likewise, note that the 
weights are not all equal, indicating that the velocity distribution in non-Maxwellian.  This can 
also be observed from the diagonal anisotropy components, which are zero for the Maxwell 
distribution.  Also note that only one off-diagonal component is non-zero (auv), which is 
important in determining the particle temperature distribution in the channel.  Finally, one can 
note that the particle pressure is non-uniform for finite Knudsen numbers (but uniform for Kn=0, 
i.e. the Euler limit.)   

The next case considered was a particle-laden 2D Taylor-Green (TG) flow with one-way 
coupling.  For this case, at time zero the particles are uniformly distributed in the unit square.  
However, due to the finite Stokes number, the particles are ejected from the TG vortices (low-
pressure regions).  If the Stokes number is large enough, the particles will cross from the TG 
vortex where they started into a neighboring vortex.  Depending on the particle number density, 
this process will result in particle-particle collisions (dilute flows) or particle trajectory crossing 
(very dilute flows).  It is noteworthy, that only the former can be described by a two-fluid model 
based on the KTGF (e.g. MFIX).  An example result for Kn=0 (Euler limit) is shown in Fig. 3.  
The particle number density reaches a steady state where all particles are clumped along the 
vortex boundaries.  Note, however, that due to particle collisions the particle pressure at the 
vortex boundaries is very high, thereby stopping particles from crossing into a neighboring 
vortex.  In contrast, for infinite Knudsen number (no collisions) the number density is 
determined by kinetic transport and drag only.  As example result for this case is shown in Fig.4.  
In the absence of collisions, particle trajectory crossing is ubiquitous, leading to a discontinuous 
mean particle velocity field.  The quadrature-based moment closure can successfully handle such 
non-equilibrium cases because the local velocity is described by eight velocity vectors, instead of 
one mean velocity vector and gradient-based fluxes. For the TG flow, the particle temperature is 
strongly inhomogeneous and depends on both the Stokes and Knudsen number.  However, 
simulations with solids volume fractions as high as 10 percent still show significant non-
equilibrium effects that cannot be capture using the KTGF.  It is likely that the same is true for 
many other gas-solid flows because the particle temperature will never be large enough to 
overcome non-equilibrium effects at solid volume fraction even as high as 10-20 percent.     

The next case considered is crossing planar particle jets with and without collisions.  This 
case is similar to the TG flow, except that the gas phase is not present and the particle trajectory 
crossing is generated by the initial conditions.  The particle number density in the jets determines 
the relative importance of collisions.  For very dilute jets, the particle collisions are negligible 
and the particle jets simply pass through each over (Fig. 5).  On the other hand, in the Euler limit 
(Fig. 6) particle collisions are dominant and lead to both forward- and back-scattering.  We 
should note that a KTGF code (such as MFIX) can only predict the behavior shown in Fig. 6.  In 
contrast, the quadrature-based moment closure can handle the entire range of particle number 
densities (see Fig. 7). 
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Figure 1.  Temperature contours for the Riemann shock problem at three Knudsen numbers. 
Top: Kn = 0. Middle: Kn = 0.1. Bottom: Kn = 10. 
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Figure 2.  Selected statistics for the vertical gas-solid channel flow at St=40.9 and an average 
particle volume fraction of 2 percent.  Top row: weights and abscissas.  Middle row: number 
density and mean particle velocity components.  (Gas velocity is shown as a dashed curve.)  
Bottom row: diagonal and off-diagonal anisotropy tensor components, temperature components, 
and particle pressure. 
 

The final case that has been considered is a granular gas (i.e., possibly inelastic particle 
collisions) between two constant-temperature walls.  This flow has been investigated by Galvin 
et al. (2007) using molecular dynamics and was shown to exhibit significant non-equilibrium 
effects.  Sample results for two cases are shown in Figs. 8 and 9.  We should note that the results 
in Figs. 8 and 9 are found with BGK collisions.  
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Figure 3.  Particle number distribution in TG flow in the Euler limit (Kn = 0).  Mean particle 
velocity vectors are indicated by blue arrows.  At t = 4 all particles have been ejected from the 
vortex centers. 
 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 14 

 
Figure 4.  Particle number distribution in TG flow in the collision-less limit.  Mean particle 
velocity vectors are indicated by blue arrows.  Extensive particle crossing is observed in this 
limit and the particle velocity vector field is not continuous. 
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Figure 5.  Crossing planar particle jets in the collision-less limit.  Mean particle velocity vectors 
are shown by blue arrows. 
 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 16 

 
Figure 6.  Crossing planar particle jets in the Euler limit.  Mean particle velocity vectors are 
shown by blue arrows.  Both forward- and back-scattering of particles is observed. 
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Figure 7.  Crossing planar particle jets with 1 percent solids volume fraction.  Mean particle 
velocity vectors are shown by blue arrows.  Partial scattering of particles is observed. 
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Figure 8.  Elastic granular gas with 1 percent solids between two constant-temperature walls 
(TL = 1, TR = 2).  Knudsen layers are present when anisotropy components (ai) are non-zero.  
Anisotropy for this case is very strong and Knudsen layers nearly reach the center of the domain. 
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Figure 9.  Inelastic granular gas with 5 percent solids between two constant-temperature walls 
(TL = 1, TR = 1).  Due to inelastic collisions, the center of the flow is anisotropic and heat flux is 
non-uniform.  The particle number density is highest near the center where the temperature is 
the lowest. 

 
Gas-Particle Flow with Two-Way Coupling.  The work then focused on the coupling of 

the DQMOM algorithm (Fox, 2008) with a fluid flow solver, in order to simulate cases with two-
way coupling between the phases, and on the implementation and testing of second-order 
accurate discretization methods to calculate the spatial fluxes in the moments equations.  Only 
the momentum coupling between the phases was taken into account in this work, considering the 
particulate flow dilute, and neglecting the particle-phase volume fraction inside the fluid-phase 
equations. 

The coupling between the fluid phase solver and the moment solver was obtained by 
adding the momentum exchange term Mf  to the fluid phase Navier-Stokes equation: 

 

( ) ( ) fffffgff M+gρ+τ+p=UUρ+Uρ
t

⋅∇−∇⋅∇
∂
∂  

 
The fluid phase equations of motion were solved using a second-order fully staggered algorithm, 
implemented into an in-house Fortran code. The drag term was treated as a source term in the 
fluid phase momentum equation, in analogy to what commonly done in Lagrangian solvers. The 
fluid phase pressure equation was solved using the FISHPACK library.  The wall boundary 
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condition for the particles was set to be reflective, with elastic collisions between the particles 
and the wall.  The no-slip boundary condition was adopted for the fluid phase. 
The implementation of the algorithm was tested by simulating a lid-driven cavity test case, at 
two different Stokes numbers: St = 0.8 and St = 0.03.  Figure 10 shows the comparison of the 
number density obtained from the simulation of a lid-driven cavity flow (Re = 100, based on the 
lid length and velocity) with the Eulerian quadrature-based solver with the results provided by a 
Lagrangian simulation.  The Eulerian simulation was capable to capture the bouncing of the 
particles against the wall in the upper-right corner of the cavity, where particles are brought 
against the wall by the moving lid, and then bounce back. The capability of capturing these flow 
behaviours is not present in classical two-fluid models.  Also the increase in the number density 
along the bottom border of the vortex generated by the moving lid, the higher number density in 
the upper-left corner, and the number density along the lid are in good agreement with what for 
is predicted by the Lagrangian simulation.  Figure 11 shows the contour plot of the particle 
velocity magnitude, where the same structure of the flow noticed in Figure 12 can be identified. 
 

 
 

Figure 10. Particles number density in a lid-driven cavity - Lagrangian simulation (left) and 
Eulerian simulation (right) - St = 0.8 - Initial volume fraction = 0.008 – 2-way coupling. 
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Figure 11. Particles velocity magnitude - St = 0.8 - Initial 
volume fraction = 0.008 – 2-way coupling. 

Figure 12. Fluid velocity magnitude - St = 0.8 - Initial 
volume fraction = 0.008 – 2-way coupling. 
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In Figure 13, the particle number density for the case of St = 0.03 is reported. Particles tend to 
stay uniformly distributed, with the exception of the accumulation along the left wall, were they 
are brought by the lid and stay trapped due to the very low velocity of the fluid phase. 
 

 
In all the cases considered, the algorithm showed to be robust and efficient, without presenting 
particular stability issues. 

The next task performed was the testing of two second-order discretization schemes to 
calculate the spatial fluxes in the moment equations. The first scheme is the traditional central 
difference scheme (CDS) with a limiter to keep the solution bounded, while the second scheme is 
a recently developed spectral-difference (SD) scheme. The two schemes were tested using the 
Riemann shock case, on two different grids: one with 200 cells and the other with 50 cells. The 
test performed on the refined grid made of 200 cells shows that both the second-order schemes 
provide almost identical results, with some more evident oscillatory behaviour for the SD 
scheme, as it can be noticed in Figure 14. Both second-order methods provide a sharper profile 
for the velocity and the pressure (Figure 15) in comparison to the first-order scheme. These 
results are confirmed by the simulations performed on the coarse grid (50 cells), whose results 
are shown in Figures 16 and 17, where the difference between the second-order methods and the 
first-order one is even clearer. 
 

Figure 13. Particles number density in a lid-driven cavity – 
2-way coupling – Average volume fraction: 0.0001 – St = 
0.03. 
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Figure 14. Velocity profile in the Riemann shock test case – 200 cells - Collision time: 0.015. 

 
Figure 15. Pressure profile in the Riemann shock test case – 200 cells - Collision time: 0.015. 
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Figure 16. Velocity profile in the Riemann shock test case – 50 cells - Collision time: 0.015. 

 
Figure 17. Pressure profile in the Riemann shock test case – 50 cells - Collision time: 0.015. 
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Polydisperse Gas-Particle Flow.  The derivation of QMOM was completed, extending the 
algorithm presented in Fox (2008)  to manage N dispersed phases. In particular the quadrature 
method was applied to the Boltzmann equation to consider collisions between different types of 
particles (Vedula and Fox, 2008). If the Boltmann equation is written in the general form for the 
i-th specie, it assumes the form: 
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The Boltzmann collision integral (term on right-hand side) can be approximated using the 
quadrature method of moments, leading to 
 

 
where the quantity Ka,b,c,d is given by 
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and Γ is Euler's gamma function. 
 

The implementation of the collision integral was tested with a simple case of relaxation 
of two species to the equilibrium condition. The evolution in time of the mean velocities of the 
two species considered (A and B) is reported in figure 18, while the evolution of their velocity 
variance is reported in figure 19. 
 
 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 26 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 18. Evolution of the mean velocity (first order moments) of two species A and 
B relaxing to the equilibrium condition.  

Figure 19. Evolution of the velocity variances of two species A and B relaxing to 
the equilibrium condition.  
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Task 1.3:  Incorporation of KTGF and DQMOM into MFIX (Fox & Hrenya) 
Following the derivation of the continuum models detailed above, both will be integrated 

into MFIX.  These implementations will involve the incorporation of balance equations as well 
as constitutive relations.  With regard to the KTGF-DQMOM approach, the basic framework of 
the balance equations is already in place in MFIX, and thus the bulk of the implementation effort 
will be focused on the coding and testing of the new constitutive relations, the form of which will 
be significantly more complex than existing relations.  For pure DQMOM, the solid momentum 
equations take on a different form than those already available in MFIX (Fox, et al., in 
preparation), and thus the incorporation of both the balance equations and constitutive relations 
will be substantial tasks.  For both models, code verification will begin with relatively simple 
systems (e.g., simple shear flow of monodisperse systems) and proceed in a stepwise manner. 
 
 (Hrenya reporting.)  First, all 11 of the transport coefficients associated with the new 
polydisperse KTGF were programmed in Matlab and subjected to a suite of verification tests.  
The suite of verification tests included:  (i) the reduction of the new polydisperse theory (or 
GHD, where GHD refers to kinetic theory of Garzo, Hrenya, & Dufty) to a previous 
monodisperse theory (Garzó & Dufty, 1999) for cases of s = 1 (where s is the number of species) 
and s = 2 species with identical properties (this test is only applicable to those transport 
coefficients which have a monodisperse counterpart; it does not include, for example, the 
diffusive species mass flux), (ii) the collapsing of predictions when the indices of unlike species 
for s = 2 were switched, and (iii) the collapsing of dimensionless predictions when the 
dimensional groups were changed but the dimensionless pi groups were kept constant, again for 
the case of s = 2.  All tests were carried out over a range of input parameters, including solids 
fraction and restitution coefficients, to ensure robustness of the comparisons.  Each of the 
transport coefficients passed the suite of verification tests.  Additional checks include an 
independent check (i.e., by another person) of the hand-generated notes, and an independent, 
line-by-line check of the corresponding Fortran code (described below). 
 Following the verification testing, the Matlab codes for the calculation of the individual 
transport coefficients, which require inputs of material properties (particle diameters, masses, 
and restitution coefficients of each species) and hydrodynamic variables (granular temperature 
and species solids fractions), were manually converted to Fortran subroutines.  These subroutines 
were then implemented in the MFIX framework via direct calls from MFIX, in order to reduce 
the amount of new/modified code (and any potential associated bugs).  The incorporation of the 
new KTGF into MFIX was verified via comparison with output from Matlab codes and 
successfully tested for simple systems (e.g., simple shear flow).   
 It is worthwhile to mention that the current implementation of GHD in MFIX is limited 
to binary systems, since the Iilj term appearing in the theory has not yet been extended to cases 
with s > 2.  This restriction does not affect single-valued transport coefficients (e.g., shear 
viscosity), but rather just those associated with species pairs (e.g., ordinary diffusion coefficient 
Dij) 
 Although this task was focused on the incorporation of KTGF for granular flows, this 
effort was extended to gas-solid fluidized systems via a joint effort between Princeton, NETL 
(Sofiane Benyahia and Janine Galvin), and CU.  This portion of the effort is reported in Task 
4.6.3. 
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 (Fox reporting.)  The implementation of the third-order quadrature-based algorithm for 
the solution of the Boltzmann equation to describe the particle phases derived in task 1.2 into 
MFIX is the objective of this task. Such an implementation is based on the already existing 
MFIX-DEM framework, where the fluid solver is kept unchanged, and the DEM solver is 
replaced by the quadrature-based algorithm to manage the dispersed phases. This approach 
preserves the advantages of the robust fluid solver already present in MFIX without interfering 
with the current implementation of the standard kinetic theory of the granular flow. As a 
consequence of the choices presented above, the fluid phase is treated by solving its continuity 
and momentum equation in their full form, completely coupled with the dispersed phases 
through the momentum exchange term and the volume fraction. Each dispersed phase is 
described by directly solving one Boltzmann equation 
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by means of the quadrature-based moment method, which directly provides the particle phase 
density (zero-order moment), from which the volume fraction is obtained, the velocity field for 
each particle phase (ratio of the first-order moments to the zero-order moment of each phase) and 
the particle-phase stress tensor.  

The integration in space of the transport equations for the moments is performed using 
the finite volume scheme presented in Fox (2008). The value at the cell faces of the weights and 
abscissas, determined through the inversion algorithm of the moments, are necessary to evaluate 
the kinetic fluxes, which are determined according to their kinetic formulation. These face values 
can be calculated with a first-order upwind or with a second-order central interpolation scheme, 
with a limiter to keep to solution bounded. The change in the moments due to collisions can be 
evaluated using both a first-order Euler scheme, and a second-order Runge-Kutta scheme. A 
second-order Runge-Kutta method is used to integrate the moment transport equations in time, 
with the time step automatically determined on the basis of the Courant number, the collision 
time, and the drag characteristic time. 

The fluid and the moments solvers exchange the information necessary to account for the 
interaction among the phases. In particular, the velocity field, required to calculate the drag term 
in the gas phase momentum equation and in the force term acting on each particle in the 
Boltzmann equation, and the voidage fraction, determined as the difference between the unity 
and the sum of the volume fractions of all the dispersed phases. 
As a consequence of the choices presented above: 
 

• The fluid phase is treated by solving its continuity and momentum equations in their full 
form, completely coupled with the dispersed phases through the momentum exchange term 
and the solids volume fraction.  

• The continuity and momentum equations for each dispersed phase solved in the standard 
MFIX model, and the granular energy equation are not solved, because all the information 
they provide is obtained directly from the moments of the dispersed phase number density 
function. 

It is worth noting that, for convenience, the zero order moment M0 of the number density 
function has been scaled so that it corresponds to the volume fraction instead of to the actual 
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number density. The values of all variables are stored at cells centers. The value at the cell faces 
of the weights and abscissas, determined through the inversion algorithm of the moments, are 
necessary to evaluate the kinetic fluxes, which are determined according to their kinetic 
formulation. These face values can be reliably calculated with a first-order interpolation scheme. 
In the current implementation only uniform grids can be used, but the extension to non-uniform 
orthogonal grids is straightforward.  

The change in the moments due to collisions can be evaluated using either a first-order 
Euler scheme, and a second-order Runge-Kutta scheme, when the Boltzmann collision operator 
is used. A second-order Runge-Kutta method is used to integrate the moment transport equations 
in time, with the time step automatically determined on the basis of: 

• the dispersed phase Courant number based on the abscissas  
• the collision time 
• the drag characteristic time 
• the fluid phase flow time 

The fluid and the moments solvers exchange the information necessary to account for the 
interaction among the phases. In particular, the velocity field, required to calculate the drag term 
in the gas phase momentum equation and in the force term acting on each particle in the 
Boltzmann equation, and the voidage fraction, determined as the difference between unity and 
the sum of the volume fractions of all the dispersed phases. 
 

Implementation in MFIX.  The following diagram sums up the files added to MFIX, 
which are grouped in the /model/qmomb subdirectory, and the files changed to accommodate 
the implementation of QMOM.  

mfix 
`-- model 
   |-- get_data.f 
   |-- init_namelist.f 
   |-- iterate.f 
   |-- qmomk 
   |   |-- qmom_boltzmann_mod.f 
   |   |-- qmomk_allocate_arrays.f 
   |   |-- qmomk_boundary_conditions.f 
   |   |-- qmomk_collision_mod.f 
   |   |-- qmomk_fluxes_mod.f 
   |   |-- qmomk_gas_drag.f 
   |   |-- qmomk_init_namelist.f 
   |   |-- qmomk_initial_conditions.f 
   |   |-- qmomk_make_arrays.f 
   |   |-- qmomk_parameters_mod.f 
   |   |-- qmomk_quadrature_mod.f 
   |   |-- qmomk_read_restart.f 
   |   |-- qmomk_time_march.f 
   |   |-- qmomk_tools_mod.f 
   |   |-- qmomk_write_restart.f 
   |   `-- qmomknamelist.inc 
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   |-- read_namelist.f 
   |-- solve_vel_star.f 
   `-- time_march.f 
 

In particular, the qmom_bolzmann_mod.f module is the main module for the QMOM 
implementation and contains the variables declarations, while qmomk_time_march.f is the 
main QMOM routine, where all the calculations and the functions required by the QMOM 
algorithm are called. 

For each dispersed phase, in each computational cell the following data are required: 
 

• 8 weights (N) 
• 8 abscissas for each velocity component (Us, Vs, Ws), for a total of 24 abscissas. 
• 20 moments (M) 

In MFIX, the data structure is represented as follows: 
 

QMOMK_N1(QMOMK_NN, DIMENSION_3, MMAX) 
QMOMK_U1(QMOMK_NN, DIMENSION_3, MMAX) 
QMOMK_V1(QMOMK_NN, DIMENSION_3, MMAX) 
QMOMK_W1(QMOMK_NN, DIMENSION_3, MMAX) 
QMOMK_M1(QMOMK_MOM, DIMENSION_3, MMAX) 

 
where QMOMK_NN is the number of weighs and abscissas for each direction (eight), and 
QMOMK_MOM is the number of tracked moments (twenty). An identical set of arrays is used to 
store the previous iteration data for the Runge-Kutta 2-step method. Only weights and abscissas 
are stored to disk for restart purposes because they are the only necessary information to 
reconstruct the moments and restart the calculation. This data structure allows the algorithm to 
easily interact with the MFIX gas-flow solver, with the only caution of remembering that the 
QMOM algorithm is cell-centered, while MFIX flow solver uses a staggered arrangement of the 
pressure and of the velocities. As a consequence the fluid phase velocities stored at the cell faces 
in MFIX needs to be averaged to provide the correct value to the QMOM algorithm. 

The coupling between the QMOM solver and MFIX flow solver is obtained by providing 
the gas phase volume fraction to the fluid solver, replacing the values stored in the EP_g MFIX 
variable at the end of each call to QMOMK_TIME_MARCH. The volume fraction is provided 
directly by the zero order moment, as a consequence of the scaling of moments discussed above. 
As a consequence, the fluid-phase volume fraction is given by: 
 

∑−
i

ig M=ε 01  
The drag coupling is obtained by calculating the drag force acting on the particulate phase, as a 
function of the quadrature abscissas, for each velocity component: 
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This quantity, changed in sign, is provided to the MFIX flow solver as an explicit source term in 
the gas-phase momentum equation. 
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This approach worked correctly in most of the considered cases but caused instabilities 
when the mass loading in the flow becomes high, due to the strong coupling between the fluid 
phase and the dispersed phase. A natural solution to this problem was already implemented in 
MFIX, which uses the partial elimination algorithm to decouple the multi-fluid equations. The 
same procedure can be adopted with QMOM, by simply considering that for each physical 
dispersed phase, the fluid “sees” a number of species equal to the number of weights and 
abscissas (eight) in the quadrature algorithm. In this way, none of the information provided by 
the QMOM algorithm is lost in the coupling, as it would happen if the drag coefficient were 
computed as a function of the particle mean velocity in the cell. In mathematical terms, using 
MFIX notation, the sum of the drag coefficients computed as a function of the quadrature 
abscissas and the sum of the products of these coefficients by the corresponding abscissa are 
passed to the MFIX fluid solver respectively in the A and B matrices: 
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where the drag coefficient is computed as 
 

p

QMOM
αg, V

β
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being βQMOM the drag force acting on each particle, as used in the drag terms in the moments 
transport equations (Fox, 2008), and Vp the particle volume. 

Verification of MFIX Implementation.  The implementation was tested by simulating a 
gas-particle flow in a lid-driven cavity, and results were validated by comparison with Euler-
Euler two-fluid and Euler-Lagrange simulations (Garg et al., 2008). The examined system is 
constituted by a squared box whose characteristic length is set equal to L=1. The top lid of the 
cavity moves so that the fluid Reynolds number based on the lid length is Re = 100. A range of 
Knudsen and Stokes numbers between 0.1 and 1 was considered. The definition of the Knudsen 
number Kn and the Stokes number St used in the calculations are 
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where ρg, ρp, dp are the gas density, the particle density, and the particle diameter respectively. 
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Knudsen and Stokes numbers were changed by varying the phases density ratio and the 
particle diameter, but keeping the average volume fraction constant. The two-fluid simulations 
were performed using MFIX, with Gidaspow (1994) kinetic theory and Johnson and Jackson 
boundary conditions, with specular collisions between particles and walls. Collisions were 
assumed to be perfectly elastic. 

Particle volume fraction profiles are shown in figures 20, 21, 22 and 23, while the particle 
velocity magnitude in the case with Kn = St = 1.0 is reported in figures 24 and 25. 
 

 

 

Figure 20. Comparison of the volume fraction profiles obtained at t = 20s - Kn = 0.1 - St = 0.1 

Figure 21. Comparison of the volume fraction profiles obtained at t = 20s- Kn = 0.1 - St =1.0. 

 
Figure 22. Comparison of the volume fraction profiles obtained at t = 20s - Kn = 1.0 - St = 0.1. 
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Figure 24. Particle velocity magnitude provided by QMOM at t = 20s - Kn = 1.0 - St = 1.0. 

 

 
Figure 23. Comparison of the volume fraction profiles obtained at t = 20s - Kn = 1.0 - St = 1.0. 

 
Figure 25. Particle velocity magnitude provided by the Euler-Lagrange simulation at t = 20s 
- Kn = 1.0 - St = 1.0. 
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The analysis of the particle volume fraction contour plots clearly shows the capabilities of the 
QMOM algorithm to properly predict the flow behaviour over a wide range of Stokes and 
Knudsen number, with good agreement with the Euler-Lagrange predictions. In comparing 
results with the Euler-Lagrange simulations it is necessary to remember that Euler-Lagrange 
results represent one realization of the flow, while both QMOM and two-fluid models provide 
averaged property profiles. This might explain the differences in the predictions between 
QMOM and Euler-Lagrange simulations, especially in the case with Kn = 0.1 and St = 0.1, 
where the formation of denser structures was captured by the Lagrangian calculations only. More 
simulations are required to obtain averaged profiles from the Euler-Lagrange code, and further 
studies are in progress. 

It is worth to notice that QMOM captured the same structure on the right side of the 
cavity described by Euler-Lagrange simulations, with a zone with reduced concentration of 
particles surrounded by two zones with a higher particle concentration along the border of the 
vortex  in the case of Kn = 1.0 and St = 0.1 (Figure 22). In figure 23 very good agreement 
between QMOM and Euler-Lagrange simulation is shown: both QMOM and the Euler-Lagrange 
solutions predicted particle trajectory crossing at the top corners of the cavity, while the two-
fluid model was unable to properly capture it. For example, at the top-right, the particles 
reflected by the wall, and those going towards the wall have intersecting trajectories, but the 
particles do not collide with one another. As it is clear by the comparison in figure 23, this 
characteristic of the flow is not captured by the two-fluid model simulation, because it only 
computes the mean local velocity, and, as a consequence, it cannot describe situations where, at a 
given point, multiple velocities are defined, as in the case of crossing trajectories. In these 
situations discontinuities in the mean particle velocity field are present, as shown in figures 24 
and 6, respectively, by the QMOM and Euler-Lagrange simulations. 

The implementation of QMOM (Fox, 2008; Passalacqua et al., 2009) into MFIX has been 
further verified by performing a preliminary grid independence study in a 2-D channel flow of 
10 cm width, with periodic boundary conditions in the direction of the flow, whose length was 
set to 1 m. The objective of the study is to understand the influence of the spatial discretization 
on the numerical solution of the moment transport equations, and, in particular, on the formation 
of structures at higher particle concentration. 

The initial average volume fraction is 0.01, uniform in the whole computational domain.  
Both the fluid and the particle phase have zero velocity at the beginning of the simulation. 
Gravity acts along the vertical axis, in the opposite direction of the flow. A constant fluid mass 
flow rate is imposed, in order to have Reg < 1500, to avoid the transition to turbulence of the 
fluid phase in a single phase flow.  Three cases are considered, with grids of 40x400, 80x800 and 
100x1000 cells. Results were compared to the corresponding two-fluid simulation, performed 
using the default model in MFIX. The contour plots of the particle phase volume fraction, taken 
after the flow developed in the channel are reported in Figs. 26, 27 and 28 for the three grid 
densities under consideration. 
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Figure 26.  QMOM (left) and two-fluid (right) predictions – Grid 40 x 400 – t = 1.20 s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27.  QMOM (left) and two-fluid (right) predictions – Grid 80 x 800 – t = 1.20 s. 
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Figure 28: QMOM (left) and two-fluid (right) predictions – Grid 100 x 1000 – t = 1.20 s. 
 
From the contour plots it is possible to observe that in both approaches, after a transient 

phase during which the flow develops, the particle phase segregates against the walls of the 
channel, originating the typical structure of core-annular flow,  with particles falling down along 
the walls due to the insufficient drag force exerted by the fluid moving upward. However, 
significant differences can be observed in Fig. 26 with a 40 x 400 grid, where the two-fluid 
model prediction shows the formation of many small structures with higher particle 
concentration, which are not observed in QMOM predictions. Increasing the grid density to 80 x 
800, as done to obtain the results reported in Fig. 28, did not significantly change the 
comparison: QMOM results show slightly sharper structures of the flow, but no structures of the 
size of the computational cell are observed, in clear opposition to what is shown in the plots 
obtained from the two-fluid simulations. A further increase of the grid density to 100 x 1000 
computational cells confirmed what is observed in the first two cases.  

As discussed in Passalacqua et al. (2009), the prediction of small structures observed in 
two-fluid models is due to the mathematical formulation of the equations, which are based on the 
hydrodynamic assumption. Such an hypothesis is not valid to describe flows with local Knudsen 
numbers greater than 0.1 even with the adoption of partial slip boundary conditions because the 
Knudsen layers extend inside the bulk of the fluid (Galvin et al., 2007). In flows like those 
considered in this study and typical of risers, the Knudsen number can reach values of the order 
of 10, clearly indicating that the regime is outside from the hydrodynamic range. Under these 
conditions, for finite Stokes numbers, particles trajectories can cross without collisions between 
particles, originating the phenomenon of particle trajectory crossing. This phenomenon can be 
described only by methods that account for multiple local velocities, as it happens in Lagrangian 
methods or in higher-order moment methods such as QMOM. If only the mean momentum 
equation is considered, particle trajectory crossing cannot be predicted (Desjardin et al., 2008), 
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leading to the formation of delta shocks in the particle concentration, which are identified with 
clusters, whose size and number is sensitive to the grid resolution. These structures however do 
not represent an actual physical entity that characterizes the particle phase, but, as clarified 
above, are only a consequence of the limitations of the hydrodynamic models. 

Implementation of Collisional Flux.  The next step consisted in the implementation in 
MFIX of the collisional term of the moment spatial fluxes (Fox and Vedula, 2009), in order to 
account for their effect, which become important for particle phase volume fractions greater than 
approximately 5%. The moment spatial fluxes can be written as the sum of a kinetic and 
collisional contribution, the latter of which originates from the collision integral. The rate of 
change of the moment of order γ due to collisions, in the case of finite-size particles can be 
written as 

 
 
 
 
 
where dp is the particle diameter, v is the pre-collisional particle velocity, and v' is the post-
collisional particle velocity, f(2) is the pair distribution function, g is the relative velocity vector 
and n is the unit vector along the direction of the particle centres. This term can be re-written as   

 
 
 

where the first term on the right-hand side corresponds to the rate of change of the moment for 
point particles, modified to introduce the radial distribution function g0, 

 
 
 
 

and the second term is the collisional flux, with 
 
 
 
 
It is worth noting that the collisional flux becomes zero in the Boltzmann limit (point particles), 
and it is different from zero only for finite (non-zero) size particles. Moreover, when the particle 
volume fraction approaches its maximum value, the collisional flux becomes very big due to the 
presence of the radial distribution function g0, preventing further accumulation of particles and 
limiting the phase volume fraction itself. The role of collisional fluxes is shown considering two 
density waves moving in opposite direction, as shown in Fig. 29. 

If collisional fluxes are neglected, no limitation is imposed on the particle phase volume 
fraction, and the density reaches a maximum value of about 0.2, when the waves collide, as 
shown in Fig. 30. On the other hand, when the collisional flux contribution is included, the 
evolution of the density profile is significantly influenced, and the maximum value of the particle 
concentration is limited to about 0.12, as shown in Fig. 31.  
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Figure 29. Density waves moving one towards the other before colliding. 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 30.  Density peak without collisional fluxes. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31: Density peak with collisional fluxes. 
 
The implementation of collisional fluxes was verified in channel flow simulations with particle 
volume fractions larger than 0.01. Finally, the QMOM implementation has been slightly 
modified to work with the last MFIX development version.  

Test Cases.  The implementation of the quadrature-based moment method in MFIX was 
tested by performing simulations of gas-particle flows in a two-dimensional vertical channel (0.1 
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x 1 m) with monodisperse particles and comparing the results with two-fluid model simulations 
of the same case. The mass flow rate of the fluid-phase (ρg = 1.2 kg/m3) was fixed so that the 
fluid-phase Reynolds number is 1380, well below the transition to turbulence in a single-phase 
flow. This choice was made to remove the direct effect of the fluid turbulence on the formation 
of segregated structures from the system. The desired fluid-phase Reynolds number was obtained 
by setting the viscosity of the fluid phase to μg = 1.74 x 10-4 Pa s.  

For the particle phase, a range of volume fractions between 0.0001 and 0.01 was 
considered, with a particle density of 1500 kg/m3. The particle diameter was set to 252 μm, and 
the restitution coefficients for both particle-particle and particle-wall collisions were set to ep = 
ew = 1, which corresponds to perfectly elastic collisions. 

Wall boundary conditions were set to be specularly reflective. This condition is 
equivalent, in the two-fluid model, to a free-slip condition for the particle phase. No-slip 
conditions were used at the walls for the fluid phase. Periodic conditions with constant mass flow 
rates were adopted in the flow direction for both phases. A uniform field for all the properties 
was used as the initial conditions.  

Results of a channel-flow simulation with particle-phase volume fraction of 0.01 obtained 
with MFIX-QMOM are reported in Fig. 32, where snapshots of the time evolution of the 
particle-phase volume fraction are shown. The predictions of the two-fluid model for the same 
case are show in Fig. 33. At the beginning of the simulation, the particles, initially distributed 
uniformly in the channel, are accelerated towards the walls due to the mean fluid velocity 
gradient, where they are reflected and move towards the centre of the channel. This process leads 
to the formation of preferential particle-depleted vertical paths for the fluid phase, where it can 
accelerate. This separation however is unstable, due to the velocity gradient between the zone at 
low particle concentration and the one at higher particle concentration, as observed in 
Passalacqua et al. (2009). This leads to chaotic flow behavior, where particles tend to segregate 
towards the walls, originating the characteristic core-annular flow, with particles falling along 
the channel walls, with an oscillating upward flow in the centre. 

A similar behavior is observed in the initial stages of the two-fluid model prediction, 
where particles are reflected by the walls and give origin to the preferential paths for the fluid 
phase (Fig. 33, t = 1.45 s). However, the evolution of the system from this point on proceeds 
with the formation of two unstable structures on the sides of the flow, which leads to particle 
segregation. The main difference between the MFIX-QMOM and two-fluid model predictions is, 
however, the abundance of fine structures at high particle concentration in the two-fluid 
prediction (i.e., delta-shocks), which are not predicted by the QMOM model. The formation of 
these structures in two-fluid models can be explained by the fact that when particle trajectory 
crossing occurs, models tracking only the mean momentum are unable to predict correctly all the 
velocity moments (Desjardin et al. 2008). In such a situation, hydrodynamic models predict a 
delta-shock, since they cannot represent a situation where multiple distinct local particle 
velocities are present. Further grid refinement will exacerbate the segregation in the two-fluid 
model. Although not as easily distinguished in the snapshots in Figs. 32 and 33 as in flow-field 
animations, there are also clear differences between the MFIX-QMOM and the two-fluid 
predictions in the regions near the walls. In the MFIX-QMOM simulations, the falling particles 
form larger ‘blobs’ that cover several grids cells away from the wall, while in the two-fluid 
predictions the falling particles remain much closer to the wall.  We believe that these 
differences can be attributed to the differences in the boundary conditions for the granular 
temperature. 
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Figure 32. Particle-phase volume-fraction evolution predicted by MFIX-QMOM with an 
average particle-phase volume fraction of 0.01. 

 
Figure 33. Particle-phase volume-fraction evolution predicted by the two-fluid model with an 
average particle-phase volume fraction of 0.01. 
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Figure 34. Particle-phase volume-fraction evolution predicted by MFIX-QMOM with an 
average particle-phase volume fraction of 0.005. 

 
Figure 35. Particle-phase volume-fraction evolution predicted by the two-fluid model with an 
average particle-phase volume fraction of 0.005. 
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Figure 36. Particle-phase volume-fraction evolution predicted by MFIX-QMOM with an 
average particle-phase volume fraction of 0.001. 
 

 
Figure 37. Particle-phase volume-fraction evolution predicted by the two-fluid model with an 
average particle-phase volume fraction of 0.001. 
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Similar results were observed in the case of an average particle-phase volume fraction of 
0.005, reported in Fig. 34 (MFIX-QMOM) and Fig. 35 (two-fluid model). The agreement 
between the two predictions is consistent during the initial stages of the simulations. However, 
the two-fluid model still shows a tendency to predict fine structures at high particle 
concentration, as observed in the previous case. The effect of the particle concentration on the 
development of the instability that leads to particle segregation was further investigated by 
considering two cases with lower mass loading. Fig. 36 shows the evolution of the flow 
predicted by MFIX-QMOM in the case of an initial mean volume fraction of 0.001, while Fig. 
37 reports the prediction of the two-fluid model in the same case. The mechanism that leads to 
the formation of an unstable flow is similar to that observed in the densest cases. However the 
transition to an unstable flow, and the consequent particle segregation phenomena, are slower 
and less evident, since the particle concentration is lower. The two-fluid model predicts a similar 
behavior to the one observed in Fig. 33, with the formation of small structures not observed in 
the MFIX-QMOM prediction. 

 
Figure 38. Particle-phase volume fraction and granular temperature at 5 s predicted by MFIX-
QMOM with an average particle-phase volume fraction of 0.0001. 

An even more dilute case, with an average particle volume fraction of 0.0001 (mass 
loading 0.13), was also considered. The results of the MFIX-QMOM predictions are reported in 
Fig. 38. For this case, after 5 s of simulation time, particles are still distributed almost uniformly 
across the channel, with the exception of near the walls, since in the wall zone the particle 
temperature is highest.  We did not obtain a convergent solution using the two-fluid model with 
the required convergence criteria used in the other cases; as a consequence results from two-fluid 
models are not reported. Although we cannot confirm it directly due to the finite duration of our 
simulation, it appears that the case shown in Fig. 38 reaches a time-independent state where only 
gradients in the wall-normal direction are present. 
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In the zone next to walls the net particle flux is zero, and, as a consequence the mean 
particle velocity is zero, but the velocity variance is high due to specular reflections. As observed 
in Passalacqua et al. (2009), this means that the local particle Mach number of the flow, defined 
using of the mean particle velocity and the granular temperature (Kogan, 1969), and the local 
Knudsen number, are large and well outside the range of validity of hydrodynamic models (Kn < 
0.1), even with the addition of partial-slip boundary conditions like those proposed by Johnson 
and Jackson (1987). In the cases considered in this work, the Johnson and Jackson boundary 
conditions degenerate into free-slip conditions, since the walls are assumed to be frictionless. It 
is worth noting that the Johnson and Jackson boundary conditions imply a zero granular 
temperature flux at the wall, when perfectly specular conditions are imposed. This implies that 
the two-fluid models cannot convert the velocity of particles impinging on the wall into granular 
temperature, even though the velocity component normal to the wall is zero. As a consequence, 
the maximum in the granular temperature at the walls that is observed in Fig. 38 is not captured 
by the two-fluid model. 

 
Figure 39.  Phase velocities predicted by MFIX-QMOM at 5 sec with an average particle-phase 
volume fraction of 0.0001. 
 
The vertical velocity profiles for the case in Fig. 38 are reported in Fig. 39, and show that the 
flow has the typical profile of a stable channel flow. For this case, the particle mass loading is 
small enough to not have a destabilizing effect on the fluid phase. However, it is worth noting 
that the velocity profiles are not perfectly parabolic, due to the presence of the particles and the 
momentum coupling with the particle phase. Nonetheless, no instabilities develop and both 
phases attain a steady state. 

The relative computational cost of MFIX-QMOM with respect to the two-fluid model in 
MFIX is in the range of 1.5–1.9. The longest simulation was the one with the highest particle-
phase volume fraction, which required 25.37 hours with the two-fluid model and 48.2 hours with 
MFIX-QMOM on a single core of an Intel Xeon CPU at 3.0GHz. It is worth noting that the 
hyperbolic nature of the QMOM model should make the MFIX-QMOM code highly scalable. In 
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the dilute limit, the time step is limited only by the CFL number and the kinetic-based fluxes are 
stable for relatively large CFL number (e.g., CFL=1 for the first-order scheme). 

Riser Test Case.  The third-order quadrature-based moment method in MFIX has been 
further tested considering a vertical channel, with a two-phase monodispersed gas-particle flow.  
The system under examination is constituted by a 1m channel made of two parallel walls 
separated by a distance of 0.1 m, with periodic boundary conditions in the direction of the flow, 
and gravity opposed to the flow motion. A constant mass flow rate for the fluid phase is 
imposed. No-slip boundary conditions were considered for the fluid phase at the walls, while 
specularly reflective boundary conditions were imposed both in the MFIX-QMOM and in the 
Euler-Lagrange simulations of the particles. Johnson and Jackson boundary conditions, with zero 
specularity coefficient, were adopted in the MFIX two-fluid model.  

 The fluid phase density is 1.2 kg m-3, with a dynamic viscosity of 1.73e-4 Pa s, artificially 
increased so that the fluid Reynolds number in a single-phase flow under the same operating 
conditions would be under 1500 (actual Re in the channel is 1379, with a fluid mean velocity of 
2 m s-1). The particle density is set to 1500 kg m-3, and the particle diameter is 80 μm for the case 
of St = 0.1, and 252.9 μm for St = 1. The channel was filled uniformly with an initial particle 
volume fraction equal to 0.04. Both a partially coupled (only volume fraction effects on the fluid 
phase) and a full coupled (volume fraction and momentum exchange with the fluid phase) were 
considered. 

The velocity profiles in the partially coupled case are reported in figure 40, while the 
velocity contour plot predicted by MFIX two-fluid model is shown in figure 41. It is worth 
noting that all the plots reported in these figures are instantaneous snapshots. In the case of 
MFIX-QMOM simulations, the profiles do not change along the whole length of the channel, 
because the solution reaches a steady state, while in the MFIX two-fluid model no steady state is 
predicted. A similar behavior is present in the contour plot of the particle volume fraction (figure 
42), while the two-fluid model predicts the formation of structures with higher particle 
concentration, as shown in figure 43. 
 The reason of this discrepancy was found by examining the local values of the Mach 
number: 

 
and Knudsen number: 

 

 
 
where Up is the particle velocity, Θ the granular temperature, λp the particle mean free path, αp 
the particle volume fraction, D the channel diameter, dp the particle diameter, τc the collision 
time, g0 the radial distribution function. In this work, the Carnahan and Starling radial 
distribution function has been adopted. 

The profiles of the Mach and Knudsen numbers, predicted by MFIX-QMOM are reported 
in figure 44 (St = 0.1) and 6 (St = 1.0). The values of the local particle Knudsen number are well 
outside the slip regime, where rarefaction effects can be described using partial slip boundary 
conditions. For values of Kn > 0.1, higher-order approximations of the kinetic equation are 
necessary, because the rarefaction effects extend inside the bulk of the system. The origin of the 
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differences is clarified by considering that the particle Knudsen number is inversely proportional 
to the rms particle velocity, and to the particle-phase volume fraction. In the situation considered 
in this work, the granular temperature is relatively low, leading to a small number of collisions, 
even though the particle-phase volume fraction is not particularly small. Under these conditions, 
the two-fluid model, derived under the assumption that Kn is much smaller than 1, is invalid, and 
can lead to the prediction of unphysical flow behavior. 

The formation of transient structures with high particle concentration in the two-fluid 
model, which are often confused with the particle clusters observed in gas-solid risers can be 
reconsidered, in light of these new observations. In order to transport the solid particles, risers 
operate under highly turbulent conditions, where vortical structures typical of fully developed 
turbulent flow are known to induce particle segregation and cluster formation. In the case with St 
= 0.1, the fluid flow is purposely restricted to laminar conditions, as is evident from the fluid 
velocity profile in the partially coupled case, which has the well-known parabolic shape. As a 
consequence, the phenomenon of particle segregation induced by the fluid turbulence is 
excluded. However, the two-fluid model still predicts the formation of time-dependent 
inhomogeneous structures in the flow. These structures are artifacts generated by the nature of 
the model when applied outside its range of validity, as demonstrated in the work of Desjardin et 
al. (2008), where a two-fluid model was represented by a single-node quadrature approximation 
of the kinetic equation. The authors showed that if only the mean momentum is considered, 
which is equivalent to representing the particle velocity distribution function with one node and 
one abscissa, in spite of observing trajectory crossing in dilute flows, a delta shock is induced in 
the particle-phase volume fraction because not enough information is carried about the structure 
of the particle velocity field.  The same is true for the formation of the structures by the two-fluid 
model, even when the local physical conditions would not induce their formation in the solution 
to the original kinetic equation.  

 

 
Figure 40. Phase velocity profiles predicted by (left) MFIX-QMOM in the partially  and (right) 
fully  coupled cases. St = 0.1. Note that particle and fluid velocities nearly coincide for both 
cases. 
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Figure 42. Volume fraction profiles predicted by MFIX-QMOM. St = 0.1. 

 
Figure 41. Contour plot of the particle phase velocity predicted by two-fluid 
model. St = 0.1. 
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Figure 43. Contour plot of the particle phase volume fraction predicted by 
the two-fluid model. St = 0.1. 
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Figure 44.  Local Mach (left) and Knudsen (right) number predicted by MFIX-QMOM. St = 0.1. 

 
Figure 45.  Instantaneous contour plots of the particle Knudsen number at t = t1 (a) 
and at t = t2 (b), predicted by QMOM, St = 1.0. 
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Figure 46. Instantaneous contour plots of (a) particle volume fraction, (b) 
fluid-phase velocity magnitude and (c) particle-phase velocity magnitude  
predicted by the MFIX-QMOM simulations at time t1, St = 1.0. 

Figure 47. Instantaneous contour plots of (a) particle volume 
fraction, (b) fluid-phase velocity magnitude, and (c) particle-phase 
velocity magnitude predicted by the MFIX-QMOM simulations at 
time t2, St = 1.0. 
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The results obtained in the case of St = 1 with MFIX-QMOM are reported in figures 46 and 47 
for two different times t1 = 0.66 s and t2 = 1.06 s. The first snapshot corresponds to the phase 
immediately following the beginning of the simulation, when particles start to move from the 
walls towards the center of the channel. This leads to the formation of two stripes almost parallel 
to the walls, where the fluid velocity reaches its maximum value. Two bands at higher 
concentration of particles start to form in the internal side with respect to the channel centerline 
of the two stripes at higher voidage. Similar results have been obtained using Euler-Lagrange 
simulations as shown in figure 48. The volume fraction field predicted by the MFIX two-fluid 
model at the same time is reported in figure 49, where both the fields seem initially uniform, in 
clear disagreement with what is predicted by Euler-Lagrange and MFIX-QMOM simulations.  
 

 
However, if the second snapshot obtained with two-fluid model at t = t2 is considered, it can be 
noted that structures at higher particle volume fraction start to develop in the zone next to the 
wall, with a similar behavior to the one observed in the case with St = 0.1. Both Euler-Lagrange 
(figure 50) and MFIX-QMOM (figure 47) simulations predict a different process that leads to the 
formation of zones at higher particle concentration. Initially particles starts to move towards the 
center of the channel, as already discussed, then when the particle concentration in the two bands 
shown in figure 46 is high enough to create a consistent interface between the zone at lower 
particle concentration and the one at higher particle concentration, due to the velocity difference 

 
Figure 48.  Instantaneous contour plots of (a) particle volume fraction, (b) fluid-phase 
velocity magnitude, and (c) particle-phase velocity magnitude predicted by the Euler-
Lagrange simulations at time t1, St = 1.0. 
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across the interface between the two phases an instability starts to develop, which rapidly 
propagates to the rest of the system and, in the end, leads to the formation of structures at higher 
particle concentration, initiating the segregation phenomena experimentally observed in risers. 
Due to the intrinsic noise present in Euler-Lagrange simulations, the instability appears earlier in 
these than in MFIX-QMOM simulations, as a consequence the reported results for Euler-
Lagrange simulations are taken at the time where corresponding structures to those observed in 
MFIX-QMOM simulations are present. More precisely, for the Euler-Lagrange results t1 = 0.19 s 
and t2 = 0.44 s. 

 
The propagation of the instability seems quite significantly influenced by the introduction of the 
radial distribution function g0, which makes the instability propagate more quickly when a high 
enough volume fraction is reached locally. However this does not affect the mechanism that 
leads to the instability and to the consequent segregation phenomena, because for low values of 
the particle volume fraction, the radial distribution function does not significantly affect the 
collision time. 
 The contour plots of figure 51 show that the Stokes number is about ten times higher than 
in the previous case, due to the bigger particle diameter considered, with peaks of 1.5. This 
means that in certain regions of the system, particles do not adapt immediately to the fluid flow, 
and lead to the typical conditions where particle trajectory crossing becomes significant, causing 
the two-fluid model to fail in the prediction of the flow behavior. 

 
Figure 49. Instantaneous contour plots of the particle volume fraction at (a) t = 
t1 and at (b) t = t2, predicted by MFIX two-fluid model, St = 1.0. 
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Figure 50. Instantaneous contour plots of (a) particle volume fraction, (b) fluid-phase 
velocity magnitude and (c) particle-phase velocity magnitude predicted by the Euler-
Lagrange simulations at time t2, St = 1.0. 

 
Figure 51. Instantaneous contour plots of the Stokes number at (a) t = t1 and at 
(b) t = t2, predicted by MFIX-QMOM, St = 1.0. 
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The introduction of the radial distribution function leads to significant instabilities in the solution 
algorithm of the moments transport equations at the base of the quadrature-based moment 
method. This numerical instability arises when the particle phase volume fraction locally reaches 
its maximum value, making the radial distribution function become very big. Currently the 
solution algorithm implemented in MFIX-QMOM includes g0 explicitly in the collision time. In 
order to overcome this limitation, a dense flow solver was explored. 

Dense Flow Solver Implementation.  The quadrature-based moment method 
implemented in MFIX is able to compute dilute and moderately dilute gas-particle flows, but it 
does not impose any constraint on the maximum value of the particle phase volume fraction, 
which can reach values above its maximum physical limit. To enforce this limit, a particle 
pressure term has to be added. A direct addition of the particle pressure term to the moments 
transport equations might destabilize the solution procedure, as they are solved in a fully explicit 
manner. However, a simpler set of equations can be considered in the limit of dense particle 
phase. In such a limit, when the particle phase volume fraction approaches its maximum value, 
the kinetic equation degenerates into the Euler equation in the elastic limit, valid for Kn = 0. As a 
consequence, it is possible to reduce the number of moment transport equations considered in the 
dense case to the Euler equation itself, with a pressure defined as a function of the particle phase 
volume fraction and of the radial distribution function. Note that in the code time splitting is used 
to describe spatial transport separately from other physical phenomena. Thus, for inelastic cases, 
the granular energy dissipation is handled separately from the spatial fluxes.  In this manner, it is 
possible to treat the total energy E as a conserved variable (i.e. as in the Euler equation) during 
the time split for the spatial transport. 

As a starting point a one-dimensional problem was considered, and only the particle 
phase was taken into account, neglecting its interactions with the fluid phase. Likewise, only the 
spatial fluxes are considered since they are responsible for the change in volume fraction. The 
extension of the proposed method to three dimensions is straightforward, being  widely used in 
aerospace engineering applications, as well as the introduction of the momentum exchange term 
between the phases and other physical phenomena. 

The approach is explained first considering a one-dimensional single-phase flow with a 
bounded density due to the presence of a pressure term that opposes further increases of the 
density itself, by diverging when its maximum imposed value is approached.  
The Euler equation in one dimension can be written as 
 

, 
where 

 
with 
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. 
 
With some algebraic manipulation the flux vector F can be rewritten as 
 

, 
where ρp is the particle density. 
 

The Euler equation can be written in discretized form, using a time-implicit1 scheme, as 
 

, 
and the flux term can be computed as 

, 
where ρj(J) is the maximum eigenvalue of the Jacobian of the flux vector. Introducing a first-
order interpolation scheme to find the face values of the conserved variables, we have: 

. 
Using the Beam and Warming scheme to linearize the discretized Euler equation we have 
                                                 
1 An explict method was tested, and successfully achieved the limitation of the particle phase fraction. However the 
stability condition, given by the CFL condition based on the maximum eigenvalue led to very small time steps. As a 
consequence, an implicit method was chosen. 
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, 
where α and β are constants that define the numerical scheme. In particular α = 0, β = 1 gives the 
backward Euler scheme.  

The time derivatives can be written as 

, 
and the flux can be expanded around tn as 

 
so that we obtain 
 

, 
where the Jacobians, defined by 

 
are computed at tn: 

. 
Introducing the “delta notation”  
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, 
a block-tridiagonal linear system is obtained 

 
where  

. 
The solution of this linear system provides the unknown vector Q of the original Euler equation. 

The algorithm described above can be integrated with the QMOM procedure already 
implemented by considering that in the dense regions the distribution tends to be Maxwellian and 
its moments are known. As a consequence, the solution procedure can be outlined as follows: 

• The moment transport equations of the QMOM approach are solved in the whole system. 
• When in a cell the particle phase reaches the maximum packing limit, the algorithm 

switches to the solution of the Euler equation, with the implicit procedure described 
above, for the minimum set of cells necessary to define the problem. For example, if only 
a single cell has reached the particle packing limit, the Euler equation is solved, in a one 
dimensional problem, only locally for the set of three cells constituted by the cell where 
the packing has been reached, and the two neighbors, which are required to define the 
block-tridiagonal system. 

• Once the solution of the Euler equation is obtained, the values of the volume fraction, the 
velocity and the granular energy are stored, the moments are locally set to Maxwellian in 
the cell where the particle packing limit has been reached, and the solution algorithm 
proceeds to the next time step. 

The algorithm has been implemented in a Matlab® code, and future work will be required to 
verify its robustness, improve its efficiency and to extend it to multi-dimensional cases. 
 
Task 1.4:  Extension of KTGF to Multiphase Systems (Hrenya) 

This development will mimic that of Task 1.1, but will also include the gas-solid drag 
force in the starting Enskog equation.  Correspondingly, the resulting governing equations and 
constitutive quantities will take on a different form and include the influence of a non-
conservative (drag) force. 
 
 (Hrenya reporting.)  In order to gain experience with the incorporation of fluid phase 
into the KTGF, an idealized case was first examined:  low Re, gas flow around a monodisperse 
suspension in which the gas-solid interaction is described by Stokes flow.  For this idealized 
system, the starting kinetic equation takes the form 
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    ( )i i gi i
i i i

ff v v U g f J
t x v v

ξ∂ ∂ ∂ ∂
+ + − + =

∂ ∂ ∂ ∂
          (1) 

 
where f is the single-particle velocity distribution function, ξ is the friction coefficient for Stokes 
drag (ξ = -6πµd/m ), v is the instantaneous particle velocity, Ug is the mean gas velocity, g is 
gravity, and J is the collisional operator. 
 The macroscopic balances for number density n, solids momentum mU, and granular 
energy 3/2 nT resulting from the kinetic equation given above take the following form: 
 
        0UtD n n+ ∇ ⋅ =            (2) 
 

            1U P U gtD
mn

ξ+ ∇ = ∆ +            (3) 

 

    ( )2 2
3

qt ij j iD T P U T
n

ζ ξ+ ∇ ⋅ + ∇ = − +          (4) 

 
where P refers to the solid-phase pressure tensor, q is conduction of granular energy, and ζ is the 
cooling rate due to inelastic collisions.  Note that two new terms appear due to the presence of 
the fluid phase.  The first term on the right-hand side of the momentum balance is the drag force 
arising from the mean velocity difference between the two phases.  The final term on the right-
hand-side of the granular energy balance is a sink due to viscous drag.  (It is worthwhile to note 
that the balances derived above differ from those reported by Koch (Koch, 1990) in that he has 
additional terms arising from the fluctuating fluid velocity.  To account for such fluctuations, 
Koch introduces the (unphysical) concept of fluid velocity at the particle location.  Our 
alternative to this approach is discussed below. 
 As mentioned above, the starting kinetic equation is simplified in that it only accounts for 
differences between the mean velocities of the gas and solid phases, further assuming a single-
particle, low Re drag force.  To extend this to a more realistic situation, a model for the 
instantaneous particle acceleration needs to be incorporated into the kinetic equation.  As the 
name implies, this instantaneous acceleration is a function of the instantaneous velocities of both 
the gas and solid phases, rather than the corresponding mean velocities.  Note that fluctuations in 
the particle velocity may arise from particle interactions (collisional) and/or transport across a 
velocity field (kinetic), whereas the gas-phase fluctuations stem from configurational and 
velocity changes of surrounding particles with time.  For the gas phase, this instantaneous 
velocity can be determined rigorously by considering the distribution function for the fluid 
velocity (which is outside our current scope), or can come from a stochastic model.  Based on the 
Immersed Boundary Method (IBM) simulations of Shankar Subramaniam’s group at Iowa State, 
a generalized Langevin model is proposed for the instantaneous particle acceleration  

 

 ( ) 1
i i gi ij j ij jA U U V B dW

m m
β γ= − − − +  (5) 
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where m is the particle mass, V is the particle fluctuation velocity (V = v – U, where v is the 
instantaneous particle velocity, dW is a Wiener process increment (stochastic term), and the 
scalar β and the tensors γ and B are non-constant coefficients that can be extracted from the IBM 
simulations.  Corresponding, the instantaneous particle force takes the form 
 

 ( )i i gi ij j ij jF U U V mB dWβ γ= − − − +  (6) 

 
 With the instantaneous particle acceleration model given in Eq. (5), the one-particle 
velocity distribution function is given by  
 

 ( ) { }
21 1

2i i gi ij j ik jk i
i i i j i

ff v U U V f B B f g f J
t x v m m v v v

β γ ∂ ∂ ∂ ∂ ∂ + − − + + + =  ∂ ∂ ∂ ∂ ∂ ∂  
 (7)   

 
where J is the collisional operator. 
 Generally speaking, the coefficients extracted from IBM simulations (β, γ and B) depend 
on constant system parameters (e.g., particle diameter, gas-phase viscosity) in addition to the 
dimensionless variables:  (i) solids concentration (n), (ii) mean flow Reynolds number Rem = ρg 
σ |U-Ug| / µg, and (iii) Reynolds number associated with particle velocity fluctuations ReT = ρg σ 
T ½ / µg, where ρg is the gas-phase density, σ is the particle diameter, and µg is the gas-phase 
(constant) viscosity, and T = 1/3 <v2> is the granular temperature.   

Based on the kinetic equation shown in Eq. (6), the macroscopic balances and 
constitutive relations are derived in the limit of low mean Reynolds number.  The macroscopic 
balances take the following form 

 0   ,tD n n+ ∇ ⋅ =U  (8) 

 1    ,tD
m
βρ −+ ∇ ⋅ = − ∆ +U U gP  (9) 

 ( )2 2:    .
3 3 3

k
t ij ij ij ijD T P B B T

n n
ργ ζ

ρ
+ ∇ ⋅ + ∇ = − + −q UP  (10) 

Note that three terms arise in these balances due to the presence of the fluid phase, as expected: 
(i) mean drag in the momentum balance, (ii) dissipation of granular energy due to viscous 
effects, and (iii) source of granular energy stemming fluid-phase fluctuations.   
 Constitutive expressions for the cooling rate ζ, pressure tensor P, and heat flux q in terms 
of the acceleration model parameters (β, γ and B) and hydrodynamic variables n, U, and T have 
also been derived via the Chapman Enskog method.  The full form of these expressions is given 
in Sections 6 and 7 of Appendix B.  The results indicate that the Langevin model for 
instantaneous gas-solid force matches the form of the previous analytical treatment, indicating 
the promise of this method for regions of the parameter space outside of those attainable by 
analytical methods (higher Reynolds number, etc.). The results also indicate that the effect of the 
gas phase on the constitutive relations for the solid-phase shear viscosity and Dufour coefficient 
is non-negligible, particularly in relatively dilute systems. Moreover, unlike their granular (no 
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gas phase) counterparts, the shear viscosity in gas-solid systems is found to be zero in the dilute 
limit and the Dufour coefficient is found to be non-zero in the elastic limit.  See Section 8 of 
Appendix B for further details on these results. 
 
Goal II:  Improved Gas-Particle Drag Laws – effect of particle size distribution 
 
Task 2.1:  LBM and DTIBM simulations of fluid flow through an assembly of particle having 
a zero-mean velocity (Subramaniam & Sundaresan) 

Simulations of fluidization of particle assemblies in small periodic domains will be 
carried out, covering a broad range of particle volume fractions and size distributions. In these 
simulations, the assembly of particles will be allowed to move randomly as granular gas (i.e. the 
particles respond only to inter-particle collisions, which will be treated as elastic and smooth), 
while the fluid flow will be maintained through an imposed pressure gradient. Such calculations 
have been done by Wylie et al. (2003) for uniformly sized particles, who have also developed a 
theory to explain the effect of this random motion on the drag force. Such simulations will be 
performed using various size distributions and their approximations as binary mixtures.  The 
results will be used to construct drag force correlations. 

 
(Subramaniam reporting.)  The objectives of the task are: (i) to quantify the effect of 

particle velocity fluctuations on the mean drag for high particle Stokes numbers (ii) test the 
applicability of current drag models and (iii) provide a form of the drag law that will incorporate 
the effect of the fluctuating particle velocities. In order to understand the effect of fluctuations in 
the particle velocity on continuum multi-fluid formulation, it is important to understand the 
underlying theory at the level of the one-particle distribution function. The theoretical foundation 
that motivates the form of the drag law is presented in Appendix C. 

Effect of particle velocity fluctuations on the mean drag:  Drag laws for steady flow 
through homogeneous suspensions are obtained by integrating the conditional expectation of the 
acceleration as follows 

 , , ;r tA x v
 

                           1( , ) | , , ; ( , , , ) ,fp t m r t f r t d dr
n

= ∫F x A x v x v v                                 (11) 

where fpF is the average fluid-particle force, m is the particle mass (assumed equal for all 
particles in this expression) and n is the number density.  
  In order to calculate fpF from DNS, it is natural to simulate a statistically homogeneous 
suspension flow with freely moving particles, and to then compute volume-averaged estimates 
of fpF from particle acceleration data. Imposing a mean pressure gradient to balance the weight 
of the particles leads to a steady mean momentum balance. However, such freely moving 
suspensions are computationally prohibitive especially because in order to propose drag laws 
these simulations need to be performed over a range of solid volume fractions and mean flow 
Reynolds numbers (based on mean slip velocity). Furthermore, over a wide range of volume 
fraction and particle Stokes number, the particle configuration in individual realizations develops 
spatial structures due to flow instabilities. Wylie et al. (2003a) performed simulations of a 
suspension with particles moving along ballistic trajectories between elastic hard sphere 
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collisions, but the assumption that the fluid does not affect the particle motion is valid only in the 
limit of high Stokes number. 
  A convenient simplification for high Stokes number suspensions is to replace the 
ensemble of particle positions and velocities sampled by the system in its nonequilibrium steady 
state, by a set of particle configurations and velocities that would result from a granular gas 
simulation. Steady flow past fixed assemblies of particles in configurations (and with velocities) 
sampled from this set is simulated, and drag laws are obtained by averaging over this ensemble. 
The idea of extracting drag laws from steady flow through particle assemblies has been 
successfully exploited by several researchers (Hill et al. (2001); Beetstra et al. (2007)) using the 
lattice Boltzmann method (LBM). 

The mean drag jF  is modeled by using a drag law that is usually formulated as a 

function of the mean slip )(= f
jjj uvW − . Drag correlations that are modifications of the 

drag law for an isolated particle in unbounded fluid are used in suspensions. Such drag laws can 
be expressed as  

 .= jj WF β−   

In general, β is a function of the solid volume fraction, Reynolds number based on the mean slip 
velocity mRe and Reynolds number based on the granular temperature TRe , i.e.,     

)Re,Re,(  m Tφββ = . 

The mean flow Reynolds number is defined as Re | | / fm pd ν= W where pd is the particle 
diameter, and the Reynolds number associated with the particle velocity fluctuations is 
denoted Re /T fpT d ν= , where 1

3 '' ''T = ⋅v v is the granular temperature.  
In the Stokes flow regime, the drag is linear in particle velocity and hence β is 

independent of the slip velocity, i.e, )(=)Re,( φβφβ m . Current drag models do not incorporate a 
dependence on ReT and identifying the nature of this dependence is one of the objectives of this 
task. For finite Reynolds number based on the mean slip, the coefficient )Re,( mφββ =  i.e., drag 
is a nonlinear function of velocity and β depends on both the magnitude of the particle velocity 
and the volume fraction. For suspensions with a mean slip velocity as well as particle velocity 
fluctuations, the instantaneous drag experienced by a particle will have to be modeled as  

imi WF )Re,(=* φβ−  
where ( )f

i i iW v u= − is the instantaneous slip experienced by the particle. This definition of 
instantaneous drag raises questions on the the correct definition of ( )fu , the instantaneous fluid 
velocity and the dependence of β on ReT, which is yet to be qunatified.. Wylie et al (2003, Eq. 
37) wrote the instantaneous drag on a test particle as the sum of two forces: one coming from the 
mean drag on fixed bed and the other arising due to the viscous and fluctuating pressure forces 
on the test particle. This representation has the drawback that the mean and fluctuating parts of 
the drag cannot be identified easily. 

In codes using hybrid discrete element method like MFIX-CDM, the instantaneous drag 
has been modeled by simply extending the drag correlations based on the mean slip velocity as 
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                                                     ( )( ))(* Re,= f
iimi uvF −− φβ .         (12) 

where, *
iF is the modeled drag acting on the particle and jv is the instantaneous velocity of the 

particle. In the limit Re 0m → and Re 0T → , the drag is linear in the particle velocity and the 
mean drag is independent of particle velocity fluctuations. This result can be proved by writing 
the instantaneous force on the particle in the form given by Eq. (12). Without loss of generality, 
we can assume the mean fluid velocity ( )fu to be zero. Since the particle velocity is in the 
Stokes flow regime, 

ii vF )(=* φβ−  
and thus, the acceleration of the particle is ( )* /i iA v mβ φ= − . The mean drag acting on the 
suspension can be found by substituting this form for acceleration in Eq. (11) and integrating 
over the entire velocity space. Hence, the mean drag is 

( )

( )

( )

1 ( , , , )

1        ( , , , )

        =  .

fp f r t d dr
n

f r t d dr
n

β φ

β φ

β φ

=

 =  
 

∫

∫

F v x v v

v x v v

v

 

Thus, we see that when both mRe  and TRe are in the Stokes flow regime (finite but small 
departures from zero), the mean drag experienced by the suspension is independent of particle 
velocity fluctuations.  
 
           In order to quantify the effect of particle velocity fluctuations on the mean drag, at a given 
mean Reynolds number Rem we determine the ReT at which the effect of particle velocity 
fluctuations on the mean drag becomes significant. For this purpose, we performed PUReIBM 
simulations of flow past monodisperse random arrays of spheres at Rem values of 0.001, 20, 25, 
40, 50, 75 and a solid volume fraction of 0.2. In these simulations the particles are assigned a 
Maxwellian velocity distribution but the particle positions are held fixed.  

At a given Rem , the change in mean drag due to ReT is defined as 

( )
( ) ( )

( )
,Re ,Re ,Re ,0

,Re ,Re
,Re ,0

fp fp
m T m

m T fp
m

F
φ φ

φ
φ

−
∆ =

F F

F
. 

In the left panel of figure 52, the percentage differences in the mean drag obtained for various 
values of Rem and ReT are plotted. In order to compare the effect of the particle velocity 
fluctuations, percentage difference in the mean drag obtained by changing only Rem is plotted in 
the right panel. This change is defined as   

( )
( ) ( )

( )
,Re , Re ,Re ,0

,Re , Re
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From this figure we see that at Re 20m = , the change in the mean drag obtained at Re 2T = is 
comparable to the change obtained by simply changing the mean Reynolds number by 20. We  
also observe that the change in mean drag is increasing with the intensity of the particle velocity 
fluctuations.  

The range of values of ReT in these simulations were chosen fromWylie et al. (2003a) but 
experimental data of ReT will determine the applicability of these results to gas-solid flows. In 
fact, recent high-speed imaging of particles performed by Cocco et al. (2010) show that the value 
of ReT for gas-solid flows is indeed very low. Although the mean drag increases with increasing 
granular temperature, in practical gas-solid flow applications, this temperature is very small and 
hence the effect of particle velocity fluctuations on the mean drag can be neglected. Moreover, 
these results should be interpreted with caution because the simulations are for steady flow past 
fixed particle assemblies. If the particles are allowed to move, they will relax to lower granular 
temperatures (and hence lower ReT) due to viscous dissipation (see Tenneti et al. (2010)). 

 
Figure 52. In the left panel the percentage change obtained in the mean drag due to change in 
the level of particle velocity fluctuations, is shown for different Remat a volume fraction of 0.2. In 
the right panel, percentage change obtained due to the change in Remis plotted for the same 
volume fraction.  

 
Effect of particle velocity fluctuations on the second moment of particle velocity. The 

evolution equation for the second moment of velocity that appears in the particle Reynolds stress 
is given by Eq. A3. In statistically homogeneous flow, the key term governing the evolution of 
the particle Reynolds stress is the correlation of fluctuating particle acceleration with fluctuating 
particle velocity i jAv′′ ′′ or equivalently i jFv′′ ′′ . The fluctuations in the acceleration are defined 

about the mean acceleration, i.e., j j jA A A′′ = −  and similarly the fluctuations in the particle 

drag are defined about the mean drag, i.e. =j j jF F F′′ − . In order to compute the correlation 
between the fluctuating drag and fluctuating particle velocity which appears in the second 
moment equation, an instantaneous model for the particle drag is required. 

In order to validate this model, we performed PUReIBM simulations of a fixed bed of 
monodisperse spheres and extracted the scatter plot of fluctuating acceleration versus the 
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fluctuating particle velocity. Figure 53 shows that the fluctuations in drag predicted by the drag 
model of Eq (12) do not recover the scatter observed in the fluctuating drag obtained from our 
PR-DNS. In order to recover the correct acceleration distribution, we propose an instantaneous 
drag model which is described in the next section. 

 

 
Figure 53. Scatter plot of fluctuating drag versus the fluctuating velocity in the streamwise 
direction. The blue symbols are the fluctuations in drag obtained from PUReIBM simulations. 
The red ones are those predicted by the drag law of Hill et al. applied to the same system. 

 
Instantaneous drag model. We propose the following general Langevin model for the 

instantaneous particle drag:  
 jij

d
i ddtFimdv W∑+)*(* =  (13) 

 where )*(d
iF  is the drift term and Wjd  is a Wiener process increment. The modeled one-particle 

one-time distribution function *f  obeys a Fokker-Planck equation that corresponds to this 
generalized Langevin equation   
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ij

∑
.  

Here, m is the mass of the particle. 
The drift term )*(d

iF is written in terms of the mean slip velocity iW and the model 
coefficients are functions of the mean slip. The model for instantaneous particle drag is written 
as  

                                 .=*
jijjijjiji ddtvdtWmdv WΣ+′′−− γβ                                      (16) 
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The model coefficients ijβ , ijγ and ijΣ depend on the solid volume fraction, mean flow Reynolds 
number Rem, Reynolds number based on the granular temperature ReT and the solid to fluid 
density ratio. These model coefficients have to be specified such that the resulting particle 
acceleration model predicts the correct evolution of the granular temperature. The determination 
of the model coefficients requires simulation of freely evolving gas-solid suspensions. These 
simulations and the subsequent specification of the model coefficients are described in Task 2.3. 
 (Supplementary material.)  See Appendix C. 
 
 (Sundaresan reporting.)  In this part of the project we sought to interrogate the effect of 
particle velocity fluctuations on the fluid-particle drag coefficient in binary systems.  However, 
earlier work of Wylie et al. (2003) demonstrated that for monodisperse systems the effect of 
particle velocity fluctuations on the fluid-particle drag coefficient is weak, provided the 
Reynolds number based on the particle fluctuating velocity ReT is smaller than the Reynolds 
number based on the mean slip velocity (i.e. the mean particle velocity relative to the mean 
velocity of the fluid) Re.  To ascertain whether this limit can be realized in a gas-particle flow we 
performed lattice-Boltzmann simulations of a binary particle assembly falling under the action of 
gravity.  We found that the Reynolds number based on the particle fluctuating velocity was 
always one order of magnitude smaller than the Reynolds number based on the mean slip 
velocity.  It was then inferred from the study of Wylie et al. (2003) that given the small values of 
ReT/Re there is no real need to consider the fluctuating velocity effect in models for the fluid-
particle drag coefficient in gas-particle systems.  Further details can be found in Holloway et. al 
(2010), which is included in this report as Appendix D. 
 
Task 2.2:  LBM and DTIBM  simulations of fluid flow through an assembly of binary particle 
mixtures where the two types of particles have a non-zero relative velocity (Subramaniam & 
Sundaresan) 

In the simulations outlined under Task 2.1, the mean velocity for each particle type (or 
bin) is zero while fluctuating velocities are nonzero. In real systems, the mean velocities of all 
the particle types will not be equal, and this difference plays an important role in the suspension 
hydrodynamics. It not only produces the particle-particle drag, captured in the kinetic theory, 
but also gives rise to significant corrections to the fluid-particle drag. In order to expose this 
correction, the influence of mean relative motion between the two types of particles in a binary 
mixture on the drag force will be studied. This will be done in the granular gas limit, by 
introducing the following small modification. After initializing the assembly with random 
velocities for various particles to obtain specified fluctuation energy to the collection of 
particles, a desired mean velocity is added to each of the two particle types, while maintaining 
zero mixture momentum. As the particles move around as a granular gas, they will collide and 
generate a drag force between the two particle types; by adding a time-dependent body force to 
each particle type, this drag force will be compensated for and the mean relative velocity will be 
maintained.  

 
(Subramanaiam reporting.)  In practical gas-solid flows with poly-disperse particles all 

the size classes do not necessarily have the same mean velocity. The objective of this task is to 
formulate a general drag law for poly-disperse suspensions that can be implemented in moment 
closures that arise in EE continuum models. This drag law should account for the difference in 
the mean velocities of the size classes.  
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A poly-disperse suspension is characterized by a continuous size distribution. However, 
this continuous distribution can be represented in terms of a finite number of size classes and 
higher the number of size classes, better is the representation. The theoretical basis of 
representing a continuous size distribution in terms of discrete size classes is given in Appendix 
E. To accomplish the objective of developing a poly-disperse drag law we start with a bi-disperse 
suspension and investigate the effect of polydispersity and Reynolds number on the mean drag.  

Drag force in the discrete representation of a poly-disperse suspension.  The 
conservation equations for the mean mass and mean momentum of each size class can be derived 
by taking the moments of Eq. (A1). For a statistically homogeneous system, the mean 
momentum conservation equation for the size classα with radius Rα is: 
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(17) 

In the above equation αρ , αφ are the density and volume fraction of the size classα respectively. 
The second term on the right hand side of this equation is like the Reynolds stress obtained due 
to fluctuations in the particle velocity which are defined about the mean velocity conditional on 
particle size: 

αRrvvv jjj =−′′  |= .    

The first term on the right hand side denoted by ,g jf α− is the total force per unit volume of the 
suspension acting on the size classα and is related to the average force acting per particle 
through the expression: 

 ,  g j jf n F r Rα α α− = =  

where, nα is the number density of that size class. The quantity  jF r Rα= is extracted from the 
DNS and is reported as the drag force acting on the particle belonging to the size classα by Hill 
et al (2001) and Garg et al (2010) for mono-disperse suspensions (single size class).  

The total force ,  g j jf n F r Rα α α− = = experienced by the particles belonging to a 
particular size class arises due to the mean pressure gradient acting on the suspension, and the 
viscous stresses and the fluctuating pressure acting on the particles  

,  j D j
j

Pn F r R n F r R
xα α α α αφ ∂

= = − + =
∂

. 

Here the second term on the right hand side denotes the contributions of viscous stresses and 
fluctuating pressure to the total force. Drag laws for poly-disperse suspensions in the Stokes flow 
regime that are proposed by van der Hoef et al (2005) and Yin et al (2009) report 

as the drag force, whereas Hill et al (2001) and Garg et al (2010) reported 

 jF r Rα=  that includes the mean pressure gradient term. In this work we report drag force 
as the average total hydrodynamic force acting per particle.  
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 In a poly-disperse suspension, drag laws are written for each size class and the existing 
poly-disperse drag laws are based on the drag correlations proposed for an equivalent mono-
disperse suspension. The equivalent mono-disperse suspension is defined as a suspension of 
equi-sized particles at a volume fraction φ (equal to the total volume fraction of the poly-disperse 
suspension) and diameter D where, 
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is the called the Sauter mean diameter. In general, the drag force is a function of the volume 

fraction and the mixture mean Reynolds number, fm D ν/~Re )(fuV −=  where V~  is the 

mixture mass-weighted mean velocity. When there is no relative velocity between the size 
classes, the total force due to viscous stresses and fluctuating pressure acting per unit volume on 
the particles belonging to the size classα is written as  

  r Rα α αβ= − =F W , 

where ( )  fr R r Rα α= = = −W v u is the mean slip experienced by that size class and 

the average force per particle is obtained as  /r R nα α α= =F F . The normalized drag acting 
on the size classα is defined as  
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In the Stokes flow regime, drag is only a function of the volume fraction and van der Hoef et al 
(2005) proposed the following drag law for a poly-disperse suspension in the Stokes flow regime 
 ( ) ( ),0 ,0D D monoF y Fα αφ φ− −=  (18) 

where, /y D Dα α= is the normalized diameter and ( )* ,0D monoF φ− is the normalized drag force 
(pressure and viscous forces only) acting on the equivalent mono-disperse suspension. van der 
Hoef et al proposed the following expression for the Stokes drag on a mono-disperse system 

                            ( )
( )

( ) ( )2*
2

10,0 1 1 1.5
1D monoF φφ φ φ

φ
− = + − +

−
.  

In the Stokes flow regime, Yin et al (2009) observed that (18) is not accurate for diameter ratios 
greater than 4:1 and they proposed the following modification: 

 ( ) ( ) ( ) ( ) ( )( )* * 21 1,0 ,0 1
1 1D D monoF F ay a yα α αφ φ

φ φ− −

 
= + − + −  − − 

,  

where ( ) 2 31 2.66 9.096 11.338a φ φ φ φ= − + − .  
 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 68 

At moderate Reynolds numbers Beetstra et al (2007) used LBM simulations to conclude that the 
drag force on a bi-disperse suspension can be written in the same form as given in (18); i.e., 

 ( ) ( )* *,Re ,ReD m D mono mF y Fα αφ φ− −= . (19)                                      

However, due to a confusion in their definition of drag force, they proposed their drag law for 
the total hydrodynamic force in the following form: 

 ( ) ( ) ( )2,Re 1 ,Rem mF y y Fα α αφφ φ φ = − +   (20)  

where ,( )mF Reφ is the average total fluid-particle force per particle acting on an equivalent 
mono-disperse suspension. 

Drag law for mono-disperse suspensions from IBM simulations.  It is clear that the 
accuracy of poly-disperse drag law depends strongly on the accuracy of mono-disperse drag law. 
We performed PUReIBM simulations of flow past fixed particle assemblies of equi-sized 
spheres over a range of volume fractions and Reynolds numbers to assess the performance of the 
existing mono-disperse drag laws that are based on lattice Boltzmann simulations. We found that 
while PUReIBM results are in excellent agreement with existing LBM drag laws at low 
Reynolds numbers, there are significant differences in the drag values (~30%) at higher 
Reynolds numbers. To verify the accuracy of PUReIBM simulations, we compared our results 
with those obtained from a body-fitted solver (ANSYS-FLUENT CFD package) and found an 
excellent agreement. The following functional form for ,( )mF Reφ is found to fit the drag data 
from IBM simulations very well with an average deviation of less than 3% : 
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Figure 54. Plot showing the variation of the 
normalized force (symbols) obtained from 
PUReIBM simulations of flow past fixed 
assemblies of mono-disperse spheres and the 
drag correlation (21) with the mean flow 
Reynolds number. The volume fractions 
considered in this plot are 0.1, 0.2, and 0.3.  

 

 
Figure 55. Plot showing the variation of the 
normalized force (symbols) obtained from 
PUReIBM simulations of flow past fixed 
assemblies of mono-disperse spheres and the 
drag correlation (21) with the mean flow 
Reynolds number. The volume fractions 
considered in this plot are 0.4 and 0.5.  
 

In figures 54 and 55 the mono-disperse drag correlation given by (19) and normalized force 
obtained from PUReIBM simulations is plotted against the mean flow Reynolds numbers. From 
these figures we can see that the drag correlation given by equation (21) is a good fit for the 
normalized force over the range of volume fractions and mean flow Reynolds numbers for which 
the simulations are performed. Also, in the limit of infinite dilution ( 0φ → ), ,( )mF Reφ reduces 
to isol ( , )mF Reφ , the drag experienced by an isolated particle. The correlation given by the 
Schiller and Neumann for a single sphere in an unbounded medium is used in our correlation. 

Drag on bi-disperse suspensions with no relative velocity between size classes. We 
performed PUReIBM simulations of flow past bi-disperse suspensions at moderate Reynolds 
numbers (with no relative velocity between the size classes). The objective is to verify the bi-
disperse drag correlation proposed by Beetstra et al. (2007) given by equation (19) and to 
propose a new drag law based on the results of PUReIBM simulations. At each volume fraction, 
the volume fraction ratio ( 2 1/φ φ ) is varied between 1 and 6 and the diameter ratio ( 2 1/D D ) 
between 1.5 and 4.  
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Figure 56. Plot showing the results of PUReIBM simulations of flow past bi-disperse particle 
assemblies at a total volume fraction of 0.4. Normalized force is shown for two mean flow 
Reynolds numbers (Rem = 50 and 75). Solid lines are obtained by substituting the PUReIBM 
drag correlation given by equation (21) in (20). Dashed lines are obtained by substituting the 
mono-disperse drag correlation given by Beetstra et al. (2007) in (20). 
 
The results of PUReIBM simulations of flow past bi-disperse suspensions are shown in figure 56 
for a total volume fraction of 0.4 and two mean flow Reynolds numbers (50 and 75). The 
simulation data is compared with the drag predicted by equation (20). The solid lines are 
obtained by substituting equation (21) in (20) while the dashed lines are obtained by substituting 
the mono-disperse drag correlation of Beetstra et al. (2007) in (20). We can see that the 
functional form for ( / (, ) , )m mF FRe Reα φ φ proposed by Beetstra et al (2007) seems to hold for the 
PUReIBM data as well. However, from the figure we can see clearly that the values 
of ( , )mF Reα φ from the simulations do not agree with the values predicted by the drag correlation 
of Beetstra et al (2007). The reason for this is the difference between the PUReIBM drag 
correlation and the correlation of Beetstra et al (2007) for mono-disperse suspensions.  

Bi-disperse suspensions with relative velocity between size classes.  When all the 
particles move with the same velocity (zero relative velocity between size classes), we can make 
a Galiliean-invariant (GI) frame transformation such that the particles are at rest in the new 
frame. Thus, performing fixed bed simulations is justified in the case of zero relative velocity 
between the size classes. However, fixed bed simulations for finite relative velocity between size 
classes are valid only in the limit of very low Reynolds number (Stokes flow regime). At 
moderate Reynolds numbers, we need to perform simulations of freely evolving suspensions to 
account for the finite slip between size classes. An important point to be noted is that the slip 
velocity between size classes is not an independent parameter.  
 The PUReIBM DNS code has been used to simulate freely evolving mono-disperse 
suspensions by solving the governing equations of motion in an accelerating frame of reference. 
This reference frame moves with the average velocity of the solid particles so that the particles 
do not travel in and out of the computational on an average. The frame acceleration appears as 
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an additional force that sets the average velocity of the solids to be zero. Viewed from the 
laboratory frame, the force due to the frame acceleration can be thought of as an additional time 
dependent body force that acts on the system to keep the average solid velocity to be zero. 
Tenneti et al. (2010) successfully applied this simulation methodology to perform simulations of 
freely evolving mono-disperse suspensions. We extended this methodology to simulate freely 
evolving bi-disperse suspensions with the assumption of that the density of the size classes is the 
same. 
 The governing equations of motion solved in the freely evolving bi-disperse suspensions 
are given in Appendix F. The average solid velocity for each size class evolves because of the 
force exerted by the mean pressure gradient, the fluid-particle drag force, contact force due to 
collisions with particles belonging to other size classes and the pseudo force due to the frame 
acceleration. For a mono-disperse suspension, the mean solid velocity is not influenced by the 
collisional forces because the total force due to collisions is zero (Newton’s third law). However, 
for poly-disperse suspensions collisions with particles belonging to other size classes affect the 
average velocity. In the simulations of poly-disperse suspensions, the accelerating frame of 
reference moves with the mixture mean velocity such that the mean mixture momentum is zero. 
The slip velocity between the size classes 1 and 2 denoted (2,1)W evolves according to the 
following equation: 

(2,1)
2 1 2 1

2 1 2 1

1 1 1 1 1 1 C
D D

p p

d
dt V Vρ φ φ ρ φ φ− − −

   
= − + +   

   
W F F F . 

This equation says that the slip velocity between the two size classes will reach a steady state 
because of the balance between the drag and contact forces due to collisions ( 2 1

C
−F ) between the 

size classes. It is not known a priori if such a balance exists or not. Besides the slip velocity 
another important quantity to observe is the granular temperature for each size class. 
 To answer these questions we performed PUReIBM simulations of a bi-disperse 
suspension at a nominal volume fraction of 0.2 and mean slip Reynolds number of 20. We 
considered equal volume fractions and a diameter ratio of 2. Both size classes have the same 
density and the solid to fluid density ratio is taken to be 100. Figure 57 shows the evolution of 
the slip velocity between the size classes (2,1)W .  

We can see that the magnitude of the slip velocity increases in time. During this time 
there are no collisions between the particles because the particles slowly gain energy from the 
fluid. When the collisions start the slip velocity appears to reach a dynamic steady state. This 
steady value depends upon the mean flow Reynolds number, volume fraction, solid to fluid 
density ratio and the coefficient of restitution. We can also see from the figure that the granular 
temperature in each size class reaches a steady state. Thus, for a bi-disperse suspension once we 
fix the physical parameters of the problem, the slip velocity cannot be arbitrary and also one 
cannot provide a drag law by performing fixed bed simulations.  
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Figure 57. Evolution of slip velocity between size classes and granular temperature for each size 
class for a freely evolving bi-disperse suspension (Rem = 20, 0.2φ =  and ρp/ρf = 100). Red 
symbols denote the streamwise component of the slip velocity while purple and black represent 
the cross-stream components of the slip velocity between the size classes.  

 Summary. In this task, we used a Particle-resolved Uncontaminated-fluid Reconcilable 
Immersed Boundary Method (PUReIBM) to simulate fixed and freely evolving poly-disperse 
suspensions. In practical gas-solid flows with poly-disperse size distributions of particles, the 
mean drag is affected due to the presence of different size classes as well as the relative slip 
velocity between these size classes. Starting with a bi-disperse suspension; we first analyzed the 
drag force obtained when there is no slip velocity between the size classes. For this case, we can 
perform fixed bed simulations at all Reynolds numbers and a drag law for each size class is 
formulated in terms of the drag law for an equivalent mono-disperse suspension. We proposed a 
new mono-disperse drag law using the PUReIBM DNS that corrects the existing drag LBM 
based drag correlations of Hill et al. (2001) and Beetstra et al. (2007).  This new mono-disperse 
drag law also corrects the drag data for bi-disperse suspensions provided by Beetstra et al. 
(2007). To account for the finite slip velocity between size classes, we have shown that fixed bed 
simulations at arbitrary slip velocities are not valid outside the Stokes flow regime and that we 
have to perform simulations of freely evolving suspensions.  From the freely evolving 
simulations of bi-disperse suspensions we concluded that the steady slip velocity between the 
size classes cannot be chosen arbitrarily and it is determined by the physical properties of the 
system. 
  

(Sundaresan reporting.)  As part of Task 2.2 we first performed lattice-Boltzmann 
simulations of fluid-particle flows to interrogate the effect of relative velocity between particles 
of different types on the fluid-particle drag coefficients for the case where both particle types had 
the same size.  Based on these results, models for the fluid-particle drag coefficients that include 
the effect of relative velocity between particles of different types were constructed; see Yin and 
Sundaresan (2009) in Appendix G for further details.  We then tackled the case of a binary 
mixture of particles having different sizes, where we engaged in a large computational campaign 
and model construction; see Yin and Sundaresan (2009) in Appendix G for further details.  Both 
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of these studies were restricted to low Reynolds number flows.  In order to account for the effect 
of moderate Reynolds number on the fluid-particle drag force experienced by a polydisperse 
assembly, we performed a large number of lattice Boltzmann simulations of polydisperse gas-
solid suspensions at moderate Reynolds numbers.  We found that a hybrid drag force model of 
the form given by Yin and Sundaresan (2009) combined with the inertial correction proposed by 
Beetstra et al. (2007) for polydisperse fixed beds accurately captured our lattice Boltzmann 
simulation results; see Holloway et al. (2010) in Appendix D for further details. 

 
Task 2.3:  LBM and DTIBM simulations for freely evolving systems (Subramaniam & 
Sundaresan) 

Simulations of fluidization of binary mixtures in periodic domains where both fluctuating 
motion of the particles and mean relative motion between the particles evolve naturally will then 
be performed. These simulations will be first done in small periodic domains to suppress 
evolution of inhomogeneous structures and then extended to larger domains with longer box 
length in the vertical direction where one-dimensional traveling waves readily form even with 
uniformly sized particles. Such calculations have already been performed for uniformly sized 
particles (Derksen & Sundaresan, submitted), indicating that one can reproduce the one-
dimensional traveling waves seen experimentally by Duru et al. (2002). This study will be 
extended first to systems with binary mixtures and then to other size distributions. Through 
simulation of fully developed wave structures in such systems, we will extract data on fluid-
particle and particle-particle drag forces.  

These three tasks in Goal II will be carried out over a wide range of mean volume 
fractions, employing the LBM-based code for the lower volume fractions, the DTIBM-based code 
for the high volume fractions and both for an intermediate range (in order to check the results 
against each other).  

 
(Subramaniam reporting.) The objective of this task is to perform simulations of freely 

evolving binary and other polydisperse suspensions and to propose improved particle 
acceleration (or drag) models. A PR-DNS approach based on PUReIBM was developed by 
Tenneti et al (2010) to perform simulations of freely evolving suspensions in periodic domains. 
In this task we performed PUReIBM simulations of freely evolving monodisperse suspensions at 
moderate mean flow Reynolds numbers to extract data relevant to model development. 
In Task 2.1, we performed PUReIBM simulations of flow past fixed particle assemblies where 
the particles were assigned a Maxwellian velocity distribution. These simulations are limited to 
high Stokes number suspensions where it is assumed that the particles are so massive that their 
velocities do not change significantly due to the effect of the fluid. The principal conclusions of 
this task are the following: 

(i) We confirmed Koch’s observation (Koch, 1990) that particle velocity fluctuations correlate 
with particle acceleration fluctuations to generate a source in the granular temperature due 
to hydrodynamic effects 

(ii) We showed that simple extension of mean particle acceleration models does not predict the 
the correct particle acceleration-velocity covariance obtained from DNS. A consequence of 
the use of such models in CFD codes like MFIX is that the term Φgm appearing in the 
granular temperature equation will be modeled incorrectly. 

We propose an instantaneous particle acceleration model that will incorporate the effect of 
particle velocity fluctuations and hydrodynamic effects of neighboring particles. The 
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instantaneous particle acceleration model, its validation, and a procedure for determining its 
coefficients are described in the following sections. 

Instantaneous particle acceleration model.  We propose the following general Langevin 
model for the increment in the particle velocity: 

=i ij j ij j ij jdv W dt v dt B dβ γ ′′− − + W .         (22) 

In the above equation idv is the increment in the particle velocity, iv′′ is the fluctuation in the 
particle velocity and Wjd is a Wiener process increment. The first term on the right hand side of 
Eq. 22 accounts for the effect of the mean slip velocity, the second term accounts for the 
fluctuation in the particle velocity and the last term models the effect of the hydrodynamic 
interaction of the neighboring particles. The coefficient ijγ is the inverse of the Lagrangian 
particle velocity autocorrelation time. In other words it quantifies how long a particle retains the 
memory of its initial velocity. These coefficients are functions of volume fraction (φ ), mean 
flow Reynolds number (Rem) and particle to fluid density ratio (ρp/ρf). To extract a functional 
form for the Langevin model coefficients, PUReIBM simulations of freely evolving suspensions 
are performed over a range of parameters. Verification of the Langevin model is presented in the 
next section. 

Verification of Langevin model.  In this section, verification of the Langevin model for 
the instantaneous particle acceleration is presented. For this purpose we consider a simpler form 
for the increment of fluctuating particle velocity: 

                                                            =i i idv v dt Bdγ′′ ′′− + W  (13) 

As described earlier, in the above equation, γ is an inverse of the integral time scale of the 
particle velocity autocorrelation. The particle velocity autocorrelation function ρ(s) is defined as 
follows: 

( )
( ) ( )

( ) ( )
0 0

0 0

i i

k k

v t v t s
s

v t v t
ρ

′′ ′′ +
=

′′ ′′
 

where s is the separation in time. The integral time scale for the autocorrelation function is 

defined as ( )
0LT s dsρ
∞

= ∫ . Using this definition, we computed the integral time scale from DNS 

after the granular temperature reached a steady state. If a stochastic process obeys the Langevin 
equation with an integral time scale of LT , then its autocorrelation function should decay 
exponentially,  i.e., ( ) / Ls Ts eρ −= .     We extracted the autocorrelation function from the DNS and 
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compared it with the exponential function predicted by the Langevin model. This comparison is 
shown in figures 58 and 59. We can see that for both density ratios considered, the evolution of 
the autocorrelation function obtained from DNS matches with the exponential decay predicted by 
the Langevin model.   

We established that Langevin model predicts the dynamics of a freely evolving 
suspension very well after the granular temperature reaches steady state. However, at a given 
volume fraction, mean flow Reynolds number and solid to fluid density ratio, we need to specify 
the coefficients as a function of the granular temperature so that we can predict the evolution of 
the suspension using the Langevin model. In order to do this, we have to identify the source and 
dissipation of granular temperature from the DNS data. In the next section, a method to identify 
source and dissipation of granular temperature from DNS is presented. 

Identification of source and dissipation from DNS. 
Using the simplified Langevin model given by Eq. 13, we can derive the evolution equation for 
the modeled granular temperature *T  as: 

 
*

* 22dT T B
dt

γ= − + . (24)  

In the above equation, we can clearly identify that the source for the granular temperature 
is 2B and that the dissipation is *2 Tγ . For a statistically homogeneous suspension, the evolution 
equation for the granular temperature can be written as: 

2
3 i i

dT Av
dt

′′ ′′= . 

 
Figure 58. Comparison of the particle velocity 
autocorrelation function extracted from the 
DNS of freely evolving suspension (volume 
fraction of 0.2, mean flow Reynolds number 20 
and solid to fluid density ratio of 100) with the 
exponential decay predicted by the Langevin 
model. 
 

 
Figure 59. Comparison of the particle velocity 
autocorrelation function extracted from the 
DNS of freely evolving suspension (volume 
fraction of 0.2, mean flow Reynolds number 20 
and solid to fluid density ratio of 10) with the 
exponential decay predicted by the Langevin 
model. 
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In the above equation, the fluctuations in the acceleration are defined about the mean 
acceleration, i.e. jjj AAA −′′ = . Similarly the fluctuations in the particle velocity are defined 

about the mean velocity, i.e. jjj vvv −″ = . The instantaneous particle acceleration model 
should model evolution of the granular temperature correctly. In order to do this, we have to 
match the source and dissipation implied by the Langevin model to the source and dissipation 
obtained from DNS. However, given the correlation i iAv′′ ′′ , it is non-trivial to uniquely 
decompose it into source and dissipation. Koch (1990) derived analytical expressions for the 
source and dissipation in the limit of low volume fractions and low Reynolds numbers. Later, 
Koch and Sangani (1999) used approximate multipole expansions approach to determine the 
source and dissipation for dense suspensions but limited to the Stokes flow regime. Here we 
present a method to extract the same from the DNS at moderate Reynolds numbers. 

The fluctuation in the acceleration experienced by the nth particle is denoted ( )n′′A and 
similarly, the fluctuation in the velocity is denoted ( )n′′v . The fluctuating acceleration can be 
written as: 

 ( ) ( ) ( ) ( )
,

n n n n
i i R iA v Aζ′′ ′′ ′′= − +  (25) 

In the above equation, we decomposed the fluctuating acceleration vector along a direction 
parallel to the particle fluctuating velocity and along a direction perpendicular to it. The 
component of the acceleration perpendicular to the fluctuating velocity is denoted ( )

,
n

R iA′′ to 
represent the remainder term. It is important to note that this is not a model but an exact 
expression for the fluctuating particle acceleration. We can now form the estimate for the 
correlation i iAv′′ ′′ as follows: 

( ) ( )

1

1 pN
n n

i i i iE
np

Av A v
N =

′′ ′′ ′′ ′′= ∑ .  

After substituting Eq. 25 into the above equation and performing some algebraic manipulations, 
we can write the evolution equation for the estimate of granular temperature as: 

 EdT S
dt

= − Γ  (26) 

where the source is, 

 ( ) ( ) ( )

1

2 1
3

pN
n n n

i i
np

S v v
N

ζ −
=

′′ ′′= − ∑  (27)  

and the dissipation is 

 ( ) ( ) ( )

1

2 1
3

pN
n n n

i i
np

v v
N

ζ +
=

′′ ′′Γ = ∑ . (28) 

In the above expressions for source and dissipation, ( )( ) ( ) ( )1
2

n n nζ ζ ζ+ = + and similarly, 

( )( ) ( ) ( )1
2

n n nζ ζ ζ− = − . 
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From these equations, it is clear that the particles whose fluctuating acceleration is aligned with 
the fluctuating velocity contribute to the source in granular temperature.  Particles with the 
fluctuating acceleration aligned in a direction opposite to that of the fluctuating velocity 
contribute to the dissipation in granular temperature. This can be easily visualized from the 
scatter plot shown in figure 60. For illustration, in this figure we show the scatter plot of 
fluctuating particle acceleration and fluctuating particle velocity obtained from the DNS of flow 
past a fixed particle assembly ( 0.2φ = , Re 20m = and Re 16T = ). The symbols that lie in the first 
and the third quadrants denote the particles whose fluctuating acceleration is aligned with the 
fluctuating velocity. Hence, these particles contribute to the source in granular temperature. 
Similarly, the symbols in the second and fourth quadrants contribute to the dissipation in 
granular temperature. 
 

 
Figure 60: Scatter plot showing the the fluctuating particle acceleration versus the fluctuating 
particle velocity obtained from the DNS of flow past a fixed particle assembly at a volume 
fraction of 0.2, mean flow Reynolds number of 20 and Reynolds number based on granular 
temperature of 16. From the analysis on the extraction of source and dissipation from the DNS, 
we can see that the symbols that lie in the first and the third quarter contribute to source and the 
symbols that lie in the second and the fourth quadrant contribute to the dissipation. 

Using the formulae given by Eq. 27 and Eq. 28, we extracted the source and dissipation from the 
DNS data and plotted them versus the granular temperature in figure 61 as a phase space plot. 
The source and dissipation are plotted for two sets of simulations (volume fraction of 0.2, mean 
flow Reynolds number of 20 and solid to fluid density ratio of 100). Triangular symbols are the 
data for a suspension where the particles initialized with zero granular temperature. Square 
symbols show the source and dissipation data for a suspension initialized with a granular 
temperature corresponding to ReT = 4. We note that for the suspension with zero initial 
temperature, the source term is greater than dissipation at initial time, which causes the granular 
temperature to increase. For the case with initial granular temperature higher than the steady 
value, the dissipation is initially greater than the source term. We note that both suspensions 
reach the same steady granular temperature, and at steady state the source and dissipation are 
equal. Now that we have a procedure to uniquely determine the source and dissipation, the next 
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step is to determine the functional dependence of source and dissipation on the granular 
temperature. A brief outline of the specification of the model coefficients is presented in the next 
section.  
 

 
Figure 61. Phase space plot showing the variation of source and dissipation with granular 
temperature. DNS data for two different suspensions is shown here. The volume fraction, mean 
flow Reynolds number and solid to fluid density ratio are 0.2, 20 and 100 respectvely. Triangles 
denote the source (filled symbols) and dissipation (hollow symbols) and dissipation for a 
suspension initialized with zero granular temperature. Squares denote the data for a suspension 
initialized with a finite granular temperature corresponding to ReT = 4. 

Specification of model coefficients. To develop the functional dependence of the model 
coefficients on the non dimensional parameters, we performed PUReIBM simulations of freely 
evolving suspensions over a wide range of parameters (see Table 1). It must be noted that the 
statistically stationary (steady) state  attained by the suspension is independent of the initial 
granular temperature. So in all the simulations the particles are initialized with 0T = .  
 
Table 1. Summary of the range of physical parameters used in PUReIBM simulations.  

Parameter Range 
φ  0.1, 0.2, 0.3, 0.4 

Rem  10, 20, 50, 75, 100 
/p fρ ρ  100, 800, 1000, 2000 

 
The instantaneous particle acceleration model should model evolution of the granular 
temperature correctly. In order to do this, we have to match the source and dissipation implied by 
the Langevin model to the source ( S ) and dissipation ( Γ ) obtained from DNS. It is clear that the 
model coefficientsγ and B can be written as follows: 

 
( ),Re , /

2
m p f

T
φ ρ ρ

γ
Γ

=  

and 
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 ( )2 ,Re , /m p fB S φ ρ ρ= . 

Clearly, source and dissipation and in turn the model coefficients are functions of the parameters. 
It is desirable to find a scaling for the source (and dissipation) terms as functions of the linearly 
independent minimal set of parameters. From the phase space plots and the evolution of the 
granular temperature shown in the previous quarterly report, we observe that the evolution of 
granular temperature for different volume fractions and Reynolds numbers is self-similar. 
Therefore, it is natural to analyze the dynamics of the suspension in terms of departures from the 
steady state values. We introduce the following scaling for temperature, source and dissipation 
respectively: 

 SS

SS

T T
T

θ −
= , 

 ˆ SS

SS

S SS
S
−

= , 

and 

 ˆ SS

SS

Γ − Γ
Γ =

Γ
. 

In the above equations, , ,  and SS SS SST S Γ respectively, are the temperature, source and dissipation 
at steady state. At steady state, source and dissipation must be equal i.e. SS SSS = Γ .  Using these 
definitions, the evolution equation for the granular temperature can be recast in non dimensional 
terms as: 

 ˆ ˆd S
ds
θ

= − Γ  

where ( )/SS SSs S T t= is the non dimensional time. We can now write the Langevin model 
coefficients as: 

 
( ) ( )

( )
ˆ ,Re , /11

2 2 1 ,Re , /
SS m p f

SS m p f

S
T T

φ ρ ρθ
γ

θ φ ρ ρ

 Γ +Γ
= =   + 

 

and 
 ( )( ) ( )2 ˆ 1 ,Re , /SS m p fB S S Sθ φ ρ ρ= = + . 
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Figure 62. Plot showing the scaling of source and dissipation with granular temperature in 
nondimensional phase space. Red squares denote the source and blue triangles denote 
dissipation. The solid lines are the curve fits for source and dissipation given by equations 29 
and 30, respectively. 

Figure 62 shows the functional dependence of Ŝ and Γ̂ on the non-dimensional temperature. We 
propose the following functional forms to model the non-dimensional source and dissipation: 

 ( )
4 4 1 , 1 0ˆ 2

                   0,  0

e
S e

θ θ θθ
θ

 − −
− − ≤ ≤=  −
 >

 (29) 

and 

 ( )
1 2ˆ

2
e

e

θ θθ
+ − −

Γ =
−

. (30) 

 

Figure 63 shows the variation of 2
SST

W
with volume fraction and mean flow Reynolds number 

for a solid to fluid density ratio of 100. The steady granular temperature decreases with both 
volume fraction and mean flow Reynolds number. Figure 64 shows the behavior of the steady 
granular temperature with solid to fluid density ratio for a solid volume fraction of 0.2 and mean 
flow Reynolds number of 20. As expected, the steady temperature decreases with increasing 
inertia of the particles. Based on the data obtained from PUReIBM DNS, the following 
functional form is proposed for the steady value of granular temperature: 
 

( ) ( )( )
1

3
2 ,Re , 2 1 exp 0.02 1 Rep pSS

m m
f f

T ρ ρ
φ φ φ

ρ ρ

−
   

= − − −      
   W

. (31) 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 81 

 
In order to complete the specification of the model coefficients, we need a functional form for 
the steady source in terms of solid volume fraction, mean flow Reynolds number and solid to 
fluid density ratio. The steady source obtained from the simulations is reported using the 
following normalization: 

 
( )

*
223 1

SS
SS

f

S mS
Dπµ φ

=
− W

, 

 
 
where m is the mass of the particle, fµ is the dynamic viscosity of the fluid, W is the mean slip 
velocity between the solid and the fluid phase, and D is the particle diameter.  

 
Figure 63. Plot showing the variation of steady  
granular temperature with volume fraction and 
mean flow Reynolds number for ρp/ρf = 100. 
Symbols denote the data obtained from 
PUReIBM DNS and the solid lines indicate the 
fit given by Eq.(25). 
 

 
Figure 64. Plot showing the variation of 
steady granular temperature with solid to 
fluid density ratio for a solid volume fraction 
of 0.1 and mean flow Reynolds number 20. 
Symbols denote the data obtained from 
PUReIBM DNS and the solid line indicates 
the function (ρp/ρf )-1

.  
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Figure 65. Plot showing the behavior of steady source with volume fraction and Reynolds 
number for a solid to fluid density ratio of 100. Symbols indicate PUReIBM DNS data and solid 
lines indicate the fit given by Eq. (32) 

Figure 65 shows the behavior of the normalized steady source with volume fraction and mean 
flow Reynolds number for a solid to fluid density ratio of 100. The normalized source increases 
with both volume fraction and Reynolds number. This behavior can be explained by employing a 
simple scaling analysis. Since the source of granular temperature is caused due to the correlation 
of particle acceleration fluctuations and particle velocity fluctuations, the source scales 
as 1/2~SS A SSS Tσ  where Aσ is the standard deviation in the particle acceleration. This scaling 
implies that the normalized source scales as 

 
( )

( ) 1/2
*

22

,Re
~

13 1
mSS SSA

SS

f

FS m TS
D

φσ
φπµ φ

=
−− A WW

, 

where, ( ),RemF φ is the normalized mean drag per particle which increases with both solid 
volume fraction and mean flow Reynolds number. Although the steady granular temperature 
decreases with both solid volume fraction and Reynolds number, the strong dependence of the 
mean drag on  and Remφ determines the overall behavior of normalized source. The dependence 
of the normalized source on the solid to fluid density ratio is determined by the dependence of 
steady granular temperature on /p fρ ρ . In fact, the PUReIBM DNS data indicates that *

SSS varies 

inversely with ( )1/2
/p fρ ρ . Based on the DNS data the following functional form is proposed for 

the normalized steady source: 

 ( )
( )

1/2

*
3,Re , 1 0.035Re

1
p p

SS m m
f f

S
ρ ρφφ
ρ ρφ

−
   

= +      −   
. (32) 

The values of normalized source generated by the above expression are shown by solid lines in 
Figure 65. 
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(Sundaresan reporting.)  In Task 2.3 we sought to examine the gas-particle flow 
structures that were manifested in detailed lattice Boltzmann simulations.  We began our study 
by probing the effect of polydispersity on the average characteristics manifested by freely 
evolving gas-solid suspensions.  Specifically, lattice Boltzmann simulations of fluidization of 
ternary, freely evolving, gas-solid suspensions in periodic domains were performed, and the 
resulting domain-averaged statistics were extracted.  These were then compared with 
corresponding statistics obtained in simulations of monodisperse gas-solid suspensions having 
the same Sauter mean diameter (as the ternary case). 

The simulation domain size was chosen to be a rectangular box with dimensions of 
200x70x70 lattice units to suppress the formation of two-dimensional structures within the 
simulation domain.  The axis of sedimentation was chosen to be parallel with the long side of the 
rectangular box.  The fluid-particle assembly was allowed to fully relax and average properties 
were collected for comparison between monodisperse and polydisperse cases.  The particle to 
fluid density ratio was set to 1000 for every simulation presented here.   

A ternary gas-solid suspension was used for comparison with the monodisperse gas-solid 
suspension.  As log-normal distribution of particle sizes is quite common, we started with such a 
distribution and identified equivalent ternary mixtures and monodisperse approximations using 
discrete (quadrature) method of moments.  Although one could have found optimal sizes and 
number densities of the three types of particles in the ternary case using the method of moments, 
we considered a simpler case where we chose the particle sizes and determined their number 
densities via method of moment.  Accordingly the first three moments of the discrete particle 
distribution function were required to be equal to those of the continuous log-normal distribution 
function.  In all the simulations illustrated below, the mean particle diameter was 4.64 and 
standard deviation was 0.624, all in lattice units.  The ratio of the third moment to the second 
moment of the particle distribution function was required to be equal to the particle diameter 
used in the monodisperse freely evolving suspensions.  This constraint corresponds to requiring 
equality between the Sauter mean diameter of the ternary gas-solid suspension and the 
monodisperse suspension.  Figure 66 illustrates a histogram of the discrete particle distribution 
function used for this set of simulations with the continuous particle distribution function that 
was approximated given by the blue line.  The ternary gas-solid suspension configurations 
(inside the periodic domain used in flow simulations) were generated using a Monte-Carlo 
relaxation technique.        
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Figure 66.  Discrete particle size distribution computed using the method of moments compared 
with lognormal distribution. 
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Freely evolving suspension simulations were performed at three different total volume 
fractions, namely 0.05φ = , 0.1φ = , and 0.15φ = .  At each volume fraction, several statistically 
steady parameters were calculated for comparison between the monodisperse and ternary 
suspensions.  Figure 67 shows the volume weighted sedimentation velocity for both the ternary 
and monodisperse suspensions normalized by the terminal settling velocity of an isolated particle 
calculated using the Sauter mean diameter in the Schiller-Naumann relation.  The volume-
weighted velocity is defined as  

3

3

i i
i

i
i

u d
u

d
=

∑
∑

                                                       (33) 

where u  is the volume weighted velocity, iu is the average sedimentation velocity of the ith 
particle, and id  is the diameter of the ith particle.  The scale of the marker size indicates the 
uncertainty in the values given in figure 67.  There is clearly very little difference between the 
ternary and monodisperse cases.  This indicates that the Sauter mean diameter is an effective way 
to simplify a polydisperse system to an equivalent monodisperse system.   

In figure 68, the dimensionless time between collisions is given for both monodisperse 
and polydisperse cases.  The dimensionless time between collisions is given by  

t
col col

Ut
d

τ =                                                        (34) 

where colt is the time between collisions, tU is the sedimentation velocity calculated based on the 
Schiller-Naumann relation using the Sauter mean diameter d . There seems to be fewer 
collisions in the polydisperse system than in the monodisperse system.  This point is quite 
interesting and counter-intuitive; we did not pursue this point, as it was not consistent with the 
goal of this study.  Nevertheless, it is noted that future work should gather more collisional 
statistics to illuminate why there seems to be fewer collisions in polydisperse suspensions. 
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Figure 67.  Volume weighted sedimentation velocity normalized by the settling velocity of an 
isolated particle using Schiller-Naumann relation for both monodisperse and polydisperse cases.            
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Figure 68.  Average time between collisions vs volume fraction and for monodisperse and 
polydisperse cases. 
 

It should be noted that at each volume fraction the viscous relaxation time was identical.  
Here we define a dimensionless viscous relaxation time as  

2
t

vis

d U
d

τ
ν

=  

 
where visτ is the dimensionless viscous relaxation time, ν is the kinematic viscosity of the lattice-
Boltzmann fluid, and tU is the terminal settling velocity calculated from the Schiller-Naumann 
relation, using the Sauter mean diameter d .  In polydisperse suspensions, as volume fraction 
increases, the time between successive collisions decreases dramatically, which is reasonable.  
However, it decreases at a faster rate in the ternary suspension than in the corresponding 
monodisperse case.  To look at why this might be the case, the velocity distribution at each 
volume fraction was found for the polydisperse cases, and given below in figure 69.   
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Figure 69.  In all figures xp

 denotes the fraction of particles and vp is the velocity of the particle. 
(a) Velocity distribution function of polydisperse gas-solid suspension at φ = 0.045.  (b) Velocity 
distribution function of polydisperse gas-solid suspension at φ = 0.09.  (c) Velocity distribution 
function at φ = 0.135. 
 

From figure 69 it can be seen that when the ratio of the dimensionless time between 
successive collisions to the dimensionless viscous relaxation time is O(1), the velocity 
distribution function of the suspension is trimodal.  As the time between successive collisions 
decreases, the particles of species i are able to exchange momentum with particles of species j, 
and, as such, the velocity distribution function of the mixture tends to a unimodal shape.  
Therefore, in ternary suspensions the ratio of time between successive collisions to the viscous 
relaxation time must be significantly smaller than unity for the each species in the ternary system 
to interact vigorously through collisions and produce a unimodal velocity distribution.  This 
point has been previously noted in theoretical studies of dilute bidisperse gas-solid suspensions 
(Kumaran, 1993). 

Monodisperse gas-solid suspensions are known to exhibit spatiotemporal 
inhomogeneities; when the lateral dimension of the domain is small, they are known to take the 
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form of one-dimensional, vertically traveling waves.  The existence of these waves have been 
documented by several researchers (Sundaresan, 2003).  However, the existence of such one-
dimensional travelling waves in polydisperse suspensions has remained a conjecture.  This is 
primarily because a linear stability analysis of a polydisperse suspension is complicated by the 
lack of available closures for different terms in multi-fluid models.  In figure 70, we give the 
space-time plots for the evolution of volume fraction fronts in both monodisperse and ternary 
cases.   

 

  
(a)                                                       (b)                                                (c) 

 

 
       (d)             (e)         (f) 
 
Figure 70.  (a) Space time plot of monodisperse gas-solid suspension at φ = 0.045.  (b) Space 
time plot of monodisperse gas-solid suspension at φ = 0.09.  (c) Space time plot of monodisperse 
gas-solid suspension at φ = 0.135.  (d) Space time plot of polydisperse gas-solid suspension at           
φ = 0.045.  (e) Space time plot of polydisperse gas-solid suspension at φ = 0.09.  (f) Space time 
plot of polydisperse gas-solid suspension at φ = 0.135. 
 
 In this work ternary freely evolving suspensions were compared with monodisperse 
freely evolving suspensions at the same volume fraction and Sauter mean diameter.  The results 
show that these simulations are feasible using the current lattice Boltzmann algorithm developed 
by Ladd (Ladd, 1994a; b).  However, the inhomogeneities manifested by these freely evolving 
systems (see figure 70) make extracting data useful for continuum model development difficult.  
Because of this limitation, we did not pursue freely evolving simulations any further in this 
project. 
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Goal III:  Gas-Phase Instabilities:  Turbulence Models for Polydisperse Systems (Fox & 
Subramaniam) 
 
Task 3.1:  Direct numerical simulations of polydisperse particles in gas-phase turbulence (Fox 
& Subramaniam) 

The DNS-DEM code will be used to perform turbulent multiphase flow simulations for a 
limited range of turbulence Reynolds number ( 25 50)Rλ = −  at selected volume fraction and 
initial nominal particle Reynolds number for bidisperse and polydisperse systems. Canonical 
problems include the decay of polydisperse, particle-laden turbulence in a tri-periodic box, and 
time permitting, the artificial forcing of the turbulence to a steady state. The settling of 
bidisperse spheres into initially homogeneous turbulence at finite Reynolds will also be 
simulated. The DNS data will be used to quantify the budget of terms in the turbulent kinetic 
energy evolution and the dissipation equation.  

 
(Subramaniam reporting.) 3.1.1: Verification of PUReIBM in single-phase turbulent 

flows   
Approach: Prior to performing DNS of turbulent gas-solid flow using the PUReIBM 

code, the decay of single-phase isotropic turbulence is verified with PUReIBM. The power-law 
decay of isotropic turbulence suggests that turbulent kinetic energy (TKE) evolves in the form 

0
0

( ) ,
n

tk t k
t

−
 

=  
 

 

where 0t is a reference time, and 0k is the magnitude of k at the reference time. To examine this 
behavior, an initially isotropic single-phase turbulent field is generated according to the method 
proposed by Rogallo (1981) with the one dimensional energy spectrum function given by Pope 
(2000), that is 

2/3 5/3( ) ( ) ( )LE C f L fηκ ε κ κ κη−=  

with C being a model constant,ε being the dissipation rate of TKE, andκ being the wave number. 
The functions Lf and fη modify the energy spectrum at low and high wave numbers respectively, 
and are given as 

( )

05/3

1/22 2
( ) ,

p

L

L

Lf L
L c

κκ
κ

+
 
 =    +  

 

( ){ }1/44 4( ) exp ,f c cη η ηκη β κη  = − + −   
 

with L andη being the large eddy length scale and Kolmogorov length scale, respectively. The 
other parameters are model constants that are defined accordingly. 

DNS of isotropic turbulence is performed in a cubic domain. The choice of the box length 
and also the grid resolution is determined by flow length scales. The domain should be large 
enough to accommodate sufficient number of large energetic eddies, and the grid resolution 
should be such that the evolution of smallest eddies being captured. The duration of an isotropic 
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turbulence DNS is 4 eddy turnover time scale τ = k/ε (Pope, 2000). An isotropic turbulent flow 
characterized by Taylor microscale Reynolds number Reλ is generated in a cube with 2563grid 
points, which satisfies the resolution requirement criteria for small and large length scales. The 
evolution of TKE carries on for 4 eddy turnover time scale as shown in Figure 71. The decay rate 
exhibits two distinct regions: i) the region were the decay rate is small due to the effect of the 
velocity field initialization, ii) the region where a power law decay is observed. The decay rate 
observed in this simulation is 1.15 which is in agreement with the value reported for decay of 
single-phase isotropic turbulence in literature (Pope, 2000). 
 

 
Figure 71. The decay of k for an isotropic turbulence with Re 50λ = . 

 
3.1.2: Fluid-phase velocity fluctuations in monodisprese fixed particle beds 

Approach: We performed PUReIBM DNS of flow past fixed assemblies of 
monodisperse spheres over a wide range of solids volume fraction (0.1 ≤φ ≤ 0.5) and mean flow 
Reynolds numbers (0.01 ≤ Rem ≤ 300). Then we quantify the strength of gas-phase velocity 
fluctuations in terms ofφ and Rem . 

Direct numerical simulation of flow through a particle assembly using PUReIBM results 
in velocity and pressure fields on a regular Cartesian grid. For every realization of the gas-solid 
flow we compute the kinetic energy in the fluctuating motions using volume averaging: 

( )
, ,

1 '' '' .
2 f

f f f i f iV
f

k I u u dv
V

µ = ∫  

Here fI is the fluid-phase indicator function, ''fu is the fluid-phase velocity fluctuations defined 

as f f−u u , and µ denotes a realization or configuration of particles. The ensemble-averaged 

fk represents an average over all particle configurations corresponding to the same volume 
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fraction and pair correlation function. Therefore, fk obtained from a single realization is averaged 
over multiple independent realizations (MIS) to obtain an estimate for the ensemble averaged 
kinetic energy: 

( )

1

1 ,f fk k µ

µ

Μ

=

=
Μ ∑  

where M is the number of particle configurations used in DNS. All simulations start with the 
initial condition of uniform fluid velocity. Therefore, the steady state value of fk obtained in a 
fixed particle assembly depends only on the solids volume fraction and the mean flow Reynolds 
number. Figure 72 shows the variation of /f fk E with solids volume fraction for different mean 
flow Reynolds numbers while figure 73 shows the variation of /f fk E with mean flow Reynolds 
number for different solid volume fractions. As evident from figure 72, the kinetic energy in 
fluctuating motions normalized by the mean energy in the gas-phase increases dramatically with 
volume fraction. This behavior is expected because, as the volume fraction increases, the space 
available to the gas decreases. Owing to conservation of mass, the velocity of the gas increases 
thus causing /f fk E to increase with volume fraction. As shown in Figure 73, at a given volume 
fraction, /f fk E decreases rapidly with increasing mean flow Reynolds number up to 
Re 50m = and beyond Re 50m = it has a weak power law dependence on Rem . This behavior is a 
result of the normalization of /f fk E . 

 

  

Figure 72. The behavior of kf/Ef with φ for 
different mean flow Reynolds numbers while.  

Figure 73. The behavior of kf/Ef with Rem for 
different solid volume fractions. 

Since the fluid-phase velocity fluctuations observed originates from the presence of particles and 
are basically pseudo-turbulent, it is of interest to examine the effect of initial turbulent structures 
of the fluid phase on the steady state value of fk in gas-solid flows, and to quantify the level of 
turbulent and pseudo-turbulent velocity fluctuations in the fluid phase. To address this issue we 
consider three types of simulations as follows: 

1. Case I initialized with a pseudo-turbulent uniform laminar flow 
2. Case II initialized with a specified isotropic turbulent flow 
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3. Case III initialized with the steady solution of Case I in addition to the initial isotropic 
turbulence of Case II 

For the simulations, the mean slip Reynolds number is selected as 50. An isotropic turbulent 
field is generated with Re 12λ = by the method described in Section 3.1.1, and the corresponding 
Kolmogorov length scale is selected such that the ratio /pd η is 5. Detailed information of flow 
parameters is provided in Table 2. The simulations start by imposing a mean pressure gradient 
along the mean flow such that the Reynolds number reaches the desired value, and the results are 
shown in figure 74. 
 

Table 2. The numerical and physical parameters of turbulent/pseudo-turbulent simulations. 

 φ  Rem  Reλ  /pd η  mD  / pL d  
Case I: pseudo-turbulent 0.05 50 - - 20 12.5 
Case II: turbulent 0.05 50 12 5 20 12.5 
Case III: Case Is.s.+iso. turb. 0.05 50 - - 20 12.5 

 

 
Figure 74. Evolution of kf normalized with mean flow energy. Symbols (∇) correspond to the 
simulation initialized with an isotropic turbulence. Symbols (△) represent simulation of 
perturbed velocity field. Symbol (O) shows the steady value of pseudo-turbulent simulation. 

 
Since the evolution of fk for Case I is similar to other pseudo-turbulent simulations, the steady 
value of fk for this case is only presented at steady state. It is also indicates that for Case II, the 
level of fk starts from initial isotropic turbulence level and increases to the steady state pseudo-
turbulent value. The data reveals that the velocity fluctuations arising from the particles in fluid-
phase are much higher than the turbulent velocity fluctuations for Re 12λ = , and the principal 
contribution to the fluid-phase velocity fluctuations is pseudo-turbulent. Case III is used to 
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examine the relaxation of turbulence in particle-laden flows. The evolution of fk for Case III 
shows that the excess amount of fk decays and the pseudo-turbulent steady state level of fk is 
recovered. These results showing both attenuation and enhancement of turbulence based on the 
initial level of velocity fluctuations indicate that the initial turbulent motions of the fluid-phase 
do not influence the steady value of fk , and the pseudo-turbulent fluctuations are mainly due to 
the interaction of particles with the mean flow in gas-solid suspensions. 

From these results, it is clear that the turbulent velocity fluctuations will only be 
important if they are of the same level as the pseudo-turbulent velocity fluctuations. Therefore, it 
is interesting to determine what Taylor microscale Reynolds number generates a level of initial 
turbulence comparable to the steady value of fk . The equivalent Reλ is obtained through the 

isotropic turbulence scaling relations 1/2Re /L fk L ν= , 3/4/ ReLLη −= and ( )1/2Re 20Re / 3Lλ = (Pope, 
2000) with ReL being the turbulent Reynolds number. The isotropic single-phase k is substituted 
by the correlation for the pseudo-turbulent fk (discussed in section 3.2.1) which gives a final 
expression for Reλ as 

( ) ( ){ }
2 2

3 1/2 Re20Re 1.25 1 exp Re .
3 1

m
m

pdλ
ηφ φ φ φ

φ
   

= + − −      −  
 

 
Figure 75. The equivalent Taylor microscale turbulent Reynolds number which generates the 
same pseudo-turbulent level of velocity fluctuations observed in gas-solid flows. The figure 
corresponds to / 5pd η = . 

 
To gain insight into the equivalent value of Reλ with respect to Rem andφ , a contour plot 
of Reλ for / 5pd η = is presented in Figure 75. This figure reveals that at moderate or high 
Reynolds numbers the velocity fluctuations induced by particles are equivalent to high levels of 
single phase turbulence. The square dependence of Reλ on Rem indicates that the large eddies 
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associated with the flow structures due to the presence of particles contribute increasingly to the 
equivalent isotropic Reλ . In addition, the result shows that performing a simulation initialized by 
a high turbulent Reynolds number that generates the same level of pseudo-turbulence is not 
feasible due to limitations on computational resources. 
 
3.1.3: Fluid-phase velocity fluctuations in bidisprese fixed particle beds 

Approach: Particle-resolved DNS of bidisperse gas-solid flows with fixed particle 
configurations are investigated to gain insight into the behavior of gas phase velocity fluctuations 
and interphase TKE transfer term. 

In a gas-solid suspension, the particles are not exactly of the same size and there is a size 
distribution of particles which may affect the level of fluid-phase velocity fluctuations compared 
to monodisperse particle configurations. In this regard, bidisperse gas-solid flows that are the 
simplest polydisperse suspensions are studied over a range of particle sizes for different volume 
fractions and Reynolds numbers by PUReIBM and the level of fluid-phase velocity fluctuations 
is quantified. In this investigation, fixed particle assemblies are selected since they represent 
particles with high Stokes number. We consider 5 cases in this study and particle sizes 
normalized with Sauter mean diameter for each case is reported in Table 3. 
 

Table 3. The ratio of diameter of each class to Sauter mean diameter. 

 Case I Case II Case III Case IV Case V 

1 / Sd d  0.50 0.55 0.60 0.65 0.75 

2 / Sd d  1.50 1.75 2.00 1.30 1.15 
 
These size classes are used to generate suspensions for two volume fractions being 0.3 and 0.4. 
In addition, for each case two different Reynolds number is considered as 50 and 75. It is worth 
mentioning that for each case four independent realizations are performed and the results are 
presented as their ensemble average at steady state. 

The level of fk is computed for simulations and are presented in figure 76 against particle 
size ratio. For comparison with monodisperse assemblies, corresponding data is presented 
at 2 1/ 1d d = as well. It is observed that the level of velocity fluctuations is highly influenced by 
volume fraction, and the normalized fk is not affected by Rem . These behaviors are similar to 
what is observed for monodisperse assemblies. In addition, the comparison between 
monodisperse and bidisperse data reveals that the level of fk in both cases is the same (for the 
same volume fraction and Reynolds number) with maximum error less than 10%. To better 
understand the reason for the similarity of fk , we examine the evolution equation of fk for fixed 
particle assemblies, that is 

( )( ) ( )

viscous dissipationfluid interphase TKE transferunsteady term

(1 ) 2 ,f
f f i ji j f ij ij

d k W n S S
dt

ρ φ τ δ µ− = − −Ix x
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where fρ is the fluid-phase density, τ  is the stress tensor, ( )fn is the normal vector to particle 

surface towards the solid phase, ( )( )δ − Ix x is the Dirac delta function representing fluid-solid 
interface, and S is the strain rate tensor. At steady state the terms on the right-hand-side balance 
each other, where interphase TKE transfer fπ is source and viscous dissipation is sink of energy 
(Tenneti et al). Quantification of interphase TKE transfer shown in figure 77 reveals that the 
difference between monodisperse and bidisperse configurations is less than 10%. Since 
interphase TKE transfer, representing the amount of energy fed to fluid-phase fluctuating 
velocities, is similar among simulated cases, the level of fk is expected to be the same among 
cases with the sameφ and Rem . This observation suggests that a proposed model of fk for 
monodisperse configurations is also applicable to bidisperse systems. 

  

Figure 76. Level of kf for bidisperse gas-solid 
suspensions normalized by the mean flow 
energy. 

Figure 77. Interphase TKE transfer for 
bidisperse gas-solid suspensions normalized 
with 2( / )f Sdµ W . 

 
3.1.4: Fluid-phase velocity fluctuations in monodisprese freely evolving suspensions 

Approach: Although fixed particle beds are good approximation to fluidized beds with 
high Stokes number particles, in real problems the particles are free to move. We perform 
PUReIBM DNS of monodisperse freely evolving suspensions to investigate the influence of 
motion of particles under hydrodynamic and collisional forces on fluid-phase velocity 
fluctuations. 
The simulations are carried out in an accelerating frame of reference which moves with mean 
particle velocities that facilitates investigation of each flow parameter separately. Accordingly, 
two particle to fluid density ratios are selected as 100 and 1000 to investigate the effect of 
particle Stokes number. The influence of the volume fraction is also studied with the choice two 
volume fractions 0.1 and 0.2 as well. Similarly, to investigate the effect of coefficient of 
restitution (COR), we select three values 1.0, 0.9, and 0.7 for this parameter. All the simulations 
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are performed at Re 20m = with two independent realizations and are initialized with a uniform 
mean flow for the fluid phase and zero granular temperature for the solid phase. 
The comparison of fk for elastic cases between the two density ratios indicates that the level of 
fluid-phase velocity fluctuations is not influenced by particle densities as shown in figure 78. 
The evolution of fk is also compared with fixed bed results of the same Reynolds number and 
volume fractions represented by straight lines. The difference of fk in freely evolving suspensions 
from the fixed bed assemblies is less that 10% which denotes the similarity of the fk between 
fixed beds and freely evolving suspensions. 
 

 
Figure 78. Evolution of kf for elastic particles with different volume fractions and solid to fluid 
density ratios. 

 
In addition, the comparison of fk for particles with different CORs, presented in figure 79, 
indicates that fk is not very sensitive to COR and the differences are not statistically significant, 
especially for the lower volume fraction. Similar to DNS of elastic particles, the level of fk is in 
good agreement with fixed particle assemblies with the maximum error about 10% for the higher 
volume fraction. 
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(a) (b) 

Figure 79. Comparison of kf among elastic and inelastic cases.  Figure (a) corresponds toρp/ρf 
= 100, while Figure (B) is forρp/ρf = 1000.  

 
To better understand the effect of freely moving particles, specifically the inelasticity of particles 
on fluid-phase velocity fluctuations, it is useful to investigate the evolution equations of 
fluctuating energies in both fluid and solid phase. The evolution of fk for a homogeneous 
suspension is  

 ( )( ) ( )
,

viscous dissipationfluid interphase TKE transferunsteady term

(1 ) '' 2 .f
f f f i ji j f ij ij

d k u n S S
dt

ρ φ τ δ µ− = − −Ix x






 (36) 

The evolution equation of pk for a homogeneous system, on the other hand, is 

 ( )


( ) ( )
,

collisional dissipation
solid interphase TKE transferunsteady term

'    ' p
p p p i ji j coll

d k u n
dt

ρ φ τ δ= − − ΓIx x




 (37) 

with pρ being the solid-phase density, and ( )pn being the normal vector to particle surface towards 

the fluid phase. The TKE of the two-phase mixture me is defined as ( )1f f p pk kρ φ ρ φ− + . The 
mixture TKE evolution equation is obtained by adding Eqs. (36) and (37), and using the 
principle of conservative interphase TKE transfer introduced by Xu and Subramaniam (2006), 
that is 

( )( ) ( )  . 2 p
m ji j f ij ij colli

d S
t

We n S
d

τ δ µ
Π

= − − − ΓIx x


 

At steady state, the terms on the right-hand-side of Eq. 36 should balance each other which are 
depicted in Figure 80 for simulated cases. Since the mean slip velocity is aligned with the mean 
interphase momentum transfer (Hill et al., 2001; Tenneti et al., 2011), the interphase TKE 
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transfer Π is positive and represents a source of energy, while the viscous dissipation fε  and the 
collisional dissipation collΓ are sinks of energy. The viscous dissipation is computed directly from 
the DNS data. The collisional dissipation is however estimated from the expression given by 
Sangani et al. (1996) as 

( ) 3/2
1/2

24 1 ( ) ,coll p p
p

e g d T
d

ρ φ
π

Γ = −  

where e is the COR, ( )pg d is the radial distribution function at contact, and T is the granular 
temperature. It is evident in figure 80 that the interphase TKE transfer and viscous dissipation 
balance each other with less than 5%error, and the collisional dissipation is negligible compared 
to aforementioned terms. Since the level of collisional dissipation in suspensions with moderate 
Reynolds number is not significant compared to the interphase TKE transfer and the viscous 
dissipation, the inelasticity of particles cannot influence the overall level of energy in the system 
and the level of fk will be similar among flows with different values for COR. 
 

  
(a) (b) 

Figure 80. The balance of mixture energy equation terms normalized with 2( / )f pdµ W . 
Hollow symbols correspond to 0.1φ = while filled symbols belong to 0.2φ = . Interphase TKE 
transfer, viscous dissipation, and collisional dissipation are represented respectively by symbols 
(○), (⋄), and (△). Figure (a) shows density ratio 100 and Figure (b) shows density ratio 1000. 

 
 
3.1.4: Fluid-phase velocity fluctuations in bidisprese freely evolving suspensions 

Approach: To examine the influence of freely evolving bidisperse gas-solid suspensions, 
DNS PUReIBM for some selected cases are performed. These simulations are carried out over a 
range of particle size ratios and volume fractions. In this investigation, the particle to fluid 
density ratio is 1000 which represent particles with high Stokes numbers. The simulations are 
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performed for total solid volume fractions of 0.3 and 0.4 at a mean flow Reynolds number given 
as 50. The fluid phase is initialized with a uniform flow and the solid phase is initialized with 
zero granular temperature. Detailed information of particle size ratio 2 1/d d  is given in Table 4. 
 

Table 4. Particle size ratio and volume fraction ratio of freely evolving suspensions. 

 Case I Case II Case III 

2 1/d d  3 3.33 1.5 
 
The level of fk in these simulations, shown in figure 81, indicates that the level of fluid-phase 
velocity fluctuations depends strongly on total volume fraction. In addition the steady value 
of fk is not significantly influenced by particle size ratios and they all represent the same level 
of fk observed in fixed particle beds of the same volume fraction and Reynolds number with 
maximum error of 15% (except for the case 0.4φ = and 2 1/ 1.5d d = which is still converging to 
the fixed bed fk value). It is worth mentioning that the simulations ran to different times and the 
data was extracted from the last time step. A similar analysis to monodisperse moving 
suspensions performed in previous section (not shown here in detail) indicates that the interphase 
TKE transfer and viscous dissipation balance each other and the collisional dissipation would be 
small due to the fact that the flow is not collision-dominated. On the hand, Figure 82 shows that 
interphase TKE transfer term does not change significantly with particle size ratio in comparison 
to fixed particle values, which justifies the similarity of fk in these simulations. 
 

  
Figure 81. The level of kf for bidisperse gas-
solid suspensions. 

Figure 82. Interphase TKE transfer of 
bidisperse gas-solid suspensions normalized 
with 2( / )f Sdµ W . 
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Summary:  In this section, level of fluid-phase velocity fluctuations in homogeneous gas-
solid flows for fixed and freely evolving suspensions was reported by performing DNS using 
PUReIBM. It is observed that the velocity fluctuations are mainly due to the interaction of finite 
size particles with mean slip, and fluid-phase turbulent velocity fluctuations are not significant 
compared to pseudo-turbulent velocity fluctuations. The comparison between the fixed and 
freely evolving particles of monodisperse suspensions show that the movement of particles do 
not influence the level of fk significantly for high Stokes number particles. In addition, since the 
flow is not collision-dominant, the energy loss through inelastic collisions is negligible and does 
not affect fk . Bidisperse suspensions which are the simplest type of polydisperse flow show also 
similar level of fk to monodisperse suspensions. The findings in this section reveal that the level 
of fluid-phase velocity fluctuations is strongly a function of total volume fraction and also a 
weak function of Reynolds number, and thus a single model can be used for to represent the level 
of fk in gas-solid suspensions with high particle Stokes number. 

 
Task 3.2: Multiphase turbulence model for polydisperse particles in gas-phase turbulence 
(Fox & Subramaniam) 

The existing MFIX multiphase turbulence models (Ahmadi & Ma, 1990, Simonin, 1996) 
and the recently proposed EEM model (Xu & Subramaniam, 2006) will be tested in these 
canonical polydisperse flows. Comparison of model predictions with DNS will give insight into 
the accuracy of existing closures, and will lead to the development of more accurate closures, if 
needed. 

 
(Subramaniam reporting.)  Task 3.2.1: Eddy viscosity model for gas-solid flow 

Approach: In modeling the Reynolds stress tensor, the first step is to evaluate the 
isotropic part of the tensor, which is twice the energy of velocity fluctuations. PUReIBM DNS 
results reveal that the value of TKE is primarily a function of total volume fraction and Reynolds 
number. 

The presence of finite sized particles generates high level of gas-phase velocity 
fluctuations even in a laminar flow regime. We performed DNS of flow past fixed assemblies of 
monodisperse spheres over a wide range of solid volume fractions (0.1 ≤φ ≤ 0.5) and mean flow 
Reynolds numbers (0.01 ≤ Rem ≤ 300). Based on our DNS data, we developed a correlation 
for fk in terms of the solid volume fraction and mean flow Reynolds number. Figure 83 shows 
the data for fk obtained from PUReIBM simulations together with the following correlation 

 ( ) ( )3 1/22 2.5 1 exp Re ,f
m

f

k
E

φ φ φ φ= + − −   

which fits the data well with an average deviation of 5%. The importance of this expression is 
that in the limiting case of single phase flow( 0φ → ), the level of fk becomes zero denoting that 
the origin of the stress is pseudo-turbulent and due to the presence of particles. 
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Figure 83. Plot showing the variation of the pseudo-turbulent kinetic energy with solid volume 
fraction and mean flow Reynolds number. Symbols denote the data obtained from PUReIBM 
simulations of flow past fixed assemblies of monodisperse spheres while the lines denote the fit 
given by equation (1). 

 
In homogeneous gas-sold flows, fk  results from a balance of interphase transfer of kinetic energy 
and dissipation of kinetic energy. If we are able to obtain the correct scaling of dissipation 
withφ and Rem then we can explain the dependence of fk onφ and Rem .  
The evolution equation of fk for a homogeneous suspension given in Section (3.1.3) shows that 
the interphase TKE transfer fπ represents a source of gas-phase velocity fluctuations. An 
expression for the interphase transfer of kinetic energy can be derived by 

( ) ( )
2

2

2

18 1
 ,Re ,f

f m
p

F
d

φ φ µ
π φ

−
= W  

where ( ),RemF φ is the average drag force per particle normalized by Stokes drag 

force ( )3 1p fdπ µ φ− W . At steady state the source and sink of kinetic energy must balance 
each other, that is 

( )1 .f f fπ ρ φ ε= −  

All the turbulence models for multiphase flows use a Kolmogorov scaling for the dissipation 
term in a manner similar to single-phase turbulence models i.e., 3/2 /f f Kk lε  . While in single-
phase turbulence the length scale Kl in this expression corresponds to eddies in the inertial 
subrange, the corresponding interpretation in gas-solids flow is not clear. Note that the validity of 
the Kolmogorov scaling rests on the energy cascade hypothesis with a constant dissipation rate in 
the inertial subrange. These assumptions may not hold in gas-solids flow. An alternative 
expression for the dissipation rate in single-phase turbulence is 22 /f f f Tk lε ν , where Tl is the 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 101 

Taylor microscale and Tν is the kinematic viscosity of the fluid phase. This expression can be 
generalized to any random velocity field with a finite spatial autocorrelation length. 
Using the Kolmogorov scaling for the dissipation term the following expression for /K pl d is 
obtained: 

( )
3/2 1

2 ( ,Re )36 2 1 .
Re

f mK

p f m

k Fl
d E

φφ φ
−   

= −       
 

Similarly, using the Taylor microscale scaling for the dissipation term the expression for /T pl d is 

( )( )
1/2

1/2
18 1 ( ,Re ) .fT

m
p f

kl F
d E

φ φ φ
− 

= −  
 

 

The variation of Kl and Tl with solid volume fraction and Reynolds number are compared in figure 
84. The behavior of length scale Kl obtained by modeling the dissipation term by Kolmogorov 
scaling shows that this length scale increases with mean flow Reynolds number and decreases 
with volume fraction. The behavior of the length scale Tl obtained using a Taylor microscale 
scaling shows that this length scale decreases with both mean flow Reynolds number 
and solids volume fraction. 

For laminar flow past a single sphere, the length scale on which the velocity gradients 
vary is of the order of the boundary layer thickness / pdδ which varies inversely with Rem . 
Thus, we expect this length scale to decrease with increasing solids volume fraction. Since the 
hypothesis of energy cascade probably does not hold in homogeneous gas-solid flow with finite-
sized particles, the applicability of the Kolmogorov scaling is questionable, as also evidenced by 
the behavior of Kl with Rem . On the other hand, the scaling of Tl indicates that the Taylor 
microscale is a better choice to model the dissipation term in gas-solid flows with finite sized 
particles. However, it must be noted that neither Kl nor Kl may correspond to the exact length 
scales of dissipative motions in gas-solids flow. 
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Figure 84. Variation of dissipation length scales with Reynolds number for solid volume 
fractions 0.1 and 0.2. Dashed lines are obtained by modeling the dissipation term as 3/2 /f Kk l  

while the solid lines are obtained by modeling the dissipation as 22 /f f Tk lν . 

 
In several studies the gas-phase Reynolds stress term is modeled in a fashion similar to single–
phase eddy viscosity turbulence model as 

, ,
, ,

2'' '' .
3

f i f j
f i f j T f ij

j i

u u
u u k

x x
ν δ

 ∂ ∂
 = − + +
 ∂ ∂ 

 

In this model Tν is the eddy viscosity for gas-solid flow that is defined as 2 /T f fC kµν ε= with 
Cµ being a model constant. Since we have quantified both fk and fε using particle-resolved DNS, 
we can infer an eddy viscosity for gas-solid flow as a function of solid volume fraction and mean 
flow Reynolds number. The ratio 2 / ( )f f fk ν ε is shown as a function of Rem for differentφ in figure 

85. We see that the ratio 2 / ( )f f fk ν ε increases with both solid volume fraction and mean flow 
Reynolds number. This dependence on the mean flow Reynolds number indicates that the 
transport of gas-phase Reynolds stress can become important if there are large gradients in the 
mean flow and solid volume fraction, as found in many multiphase flow applications. 
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Figure 85. Behavior of the ratio 2 / ( )f f fk ν ε with mean flow Reynolds number for different solid 
volume fractions. 

 
Task 3.2.2: Reynolds stress of pseudo-turbulent fluid velocity fluctuations 

Approach: The eddy viscosity model can be used to model Reynolds stress and the 
components of the stress tensor depend on gradients of mean velocity field. However, in a 
homogeneous system in the absence of mean velocity gradients, eddy viscosity model predicts an 
isotropic Reynolds stress which is in contradiction with recent findings (Uhlmann, 2008; Xu and 
Subramaniam, 2010; Tenneti et al) that show the Reynolds stress is highly anisotropic. 
Therefore, we quantify Reynolds stress from our results and propose an algebraic model for fluid 
Reynolds stress in homogeneous gas-solid flows. 

Any second order tensor such as fluid Reynolds stress can be characterized by isotropic 
and deviatoric parts. The fluid Reynolds stress is defined as 

, , ,'' '' .f ij f i f jR u u=  

The trace of the tensor (a scalar quantity) is the isotropic part, and is twice the level of fk . The 
deviatoric part on the other hand is a second order tensor given as 

, 1 ,
2 3

f ij
ij ij

f

R
b

k
δ= −  

with ijδ being the Kronecker delta. A model was proposed for the isotropic part, fk , as a function 
of volume fraction and Reynolds number. Now we quantify the state of anisotropy of the fluid  
Reynolds stress by decomposing velocity fluctuations along the  streamwise (parallel to mean 
slip) and spanwise (perpendicular to mean slip) directions since the Reynolds stress is observed 
to be axisymmetric along the mean slip. The results indicate that the cross-correlation of velocity 
fluctuations are negligible (not shown here) and the normal component in the parallel direction is 
dominant compared to normal components in perpendicular direction as illustrated in figure 86. 
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(a) (b) 

Figure 86. Deviatoric tensor is shown for different volume fractions and Reynolds numbers 
obtained from fixed bed simulations. The symbols show DNS results and the solid lines represent 
the suggested model. Figures (a) and (b) correspond to ||b andb⊥ , respectively. 
 
Figure 86 indicates that the level of anisotropy increases with Rem from Stokes flow to moderate 
Reynolds numbers (ranging from 20 to 40) and then smoothly decreases. This behavior is 
characterized by length scales of the system, namely the eddy length scale and interparticle 
spacing. The eddy length scale is characterized by 

|| ||0
||

1 ( ) ,
(0)

L R r dr
R

∞
= ∫  

where || ( )R r given as 

|| ||, ||,( ) ''( ) . ''( ) ,
f

f fV
R r d= −∫ u x u x r x  

is the two-point velocity correlation in the parallel direction. The eddy length scale shown in 
Figure 87 decreases with both Rem andφ due to the fact that the flow structures become finer and 
less spatially correlated. 
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Figure 87. Symbols show the eddy length 
scale. The symbols (□), (△), (⋄), (▽) 
correspond to volume fractions 0.1, 02, 0.3, 
and 0.4, respectively. The straight lines show 
the interparticle spacing. 

Figure 88. Radial distribution function 
estimated from 100 realizations for each 
volume fraction. 

  
To compute the interparticle spacing, on the other hand, radial distribution function is used 
which contains all information about the particle configuration, and is given in figure 88 for 
different volume fractions. Since the number of particles in a spherical shell of thickness rδ at 
separation r is 22 ( )pN ng r r rπ δ , the interparticle spacing is estimated as 

max

min

max

min

2

int

2

( )  ( ) 
,

( ) ( ) 

R

R
R

p
R

g r r l f l drL
d g r r f l dr

=
∫
∫

 

which is interpreted as a weighted average of surface to surface distance l (defined as pr d− ) 

among particles. The weight function has the form1/ pl where p is selected to be 1. In 
addition, minR is pd where hard-core spheres come to contact, and maxR is where the second peak 
of ( )g r is located. The results indicate that the interparticle spacing shown as straight lines in 
figure 87 intersect the corresponding eddy length scales at the Reynolds number range (20 
≤ Rem ≤ 40)  where the anisotropy starts to decrease. The characteristics of length scales indicate 
that at low Reynolds numbers, flow structures formed behind particles elongate with Rem that 
give rise to the increase of anisotropy. After moderate Reynolds numbers the wakes become as 
large as the gaps among particles and are broken up due to interaction with neighbor spheres. 
Thus, the anisotropy is now characterized by the interparticle spacing. The modulation of 
elongated structures redistributes the fluctuating velocity energy among Reynolds stress 
components and decreases the anisotropy. 
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To propose a model for the deviatoric tensor, it is only required to model the parallel 
component ||b due to the fact that since || / 2b b⊥ = − and other components are all zero (the 
Reynolds stress is axisymmetric). The model that best fits the data for ||b is 

( )
( )( )/ 1 exp Re

||

0.523
0.303
0.114

e ,
3.5261 exp Re
1.809
0.005

md e f

m

a
b
cab
db c
e
f

φ− + −

=
 =
 =

=  =+ − 
 =


=

 

which is shown in figure 87 with solid lines. Since we have two models for both isotropic and 
deviatoric parts of the Reynolds stress, these models can be used as an algebraic stress model to 
determine the fluid Reynolds stress in homogeneous gas-solid flows in the form given as 

( ) ( )( )3, 1/2 14 5 1 exp Re .
3

f ij
m ij ij

f

R
b

E
φ φ φ φ δ = + − − + 

 
 

Summary:  The level of fluid-phase velocity fluctuations is quantified over a wide range of 
volume fraction (0.1 ≤φ ≤ 0.5) and Reynolds number (0.01 ≤ Rem ≤ 300). Based on DNS data a 
new correlation is proposed for the level of pseudo-turbulent fk in homogeneous gas-solid flows 
as a function ofφ and Rem . It is also observed that the dissipative length scale in these flows 
cannot be represented by Kolmogorov length scale since the cascade of energy hypothesis may 
not hold. Instead, a Taylor microscale dissipative length scale shows a better behavior since it 
reduces with bothφ and Rem and is intuitively correct. In addition, similar to single-phase eddy 
viscosity model, a model is proposed for turbulent eddy viscosity of gas-solid systems that can 
be used to model fluid Reynolds stress. However, in the absence of mean velocity gradients the 
eddy viscosity model predicts an isotropic Reynolds stress which in not consistent with 
numerical observations. Therefore, the anisotropy of Reynolds stress is quantified for DNS data 
that is axisymmetric along the mean slip for all cases. A model is proposed for the anisotropy of 
the Reynolds stress that along with the model for the level of fk can be used to represent an 
algebraic stress model for the fluid Reynolds stress at steady state. The Reynolds stress 
representation in gas-solid flows can be further extended to dynamic models such as 
equilibration of energy (EoE) model where the evolution of Reynolds stress is also included. 
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Goal IV:  Data Collection and Model Validation 
 
Task 4.1:  DEM Simluations of Granular Systems (Hrenya) 

As a first step toward model validation, data from a granular system (no fluid phase) will 
be obtained by using discrete-element method (DEM) simulations.  By initially focusing on a 
system in which the fluid phase plays no role, a validation of the solid-phase-only treatments 
(Goal I) is possible.  Furthermore, by considering systems with a continuous size of 
distributions, the DEM data will provide a much-needed gauge as to the number of discrete sizes 
needed to accurately model a continuous distribution.  A series of systems, characterized by an 
increasing level of complexity, will be simulated.  Particles will be modeled as frictionless, 
inelastic hard spheres, which is consistent with the assumptions used in the continuum model 
development.  The base case will be a one-dimensional, force-free system in which the two 
boundaries are characterized by different, but constant granular temperatures.  The imposed 
temperature gradient will result in species segregation; concentration profiles for this system are 
already available for binary mixtures and continuous size distributions (Dahl & Hrenya, 2004, 
Galvin, et al., 2005) from an in-house DEM code.  An external force (e.g., gravity) will then be 
added to the existing code in a direction perpendicular to the constant-temperature boundaries, 
which will modify the segregation profiles.  Finally, simple rules will be incorporated in both the 
force-free and constant-force case to mimic the evolution of particle size due to reaction (e.g., 
shrinkage with time).  A range of conditions will be examined to ensure robust data. 
 
 (Hrenya reporting.)  Overview.  As described in Task 1.1,  a kinetic theory for a mixture 
of s particle components which differ in size and/or material density has been derived (Garzó, et 
al., 2007a, Garzó, et al., 2007b) for inelastic, smooth hard disks (two dimensions) or spheres 
(three dimensions). The governing equations are contained in Appendix A, so for the sake of 
brevity we start here by introducing the constitutive relations for mass flux ( i0j ), stress ( αβσ ), 
heat flux (q ), and cooling rate (ξ ): 
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U0 ⋅∇+= Uξξξ .              (41) 

where p is the pressure, κ  is the bulk viscosity, η is the shear viscosity, λ  is the thermal 
conductivity, Dq,ijis the Dufour coefficient, Lij is a mobility coefficient, Dijis the mutual diffusion 
coefficient, T

iD is the thermal diffusion coefficient, and F
ijD is the mobility coefficient, 0ξ  is the 

zeroth-order cooling rate, and Uξ  is the first-order transport coefficient for the cooling rate.   
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 Since the newly-developed polydisperse kinetic theory is developed for s discrete 
species, the focus of this task is to determine how to best represent a continuous particle size 
distribution (PSD) using a discrete number of species. Figure 89 shows a schematic 
representation of a continuous PSD in which the frequency of particle size is plotted against the 
particle diameter. The subplots of the figure (89a, 89b, and 892c) illustrate how an increasing 
number of discrete species (2, 3, and 7, respectively) can be used to represent the continuous 
PSD. In choosing such a discrete representation, two questions are relevant: (i) What technique 
should be used to choose discrete particle sizes to represent the continuous PSD, and (ii) What 
number of discrete sizes is appropriate for an accurate representation? Regarding the first 
question, a representation of a continuous PSD using discrete species is pursued via the method 
of moments (MOM). Regarding the second question, the number of discrete species is 
determined by comparing the predictions obtained from all transport coefficients, over a range of 
parameters, using an increasing number of discrete species. The appropriate value of s 
corresponds to the point where the predictions are essentially equal upon further increase of s.   
 Discrete Representation of Continuous Size Distribution.  A few common approaches to 
representing a continuous PSD with a discrete number of sizes are ‘modal’, ‘sectional’ and 
‘moment’ based methods. The method of moments offers a statistically based alternative that is 
more efficient than compared to sectional methods in terms of computational cost and modal-
based methods in terms of accuracy. Hence, the MOM approach is chosen in the current study 
for representing a continuous PSD. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 89.  Schematic representation of a continuous particle size distribution 
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 In the recent work by Fan and Fox (Fan & Fox, 2008), a multi-fluid model based on and 
Eulerian-Eulerian approach and the direct quadrature method of moments (DQMOM) were used 
to predict particle segregation in a gas-fluidized bed. The model predictions were compared to 
the segregation profiles obtained from the discrete-particle simulations of Dahl and Hrenya (Dahl 
& Hrenya, 2005). Their investigation shows that the predictions obtained with two discrete 
species (s = 2) are different than when using three discrete species (s = 3). However, their 
predictions for s = 3 match well with s = 4, suggesting that for a wide PSD with significant 
segregation, three discrete species appear sufficient to represent the system. 
 In the present study, the approach used to determine the value of s needed for an accurate 
representation of a continuous PSD differs from that of Fan and Fox (2008). In particular, the 
transport coefficients developed from the new polydisperse kinetic theory are evaluated, over a 
wide range of parametersfan (e.g., restitution coefficient, solids volume fraction), for various 
values of s. The resulting values are expected to differ from one another for small values of s 
since using a small number of discrete species provides only a “rough” approximation of the 
continuous PSD (Figure 89a). On the other hand, for larger values of s, the transport coefficients 
are expected to collapse onto the same line since they better capture the continuous nature of the 
distribution under consideration (Figure 89c). Accordingly, the transition between the two 
aforementioned behaviors provides an estimate of the value of s needed to accurately represent a 
continuous PSD.  
 Step 1. The first 2s moments of the continuous PSD of interest are calculated. The 
equations for calculating the moments of a Gaussian and lognormal distributions for 
corresponding σsd and dave are obtained from Randolph & Larsen (Randolph & Larson, 1971), 
where the quantitiesσsd and dave represent the standard deviation and mean particle diameter of 
the continuous PSD, respectively.  For a Gaussian distribution, the moments are found by 
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where µj refers to the jth moment. Similarly, for a lognormal distribution, the moments are given 
by 
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 Step 2. Using the values of µ j obtained from the first step, a product difference (PD) table 
is constructed. The PD table is created in a sequence of steps by setting up an upper-left 
triangular array of elements ),( jiP . The elements of first column are  

1i1iP ,),( δ= ,               (44) 

where 01i =,δ  for 1i ≠ and 11i =,δ  for 1i = . The second column contains the moments with 
alternating sign: 

( ) 1i
1i12iP −

−−= µ),( .              (45) 

The remaining elements of the array are obtained via the recursion formula 
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),(),(),(),(),( 1j1iP2j1P2j1iP1j1PjiP −+−−−+−= .         (46) 
 
Only the table elements along the first row are required for the proceeding steps (McGraw, 
1997). This recursion is carried out until a table of the size P (1, s +1) is achieved. 
 Step 3. A new vector α (s) is generated using the table elements beginning with 

01 =)(α and continuing with the following equation 

),(),(
),()(

2s1Ps1P
1s1Ps

−
+

=α .              (47) 

In this portion, the algebra associated with equations (10) and (11) is handled symbolically using 
Maple software.  
 Step 4. A symmetric (upper-left) tridiagonal matrix J is constructed with diagonal 
elements as and off-diagonal elements bs obtained from the α’s determined in the previous step. 

)()( 1s2s2as −+= αα , and 

)()( s21s2b 2
s αα += .              (48) 

The values of sb are obtained as positive square root of 2
sb . Note that 2s elements of type a and 

2(s-1) of type b are required to generate the matrix J. 
 Step 5. Once the matrix J is generated, the diameters (σs) of the discrete representation 
correspond to the eigenvalues and the weights (wj) are obtained from the corresponding 
eigenvectors using the Christoffel and Darboux identity: 

2
1j0j vw µ= ,               (49) 

where 1jv  is first component of the eigenvector vj. 

 Step 6. The volume fractions ( sφ ) associated with the discrete representation are related 
to diameters sσ  and weights sω  by the relation 

ssvs k ωσφ = ,                (50) 

where kv is the volumetric shape factor (kv = π/6 for spherical particles, Fan & Fox, 2007). 
 According to the MOM, the individual moments can be approximated by  

j
j

s

1j
jj σωµ ∑

=
=  .              (51) 

As a check to the calculations above (equations 44-50), the moments obtained for Gaussian 
(equation 42) and lognormal (equation 43) distributions are recovered upon substitution of the 
diameters and weights into equation (51). The steps (1) to (6) have been carried out for s = 2-5 
and the values of the corresponding weights and diameters for s = 2-4 identically match with that 
presented by Fan & Fox (2008) for both Gaussian and lognormal distributions. 

Size Distributions Examined.  In this work, four types of continuous size distributions are 
investigated: (i) Gaussian distributions, (ii) lognormal distributions, (iii) a bidisperse PSD of coal 
particles used for gasification provided by the Department of Energy National Energy 
Technology Laboratory (DOE NETL), and (iv) a simulant of lunar soil provided by National 
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Aeronautics and Space Administration Kennedy Space Center (NASA KSC). Figure 90 shows 
the number-based frequency distribution, fn, for each of these size distributions. For the Gaussian 
and lognormal distributions, a range of distribution widths, σ/dave, where σ denotes the standard 
deviation of the PSD and dave denotes its arithmetic mean, are examined. Accordingly, σ/dave = 0 
corresponds to the monodisperse limit. For Gaussian distributions, the maximum distribution 
width is σ/dave = 30% since a further increase would result in negative (unphysical) particle 
diameters (Dahl, et al., 2002). Due to the extended right tail of lognormal distributions, a similar 
limit does not exist, and here lognormal distributions with σ/dave = 0-90% are considered. 
Figures 90a and 90b show lognormal and Gaussian distributions, respectively, in which the 
average diameter (dave  = 72.6 microns) is held constant, whereas Figures 90c and 90d show 
distributions with a constant root-mean-cube diameter (drmc = 72.6 microns). The former 
distributions were used in analyzing the discrete approximation of continuous PSDs, and the 
latter were used for direct comparison with the MD simulations of Dahl et al. (Dahl, et al., 2003). 
The PSD of coal particles provided by DOE NETL was obtained via sieving and thus was 
provided in a mass-based form in Figure 90e. Note that the bidisperse nature of this distribution 
is no longer apparent when it is converted to a number-based distribution (Figure 90f), which is 
used to obtain a discrete approximation. Lastly, the PSD of a simulant of lunar soil known as 
OB-1 and measured by NASA is shown, with the measured mass-based distribution in Figure 
90g, and the associated number-based distribution in Figure 90h. For purposes of direct 
comparison, the bidisperse coal PSD (DOE NETL) and a lognormal distribution with the same 
average diameter as the OB-1 and a distribution width of σ/dave = 90% are also shown on these 
log-log plots. Relative distribution widths are revealed in Figures 90g and 90h. The lognormal 
distribution exhibits a high frequency of particles with diameters near the average diameter (dave 
= 0.57); however, the frequency quickly approaches zero as the particle diameter is increased. 
On the other hand, the lunar soil simulant distribution (OB-1) and coal PSD exhibit moderate 
frequencies for a larger range of particle diameters. Thus, the experimental distributions contain 
a larger “width” of particle diameters. Because the OB-1 distribution and the coal PSD have 
different average diameters, the relative width of these distributions is not so obvious. However, 
by approximating each experimental PSD with a lognormal distribution of appropriate width, it 
was determined that the lunar soil simulant distributions are much wider than the coal PSD. For 
the sake of brevity, the OB-1 lunar soil simulant is the only shown lunar PSD. It is worth noting 
that distributions of several other lunar soil simulants (OB-1, JSC-1a, LHT-2M, BP-1) and a 
sample of lunar soil were investigated; the resulting trends are similar to those of OB-1 and thus 
only the representative results of OB-1 are included below for the sake of brevity. 
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Figure 90.  Number-based frequency (fn) for (a) lognormal PSD with constant dave, (b) Gaussian 
PSD with constant dave, (c) lognormal PSD with constant drmc, and (d) Gaussian PSD with 
constant drmc. Frequency distributions of coal particles in terms of a (e) mass and (f) number 
basis. Frequency distributions of lunar soil simulant (OB-1) in terms of a (g) mass and (h) 
number basis. 
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Results.  To determine the impact of the choice of s on the accuracy of the discrete 
approximations to continuous PSDs, such approximations are obtained for various values of s for 
each of the PSDs considered here. Then, kinetic-theory predictions of transport coefficients are 
evaluated using GHD theory for each of the discrete approximations.  By comparing predictions 
for discrete distributions at various values of s, the minimum number of species (smin) needed to 
achieve the desired accuracy can be determined. Using these values, kinetic-theory predictions of 
discrete distributions are then compared to MD simulations of simple shear flows with 
continuous size distributions. Representative results are presented below. A more comprehensive 
review of this task, including additional results, are given in the preprint attached in Appendix H. 
 Figures 91 and 92 show how the pressure and shear viscosity vs. restitution coefficient, 
respectively, change with the number of species for lognormal distributions with φ = 0.3 and 
distribution widths of σ/dave = 10% (Figures 91a and 92a) and σ/dave = 70% (Figures 91b and 
92b). Expectedly, as the number of discrete species s used to approximate the continuous 
distribution increases, the curves begin to collapse on one another. As described in Section II.C, 
once a 2% or less error is established among three consecutive approximations (e.g., s = 2, 3, 4) 
of a transport coefficient over the entire range of restitution coefficients shown, the minimum 
number of species for desired accuracy (smin) has been determined. For instance, Figure 91a 
indicates that predictions of pressure using s = 2, 3, or 4 are extremely close to one another (< 
2% change). Therefore, only 2 species are deemed necessary to approximate the pressure of a 
lognormal PSD with σ/dave = 10% and φ = 0.3. Comparing Figure 91a to Figure 92b, it is evident 
that the number of species used in the discrete approximation of a lognormal PSD has a larger 
effect for wider distributions. Specifically, Figure 91a shows that the monodisperse prediction of 
pressure agrees qualitatively and quantitatively well with the polydisperse predictions (s = 1-10) 
for a narrow lognormal distribution (σ/dave = 10%). However, for the wider continuous 
lognormal PSD (σ/dave = 70%) of Figure 91b, the pressure predictions for s > 1 are quite 
different quantitatively than the monodisperse counterpart (s = 1). Moreover, Figure 91b shows 
that pressure predicted using s = 2-10 is slightly non-monotonic, whereas the monodisperse 
prediction increases monotonically with restitution coefficient. Nevertheless, both discretizations 
require 2 particles species for the established criterion to be met for granular pressure (i.e., smin = 
2), regardless of vast differences in distribution width.  Finally, as seen when comparing the 
shear viscosity of different distribution widths in Figures 92a and 92b, the trends are similar to 
those of pressure (Figures 91a and 91b), though smin = 3 for σ/dave = 70%.  
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Figure 91. Predictions of granular pressure as a function of coefficient of restitution for 
lognormal distributions with σ/dave of (a) 10% and (b) 70% using GHD theory. The overall 
volume fraction of the system is φ = 0.3. 
 

Figure 92. Predictions of shear stress as a function of coefficient of restitution for lognormal 
distributions with σ/dave of (a) 10% and (b) 70% using GHD theory. The overall volume fraction 
of the system is φ = 0.3. 
 
 Results of dimensionless pressure and shear viscosity are also given for the bidisperse 
NETL distribution of coal particles (figure 93). When the bidisperse mass-based distribution is 
converted to a number-based PSD, the resulting distribution is extremely right-skewed (figure 
90f), similar to a very wide lognormal distribution. Figure 93a shows that the monodisperse 
approximation (s = 1) of pressure is both qualitatively and quantitatively different than the 
polydisperse (s > 2) approximations. More notable is the discrepancy among discrete 
approximations for the shear viscosity (figure 93b). The predictions using s = 3 and s = 4 are 
almost indistinguishable; however, adding a fifth particle species causes a significant change in 
the prediction of shear viscosity. Predictions of this NETL distribution are obtained to s = 10 to 
ensure this pattern does not continue. Accordingly, the number of species required to accurately 
capture the pressure and shear viscosity of the NETL distribution is smin = 6 for both quantities. 
The need for a larger number of species to accurately approximate the NETL distribution comes 
about from the width of the PSD. Specifically, figures 90g and 90h show the large width of the 
NETL distribution relative to a lognormal distribution with σ/dave = 90%. Because the 
frequencies associated with the NETL distribution remains moderate over a larger range of 
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particle diameters than those in the lognormal distribution, the coal PSD contains a larger width 
of particle diameters. Therefore, it is reasonable that the values of smin for the NETL distribution 
are greater than or equal to the values of smin for the Gaussian and lognormal distributions 
investigated here. 

 

Figure 93. Predictions of (a) granular pressure and (b) shear stress as a function of coefficient 
of restitution for NETL distribution of coal feedstock for gasification. The overall volume 
fraction of the system is φ = 0.3.  
 

For the sake of brevity, only representative results are shown above. The results obtained 
for the remaining transport coefficients (ζ(0), ζu, and κ) behave in a similar fashion. A summary 
of these results over the parameter space evaluated is given in Table 5. Each value in Table 5 
corresponds to the minimum number of species (smin), as determined by the 2% criterion 
established in Section II.B. It is important to note that the number of species required to 
accurately represent a continuous PSD with σ/dave = 0-90% is generally quite low (smin = 1 – 5). 
However, the much wider distributions (i.e., lunar soil simulant) may require as many as 8 
particle species (smin = 8). 

Another notable trend that is revealed in Table 5 is that distribution width generally has a 
larger effect on the number of species required for an accurate discretization (smin) of a given 
continuous PSD than does the volume fraction. More specifically, the values in Table 5 increase 
more within rows (varying σ/dave) than within columns (varying φ). To better illustrate this trend, 
figure 94 displays the dependency of number of discrete species required on both distribution 
width (Fig. 940a) and overall volume fraction (Fig. 94b). A sufficient increase in distribution 
width (σ/dave = 0-90%) always shows an increase to the number of species required, whereas the 
increases volume fraction may decrease (η) or not affect (ζ(0), ζu , p, κ) the number of species 
needed. For instance, figure 94b shows that predictions for shear stress require fewer species at 
higher volume fractions, whereas the remaining transport coefficients require the same number 
of species regardless of the volume fraction (φ = 10-8 - 0.5). In sum, for all but one coefficient 
(η), s is independent of φ, though the same is not true for σ/dave. 

 
 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 116 

Table 5. Summary of minimum number of species (smin) required to accurately 
approximate Gaussian, lognormal, bidisperse coal (NETL), and lunar soil (OB-1) 
size distributions with a discrete number of species. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 94. Minimum number of species required (smin) for a (a) lognormal distribution with a 
volume fraction of φ = 0.3 and varying σ/dave and (b) a lognormal distribution with σ/dave = 50% 
and varying φ. 
 

Finally, Table 5 can be used as a guide for determining how many species are needed for 
a specific flow system. For instance, if a specific flow geometry is dominated by the granular 
pressure and contains a Gaussian PSD with σ/dave = 30% and the overall volume fraction is 
predominantly φ = 0.05, only two particle species are necessary for the level of accuracy 
described here (2%). However, if a different flow geometry with the same PSD and overall φ is 
dominated by the zeroth-order cooling rate, three particle species are necessary for a similarly 
accurate approximation. Thus, in order to use these results in a practical application, some 
information must be known about the dominating effects of a system a priori. Alternatively, the 
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maximum value of smin among all transport coefficients examined may be used as a guide. 
Further discussion on the pros and cons of the use of Table 5 (or a similar analysis for other 
distributions) as a guide for determining the appropriate number of discrete species for a given 
application is included in Concluding Remarks (Section IV).  

Molecular dynamics (MD) simulations of lognormal and Gaussian distributions 
undergoing simple shear flow (SSF) have been performed by Dahl, Clelland, and Hrenya (Dahl, 
et al., 2003). In the current work, the simulation data is used not only to confirm for the 
minimum number of species (smin) required for an accurate discrete approximation (as reported in 
previous section), but also to test the accuracy of the GHD theory. The parameters used as inputs 
for the MD simulations are included in Table 2 of Appendix H; the outputs include both pressure 
and viscosity. This MD data is displayed in Figures 95 and 96 for lognormal and Gaussian 
distributions of various widths, respectively. Also shown in Figures 95 and 96 are the predictions 
obtained from GHD theory for several discrete approximations (various s) of the given 
continuous PSDs. Note that these predictions were obtained by first solving the energy equation 
(the only nontrivial equation for SSF) for granular temperature (T) using the appropriate discrete 
approximation, and then using this value of T to evaluate the pressure and shear viscosity.  The 
DOE-based code MFIX (Multiphase Flow with Interphase Exchanges, www.mfix.netl.doe.gov), 
which contains the GHD theory, was used for these purposes. 

The results displayed in Figures 95 and 96 demonstrate that the number of species 
required for an accurate approximation of pressure and shear viscosity is correctly predicted by 
the approach described in the previous section. More specifically, a value of s = 3 is sufficient in 
each case, as consistent with the values given in Table 5 (whereas smaller values of s do not 
achieve the desired accuracy). Figures 95 and 96 clearly show drastic differences between the 
monodisperse approximation and the ternary approximation (s = 3), where the ternary prediction 
using GHD theory is far more accurate. However, increasing the number of species to s = 5 in 
the discrete approximation shows little to no change at all, which further supports the predictions 
summarized in Table 5. 

Though the monodisperse approximation of pressure and shear viscosity using GHD 
theory is appropriate in the monodispesre limit (i.e., σ/dave = 0), a larger number of particle 
species is required as the width of the PSD increases. Recall that for the MD data, the root mean 
cube of the continuous distribution was held constant (drmc = 72.6 microns). However, the 
dimensionless pressure and shear viscosity are plotted with respect to σ/dave. In order to maintain 
a constant drmc while increasing σ/dave, dave decreases accordingly, and thus the monodisperse 
approximations (i.e., s = 1) do not remain constant along the x-axis in Figures 95 and 96.  

Regarding the validity of the GHD theory to predict properties of a continuous PSD, it is 
clear from Figures 95 and 96 that the GHD predictions using s = 3 and MD data are in close 
qualitative, as well as quantitative, agreement. From a qualitative perspective, the MD data 
displayed in Figures 95 and 96 indicate that the quantities behave non-monotonically with 
respect to the distribution width. This qualitative trend is captured by the polydisperse (s = 3, 5) 
GHD predictions, but not the monodisperse counterparts (s=1). Perhaps more importantly is the 
quantitative agreement between GHD predictions and MD data. For instance, Figure 96b shows 
a maximum percent difference between the s = 3 prediction and the MD data of 4%. For the 
widest distributions, GHD predictions have similar accuracy when compared to MD data as in 
the monodisperse limit (σ/dave = 0). Therefore, no loss of accuracy arises from the polydisperse 
theory itself (relative to monodisperse), nor due to the discrete approximations of continuous 
PSDs.  
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Figure 95. Dimensionless (a) pressure and (b) shear stress as a function of σ/dave for lognormal 
distributions. Comparison of MD simulation data to GHD theory predictions using an increasing 
number of particle species. Overall volume fraction: φ = 0.3, restitution coefficient: α = 0.85.   
 

 
Figure 96. Dimensionless (a) pressure and (b) shear stress as a function of σ/dave for Gaussian 
distributions. Comparison of MD simulation data to GHD theory predictions using an increasing 
number of particle species. Overall volume fraction: φ = 0.3, restitution coefficient: α = 0.85. 
See Figure 95a for legend.  
 
 
Task 4.2:  Eulerian-DEM  Simulations of Gas-Solid Systems (Subramaniam) 

To assess the accuracy of the closures developed using KTGF and DQMOM in the 
presence of a fluid phase, simulations of a central-jet fluidized bed will be performed.  The 
Eulerian-DEM solver in MFIX, which will be modified to incorporate the newly-developed, 
polydisperse drag law (Goal II), will be used.  Simulations will be performed for various 
distributions, and the effect of an evolving particle size will be incorporated.  A comparison of 
the continuum predictions with the Eulerian-DEM result will give a direct assessment of the 
accuracy of the KTGF and DQMOM closures in the presence of a fluid.   

 
(Subramaniam reporting.) The objective of this task is to use MFX-DEM as an 

intermediate validation step of the drag models developed in task 2. Particle-resolved simulations 
of gas-solid flow performed by the Subramaniam research group in tasks 2.2 and 2.3 has resulted 
in the development of two new models: (i) a new model for the mean drag force at moderate 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 119 

Reynolds number (ii) a new model for the instantaneous particle acceleration. The 
implementation and verification of these models in MFIX-DEM is described in this report.  
 
Implementation and verification of the new model for the mean drag force 

The fluid momentum equation solved in MFIX-DEM is given by 

 gg g g g g g
1

( ) .
M

m
m

D S
Dt

ε ρ ε ρ
=

= ∇ + − ∑v g I .   

Statistical homogeneity of the test case leads to the following simplified momentum equation: 
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P
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      (52) 

  
The test case is modeled in MFIX-DEM using a single cell with an L/D ratio of 7.5 and a solid 
volume fraction of 0.2. The mean slip Reynolds number defined as 

 
( )1

Re g p
m

g

dφ ρ
µ

−
=

W
 

was specified to be 20. The mean slip velocity W is defined as the difference between the 

mean particle velocity and the mean fluid velocity ( ) ( )p f= −W v u . The particles were fixed 
in space with zero velocities. The new IBM drag law developed in task 2.2 was used to compute 
the drag force on the particles. 

The simplified momentum equation (52) was solved using Runge-Kutta 2nd order method 
in Matlab. The under-relaxation factors of the fluid momentum equations were taken as 1 in 
MFIX-DEM simulation as was the case in Matlab. The comparison of the results (evolution of 
mean slip Reynolds number) is shown in Figure 97. The graph shows that the solutions match 
exactly and verifies the implementation of the drag law. 

 
 
 
 
 
 
 
 
 
 
 
Figure 97. Comparison of MFIX-DEM and Matlab solutions of the 
evolution of mean slip Reynolds number. 
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Implementation and verification of the instantaneous particle acceleration model: In 
task 2.1 it was shown that simple extension of a class of mean particle acceleration models does 
not recover the joint particle acceleration-velocity statistics, leading to incorrect granular 
temperature evolution. Therefore, an instantaneous particle acceleration model of the Langevin 
equation form has been developed in task 2.3 that accounts for the particle velocity fluctuations 
and the hydrodynamic effects of the neighboring particles. This particle acceleration model 
results in a better prediction of granular temperature. The Langevin model for velocity increment 
of the particles is given by 

 =i i i idv W dt dv dt Bβ γ ′′− − +    

where idv  is the particle velocity increment, jW is the slip velocity, iv′′ is the fluctuating velocity 
of the particle, β is the  interphase momentum transfer coefficient, γ and B are the Langevin 
model coefficients and id is the Wiener process increment. At moderate Reynolds numbers, 
particle-resolved DNS is used to specify the Langevin model coefficients, while the theory of 
Koch (1990) and Koch and Sangani (1999) is used to specify the model coefficients in the Stokes 
flow regime. 

Dilute suspensions in Stokes flow: In Stokes flow of highly massive particles in a dilute 
suspension, the steady state particle velocity distribution is shown to be an isotropic Maxwellian 
by Koch(1990). Koch derived analytical expressions for the source and dissipation of granular 
temperature in the limit of low volume fractions and low Reynolds numbers in the form of  

 22 ,
3

ISdT R T S
dt τ

= − + = −Γ +  (53)   

where 1/21 3 / 2R φ= + is the non dimensional particle momentum relaxation rate, 

( ) ( )2 1/2 2 1/2/ 2IS a Tπ τ= W is the source term due to hydrodynamic interactions and 

( )/ 6 fm aτ πµ= is the characteristic timescale over which the velocity of a particle of mass m and radius 

a relaxes due to viscous forces. 
The evolution equation of granular temperature implied by the Langevin model is  

 22dT T B
dt

γ= − +  (54) 

 Comparing Eq.53 and Eq.54, we get the Langevin model coefficients for the Stokes flow case with 
elastic particles as  

 1/21 31
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These coefficients have been used to develop an Enskog kinetic theory for monodisperse gas-
solid flow in collaboration with the PI, Professor Hrenya [cite?].  

The proposed particle acceleration model has been coded into MFIX-DEM and two test 
cases were chosen to be simulated with different initial Reynolds numbers based on granular 
temperature defined as 
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T d
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The initial TRe was chosen to be 0.0083 and 0.17 in the two cases respectively. The 
particles were initialized with velocities distributed according to a Maxwellian corresponding to 
these two values of initial TRe . A single cell for the entire domain was used. The box length-to-
particle diameter ratio / pL d  ratio was taken as 7.5 and the solid volume fraction φ was taken as 
0.2. The Reynolds number based on the mean slip velocity is defined as  

( )1g p
m

g

d
Re

ρ φ
µ

−
=

W
 

and is taken to be 0.5. The dispersed phase to carrier phase density ratio /p gρ ρ  is taken to be 
200. The fluid was initialized with a velocity corresponding to the mean slip Reynolds number.  

The evolution of mean slip Reynolds number is shown in Figure 98. The figure indicates 
that the mean slip velocity is recovered exactly. 

 
Figure 98. Evolution of mean slip Reynolds number – Mean slip velocity is recovered exactly. 

Equation 53 was solved using Matlab with the different aforementioned initial conditions 
and the results were compared with the results obtained using MFIX-DEM. The comparison of 
the variation source and dissipation terms with granular temperature is shown in Figure 99. The 
plot shows that the solutions obtained using MFIX-DEM and Matlab match very well. The 
intersection point of the source and dissipation curves determines the steady state granular 
temperature.  
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Figure 99. Comparison of MFIX-DEM and Matlab solution - Source & Dissipation terms vs. 
Granular temperature. 

The comparison of the evolution of granular temperature is shown in Figure 100. The 
plot shows that the Matlab solution and MFIX-DEM solution match well. Also, irrespective of 
the initial conditions, granular temperature reaches the same steady state value.  

 
Figure 100. Evolution of granular temperature with different initial TRe  

Dense suspensions in Stokes flow: In Stokes flow of highly massive elastic particles in 
moderately dense and dense suspensions, the steady state particle velocity distribution to leading 
order is shown to be Maxwellian by Koch and Sangani (1999). They used the multi-pole 
expansion method to evaluate the source of the granular temperature due to hydrodynamic 
interactions. The Langevin model coefficients in this regime are given by 

( )dissR φ
γ

τ
=  



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 123 
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In the expressions given above, ( )dissR φ is the viscous energy dissipation in a suspension with a 

Maxwellian particle velocity distribution (Sangani et al., 1996), ( )/ 6 fm aτ πµ= is the 

characteristic timescale over which the velocity of a particle of mass m and radius a relaxes due 
to viscous forces, W  and *S being the mean slip velocity and dimensionless source 

respectively. The non-dimensional source is expressed as 

 ( )* 2
1/2

1
2 s dragS R Rφ
π

= , 

where sR represents the energy source due to a specified mean force acting on the particles and 

dragR is the drag coefficient. Expressions for dissR , sR and dragR are given by Koch and Sangani 
(1999).  

Two test cases with different initial granular temperatures were simulated to verify the 
implementation of this model. A single cell was used for the computational domain which was 
taken as a cubic box with periodic boundaries in all the directions. The box length-to-particle 
diameter ratio / pL d  was taken as 7.5 and the solid volume fraction φ was taken to be 0.2. The 
mean slip Reynolds number and the dispersed phase to carrier phase density ratio /p gρ ρ  were 
taken to be 0.5 and 200 respectively. The fluid was initialized with a velocity corresponding to 
the mean slip Reynolds number. A comparison between the results obtained by using MFIX-
DEM and those obtained by using Matlab is shown in Figure 101.  Figure 101 shows that the 
source and dissipation terms reach the same value irrespective of the initial conditions to give 
rise to the same steady-state granular temperature in both the test cases which is shown in Figure 
102. 
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Figure 101. Comparison of MFIX-DEM and 
Matlab solutions - Source & Dissipation terms vs. 
Granular temperature. 
 

 
Figure 102. Evolution of granular temperature 
with different initial TRe . 

Dense suspensions at moderate Reynolds numbers: The particle acceleration model for 
monodisperse gas-solid suspensions at moderate Reynolds numbers proposed in Task 2.3 has 
been implemented in MFIX-DEM. The model coefficients are specified as the departures from 
their steady-state values given by the PUReIBM results. A few test cases were run using MFIX-
DEM to study the effect of the initial conditions on the steady-state of the system. Figure 103 
shows that the steady temperature attained by the system is not influenced by the initial 
conditions. It also shows that without the use of a Langevin-type particle acceleration model, the 
granular temperature decays to zero and emphasizes the necessity of such model.  
 

 
Figure 103. Evolution of granular temperature with different initial conditions. 
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Two test cases corresponding to mean slip Reynolds numbers of 10 and 20 were solved using 
MFIX-DEM as well as Matlab (solution of the granular temperature evolution ODE). The results 
are shown in Figure 104. The plots shown in Figure 104 indicate that the steady-state values 
predicted by the model are very close to the PUReIBM results. The difference in the evolution is 
due to the perturbed initial granular temperature values in MFIX-DEM and Matlab solutions. 
These results show that the particle acceleration model implemented in MFIX-DEM predicts the 
correct evolution of granular temperature over a range of the relevant physical parameters. 
 

 
 

Figure 104. Evolution of granular temperature in both the test cases: Rem = 10, 20. 

 
Task 4.3:  Experiments in a Low-Velocity, Fluidized Bed (Hrenya and Cocco) 

The experimental apparatus available at Colorado will be used to gather axial 
segregation data in a low-velocity, gas-fluidized bed.  The focus will be on particles that do not 
evolve with time, and thus this data will provide a test of the ability of KTGF and DQMOM 
models to predict species segregation.  To complement the existing data for a binary mixture 
(with differences in size and/or density), the focus here will be on particles of the same material 
with a continuous distribution of sizes. A range of operating conditions (e.g., gas flow rates, 
widths of size distributions, particle material, bed height) will be explored.  Fluidization curves 
(pressure drop vs. gas velocity) will be generated.  Bubble characteristics will be measured via 
an existing optical fiber probe developed by Cocco.  Axial concentration profiles will be 
measured after the gas velocity has been suspended via layered extraction, followed by sieving.  
(The method is thus restricted to low gas velocities in which segregation during the free-fall of 
particles is effectively eliminated.)  
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Hrenya reporting). Task 4.3.1: Species Segregation of Continuous Particle Size 
Distributions2 
 

 Abstract:  Bubbling, gas-fluidized bed experiments involving Geldart Group B 
particles with continuous particle size distributions (PSDs) have been carried out. Sand of 
various widths of Gaussian or lognormal distributions were completely fluidized, and then axial 
concentration profiles were obtained from frozen-bed sectioning.  Similar to previous works on 
binary systems, results show that mean particle diameter decreases with increasing bed height, 
and that wider Gaussian distributions show increased segregation extents.  Surprisingly, 
however, lognormal distributions exhibit a non-monotonic segregation trend with respect to 
distribution widths. In addition, the shape of the local size distribution is largely preserved with 
respect to that of the overall distribution. These findings on the nature of local size distribution 
provide experimental confirmation of previous results for granular and gas-solid simulations. 
Lastly, an interesting observation is that although monodisperse Geldart Group D particles 
cannot be completely fluidized, their presence in lognormal distributions investigated still results 
in complete fluidization of all particles. 

Introduction: Bubbling fluidized beds belong to the lower velocity regime of gas-solid 
fluidized systems that are important in numerous industries, examples of which are Union 
Carbide Low-density Polyethylene and Mitsui Petrochemical Polypropylene(Kunii and 
Levenspiel 1991). The majority of such systems are characterized by a range of particle sizes 
and/or densities, and the various particle species de-mix, or segregate, according to size and 
density (Rowe and Nienow 1976; Tang and Puri 2004; Cui and Grace 2007). Hence, an 
enhanced understanding of polydisperse flows will allow for an improvement of such existing 
operations and a more efficient design of new operations. Yet, despite the prevalence of 
continuous size distributions in industrial fluidized beds, most previous segregation studies have 
been focused on binary mixtures consisting of two particle types of different sizes and/or 
densities. A brief review of species segregation experiments and simulations in bubbling 
fluidized beds with binary mixtures has been presented by Joseph et al.(Joseph, Leboreiro et al. 
2007). Comparatively, few efforts have been devoted to the investigation of continuous size 
distributions; these previous contributions are described below.  
 Experimental results have been presented on the impact of continuous size distributions on 
the fluid mechanical behavior of bubbling beds, with effects ranging from minimum fluidization 
velocity(Sun and Grace 1990; Gauthier, Zerguerras et al. 1999; Lin, Wey et al. 2002), bubble 
sizes(Beetstra, Nijenhuis et al. 2009), pressure fluctuations(Grace and Sun 1991), presence of 
particles in bubbles(Sun and Grace 1990; Sun and Grace 1994), etc. The contribution by Grace 
and Sun(Grace and Sun 1991) represents one of the earliest reviews on the influence of particle 
size distribution (PSD) on the quality of fluidization, and they summarized that a wider PSD (of 
Geldart Group A particles) culminates in enhanced reactor efficiency through improved inter-
phase mass transfer and better gas-solid contacting. One factor impacting gas-solid interaction is 
the degree of species segregation, and a few efforts have reported on species segregation for 
continuous size distributions(Hoffmann and Romp 1991; Gauthier, Zerguerras et al. 1999; Lin 
and Wey 2004). Hoffman and Romp(Hoffmann and Romp 1991) investigated a Gaussian 
distribution of Group B particles with a distribution width of 30% (i.e., ratio of standard 

                                                 
2 Chew, Wolz and Hrenya, “Axial segregation in bubbling gas-fluidized beds with Gaussian and 
lognormal distributions of Geldart Group B particles”, AIChE Journal, 2011, 56 (12), p 3049-3061. 
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deviation, σ, to the average diameter, dave), under various superficial gas velocities (Us).  They 
found segregation of the smallest and largest particles, respectively, at the upper and lower layers 
of the bed, which is qualitatively similar to previous findings for binary mixtures(Hoomans, 
Kuipers et al. 2000; van Wachem, Schouten et al. 2001; Bokkers, Annaland et al. 2004; Joseph, 
Leboreiro et al. 2007). Because of the presence of more size species in a continuous distribution, 
concentration maxima of particles of different sizes at different heights were observed along the 
bed. It was also found that species segregation continues to exist for velocities significantly 
higher than the minimum fluidization velocity. This particular Gaussian distribution reported is 
also one of the distributions investigated in this work. Lin and Wey(Lin and Wey 2004) and 
Gauthier et al.(Gauthier, Zerguerras et al. 1999) both compared a narrow cut, a binary mixture, a 
uniform distribution and a Gaussian distribution to examine how different PSDs affect 
fluidization. Lin and Wey(Lin and Wey 2004) found that the narrow cut and Gaussian 
distribution exhibited the best fluidization quality, which was defined as the least amount of  
pressure fluctuations. Gauthier et al.(Gauthier, Zerguerras et al. 1999) further observed that 
Gaussian PSD and narrow cut hardly segregate, whereas binary and flat PSD mixtures always 
segregate. Collectively, these experimental works provide some insight on how continuous 
distributions segregate relative to other types of distributions. What is still missing is the impact 
of the width of continuous distributions on segregation behavior, which is addressed in this work.  
 In addition to the experimental works on continuous PSDs in bubbling beds discussed 
above, a number of modeling efforts supplement the experimental results. Size-segregation in 
gas-solid fluidized beds containing continuous PSDs has been examined via Eulerian-
Lagrangian(Dahl and Hrenya 2005) and Eulerian-Eulerian(Fan and Fox 2008) simulations, with 
both indicating that wider distributions show more extensive segregation than narrower ones. 
Earlier molecular-dynamics simulations involving granular flow (i.e., no interstitial fluid) led to 
a similar conclusion(Dahl and Hrenya 2004). More specifically, Dahl and Hrenya(Dahl and 
Hrenya 2005) employed an Eulerian-Lagrangian model of a gas–solid fluidized bed to investigate 
the species segregation (de-mixing) behavior of both Gaussian and lognormal distributions over 
a range of distribution widths, restitution and friction coefficients, and gas velocities. The results 
indicate that: (i) the average particle diameter decreases as the height within the bed increases, 
(ii) the level of segregation increases with an increase in the width of the PSD, and (iii) shape of 
the local size distribution (i.e., Gaussian or lognormal) is found to mimic that of the overall size 
distribution in most regions of the fluidized bed. To date, experimental validation of points (ii) 
and (iii) have not been pursued, which serves as further motivation of the current work. Due to 
the assumptions incorporated in such simulations, experimental validation of models is 
important. In particular, recent work has indicated that the drag law treatment plays a crucial role 
in the qualitative and quantitative nature of segregation of polydisperse systems(Beetstra, van der 
Hoef et al. 2007; Leboreiro, Joseph et al. 2008).  In the earlier DEM simulations of Dahl and 
Hrenya(Dahl and Hrenya 2005), however, an ad hoc treatment of the polydisperse drag law was 
used since more rigorous, lattice-Boltzmann-based treatments(Van der Hoef, Beetstra et al. 2005; 
Yin and Sundaresan 2009) were not yet available. 
 In an effort to build on the previous knowledge on the effect of continuous size 
distributions on species segregation, the objective of the current work is twofold: (i) to 
experimentally determine the impact of the width of the distribution on the degree of 
segregation, and (ii) to experimentally determine the shape of local size distributions throughout 
the bed. Experiments have been carried out involving both Gaussian and lognormal PSDs of 
Geldart Group B particles in low-velocity bubbling beds, with an emphasis on axial 
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concentration profiles. The results validate the trends observed in previous simulations(Dahl and 
Hrenya 2005) in terms of the segregation of larger particles to the bottom of the bed, a positive 
correlation between width of Gaussian distribution and segregation extent, and a general 
preservation of the shapes of local distributions. A surprising fourth finding, however, lies in the 
non-monotonic behavior of segregation extents with widths of lognormal distributions.  
Specifically, as the width of a lognormal distribution increases, the segregation extent increases 
and then decreases.  
 Finally, although not a primary focus of the current effort, interesting observations were 
also made for the fluidization behavior of Geldart Group D particles. Albeit the focus of this 
work being on Geldart group B particles, it is important to note that wide PSDs may, by 
necessity, span more than one Geldart group. This work presents evidence that the presence of 
Group B and D particles in a continuous distribution allow the Group D particles constituents to 
be fully fluidized even when a monodisperse suspension of the same Group D particles do not 
completely fluidize. The poor fluidization quality of the Group D particles is evidenced by the 
discrepancy between the actual bed mass and that calculated via the fluidization curve data. 

Experimental Description–Experimental Apparatus: A schematic diagram of the 
experimental set-up for all fluidization experiments is shown in Figure 105, which is identical to 
that used by Joseph et al.(Joseph, Leboreiro et al. 2007).  Particles are fluidized in a Plexiglas 
column which is 18.5 cm in diameter.  A Yaskawa V7 variable frequency drive controls a Fuji 
Electric VFD5 regenerative blower that provides the air for fluidization.  A National Instruments 
LabVIEW program (version 7.1) remotely controls the driver.  A Mott Corporation 316 stainless 
steel sintered porous plate, with an average porosity of 40% and 1.6 mm thickness, serves as the 
distributor plate.  The superficial velocity (Us), which is reported at local atmospheric conditions 
(air with a 0.97 kg/m3 density and 1.85 × 10-5 Pa·s viscosity), is determined based on 
measurements via a Lambda Square Oripac 4150-P orifice plate flow meter, which is located 
upstream of the plenum.  Relative humidity (RH) in the unit is enhanced by an Air-O-Swiss 
model AOS 7144 humidifier placed at the inlet of the blower. Relative humidity (RH) is kept 
above 40% for all experiments to help reduce electrostatics(Ciborowski and Wlodarski 1962; 
Tardos and Pfeffer 1980; Guardiola, Rojo et al. 1996; Hendrickson 2006). The operating air 
temperature and RH in the plenum are measured by means of an Omega HX93AV-RP1 probe, 
with a temperature range of -4 to 171 oC and RH range of 0 to 100%, inserted into the plenum.  
The pressure drops across the orifice plate flow meter, across the distributor plate, and across the 
entire fluidized bed are measured using Orange Research 20100 Series low-differential pressure 
transmitters with the ± 0.2% accuracy option.  Pressure drop statistics across the orifice meters 
are transmitted to the computer and superficial velocities computed. All temperature, relative 
humidity, superficial velocity and pressure data are recorded throughout the experiments. 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 129 

 
Figure 105. Schematic of fluidized-bed experimental set-up. 

 
Particle Size Distributions (PSDs): Two continuous size distributions, namely Gaussian 

and lognormal, were examined using sand particles. The sand was acquired from US Silica 
Company, with a specific gravity of 2.65. Various distribution widths were examined; the 
distribution width is defined as the ratio of standard deviation (σ) of particle size distribution to 
sauter-mean particle diameter (dsm). The range of σ/dsm used for Gaussian distributions is 10% to 
30%.  These lower and upper limits are specified such that the system will not resemble a 
monodisperse system and will not require negatively-sized particles, respectively. The range of 
σ/dsm used for lognormal distributions is 10% to 70%. The lower limit is 10% because it is 
observed that a lognormal distribution with σ/dsm = 10% is similar to the Gaussian distribution 
with the same σ/dsm, so the results for the Gaussian distribution with σ/dsm = 10% will be used in 
the analysis for lognormal distributions too. The upper limit is established to avoid using sand 
particles of greater than 2.8 mm, which are scarce. 
 As mentioned above, this effort focuses on Geldart Group B particles fluidized by air under 
atmospheric conditions. For operation strictly within Geldart Group B classification(Geldart 
1973), the size range of the sand particles was calculated to be 80 - 670 µm, and this is the range 
used for all Gaussian distributions investigated. For the wider lognormal distributions (σ/dsm > 
30%), however, some bigger particles in the Geldart Group D classification were required since 
the entire Geldart Group B range is not wide enough to contain the full distribution of particle 
sizes. The Sauter-mean diameter (dsm) of all the Gaussian and lognormal distributions under 
investigation was set to 375 µm, which is the middle value of the stipulated Group B size range. 
In this work, dsm is kept constant and the widths of the continuous PSDs (denoted σ/dsm) are 
varied. The dsm is used instead of other characteristic diameters since it is the most physically 
relevant.  Namely, dsm is the ratio of the volume-based to surface-based diameters, the former of 
which is proportional to the gravitational force and the latter of which is proportional to the drag 
force. The size distributions used in the experiments were prepared based on exact expressions 
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for the frequency distribution function (fm) for Gaussian and lognormal systems: 

 

 

fm, Gaussian (x) =
1

σ 2π
exp −

(x − x)2

2σ2

 

 
 

 

 
                               (55) 

where σ is the standard deviation of the mass-based PSD, x is particle diameter, and 

 

x  is the 
arithmetic mean of the mass-based PSD. Analogously, the mass-based lognormal distribution is 
defined as  

 

 

fm, lognormal (x) =
1
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exp −

(ln(x) − µ)2

2σµ
2

 

 
 

 

 
                                (56) 

 
whereby the natural logarithm of this distribution is a Gaussian PSD with arithmetic mean µ and 
standard deviation σμ. Correspondingly, to compute the Sauter-mean diameter (dsm) (Rhodes 
1998), the mass-based distributions (fm) in Equations 55 and 56 are converted to the 

corresponding number-based PSDs (fn),and  then dsm is determined as 

 

x 3 fn∫
x 2 fn∫

. 

 Shown in Figure 106 are the Gaussian (Figure 106a) and lognormal (Figure 106b) 
distributions (fm), obtained respectively by Equations 55 and 56 and denoted by lines, as well as 
the experimental values obtained via sieving and denoted by points. More specifically, the 
experimental value of fm is determined as the ratio of the mass fraction to width of the particle 
size bin (as determined by the sieve cutoffs); note the division by bin width serves as a 
normalization to provide a straightforward means of comparison between bins of different 
widths(Hinds 1999). Fisherbrand U.S. Standard Brass Test Sieves, 0.20 m diameter x 0.05 m 
height, were used for preparing the particle size distributions (PSD).  Figure 106 illustrates the 
close correspondence between the exact and experimental distributions. Notably, the particle 
sizes for all widths of Gaussian distributions investigated are contained in the Geldart Group B 
classification (80 - 670 µm), while up to 24% by mass of the widest lognormal distribution (σ/dsm 
= 70%) falls in the Geldart Group D classification. As mentioned previously, due to the nature of 
the lognormal distribution, it is not possible to restrict all particle sizes to within Group B 
classification, and larger Group D particles have to be included for an accurate representation. 
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Figure 106.  Frequency distributions of (a) Gaussian with σ/dsm = 10%, 15%, and 30%; and (b) 
lognormal with σ/dsm = 10%, 30%, 50%, and 70%. The lines represent exact distributions as 
defined by Equations 55 and 56, while the discrete points are experimental values. 
 
 Prior to all experiments, sand acquired from the vendor was fluidized at greater than three 
times the complete fluidization velocities (Ucf, as detailed below) for at least 100 hours. The 
high-velocity fluidization was necessary to smooth out the rough edges of the particles to avoid 
further attrition so as to preserve the integrity of PSDs during fluidization experiments. 
Validation tests have also been carried out to ensure reproducibility and reliability of the sieving 
technique used for measuring PSDs.  In particular, care was taken to ensure each sieve tray was 
never more than half full, and an adequate sieve-shaking duration was observed depending on 
the loading size. For example, for a 2 kg sample, a sieve-shaking duration of 10 minutes and 
more gave the same sieve results, hence a sieve duration of 10 minutes was determined to be 
sufficient. 

Axial Concentration Measurements: As a precursor to the axial concentration (or 
segregation) measurements, fluidization curves were first generated to determine Ucf, the 
complete fluidization (superficial) velocity, which is defined as the velocity beyond which the 
pressure drop across the bed remains constant. To determine Ucf, the particle bed of a given 
distribution underwent repeated cycles of defluidization-fluidization over a range of superficial 
velocities (Us) to generate the fluidization curves, which are plots of pressure drop (ΔP) versus 
Us. De-fluidization was always run first to ensure a repeatable initial state for subsequent 
fluidization, and three cycles of defluidization-fluidization were carried out for each distribution. 
Superficial velocities (Us) were decreased or increased incrementally by 0.01 m/s, and held at 
each step for 40 s, after which pressure drop across the bed is averaged over 10 s. For all the 
distributions investigated, the pressure drop at which the curve plateaus for higher Us (i.e. Us > 
Ucf) is equal to the ratio of the bed weight over cross-sectional area (W/A), which provides 
evidence of complete fluidization. Due to some noise present in the data, a systematic method of 
Ucf determination was employed, namely defining Ucf as the average Us of the first 5% of the 
total number of points that fall within ± 1% of the expected W/A value. 
 To ensure repeatable initial conditions for the segregation experiments(Joseph, Leboreiro et 
al. 2007), the bed was initially mixed at a high superficial velocity, specifically Us = 3 Ucf, before 
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lowering it to the desired value of 1.2 Ucf used in the segregation experiments. An adequate 
duration for this initial mixing was carefully determined: after fluidizing the bed for a stipulated 
duration, the PSD from an axial section at a dimensionless height (h/H, where h is the height of 
the axial section and H is the collapsed bed height) of 0.5 was measured via sieving. Because the 
Gaussian distribution with σ/dsm = 30% was found to display the most significant segregation 
(described later), it was used for this portion of the investigation. At 3 Ucf, essentially 
superimposable PSDs were observed for durations ranging from 15 minutes to 1 hour, implying 
that 15 minutes is sufficient to generate reproducible initial conditions.  Hence, the bed was 
allowed to initially mix at 3 Ucf for 15 minutes before the velocity was lowered for the 
subsequent segregation experiments. The same procedure was used in the investigation of binary 
mixtures by Joseph et al. (2007). 
 After the initial mixing period described above, the gas velocity was adjusted to the lower 
value, namely 1.2 Ucf, for which steady-state axial concentration profiles are obtained. The value 
of 1.2 Ucf was chosen because the operating Us has to be high enough to ensure that the bed is 
completely fluidized and yet low enough such that subsequent bed freezing does not lead to 
further segregation during bed collapse. The duration required to achieve steady-state and 
reproducibility was also investigated. For the same reason described previously, the Gaussian 
distribution with σ/dsm = 30% was used in this study. The bed was fluidized at 1.2 Ucf for various 
durations (namely, 30 minutes, 1 hour, 2 hours, and 60 hours). While segregation was 
incomplete at 30 minutes, the system appeared to have reached steady state at 1 hour and 
beyond. Henceforth, the air supply was quickly shut off and the plenum vented to freeze the bed 
after 1 hour of fluidization at 1.2 Ucf. Axial concentration profiles were then measured by 
vacuuming out axial sections of the collapsed bed and sieving the resulting samples. Radial 
segregation was found to be insignificant relative to variations in the axial direction, and hence 
only axial concentration profiles are reported(Joseph, Leboreiro et al., 2007).  
 In summary, the procedure for the segregation experiments is as follows. (1) Load 8 kg of 
sand with the stipulated distribution into the column. (2) Generate a defluidization-fluidization 
curve in order to determine Ucf. (3) Mix the bed for 15 minutes at high velocity (3 Ucf) to 
generate reproducible initial conditions for the subsequent low-velocity fluidization. (4) Fluidize 
the bed at low velocity (1.2 Ucf) for a period sufficient (1 hour) for steady-state segregation to be 
reached. (5) Abruptly shut off the gas feed to collapse the bed. (6) Vacuum out axial sections of 
the bed for sieve analysis. As mentioned above, this methodology is restricted to low fluidization 
velocities in order to effectively eliminate the potential of segregation upon bed collapse (Joseph, 
Leboreiro et al., 2007).  

Reducing Electrostatics: During the preliminary experimental runs, some evidence of 
electrostatics was observed in the fluidized bed. For example, some sand particles were observed 
to be sticking to the inner walls of the Plexiglass column. The observation of electrostatics is not 
surprising, since contact charging between particles having the same chemical makeup but 
different sizes has been previously confirmed (Zhao, Castle et al., 2003; Hendrickson, 2006). 
Because the focus of the current effort is on the impact of continuous PSDs on segregation 
behavior (rather than electrostatic effects), efforts were made to eliminate the effect of 
electrostatics. Henceforth, maintaining RH at above 40% by means of a humidifier placed at the 
inlet of the blower was used to reduce electrostatics (Hoffmann and Romp, 1991; Guardiola, 
Rojo et al., 1996; Hendrickson, 2006). At higher RH, the sticky nature of the sand particle to the 
inner wall of the Plexiglass column appeared to have attenuated. Although Figure 107 shows that 
axial concentration profiles at RH ~ 25% and RH ~ 55% were similar, implying the ineffectual 
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role of electrostatics on the segregation profiles under examination in this work, all fluidization 
experiments were nonetheless carried out at RH above 40%. 

 
Figure 107. Axial species concentration profiles of Gaussian 
distribution with σ/dsm = 30% at RH ~ 25% and RH ~ 55%. 

Results & Discussion – Fluidization Curves: As a first step, fluidization curves (∆P vs. 
Us) were generated for all distributions investigated to determine the complete fluidization 
velocity (Ucf) values and the quality of fluidization. The Ucf values are necessary to ensure 
complete fluidization of all particles in the bed when carrying out segregation experiments, while 
also ensuring operation at low enough velocity (1.2 Ucf) to eliminate potential segregation during 
bed collapse by keeping bed expansion to a minimum. Moreover, as pointed out above, although 
the focus of this work is on Geldart Group B particles, Geldart Group D particles were also 
included in the wider lognormal distributions investigated (σ/dsm = 30% to 70%) since the width 
of these distributions is greater than the range of diameters contained in Group B alone. Because 
Group D particles are known to exhibit poor fluidization quality, it was necessary to verify 
whether or not these bigger particles were completely fluidized in the column.  For this 
assessment, a good test is the accurate prediction of bed weight (W) using the fluidization curves, 
as described below. Specifically, the weight of the particles fluidized by air was compared to the 
weight of particles loaded into the bed. 

The fluidization curves of the narrowest and widest distributions of the Gaussian and 
lognormal distributions investigated are shown in Figure 108. The experimental values of Ucf, 
namely the point at which the bed pressure drop (ΔP) becomes constant with further increases in 
superficial gas velocity (Us), are marked with vertical lines. As observed in Figure 108, the 
transition from the packed-bed region (line of non-zero slope) to the fluidized region (horizontal 
line) for continuous distributions is not abrupt, compared to the precipitous change (i.e., 
discontinuity in slope values) expected for a monodisperse distribution. Especially for the wider 
lognormal distributions (Figure 108c and d), the transition is a smooth elbow, due to the range of 
minimum fluidization velocities (Umf) of the various particle sizes contained in the distribution. 
Accordingly, a protocol for determining Ucf that identifies the point of minimum Us at which the 
data points are within ± 1% of the W/A value was used. For all the distributions investigated, the 
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experimental pressure drops (data points) plateau at the measured bed weight (W) divided by the 
cross-sectional area (A) (horizontal dashed line), indicating that the bed was completely fluidized 
beyond Ucf. As expected, Ucf values are similar, because the distributions are centered about the 
same mean particle size (dsm); it has been reported that Ucf values of the continuous distributions 
agree with Umf of the mean particle size (Sun and Grace, 1990; Gauthier, Zerguerras et al., 
1999). Notably, the Ucf value of the widest distribution investigation, specifically lognormal 
distribution with σ/dsm = 70%, is slightly higher than the other distributions, presumably due to 
the presence of the largest amount of coarse Group D particles. 
 

 
Figure 108.  Fluidization curves of Gaussian distributions with (a) σ/dsm = 10% and (b) σ/dsm = 
30%, and lognormal distributions with (c) σ/dsm = 30% and (d) σ/dsm = 70%. The data points 
represent bed pressure drops during repeated defluidization and fluidization, while the 
horizontal dashed line represents the experimental bed weight over cross sectional-area (W/A). 

Interestingly, although a bed of monodisperse Group D particles do not fully fluidize, their 
presence in the lognormal distributions did not result in the under-prediction of W/A. In 
particular, as displayed in Figure 109, “monodisperse” Group D particles of size range 1 - 2 mm 
give a 13% under-prediction of W/A, indicating that the particles are not fully fluidized, and 
providing evidence that Group D particles exhibit poor fluidization quality. However, as 
previously shown in Figure 108c and d, the presence of the same Group D particles in lognormal 
distributions does not give rise to the under-prediction of W/A, even though they represent up to 
24% by mass of the lognormal distribution with σ/dsm = 70%.  This observation that the presence 
of a wide range of particle sizes enhances fluidization of larger particles is especially noteworthy 
since the Umf of the monodisperse Group D system, which agrees with existing empirical 
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correlations(Kunii and Levenspiel 1991), is about six times that of the Ucf of the continuous 
distributions contained in Figure 108. A possible explanation for the improvement of fluidization 
has been shown via discrete element model (DEM) simulations showing that systems with wide 
PSD exhibited higher particle velocities around bubbles and faster bubble growth, hence 
enhancing fluidization(Tagami, Mujumdar et al. 2009). As will be further elucidated in the 
following section, the width of a continuous distribution is an important factor in the 
hydrodynamics of fluidization. 

 
Figure 109.  Fluidization curve of monodisperse Geldart Group D sand of particle size range 1-
2 mm. The data points represent repeated fluidization and defluidization, while the horizontal 
bold line represents the experimental W/A. 
 

Axial Concentration Profiles: The axial concentration profiles for the Gaussian 
distributions investigated are shown in Figure 110. The mass-based frequency (fm) is on the x-
axis and represents the proportion of each sieve cut for a given axial section. The dimensionless 
height (h/H) is on the y-axis. h/H is used for easier comparison across the distributions, because 
the different proportions of various partic*le sizes in different distributions result in slightly 
different packing heights. A vertical line on these plots implies no axial variation of 
concentration for a given sieve cut, thereby indicating a perfectly mixed system, while a 
contoured line implies segregation of different-sized particles. At least two experiments were 
carried out for each distribution, and the error bars represent the experimental variations, 
expressed as the difference between the maximum and minimum values obtained. Since the 
overall mass fraction of a given sieve cut changes between distributions of different widths, the 
appropriate comparison of the extent of segregation between the various distributions is the 
verticality of the lines on the axial segregation plots, rather than the absolute values of fm. For the 
distribution with σ/dsm = 10% (Figure 110a), it is observed that the h/H versus fm plots for the 
various sieve cuts are almost vertical, indicating that the system is well-mixed. On the other 
hand, for the distribution with σ/dsm = 30% (Figure 110c), the plots are far from vertical, 
indicating that comparatively extensive segregation is observed among the different sizes of sand 
particles. The gradual increase in segregation as the width of distribution is increased is hence 
apparent in Figure 110, providing experimental evidence to the DEM(Dahl and Hrenya 2005) 
and continuum-model(Fan and Fox 2008) simulation findings that wider distributions exhibit 
more extensive segregation for a gas-fluidized bed for Gaussian distributions in this range of 
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widths. Furthermore, Figure  shows that the mass fractions of the coarser and finer particles are 
greater at the bottom and top of the bed, respectively, consistent with modeling and experimental 
(Rowe and Nienow 1976; Tang and Puri 2004; Cui and Grace 2007; Joseph, Leboreiro et al. 
2007) (see references and references therein) findings of binary systems of size-segregating 
systems. 

 

 
Figure 110.  Axial concentration profiles of Gaussian distributions with σ/dsm = (a) 10%, (b) 
15%, and (c) 30%. 
 
 In addition to the axial concentration plots presented, the overall extent of segregation for 
each starting distribution can be compared using a single integrated quantity. This measure, 
examples of which include the mixing index (M) and segregation index (s), has been derived for 
binary distributions. The mixing index (M) takes the form(Rowe, Nienow et al. 1972; Wu and 
Baeyens 1998)   

 

 

M =
x

< x >
 (57)                              

where x is the concentration of the larger particles in the topmost layer of the particle bed and 
<x> is the average concentration of the larger particles in the entire bed, such that M = 1 
corresponds to perfect mixing and M = 0 implies perfect segregation. On the other hand, the 
segregation index (s) takes into account both particle sizes, and is expressed as(Goldschmidt, 
Link et al. 2003) 

 

 

s =
S −1

Smax −1
  (58)      

The numerator in Equation 58 contains the ratio of the actual heights of the small and large 
particles which is indicative of the actual degree of segregation:    

 

 

S =
< hsmall >
< hlarge >

         (59)                                                           

where <hsmall> and <hlarge> are the calculated average dimensionless heights of the small and 
large particles respectively. Specifically,  
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< hsmall >= xsmall,i * hi( )
i

∑  (60)                                                  

 

 

< hlarge >= xlarge,i * hi( )
i

∑  (61)                                        

where hi represents the dimensionless height (with respect to the bed height) of each axial section 
that is vacuumed out and analyzed for PSD and xi represents the mass fraction of the species in 
that particular axial section. 
 The denominator in Equation 58 contains the associated maximum degree of segregation, 
which occurs when the small particles are wholly in the top portion while the large particles are 
all in the bottom portion:  
 <hsmall>max = xlarge + 0.5 xsmall = 1 - 0.5 xsmall (62)  
 <hlarge>min = 0.5 xlarge = 0.5 (1 – xsmall) (63) 
Hence, the maximum degree of segregation can be expressed as: 

 

 

S =
< hsmall >max

< hlarge >min

=
2 − xsmall

1− xsmall

 (64)                  

 Accordingly, the segregation index (s) is defined in Equation 58 such that s = 1 
corresponds to perfect segregation while s = 0 implies perfect mixing. Since M considers only 
the bigger particles and topmost layer, it is not as inclusive as s, which takes into account 
concentrations and averaged heights of both species in the binary mixture. Henceforth we 
consider only s to more accurately represent our data. Nonetheless, it is observed that M shows 
the same trends.  
 In order to quantify the extent of segregation for continuous size distributions, a new 
segregation index (scont) is introduced here based on an extension of the segregation index for 
binary mixtures (s). Specifically, the modifications made to scont are twofold: (i) the definitions of 
‘large’ and ‘small’ needs to be changed, because the demarcation is not as clear-cut as in a binary 
distribution, and (ii) Equation 64 only works for a binary distribution, and hence was modified as 
described below (Equation 65). Regarding (i), ‘large’ and ‘small’ are now defined as the 
uppermost and lowermost sieve cuts that constitutes at least 10% by mass of the total mass of the 
bed, since the maximum experimental variation in the segregation data was observed to be 10% 
by mass. Regarding (ii), the maximum extent of overall segregation is re-defined for more 
general case because xlarge is no longer simply (1- xsmall), as was assumed in Equations 62 through 
64.   By lifting this assumption, a more general form of Smax is obtained: 

 

 

Smax =
2xlarge + xsmall

xlarge

 (65)        

 Similar to the binary definition, the above modification for continuous distributions ensures 
that scont  = 1 corresponds to complete segregation while scont = 0 implies complete mixing. These 
segregation indices (scont) and the corresponding make-up of ‘large’ and ‘small’ particles are 
presented in Table 6. It is worth noting that although the percentage of ‘large’ and ‘small’ 
particles are not constant through the various distributions due to limited sieve meshes available, 
effort was made to make the numbers similar for the fairest comparison possible. Results clearly 
show an increase in scont, which corresponds to an increase in the extent of segregation, with the 
width of the Gaussian distributions. 
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Table 6. Segregation indices (scont) of Gaussian distributions investigated. 
 

(%) scont 
mass % of 

‘large’ 
mass % of 

‘small’ 
10 0.024 16.8 25.9 
15 0.175 21.2 12.5 
30 0.284 18.9 28.7 

 
Analogous axial concentration profiles and segregation indices (scont) are contained in 

Figure 111 and Table 7 for the lognormal distributions investigated. As evident in Figure 111, 
while the segregation profiles for σ/dsm = 10% and 70% are vertical lines indicating well-mixed 
systems, those for σ/dsm = 30% and 50% are contoured lines indicating segregated systems. This 
trend is corroborated with the data contained in Table 7, which shows quantitatively that while 
lognormal distributions with σ/dsm = 10% and 70% have similarly low values of scont, the 
distribution with σ/dsm = 30% has the highest scont, implying the most segregated system. This 
non-monotonic segregation behavior of lognormal distributions has not been previously reported 
in simulations or experiments. Nonetheless, non-monotonic segregation levels have been 
observed in binary mixtures with species of different material density (but same size), wherein 
segregation has been observed to be strongest for intermediate compositions, with fairly well-
mixed systems at low- or high-concentrations of jetsam(Joseph, Leboreiro et al. 2007).  Looking 
back at Figure 106b, it is apparent that the lognormal distribution with σ/dsm = 70% does consist 
of the greatest amounts of the finest as well as largest particles.  However, it is worthwhile to 
note that previous work on binary mixtures does not reveal a non-monotonic segregation 
behavior when considering species with the same material density but different sizes(Joseph, 
Leboreiro et al. 2007), which is most analogous to the continuous PSDs under consideration in 
this work. 

A possible explanation may be related to the bubbling phenomenon. Rowe et al.(Rowe, 
Nienow et al. 1972) were the first to suggest that rising bubbles are the vehicles for particle 
mixing. Quantitatively, Nienow et al.(Nienow, Rowe et al. 1978) found the rate of bubbling, 
which has been associated with mixing behavior, as being proportional to the excess gas velocity 
(Uexcess) defined as 

 excess s mf smallU U U ⋅− −  (66) 

where Umf,small is the minimum fluidization velocity of the smallest particles and Us is the 
operating superficial gas velocity (which in this work is 1.2 Ucf). When Uexcess < Us, segregation 
predominates, and when Uexcess > Us, mixing takes over.  The slightly larger Ucf of the 
lognormal distribution with σ/dsm = 70% (Figure 108d) may thus be associated with more 
mixing: while a wider distribution is expected to result in more segregation by virtue of the 
increased number of species present, the effect of mixing based on excess gas velocity (Uexcess) 
may tilt the mixing-segregation balance the other way. Subsequently, some studies have shown 
that a wide size distribution usually give the highest reactor efficiency, while the narrow blend 
give the lowest(Sun and Grace 1990), possibly associated with bubbling patterns in bed(Zenz 
and Othmer 1960, page 278). DEM simulations(Tagami, Mujumdar et al. 2009) have also shown 
that systems with a wide PSD exhibit higher particle velocities around bubbles, while 
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experiments(Grace and Sun 1991; Beetstra, Nijenhuis et al. 2009) corroborated the enhancement 
of mixing through the production of smaller and faster-moving bubbles. However, it can be 
argued that if the lognormal distribution with σ/dsm = 70% exhibits the least extent of segregation 
due to its greatest width, why is it that the Gaussian distribution with the greatest width of σ/dsm 
= 30% did not similarly exhibit a well-mixed system? Grace and Sun(Grace and Sun 1991) 
reviewed the influence of PSD on fluidized bed reactors and asserted that fines content per se is 
not a sufficient parameter to characterize segregation: their nature and the overall size 
distribution have to be considered. Correspondingly, future work is needed to get a clearer 
physical picture of the mechanisms leading to the non-monotonic segregation patterns observed 
here. 

 

 
Figure 111.  Axial segregation profiles of lognormal distributions with (a) σ/dsm = 10%, (b) 
σ/dsm = 30%, (c) σ/dsm =  50%, and (d) σ/dsm =  70%. 
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Table 7. Segregation indices (scont) of lognormal distributions investigated. 
 

 (%) scont mass % of ‘large’ mass % of ‘small’ 
10 0.024 16.8 25.9 
30 0.168 13.2 13.6 
50 0.074 18.1 27.6 
70 0.022 19.7 19.6 

 
 The segregation extents for the various widths of Gaussian and lognormal distributions 
investigated (Table 6 and Table 7) are compared directly in the plot of segregation indices (scont) 
in Figure 112. As pointed out previously, results in this work suggest that, while the segregation 
extents are positively correlated with the PSD widths for Gaussian distributions, a non-
monotonic behavior exists for lognormal distributions. Comparing the segregation indices (scont) 
shows that the lognormal distribution with σ/dsm = 50% is less segregated that the Gaussian 
distribution with σ/dsm = 30%.  At first glance, this observation seems contrary to previous 
simulation work for fluidized beds (Dahl and Hrenya 2005; Fan and Fox 2008), which compared 
segregation in Gaussian distributions of σ/dsm up to 30% and a lognormal distribution of σ/dsm = 
50%, and reported that the lognormal distribution exhibits the most extensive segregation. 
However, two distinctions between the previous simulations(Dahl and Hrenya 2005) and the 
current experimental work are worth pointing out.  First, the PSDs in the simulations were 
number-based, whereas the PSDs in the current work are mass-based.  Perhaps more importantly 
is a difference in particle properties. In comparing distributions of different widths, the previous 
simulation work(Dahl and Hrenya 2005) also incorporated a change in the restitution and friction 
coefficients of the particles.  More specifically, the widest lognormal distribution investigated 
(σ/drms = 50%, where drms is the root-mean-square diameter) also had the least dissipative 
particles, which led to a bubble-less (and thus relatively segregated) system; the narrower 
distributions investigated in the simulations had more dissipative particles and correspondingly 
exhibited bubbling (see Hoomans et al.(Hoomans, Kuipers et al. 2000) for further discussion of 
relationship between particle properties and bubbling characteristics).  In the current set of 
experiments, the same material (sand) was consistently used, and bubbles were observed in all 
systems.  Hence, a strict comparison between the previous simulations(Dahl and Hrenya 2005) 
and current experiments is not warranted. 
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Figure 112.  Plot showing the correlation between scont and σ/dsm 
for Gaussian and lognormal distributions. 

Shape of Local PSD:  In addition to the axial concentration profiles associated with each 
size range given above, the shape of the size distribution (Gaussian or lognormal) at a given axial 
height is also of interest. Although the PSD of the entire bed mass is specified (e.g., Gaussian 
with σ/dsm = 10%), segregation of particles may lead to different local PSDs. For the Gaussian 
distributions investigated, Figure 113 shows how the shapes of the local PSDs vary axially along 
the bed. The local PSDs are nearly superimposed for the distribution with σ/dsm = 10% (Figure 
113a), except for a slight rightward shift of the PSD at the bottommost axial section. This 
behavior further indicates a well-mixed system, as previously elucidated, implying that a system 
with a narrow distribution behaves similar to a monodisperse system. For the distributions with 
σ/dsm = 15% and 30% (Figure 113b and c), the PSDs associated with various axial locations are 
more separated, with a rightward shift of the PSDs as the particle bed is traversed downwards, 
indicating again the segregation of bigger particles toward the bottom. Furthermore, for the 
distribution with σ/dsm = 10% (Figure 113a) and 15% (Fogire 113b), the PSDs at each axial 
location still resemble a Gaussian distribution. However, more deviations are observed for the 
distribution with σ/dsm = 30% (Figure 113c), especially for the two bottom-most PSDs. 
 

 
Figure 113.  Axial PSDs of Gaussian distributions with (a) σ/dsm = 10%, (b) σ/dsm = 15%, and 
(c) σ/dsm = 30%. 
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 To better quantify how closely the shape of the local distribution mimics that of the overall 
distribution, comparisons between the (local) experimental PSD and an exact Gaussian PSD (as 
given by Equation 55) are made by minimizing the root-mean-square (rms) difference between 
them via changing the values of dsm and σ/dsm. It should be noted that the local distributions may 
have different dsm and σ/dsm but still characterized by the same shape (i.e. Gaussian or 
lognormal). For the Gaussian distribution with σ/dsm = 10%, the statistics of the PSDs show that 
the dsm and σ/dsm for the PSD at each axial location are similar to the initial PSD with dsm’s 
approximating 375 μm and σ/dsm’s approximating 10%, further indicating a well-mixed system. 
Axial variations in minimized rms differences between experimentally generated and exact PSDs 
for each Gaussian distribution are plotted in Figure 114. As shown in Figure 114, the rms 
differences are less than 0.001% and 10% for all local PSDs obtained for the Gaussian 
distributions with σ/dsm of 10% and 15%, respectively. On the other hand, rms differences 
average about 15% for the upper few PSDs of the Gaussian distribution with σ/dsm of 30%, with 
rms differences as high as 40% for the two bottom-most PSDs. It seems that the wider the 
distribution, the larger the deviation of the local shape of the local PSD from an exact Gaussian, 
which is not surprising considering the increase in the number of species present in a wider 
distribution. Nonetheless, it can be concluded that the Gaussian shape of the PSDs at each axial 
section of the bed is largely preserved, which agrees with previous simulation findings in both 
granular and gas-fluidized systems(Dahl and Hrenya 2004; Dahl and Hrenya 2005). The 
observation that the bottommost PSDs no longer remain Gaussian has also been shown in DEM 
simulations(Dahl and Hrenya 2005), and it was postulated to be due to the bottom regions being 
more stagnant. 

 
Figure 114.  Plot showing variation of the minimized rms difference between the PSD at each 
axial location and the equation-generated PSD for the Gaussian distributions investigated. 
 

For lognormal distributions, the analogous plots for variations in the local PSD are shown 
in Figure 115 and Figure 116. Figure 115 again shows that the shape of the local PSD at each 
axial location resembles the shape of the overall PSD, namely a lognormal distribution. Figure 
116 further quantifies how similar each local PSD is to an exact lognormal PSD by a plot of the 
axial variation of the minimized rms difference between the experimentally obtained and exact 
lognormal PSD. The increased discrepancies for wider lognormal distributions of σ/dsm ≥ 30% 
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are much greater than that for σ/dsm = 10%. Also, it is apparent that the greatest discrepancy for 
lognormal distributions with σ/dsm > 30% is of the bottommost PSD at h/H = 0.07. Similar to the 
findings for the Gaussian distribution with σ/dsm = 30%, the minimized rms differences between 
experimentally obtained and exact PSDs for the lognormal distribution are mostly about 10%, 
except for the PSDs at the bottommost positions. Except for the lognormal distribution with σ/dsm 
= 10%, it appears that the bottommost (h/H = 0.07) PSDs of all the other distributions are not 
lognormal, presumably due to the predominance of the coarser Group D particles in the 
bottommost layer of the bed. As previously mentioned, DEM simulation of gas-fluidized bed has 
shown similarly that the measured local PSD are not Gaussian or lognormal in regions where 
particles move infrequently (e.g. nearly stagnant regions of the bed near the bottom)(Dahl and 
Hrenya 2005).  

 

 
Figure 115.  Axial PSDs for the lognormal distributions with (a) σ/dsm = 10%, (b) σ/dsm = 30%, 
(c) σ/dsm = 50%, and (d) σ/dsm = 70%. 
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Figure 116.  Plot showing variation the minimized rms difference between the PSD at each axial 
location and the equation-generated PSD for the lognormal distributions investigated. 
 

Summary:   Experiments involving low-velocity, bubbling, gas-fluidized beds have been 
carried out for Geldart Group B particles of various widths of Gaussian and lognormal 
distributions, with a focus on the axial concentration profiles. Specifically, fluidization curves 
were first generated to determine the velocity for complete fluidization (Ucf), followed by steady-
state fluidization at 1.2 Ucf. Although only Group B particles were used in the Gaussian 
distributions, up to 24% by mass of the widest lognormal distribution (σ/dsm = 70%) was made 
up of Group D particles. Due to the nature of the lognormal distribution, it is not possible to 
restrict all particle sizes to within Group B classification, and larger Group D particles have to be 
included for an accurate representation. 

The complete fluidization velocity (Ucf) is the minimum superficial gas velocity (Us) 
beyond which bed pressure drop (ΔP) equals to W/A. As such, W/A is a good indicator for quality 
of fluidization. Interestingly, although monodisperse Geldart Group D particles exhibited poor 
fluidization, as indicated by the failure of the bed pressure drop to attain W/A, their presence in 
the wider lognormal distributions did not stunt the quality of fluidization. 

Results for the Gaussian (σ/dsm = 10%, 15%, and 30%) and lognormal (σ/dsm = 10%, 30%, 
50%, and 70%) distributions investigated show that (i) increased segregation is observed for 
wider Gaussian distributions, whereas a non-monotonic correlation exist between segregation 
extents and width of lognormal distributions, (ii) similar to previous findings for binary mixtures, 
finer and coarser particles tend to segregate respectively to the top and bottom, (iii) the shape of 
the PSD (i.e., Gaussian or lognormal) at each axial section is preserved with respect to the 
overall PSD, except for the bottommost PSDs of the wider distributions. With the exception of 
the surprising finding of the non-monotonic behavior of the segregation extents with increasing 
widths of lognormal distributions, the experimental findings agree with previous discrete particle 
simulations(Dahl and Hrenya 2005) and continuum modeling(Fan and Fox 2008) of gas-solid 
fluidized beds with continuous size distributions. It should be noted that the nonmonotonic 
segregation behavior with respect to width of the lognormal distributions is not necessarily at 
odds with previous simulation(Dahl and Hrenya 2005) results. More specifically, bubbles were 
absent in the simulation of the widest lognormal distribution(Dahl and Hrenya 2005), 
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presumably due to a change in particle properties (restitution and friction coefficients), whereas 
bubbles were consistently observed in the current experiments, which all involved the same 
particle material (sand). More work is needed to resolve this issue definitively. 

An interesting follow-up of this work is the investigation of bubbling phenomena 
associated with the various widths of the Gaussian and lognormal PSDs. Bubbles have been 
reported to be mixing agents, and may hold the key to developing a clearer physical picture to 
explain the non-monotonic segregation behavior with respect to the widths of the lognormal 
distributions. For example, DEM simulations have indicated that systems with a wide particle 
size distribution exhibit higher particle velocities around bubbles, resulting in faster bubble 
growth and its subsequent rise through the fluidized bed, thereby promoting mixing(Tagami, 
Mujumdar et al. 2009). Experimental evidence of this observation would be useful, because 
bubbling and species segregation behaviors are expected to be tightly coupled. Accordingly, the 
next section focuses on the investigation of bubble characteristics for the same systems presented 
here. 

 
Task 4.3.2: Link between Bubbling and Species Segregation Behaviors3 

Abstract:  Experiments involving a bubbling, gas-fluidized bed with Gaussian and 
lognormal particle size distributions (PSDs) of Geldart Group B particles have been carried out, 
with a focus on bubble measurements.  Previous work (Section 4.3.1) in the same systems 
indicated the degree of axial species segregation varies non-monotonically with respect to the 
width of lognormal distributions(Chew, Wolz et al. 2010). Given the widely accepted view of 
bubbles as ‘mixing agents’, the initial expectation was that bubble characteristics would be 
similarly non-monotonic. Surprisingly, results show that measured bubble parameters 
(frequency, velocity and chord length) increase monotonically with increasing width for all PSDs 
investigated. Closer inspection reveals a bubble-less bottom region for the segregated systems, 
despite the bed being fully fluidized. More specifically, results indicate that, the larger the 
bubble-less layer is, the more segregated the system becomes. The direct comparison between 
bubbling and segregation patterns performed provides a more complete physical picture of the 
link between the two phenomena.  

Introduction: Results in Section 4.3.1 on continuous PSDs reveal an unexpected non-
monotonic (increases then decreases) axial species segregation behavior with respect to 
distribution width(Chew, Wolz et al. 2010), which is a deviation from binary mixtures. 
Specifically, while binary mixtures have been shown to increasingly segregate with increasing 
disparity in size and/or density(Rowe and Nienow 1976; Tang and Puri 2004; Cui and Grace 
2007; Joseph, Leboreiro et al. 2007), the trend is not so straightforward for continuous 
distributions. This surprising observation provides the motivation for the current effort.  In 
particular, the objective of this work is to better understand the driving force behind the observed 
non-monotonic segregation behavior, with an eye toward the link between bubbling and species 
segregation. 
 Because bubble characteristics are also known to vary along the height of a bed (e.g., 
bubbles can grow with height), the gas-solid contact times of segregated particles at the top and 
the bottom of the bed may vary, thereby impacting the overall efficiency of the unit. Before 
discussing the role of bubbles in systems with particles of different sizes and/or material 

                                                 
3 Chew and Hrenya, “Link between bubbling and segregation patterns in gas-fluidized beds with 
continuous size distributions”, AIChE Journal, in press, 2011. 
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densities, a review of previous findings on bubbles in monodisperse beds is warranted.  The 
bubbles observed in low-velocity, gas-fluidized beds can be traced to an inherent instability of 
the suspension(Davidson, Harrison et al. 1977; Jackson 2000; Sundaresan 2003; Yang 2003) and 
are believed to be the primary factor associated with solids dispersion, mixing, and reactor 
efficiency(Kunii and Levenspiel 1991; Kunii and Levenspiel 1991; Fan and Zhu 1998; Yang 
2003). As early as 1962, Rowe et al.(Rowe, Partridge et al. 1962) used an X-ray technique to 
experimentally characterize bubbles in gas-fluidized beds, and the X-ray photographs of bubbles 
provided evidence that bubbles are primarily responsible for the axial movement of particles in 
the bed. Since then, detailed experimental observations of the bubbling phenomenon have 
sprouted(Cheremisinoff 1986; van Ommen and Mudde 2008; Mudde 2010), including, but not 
limited to, the volume of the wake behind the bubbles(Rowe and Partridge 1965), cloud 
formation around bubbles(Rowe, Partridge et al. 1964; Partridge and Rowe 1966), bubble 
coalescence(Clift and Grace 1971; Halow and Nicoletti 1992; Muller, Davidson et al. 2006) and 
breakage(Clift and Grace 1972), and exchange between the bubble and emulsion phase(Chiba 
and Kobayash.H 1970; Gibilaro and Rowe 1974; Basesme and Levy 1992). Generally, bubbles 
are commonly referred to as ‘mixing agents’, carrying particles efficiently upwards and allowing 
particles to fall through them downwards(Rowe, Partridge et al. 1962; Rowe and Partridge 1965; 
Rowe, Partridge et al. 1965; Rowe, Agbim et al. 1972).  
 For fluidized beds with particles of different sizes, studies on bubbling are scarcer.  It has 
been reported that addition of fines (particle diameter < 45 μm) improves mixing(Rowe, Santoro 
et al. 1978; Yates and Newton 1986; Du, Fan et al. 2002), and electrical capacitance tomography 
has further verified that the enhanced mixing is brought about by the increase in the relative 
proportion of gas flowing interstitially and that the maximum mixing is at a fines content of 
15%(Du, Fan et al. 2002). More recently, Beetstra et al.(Beetstra, Nijenhuis et al. 2009) 
determined experimentally the impact of fines and distribution width of Geldart Group A 
particles on bubbling effects, and it was found that either increasing the width of the PSD or 
increasing fines amount independently reduced bubble size at high velocity (10 times minimum 
fluidization velocity, Umf) and enlarged bubble size at low velocity (1.5 Umf). DEM simulations 
have also indicated that systems with a wider PSD exhibit higher particle velocities around 
bubbles, resulting in faster bubble growth and its subsequent rise through the fluidized 
bed(Tagami, Mujumdar et al. 2009). Collectively, these efforts shed light on how the presence of 
a size distribution alters the bubbling behavior. 
 Although a direct link between bubbling behavior and species segregation is often 
presumed, experimental studies with side-by-side measurements of bubble parameters and 
species segregation are lacking. In an effort to build on previous knowledge on the effect of 
continuous PSDs on species segregation and bubbling phenomena, the objective of the current 
work is twofold: (i) to experimentally determine the impact of the width of the PSD on bubble 
velocity, bubble frequency, and bubble size, and (ii) to compare the bubble measurements with 
species segregation measurements. The latter is of particular importance in order to determine 
whether bubbles also serve as the primary ‘mixing agents’ for polydisperse systems. A 
particularly good test case for this hypothesis is the species segregation results shown in Figure 
112 (Chew, Wolz et al. 2010), which indicates that, while the level of segregation increases with 
width for Gaussian distributions, a non-monotonic behavior exists for lognormal distributions. 
Note that Gaussian distributions with σ/dsm > 30% are not physically possible due to the 
introduction of negative particle diameters at wider distributions widths.  Hence, with regard to 
objective (ii), the pertinent question is:  do bubble parameters (frequency, velocity, and chord 
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length) in systems with Gaussian distributions behave monotonically with respect to distribution 
width, while the bubbles characteristics behave in a non-monotonic manner with increasing 
width of lognormal distributions?  
 In the current effort, bubbling measurements have been carried out for the same set of 
systems described in Task 4.3, such that a direct comparison between degree of segregation and 
bubbling behavior is possible. Surprisingly, the results indicate that bubble parameters 
(frequency, velocity and chord length) increase monotonically with an increase of PSD widths 
for all Gaussian and lognormal distributions examined. Accordingly, a direct correlation between 
measured bubble characteristics and degree of segregation does not exist. More explicitly, even 
though a non-monotonic correlation between degree of segregation and the width of lognormal 
distribution was observed, the bubbling parameters show a monotonic increase with PSD width. 
Nonetheless, a more careful examination of the data reveals the presence of a bubble-less layer in 
segregated systems. The height of this bubble-less layer is tightly coupled to the degree of 
segregation, thereby providing the sought-after physical link between bubbling and segregation 
patterns.   

Experiment Description –  Experimental Apparatus:  The experimental setup for all 
bubbling experiments is identical to that used in Task 4.3.1 (Chew, Wolz et al. 2010) for the 
corresponding segregation experiments. As further illustrated in Figure 117, for this suite of 
experiments, the axial ports along the column facilitate the insertion of the fiber optic probe used 
for detecting bubbles. Specifically, seven ports, spaced 2.54 cm axially apart and the lowest of 
which is 5.08 cm above the distributor plate, are available for insertion of the fiber optic probe. 
 

 
Figure 117.  Experimental set-up. 

 In this section, the objective is to obtain bubble measurements for the same PSDs given in 
Figure 105. Accordingly, the experimental protocol is similar to that in Section 4.3.1 (Chew, 
Wolz et al. 2010), except that a fiber optic probe is utilized to obtain information on the bubble 
characteristics. At the start of each run, the fiber optic probe was inserted into one of the seven 
ports, and positioned such that the probe tip was flush with the inner wall of the column. Then, 
the prepared distribution of sand was placed in the column. Similar to Section 4.3.1, the particle 
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bed was mixed at high velocity (three times superficial velocity for complete fluidization (3 Ucf)) 
for 15 minutes, and then fluidized at 1.2 Ucf for one hour to achieve a statistical steady state. 
Afterwards, the fiber optic probe was positioned sequentially at each of the nine radial positions 
to collect data for one minute. The same protocol was then repeated for the other axial locations. 
To obtain reasonable 95% confidence intervals of the data, each measurement was repeated ten 
times. 

Fiber Optic Probe and Signal Analysis:  With regards to the fiber optic probe, it consists 
of two bundles of fibers, one positioned vertically above the other. Each bundle contains three 
fibers: one fiber is used to transmit the light source, the second is the receiver conduit, while the 
third is redundant but is an important spare, as displayed in Figure 118. A higher voltage signal 
is obtained from the receiving fiber when light emitted from the light-source fiber is blocked, as 
occurs when the probe is surrounded by the emulsion (particle-rich) phase. On the other hand, a 
lower voltage signal is obtained when light from the emitter is relatively unobstructed, which 
occurs when the probe tip is surrounded by a bubble. Hence, as illustrated in the voltage traces of 
the bottom and top fiber bundles given in Figure 119, which is a plot of voltage measured by the 
probe versus time, bubbles appear as downward spikes in the voltage signal.  Information about 
the bubbles can thus be extracted by defining a threshold voltage value (Vthreshold), which serves 
as a demarcation between bubbles and the emulsion phase. 

 
 

 
Figure 118.  Schematic of tip of fiber optic probe. 
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Figure 119.  Example of bubble trace obtained from fiber optic probe:  voltage vs. time for top 
and bottom bundle, where Vthreshold indicates the demarcation between bubble (below) and 
emulsion (above) phase. 

 
 As demonstrated in Figure 120, Vthreshold is determined by first plotting the probability 
density function (PDF) of the voltage trace obtained from the fiber optic probe at increments of 
0.001 s. Then, the mode of the PDF and the 99th percentile of the cumulative count are 
determined. Finally, Vthreshold is calculated as the voltage at which the voltage difference (ΔV) 
between Vmode and V99th-percentile is the same as that between Vmode and Vthreshold, namely: 

 

 

∆V = V99th percentile −Vmode   (67)  

  

 

Vthreshold = Vmode − ∆V  (68)  

With this value of Vthreshold at hand, a “bubble-only” trace can be obtained by eliminating the 
portions of the trace above Vthreshold. From the bubble-only traces of the top and bottom fiber 
bundles, the frequency of bubbling, duration of each bubble, and bubble velocity can be found, 
as described below. In particular, analysis of these traces do not give bubble size per se, but 
instead bubble chord length, which is an indicator of bubble size(Clark and Turton 1988; Liu, 
Clark et al. 1998).  
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Figure 120.  Probability distribution function (PDF) of bubble trace, with 
Vthreshold, Vmode, and V99th-percentile marked. 

 
 With regards to bubble frequency, the number of segments of continuous data points above 
Vthreshold is counted, then normalized by measurement duration. As for vertical velocity of the 
bubble, when both the distance between the fiber bundles (Figure 118) and the time lapse 
between the voltage signals obtained by the bottom and top bundles are known, velocity can be 
derived. The distance between fiber bundles is measured to be 0.25 cm, while the time lapse is 
derived by cross-correlating the two signals to find where the point of strongest correlation lies. 
The cross-correlation formula is given as  

 

 

χ =

1
n

(xi − xmean )(yi+d − ymean )
i=1

n−d

∑
σ xσ y

   (69)                  

where n is the total number of data points in each signal, d is the time lapse in units of data points 
being compared between the two signals, xi and yi+d are the bottom and top signal voltages 
respectively at time i and i+d, xmean and ymean are the mean of the bottom and top signal voltages 
respectively, and σx and σy are the standard deviation of each signal trace. χ = 1 implies perfect 
correlation between the bottom and top signals, i.e. no time lapse. Dividing the distance between 
the fiber bundles (namely, 0.25 cm) by the time lapse derived by Equation 69 hence gives the 
vertical velocity of the bubbles. Then, bubble chord lengths can be obtained by multiplying the 
vertical velocity by durations of each segment of continuous data points above Vthreshold.   
 Validation of fiber optic data for all bubble parameters considered here (frequency, velocity 
and chord lengths of bubbles) was obtained via comparison with existing correlations for 
monodisperse Group B particles (for example, see results of Hiraki and Kunii(Hiraki and Kunii 
1969), Hilligardt and Werther(Hilligardt and Werther 1986), Mori and Wen(Mori and Wen 
1975), as presented in Kunii and Levenspiel(Kunii and Levenspiel 1991), for bubble frequency, 
velocity, chord length respectively).  It is also worth noting that previous work(Clark and Turton 
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1988) has shown that chord length can be used as a reliable indicator of bubble size for a given 
particle shape even if the bubble also has a horizontal component of velocity; for purposes of this 
work, however, only the direct measurement of chord length will be reported. 

Results and Discussion: Experiments to obtain bubble data were carried out in an 
attempt to better understand the previously-reported, counter-intuitive segregation behavior 
displayed in Figure 112, namely the non-monotonic segregation levels observed with increases 
in the width of lognormal distributions.  Accordingly, the experimental conditions were identical 
to those described in Section 4.3.1 (Chew, Wolz et al. 2010). The initial hypothesis being tested 
stems from the physical picture of bubbles as ‘mixing agents’.  In other words, would the 
previously observed segregation patterns correlate with bubbling characteristics – e.g., are higher 
bubbling frequencies observed in the more well-mixed systems?  For this hypothesis to hold, 
bubbling parameters (some or all) should vary monotonically with PSD widths for Gaussian 
distributions and non-monotonically for lognormal distributions, analogous to the previously 
reported segregation trends (Figure 112). With this in mind, the bubbling characteristics (bubble 
frequency, velocity, and chord length) are presented as follows for both Gaussian and lognormal 
distributions of varying widths. 
 Before considering each bubble characteristic in turn, it is worthwhile to compare the axial 
and radial variations of the bubble quantities being measured.  For purposes of illustration, a plot 
of mean bubble chord length versus dimensionless radius (r/R) is depicted in Figure 121, with 
error bars representing 95% confidence intervals. It is observed that mean bubble chord length 
increases with bed height, which is not surprising because bubbles are known to grow axially 
throughout a bed consisting of Geldart Group B particles (Kunii and Levenspiel 1991; Fan and 
Zhu 1998). Radial variation in bubble chord lengths is minimal compared to the noted axial 
variation, which is consistent with previous segregation results in which radial segregation was 
found to be negligible vis-à-vis axial segregation (Chew, Wolz et al. 2010). This consistency 
between bubbling and segregation results is not surprising since bubbles are often viewed as 
‘mixing agents’. Consequently, since radial variation of bubbling characteristics (namely, 
frequency, velocity, and chord length) is negligible, the focus of the following discussion will be 
on axial variation. 
+ 
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Figure 121.  Radial profiles of mean bubble size profiles at each axial position 
for Gaussian distribution with σ/dsm = 30%. 

 
 The bubble characteristics measured for Gaussian distributions with σ/dsm = 10% – 30% are 
shown in Figure 122 through Figure 124, which are plots of bed height (h) versus bubble 
frequency, bubble velocity and bubble chord length, respectively. Error bars represent 95% 
confidence intervals. Analogously, Figure 125 through Figure 127 contain similar plots for 
lognormal distributions with σ/dsm in the range of 10% to 70%. It should be noted that the larger 
error bars for the widest lognormal distribution of σ/dsm = 70% should be expected, since biggest 
bubble chord lengths are found in this distribution, which implies a greater variation of chord 
lengths measured. Collectively, it is observed in Figure 122 through Figure 127 that bubble 
frequency, velocity and chord length increase monotonically with increase in PSD width for both 
Gaussian and lognormal PSDs. Because the previously reported degree of segregation for 
lognormal distributions is non-monotonic with respect to PSD width, the original anticipation 
that (some or all) bubble characteristics would be similarly be non-monotonic does not hold.  
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Figure 122. Axial profiles of bubble frequency for Gaussian distributions. 

 
 

 
Figure 123. Axial profiles of bubble velocity for Gaussian distributions. 
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Figure 124. Axial profiles of bubble chord length for Gaussian distributions. 

 
 

 
Figure 125. Axial profiles of bubble frequency for lognormal distributions. 
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Figure 126.  Axial profiles of bubble velocity for lognormal distributions. 

 
 
 

 
Figure 127. Axial profiles of bubble chord length for lognormal distributions. 

 
 Since bubbles have been known to play an important role in segregation behavior, it is 
worthwhile to take a more detailed look at the bubble trends to see if they are consistent with 
expectations.  In particular, for both Gaussian PSDs and the narrower (σ/dsm ≤ 30%) lognormal 
PSDs, the bubble characteristics vary monotonically with distribution width, as did the 
previously reported segregation measurements (Section 4.3.1)(Chew, Wolz et al. 2010). So the 
question remains: does the direction (increasing or decreasing) of the bubble trends make sense 
in light of the segregation data?  More specifically, since bubbles are known to be ‘mixing 
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agents’, an increase in the frequency and velocity of bubbles is presumed to enhance mixing, and 
vice versa.  
 Because an increase in the width of a Gaussian PSD was found to lead to increased 
segregation (Figure 112), it was initially expected that bubble frequency and velocity would 
decrease with increasing PSD width. Surprisingly, it is observed in Figure 122 and Figure 123 
that as the width of the Gaussian PSD increases, the frequency and velocity of the bubbles 
increase too. With regards to bubble sizes, bigger bubble sizes are expected to enhance mixing: 
Rowe et al.(Rowe, Agbim et al. 1972) asserted that the most important mechanism for 
transporting particles up the bed is by the bubble wake, which is approximately 20% of the 
volume of bubbles for the size range investigated here (Rowe and Partridge 1965). Nevertheless, 
Figure illustrates that bubble chord length increases with PSD width (consistent with previously 
reported work on Group A particles(Beetstra, Nijenhuis et al. 2009)), which thus does not seem 
to explain the increasing segregation extent. Hence, the results indicate that, not only is there a 
lack of correlation between bubbling and segregation phenomena (in particular, for lognormal 
distributions, bubbling is largely monotonic with an increase in width but segregation is not), but 
even for the distributions (Gaussian) where there is a correlation, the trends are opposite of 
expectation. A similarly puzzling observation is observed for lognormal distributions over the 
range in distribution widths associated with increasing extent of segregation (σ/dsm = 10 – 50%).  
Namely, the bubble frequency, velocity, and chord length increase with distribution width 
(Figure 125 through Figure 127, respectively), which is seemingly contrary to the increasing 
levels of segregation (Figure 112).  
 A more careful look at the bubble measurements holds the key to understanding the link 
between bubbling and segregation patterns. Bubbles indeed serve as mixing agents, but the 
observed segregation is due instead to the absence of bubbles. In particular, a bubble-less layer –  
a bottom region of the bubbling bed where bubbles are not detected by the fiber optic probe – is 
observed in some systems.  Specifically, the bubble-less region is where zero bubble frequency is 
detected, as evidenced in Figure 122 and Figure 125; the corresponding velocity and chord 
length are not plotted, as these parameters are not relevant in the absence of bubbles. This layer 
is evidenced in Figure 122 through Figure 124 for Gaussian systems.  The largest bubble-less 
layer is observed for σ/dsm = 30%, in which bubbles are not detected for the three lowest axial 
positions, whereas only the lowest axial position appears bubble-less for σ/dsm = 10% and 15%.  
This trend in the bubble-less layers corresponds directly to segregation levels, which is greatest 
for σ/dsm = 30% in the Gaussian system.  A similar correspondence is noted for the lognormal 
systems across all distribution widths.  Recall from Figure 112 that the segregation behavior is 
surprisingly non-monotonic with respect to PSD width for the lognormal distributions, with 
segregation extent peaking for the lognormal distribution with σ/dsm = 30%. Figure 125 through 
Figure 127 illustrate that the most segregated lognormal distribution of σ/dsm = 30% has the 
largest bubble-less layer. While bubbles are detected from the second lowermost position 
upwards for the more uniformly mixed lognormal distributions of σ/dsm = 10%, 50% and 70%, 
bubbles can only be detected from the third lowermost position upwards for the lognormal 
distribution of σ/dsm = 30%.  Hence, the experimental data conclusively show that regardless of 
the magnitude of the bubble parameters measured in the upper layer, the larger the bubble-less 
layer, the more segregated a system becomes. 
 Two additional points are worth commenting regarding this link between the size of the 
bubble-less layer and the extent of segregation. First, although bubbles are not detected in the 
bottom layer, it is important to note that the entire bed (including the bottom layer) is known to 
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be completely fluidized, because the pressure drop across the bed (ΔPbed) is equal to the ratio of 
the weight of the bed to the cross-sectional area of the column (W/A) at the operating superficial 
gas velocity (Us). Second, the failure to detect bubbles can be traced to either bubbles being non-
existent or bubbles being smaller than 0.1 cm, which is the separation between two fibers in each 
bundle (Figure 118). Regardless of the situation, however, mixing by bubbles will be ineffective 
in the bottom layer. More specifically, consider liquid-solid fluidized beds which do not exhibit 
the bubbling behavior. Such systems are known to display species segregation, which can be 
traced to the drag force descriptions for each species. This driving force for species segregation 
will also be present in gas-fluidized beds regardless of whether or not bubbles are present. When 
bubbles are present, however, their motion induces mixing of the various species. Accordingly, 
in the bottom bubble-less layer, the segregation mechanism dominates, resulting in a gradient of 
concentration across that layer (Figure 128). Along the same lines, in the upper bubbling layer, 
the mixing mechanism dominates, resulting in a well-mixed layer (note vertical nature of 
concentration profiles in upper layer of Figure 128). 

 
Figure 128.  Axial segregation profile of the finest and coarsest species for 
Gaussian distribution with σ/dsm = 30%. 

 
 Given that the presence of bubble-less layers provides a link between the observed 
bubbling behavior and (integrated) segregation index, it is useful to see how the axial profiles of 
each compare. Figure 128 is a plot of the axial segregation profiles of two different size species 
for the Gaussian distribution with σ/dsm = 30%. The y-axis is the height of the particle bed (h), 
and the x-axis represents mass-based frequency (fm), which is the mass fraction of the species 
normalized with respect to bin sizes. As depicted in Figure 128, two distinct layers of almost 
constant species concentration is observed, which has been similarly reported before for 
continuous PSDs(Hoffmann and Romp 1991; Chew, Wolz et al. 2010). Interestingly, but perhaps 
unsurprisingly, the range of heights over which the transition between the two distinct regions in 
Figure 128 arises (h/H ~ 0.4 – 0.6) corresponds exactly to the h range at which transition from 
bubble-less to bubbling regimes for σ/dsm = 30% (Figure 122 through Figure 124). Other 
Gaussian and lognormal distributions similarly illustrate that the transition height between 
bubble-less and bubbling regime corresponds to the transition height between the two distinct 
layers in the axial segregation profiles (Section 4.3.1)(Chew, Wolz et al. 2010). 
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Summary. Although bubbles are widely viewed as ‘mixing agents’, a direct comparison 
between the species segregation trends in systems with continuous PSDs and corresponding 
bubble characteristics has been lacking. The previously-reported, non-monotonic segregation 
behavior(Chew, Wolz et al. 2010) (with respect to distribution width) for lognormal distributions 
provides a unique case study for testing the presumed link between segregation and bubble 
patterns. Hence, experiments involving low-velocity, bubbling, gas-fluidized beds have been 
carried out for Geldart Group B particles of various widths of Gaussian and lognormal 
distributions, with a focus of comparing axial segregation to bubble profiles. 
 Measured bubble parameters (frequency, velocity, and chord length) for the Gaussian 
(σ/dsm = 10%, 15%, and 30%) and lognormal (σ/dsm = 10%, 30%, 50%, and 70%) distributions 
are reported.  A somewhat surprising initial observation is the lack of correlation between the 
degree of segregation and the measured bubble parameters, with respect to distribution width.  In 
particular, although the lognormal distribution displays a non-monotonic degree of segregation 
as the distribution width is increased, all measured bubble parameters are found to increase over 
the entire range of distribution widths explored. Nonetheless, the key to understanding the 
segregation patterns is tied to the presence of a bubble-less layer at the bottom of the (fully-
fluidized) bed.  Namely, the degree of segregation is strongly tied to the height of the bubble-less 
layer at the bottom of the bed. For well-mixed systems (i.e., Gaussian distribution with σ/dsm = 
10%, and lognormal distributions with σ/dsm = 10% and σ/dsm = 70%), bubbles are present axially 
throughout most of the bed, hence enabling thorough mixing. For the most segregated systems 
among the Gaussian and lognormal distributions (σ/dsm = 30%), the largest bubble-less bottom 
layer is observed, where although the entire bed is fully fluidized, bubbles are either absent or so 
small (< 0.1 cm) that they cannot be detected. Hence, the larger the bubble-less layer at the 
bottom of the bed, the more segregated the system becomes.  Another new finding resulting from 
this work is the monotonic increase in all bubble parameters (frequency, velocity, and chord 
length) with respect to PSD width.  
 Finally, the experimental results in Task 4.3 are expected to be valuable towards the 
validation of discrete element models (DEM) and two-fluid models for continuous PSDs. To 
date, the vast majority of modeling efforts have focused on binary mixtures, and various closures 
(kinetic theory for collisional stresses, frictional stress, drag laws, etc.) required for adaptation to 
continuous PSDs remain largely untested, partly due to the lack of detailed experimental data 
like that reported in this work. Model validation can proceed on multiple fronts using this 
dataset: non-monotonic degree of species segregation with respect to PSD width, existence of a 
bubble-less layer, trends of bubble characteristics with widths of distributions, link between 
segregation and bubbling profiles, and so on. 
 
Task 4.4:  Probe Development for Clusters in a High-Velocity, Fluidized Bed (Cocco) 

A probe will be developed to further capture the cluster/clumping behavior of small 
particles (<30 µm).  Such a probe will be able to capture, in real time, the dynamic nature of 
particles clustering at the top of the fluidized bed and in the freeboard region.   

 
(Cocco reporting.)  This probe is described in detail in “Fiber Optic Probe” section of 

next task description. 
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Task 4.5:  Experiments in a High-Velocity, Fluidized Bed (Cocco) 
 

The large-scale (8” ID x 72’) riser at PSRI will be used to characterize high-velocity, 
polydisperse systems.  Experiments will consist of operating the riser at both a high and low 
particle flux, and at both a high and low superficial gas velocity.  Measurements will include 
pressure drop profiles, solids concentration profiles, solid flux profiles, cluster characteristics, 
and gas residence time distribution for binary mixtures (with differences in size and/or density) 
and a continuous distribution of sizes.   

As described above, the original (proposed) set of experiments include a full factorial 
design of two particle size distributions (PSDs), two gas velocities, and two overall solids fluxes 
in the 8” ID x 72’ riser.  The center point of the matrix is run in triplicate.  Measurements 
include solids flux and concentration at 7 radial positions for 5 axial locations, in addition to 
gas residence time and cluster characteristics using the new probe. 

To expand the data set, measurements will also be taken in additional systems, namely (i) 
in the 12” ID x 50’ riser and (ii) in the 8” ID x 72’ with an obstruction in the core region.  The 
purpose of (i) is scale-up and the purpose of (ii) is to generate more mixing by breaking up core-
annular flow, both of which will serve as new testbeds for model validation.  This revised set of 
experiments will be performed using a half factorial design, but with the same measurements and 
number of PSD’s as the original set of experiments.  It is anticipated that some funds will also be 
available for a few additional experiments (not half factorial) for a third PSD.  Furthermore, to 
offset the higher-risk associated with the new cluster probe, information on the cluster size and 
frequency will be extracted from the time series data obtained with the solids flux probe 
(whereas the data from the new probe will provide additional information, e.g., cluster stability). 
 
 (Hrenya and Cocco reporting.)  Task 4.5.1: Reverse Core-Annular Flow4 
Abstract:  Experiments involving monodisperse Geldart Group B particles have been carried out 
in a pilot-scale riser of a circulating fluidized bed (CFB).  Several combinations of superficial 
gas velocity (Us), solids flux (Gs), average particle diameter (dave), and particle material density 
(ρs) were investigated. Surprisingly, the experiments reveal the presence of a reverse core-
annulus profile (i.e., a dense core with a dilute annulus) under certain conditions.  Specifically, 
for the large glass beads (dave= 650 μm, ρs= 2500 kg/m3), the reverse core-annulus profile was 
observed near the top of the riser for all Us and Gs combinations examined. For high-density 
polyethylene (HDPE) beads (dave= 650 μm, ρs= 900 kg/m3) of the same dave, reverse core-annulus 
was observed at the top of the riser only at relatively low Gs. However, for the smaller glass 
beads (dave =170 μm, ρs=2500 kg/m2s), the traditional core-annulus profile was observed for all 
Us and Gs combinations. Although previous work provides possible explanations for this 
behavior (gas-phase turbulence, etc.), the evidence obtained in this system suggests a novel 
dominant factor for reverse core-annulus flow: the particle Stokes number (St). Lower-St 
particles are more apt to follow the gas exiting the riser while higher-St particles have a longer 
relaxation time and thus are more likely to re-enter the riser after collision with the roughened 
rounded-elbow exit. Accordingly, the re-direction of particles from the rounded exit elbow and 
back into riser due to large-scale roughness along the elbow is greater for higher-St particles. 
 

                                                 
4 Chew, Hays, Findlay et al., “Reverse Core-Annular Flow of Geldart Group B Particles in Risers”, 
submitted, Powder Technology, 2011. 
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Introduction: Circulating fluidized beds (CFBs) operated at much higher velocities than 
the bubbling fluidized beds described in Task 4.3, and find important applications in coal 
gasification, fluid catalytic cracking, chemical looping, and so on. The focus of the current 
effort (Sections 4.5.1 – 4.5.5) is on the riser section of the CFB, which refers to the high 
velocity, vertical section. In the riser, various flow characteristics, for example, solids 
concentration (Section 4.5.1), species segregation (Section 4.5.2), mass flux (Section 4.5.3), 
and cluster behavior (Section 4.5.4 - 5), are well-known to vary in both the axial and radial 
directions. Accordingly, the gas-solids contact times in different parts of the riser may vary, 
thereby impacting the overall efficiency of the unit. The vast majority of published work for 
CFBs has been for Geldart(Geldart 1973) Group A particles, in which presence of core-annulus 
flow (i.e., a relatively dilute core and dense annulus) and clustering instabilities are well-
documented(Kunii and Levenspiel 1991; Grace, Avidan et al. 1997; Fan and Zhu 1998).  
Accordingly, the aim of this effort is to establish a rich experimental dataset of riser 
characteristics for Geldart Group B particles, and to compare the resulting behavior with that 
previously obtained for Group A systems.  

 The primary focus of this section is on solids volume fraction (Φ) profiles, because an 
unexpected finding is revealed therein. Notably, the current section involves three monodisperse 
materials with differences in average particle size (dave) and/or material density (ρs), namely (i) 
“large” glass beads with dave = 650 μm and ρs = 2500 kg/m3, (ii) “large” HDPE (high-density 
polyethylene) beads with dave = 650 μm and ρs = 900 kg/m3, and (iii) “small” glass beads with 
dave = 170 μm and ρs = 2500 kg/m3. Materials (i) and (ii) (large glass and HDPE, respectively) 
differ in material density (ρs) but not size (dave), whereas materials (i) and (iii) (large glass and 
small glass, respectively) differ in dave but not ρs.  
 The experimental results for the Group B particles exhibit an interesting feature: a reversal 
of the core-annulus phenomenon (i.e., a dense core and dilute annulus) is observed for some of 
the materials at some of the operating conditions examined. Although previous researchers have 
made observations related to the reverse core-annulus, the source of the reversal present in this 
work is more nuanced, and can be explained physically in terms of the Stokes number (St).  First, 
with regards to previous work, Bolio and Sinclair(Bolio, Yasuna et al. 1995) found using a 
kinetic-theory-based model that solids concentration along the riser axis increases with increased 
dilution due to the increased dominance of gas-phase turbulence effects.  However, reverse core-
annulus was observed in the present work at values of solids loading (m) higher than that of the 
‘dilute limit’, namely m = 8(Tanaka, Takagi et al. 1989; Bolio, Yasuna et al. 1995), where m is 
the ratio of overall solids flux to that of the gas flux. In another kinetic-theory-based effort, 
Benhayia et al.(Benyahia, Syamlal et al. 2007) reported that wall roughness leads to a reverse 
core-annulus too, but the reversal is not as exaggerated as found in the current work.  In an 
experimental study, Du et al.(Du, Warsito et al. 2004) observed deviation from the traditional 
core-annulus profile (coined a double-ring structure) during the transition to choking, which is at 
much higher solids concentration than in this work.  
 One explanation for the new finding of reverse core-annulus profile involves the Stokes 
number (St) of the material and roughness elements along the upper wall of the rounded elbow 
exit. Specifically, particles are re-directed from the rounded exit elbow and back into riser due to 
large-scale roughness along the elbow. This explanation is consistent with the dependency of the 
experimental observations on St (ratio of particle inertia to viscous effects of fluid). Namely, it is 
observed that the material with the highest St (i.e., large glass) not only displayed reversal of the 
core-annulus profile for all conditions investigated, but also gave the highest extent of reversal. 
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In other words, higher St particles are more likely to follow straight trajectories between 
collisions (and thus be re-directed back into riser after collision with roughness element along 
rounded elbow), whereas lower St materials are more apt to follow the fluid directly out of the 
riser. 

Experimental Description – CFB system: Figure 129 shows a schematic of the 
circulating fluidized bed (CFB). The riser, which is the section of interest in this work, is 0.30 m 
in diameter and 18.3 m tall, with a rounded-elbow exit. Blowers supply air for fluidization, and 
the air enters the riser through a mixing pot at the bottom to ensure uniform dispersion. The air 
flow rate is controlled by a manual valve, and the superficial gas velocity (Us), which is reported 
at local atmospheric conditions, is determined with an orifice plate located upstream of the 
mixing pot. The operating air temperature and relative humidity (RH) are measured by means of 
an Omega HX93AV-RP1 probe, with a temperature range of -4 to 171 oC and RH range of 0 to 
100 %, inserted before the mixing pot. Two cyclones connected in series downstream of the riser 
exit enable recirculation of the solids.  The solids flow rate back to the riser is controlled by a 
pneumatic slide valve at the bottom of the standpipe. Pressure drops across the orifice plate and 
along the entire riser are measured with pressure transmitters. All temperature, RH, Us and 
pressure data are recorded via a DASYlab data acquisition program throughout the experiments. 
Ports for probe insertion are available at five approximately equally-spaced axial positions along 
the entire riser height, and two ports azimuthally 90o apart in the horizontal plane are available at 
each axial position. 

 

  
Figure 129.  Schematic of CFB at PSRI. 
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Particles Investigated: The materials of interest are various sets of monodisperse particles with 
different material density (ρs) and size (dave), namely (i) “large” glass (ρs = 2500 kg/m3 and dave= 
650 μm) (ii) “large” high-density polyethylene, HDPE (ρs = 900 kg/m3 and dave= 650 μm), and 
(iii)  “small” glass (ρs = 2500 kg/m3 and dave= 170 μm), as listed in Table 8. Materials (i) and (ii) 
(large glass and HDPE, respectively) differ in material density (ρs) but not size (dave), whereas 
materials (i) and (iii) (large glass and small glass, respectively) differ in dave but not ρs.  To obtain 
as narrow a distribution of sizes as possible, particles procured from vendors (glass beads of both 
sizes from Midwest Finishing Systems and HDPE from Dyneon LLC) were sieved using the 
Sweco industrial sieve to obtain narrower particle size distributions (PSD’s). Since the 
continuous nature of the Sweco sieve gives rise to an imperfect separation between the various 
sieve sizes, a representative sample was obtained from each drum of sieved material and then the 
PSD’s were further analyzed using a Ro-Tap sieve-shaker. The resulting PSD for each material 
is depicted in Figure 130, which shows a plot of mass-based frequency (fm, which is mass 
fraction of each sieve cut normalized with respect to bin size, for fairer comparison among sieve 
cuts of different widths) versus particle size. For each material, the width of the distribution, 
defined as the standard deviation (σ) normalized with respect to dave, is approximately 10%. As 
shown in Figure 130, the large glass and large HDPE have similar PSD’s, while the small glass 
has a PSD that is shifted leftwards due to its smaller dave. In addition, as shown in Figure 131, the 
particles are approximately spherical. 
 

Table 8.  Monodisperse materials investigated. 

 dave (μm) ρs 
(kg/m3) 

σ/dave 
(%) 

Large Glass 650 2500 9 
Small Glass 170 2500 12 

Large 
HDPE 

650 900 11 

 

 
Figure 130.  PSDs of materials investigated.  
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Figure 131.  Photograph taken under the microscope of (a) large glass, (b) large HDPE, and (c) 
small glass. The grid openings shown are of size 200 μm by 200 μm. 
 

Operating Conditions: In an effort to operate at the higher superficial gas velocity (Us) 
and (integrated) mass flux (Gs) ranges to mimic industrial CFB’s(Kunii and Levenspiel 1991), a 
series of range-finding experiments were carried out to maximize the range of operating values 
based on physical constraints. The highest limit Us was 17 m/s, restricted by the avoidance of the 
generation of too much pressure on the Plexiglass fronting the rectangular fluidized bed in the 
recirculation loop (Figure 129). The lower limit was 13.5 m/s to allow for higher mass flux (Gs) 
to be investigated. As for Gs, the practical limits are 120 kg/m2s and 260 kg/m2s. The lower 
bound for Gs was restricted by sensitivity of the Pitot tube / extraction probe to detect solid 
volume fraction (Φ) at the higher Us limit; On the other hand, the upper Gs bound was restricted 
by the lower Us limit to deter slugging. The resulting four combinations of Us and Gs were 
examined, as tabulated in Table 9. Another way to characterize these conditions is via the solid 
loading (m), which is a dimensionless quantity defined as the ratio of solid flux to gas flux: 

 

 

m =
Gs

Usρg

 (70)                 

where ρg is the density of air, namely 1.2 kg/m3. In this work, m ranges from 5.9 to 16.0 were 
investigated. 

Table 9.  Operating conditions for monodisperse materials. 
 

Us (m/s) Gs (kg/m2s) m 
13.5 120 7.4 
13.5 260 16.0 
17 120 5.9 
17 260 12.7 

 
Solids Concentration Measurements: To characterize the solid phase in the riser, 

local measurements were taken at various axial and radial positions along the riser. Instruments 
used include pressure transmitters, an extraction probe, a Pitot tube, a fiber optic probe, and a 
thermal conductivity detector for helium detection. Figure 132 shows the configuration used for 
the extraction probe, Pitot tube and fiber optic probe. The extraction probe and Pitot tube have 
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been fabricated such that probe tips are oriented 90o to the probe shaft in order to measure 
quantities (flux, velocity) associated with upward or downward flow while minimizing the 
intrusiveness of these probes. The orientation of the fiber optic probe and helium detector were 
used in a straight or horizontal configuration. Measurements were collected at five axial 
locations using two sets of 11 radial measurements that are 90o apart in the horizontal plane, as 
shown in Figure 132b.  Two radial planes of measurements were collected to better discern the 
radial profile (i.e., a symmetric profile was not assumed). Only quantities derived from the Pitot 
tube, extraction probe and fiber optic probe will be presented in this section.   
 

 
Figure 132.  Schematic illustrating (a) probe positions in the riser and (b) implementation of bi-
directional measurement at each axial position. 
 

Pitot Tube and Extraction Probe: The solids volume fraction (Φ) profiles were obtained 
using a combination of the Pitot tube and extraction probe measurements. The Pitot tube is well-
established as an instrument used to obtain air velocity via measurements of differential pressure 
between stagnant and dynamic pressures (ΔPpitot), defined as: 

 

 

∆Ppitot = αρgVg
2  (71)   

where α is a calibration constant specific to the Pitot tube used, and ρg and Vg are the air density 
(1.2 kg/m3) and air velocity, respectively. To adapt this instrument for acquiring solid-phase 
information in the riser(van Breugel, Stein et al. 1969; Bader, Findlay et al. 1988; Azzi, Turlier 
et al. 1990; Harris, Davidson et al. 1994), another term is added to Equation 71: 

 

 

∆Ppitot = α[ρgVg
2(1− φ) + ρsVs

2φ] (72) 
where ρs and Vs are the density and velocity of the solid particles, respectively, and Φ is the solid 
volume fraction. An assumption and calibration are necessary(van Breugel, Stein et al. 1969; 
Bader, Findlay et al. 1988; Azzi, Turlier et al. 1990; Harris, Davidson et al. 1994) in 
implementing Equation 72. First, an assumption is made that since solid density (ρs) is on the 
order of 103 times greater than that of air (ρg), the contribution of the gas phase to ΔPpitot is 
negligible, and hence the term accounting for the gas phase is omitted. Second, to ensure validity 
of the data acquired by the Pitot tube, calibration of the instrument in the air-only limit is 
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required using Equation 71. Specifically, the average Vg obtained by integration of the radial Vg 
profile measured with the Pitot tube is compared with the corresponding value of the known gas 
flow fed to the riser(van Breugel, Stein et al. 1969). Hence, substituting for ρg and average Vg, α 
is derived using Equation 71.  It was found that the specific design of the Pitot tube used, which 
is fabricated in-house at PSRI, warrants a calibration constant (α) of 0.9. Therefore, Equation 72 
becomes: 
 

 

∆Ppitot = 0.9φρsVs
2 (73)  

Subsequently, as validation of the Pitot tube used for this work, different (integrated) air flow 
rates were measured accurately. Since there are two remaining unknowns (Φ and Vs) in Equation 
73, extraction probe data is also needed: 
 

 

Gr = φρsVs                                                           (74) 
where Gr is the local mass flux measured by the extraction probe. Solving Equations 73 and 74 
simultaneously, the particle velocity (Vs) and the solids volume fraction (Φ) of the solid phase in 
the riser can be derived(van Breugel, Stein et al. 1969; Bader, Findlay et al. 1988; Azzi, Turlier 
et al. 1990; Harris, Davidson et al. 1994): 

 

 

Vs =
∆Ppitot,r,upward flow

αGr,upward flow

−
∆Ppitot,r,downward flow

αGr,downward flow

 (75)                                   

 

 

φ =
Gr,upward flow − Gr,downward flow

Vsρs

 (76)           

where subscripts upward flow and downward flow refer to measurements by the probes in the 
upward and downward directions, respectively.  Validation of the extraction probe measurements 
have also been carried out to ensure that (i) the radially-averaged (integrated) mass flux is 
consistent at all axial positions (thereby ensuring a mass balance) and (ii) the collection period is 
long enough; further details can be found in Chew et al.(Chew, Hays et al. 2011).  An inherent 
assumption of Equation 76 is that the time-averaged value of solids volume fraction (Φ) can be 
cast in terms of the time-averaged solids flux (Gr) without any dependence on correlations of 
corresponding fluctuating quantities; some simulation studies have shown that this assumption is 
not strictly upheld in some systems(Benyahia, Syamlal et al. 2007; Benyahia 2008). 
Accordingly, an independent check of the solids concentration profiles determined from the Pitot 
tube/extraction probe is warranted, as detailed below. 

Fiber Optic Probe: The fiber optic probe used in this work consists of two fibers: one 
fiber is used to transmit the light source, while the other is the receiver conduit. Notably, the 
fibers converge such that the sampling volume is reduced, in order to increase precision by 
reducing unnecessary scattering of the light source. The underlying principle of the fiber optic 
probe is such that a higher voltage signal is obtained from the receiving fiber when light emitted 
from the light-source fiber is blocked, as occurs when the probe is surrounded by a denser 
(particle-rich) phase. On the other hand, a lower voltage signal is obtained when light from the 
emitter is relatively unobstructed, which occurs when the probe tip is in a more dilute (gas-rich) 
phase. 
 Although numerous investigations have utilized fiber optic probes for obtaining direct 
measurements of solid concentration(Louge 1997; van Ommen and Mudde 2008), several works 
have noted the inefficacy of the fiber optic probe to give absolute concentration values due to the 
problematic calibration procedures involved(Matsuno, Yamaguchi et al. 1983; Herbert, Gauthier 
et al. 1994; Zhang, Johnston et al. 1998). Accordingly, in this work, instead of attempting to 
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calibrate the fiber optic probe signals to obtain absolute solid concentration values (since, for 
example, continual bombardment of the probe tip by glass particles may alter the baseline signal 
with time), a wavelet decomposition(Mallat 1998) of the raw signal is instead used as an 
indicator of relative solid concentration (i.e., dense phase versus dilute phase), as detailed below. 
 To use the fiber-optic measurements to distinguish between dense and dilute conditions, a 
method known as wavelet decomposition(Mallat 1998; Ren and Li 1998; Guenther and Breault 
2007; Yang and Leu 2009) is implemented here via the wavelet toolbox in Matlab(Misiti, Misiti 
et al. 2002). More specifically, wavelet decomposition provides a means of representing different 
frequencies of the raw voltage signal by repeatedly breaking down the signal into higher-
frequency details (D) and lower-frequency approximations (A), as illustrated in Figure 133. At 
the first scale of decomposition (Scale 1), the signal of N Hz (in this work, a data collection 
frequency of 100 Hz was used for large glass preliminarily and a higher 1000 Hz(Yang and Leu 
2009) was subsequently used for large HDPE and small glass) is divided into the first scale of 
approximation (A1) and the first scale of detail (D1), whereby A1 and D1 contains the lower and 
higher frequency ranges, respectively. With the increase of the scale from j to j+1, each 
approximation Aj is subsequently decomposed into approximation Aj+1 and detail Dj+1 signals. 
Figure 134 further shows the detail signals at some scales, illustrating the decrease in signal 
frequency with the increase of scales. For the interested reader, a thorough explanation of the 
wavelet decomposition technique can be found in Mallat(Mallat 1989; Mallat 1998). 
 

 
Figure 133.  Decomposition of signal into various scales via wavelet decomposition. 
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Figure 134.  Raw fiber optic trace (upper left) and corresponding details (Dj) at various scales 
(j) of wavelet decomposition for large HDPE at operating condition of Us =13.5 m/s, Gs = 260 
kg/m2s and at h/H = 0.93 and r/R = 0.83.  
 
 Based on the signal decomposition described above, it has been deduced that higher 
frequencies containing noise are represented at lower scales (micro-scale), intermediate 
frequencies containing particle information are represented at intermediate scales (meso-scale), 
and lower frequencies containing equipment effects are represented at higher scales (macro-
scale)(Ren and Li 1998; Yang and Leu 2009). Based on this knowledge of the physical meaning 
of each scale (micro-, meso-, and macro-), the energies present at each scale can be expressed 
graphically, as depicted in Figure 135. The normalized relative energy of the detail signals at 

each scale (

 

EDj

EJ ,all

) is calculated as(Yang and Leu 2009): 

 

 

EDj = Dj (t)
t =1

N

∑
2

 (77)                 

 

 

EAj = A j (t) − A j,ave
t =1

N

∑
2

 (78)                             

 

 

EJ ,all = EA ,J + EDj
j =1

J

∑  (79)           

where E is the energy of the signal, N is the total number of data points, J is the final scale of 
decomposition (in this work, the largest scale of decomposition used is 13, since Figure 134 
shows that negligible frequency information is present from scale 13 onwards),  j is the scale of 
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decomposition, D is a detail signal at a specified scale j, A is an approximation signal at a 
specified scale j, Aj,ave is the average value of the Aj trace, and t is time.  

 

 
Figure 135.  Normalized wavelet energy distribution for small glass under 
operating condition of Us = 13.5 m/s, Gs = 260 kg/m2s and at h/H = 0.47 and r/R = 
0.96. 

 
 Figure 135 represents data obtained near the wall (r/R = 0.96) for the small glass system 
with a mass loading of m = 16.0. It is seen that most energy is contained in the meso-scale 
(Scales 5 - 11), which is similar to that shown by Yang and Leu(Yang and Leu 2009). The 
similarity of shapes is expected since both signals are collected at relatively dense flow 
conditions. Along the same vein, normalized wavelet energy distribution plots were generated 
for a background signal (absence of solids) as well as the signal collected at the riser center 
(presumably dilute) for the same small glass system. These results are given in Figure 136. In 
particular, as shown in Figure 136a, a background signal (i.e., in the absence of solids) consists 
only of noise. All the energies of the signal are contained in the lowest scales of an exponentially 
decreasing function. Figure 136b (identical to Figure 135) demonstrates that under relatively 
dense conditions (near the wall), the intermediate scales contain most of the energies of the 
signal. Finally, under relatively dilute conditions, the signal contains both noise and solids 
information, and therefore the dominant energies of the signal are contained in the range of low 
to intermediate scales, as seen in the left-skewed Gaussian plot in Figure 136c. Hence, wavelet 
decomposition of the fiber optic signal provides a means of identifying dense versus dilute flow 

conditions via the shape of the normalized wavelet energy distribution (

 

EDj

EJ ,all

) as a function of 

scale. 
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Figure 136.  Normalized wavelet energy distribution plots for (a) background signal (i.e., 
absence of solids at Us = 13.5 m/s), (b) dense conditions (for small glass under operating 
condition of Us = 13.5 m/s, Gs = 260 kg/m2s and at h/H = 0.47 and r/R = 0.96), and (c) dilute 
conditions (for small glass under operating condition of Us = 13.5 m/s, Gs = 260 kg/m2s and at 
h/H = 0.47 and r/R = 0). 
 

Results and Discussion:  Solid concentration information, obtained separately with both 
Pitot tube / extraction probe setup as well as the fiber optic probe, are highlighted below, along 
with the differential pressure drop measurements, since the most significant findings are revealed 
therein. Only the solids volume fraction profiles calculated via Equation 76 from the Pitot tube 
and extraction probe measurements are given below. Raw measurements obtained from the Pitot 
tube and extraction probe are not included here for the sake of brevity, but are available in Chew 
et al.(Chew, Hays et al. 2011; Chew, Hays et al. 2011) for the interested reader. 
 

Solid volume fraction (Φ) profiles via Pitot tube and Extraction probe: Solid volume 
fraction plots obtained via the Pitot tube / extraction probe for each of the three monodisperse 
materials investigated are presented in Figure 137 through Figure 139.  The subplots of each 
figure contain data at each of the Us, Gs pairings given in Table 9. The vertical axis represents 
the solid volume fraction (Φ), while the horizontal axis represents the dimensionless radius (r/R) 
of the riser cross-section, where r and R are the radial position at which measurement was taken 
and riser diameter, respectively. The data points represent average values of the two sets of bi-
directional (90o apart) radial measurements taken at each axial position, and the error bars denote 
the span of the two values. The various profiles on each subplot represent measurements taken at 
different dimensionless heights (h/H) along the riser, as indicated in the legend. Specifically, h is 
the height along the riser at which measurements are taken and H is the total height of the riser. 
 Figure 137 shows the Φ profiles for large glass. A surprising finding for this material is that 
of reverse core-annulus (i.e., a dense core and dilute annulus) profiles at the topmost axial 
position (h/H = 0.92) across all four operating conditions.  Lower portions of the riser, on the 
other hand, retain the well-known core-annulus (i.e. dilute core and dense annulus) profile.  
Furthermore, regarding the magnitude of this shift, Figure 137 illustrates that the U-shaped 
profile obtained at the lowest h/H essentially flips upside down by the highest axial position, and 
thus the minimum and maximum values of Φ are nearly the same in both cases, but located at 
different radial positions (i.e., the wall at low h/H and the center at high h/H). 
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Figure 137.  Radial solid volume fraction (Φ) profiles of large glass at (a) Us = 13.5 m/s, Gs= 
120 kg/m2s, m = 7.4, (b) Us = 13.5 m/s, Gs= 260 kg/m2s, m = 16.0, (c) Us = 17 m/s, Gs= 120 
kg/m2s, m = 5.9, and (d) Us = 17 m/s, Gs= 260 kg/m2s, m = 12.7. 
 
 Solid volume fraction (Φ) profiles of large HDPE for all four conditions are shown in 
Figure 138. Similar to the large glass system, reverse core-annulus profiles are also observed for 
HDPE at the topmost axial position of h/H = 0.92, but only for the low Gs (namely, 120 kg/m2s) 
conditions (Figure 138a and c). Analogous to the large glass system (Figure 137), for conditions 
where reverse core-annulus is observed at the top, the lower portions of the riser still exhibit the 
widely acknowledged core-annulus profile (U-shape). The inversion itself is less dramatic than 
in the large glass case (Figure 137), as the maximum Φ observed for the profiles with the 
inverted U-shape is not as large as the maximum Φ observed at the wall at the bottom of the riser 
(Figure 138a and c).  At the higher Gs (namely, 260 kg/m2s) conditions (Figure 136b and d), the 
riser retains the traditional core-annulus profile throughout the riser, although the U-shape is 
flatter higher up the riser. 
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Figure 138.  Radial solid volume fraction (Φ) profiles of large HDPE at (a) Us = 13.5 m/s, Gs = 
120 kg/m2s, m = 7.4, (b) Us = 13.5 m/s, Gs = 260 kg/m2s, m = 16.0, (c) Us = 17 m/s, Gs = 120 
kg/m2s, m = 5.9, and (d) Us = 17 m/s, Gs = 260 kg/m2s, m = 12.7. 
 
 The third material investigated is small glass. As shown in Figure 139, the solid volume 
fraction (Φ) profiles generally evolve from a U-shape at the bottom (traditional core-annulus) to 
approximately a flat line higher in the riser. In contrast with the previous cases of the large glass 
and large HDPE materials (both with dave= 650 μm), the Φ profiles do not exhibit a deviation 
from the well-known core-annulus profiles. The exaggerated reverse core-annulus (inverted U), 
particularly that observed for the large glass (Figure 137), however, has not been reported 
previously in the literature. 
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Figure 139.  Radial solid volume fraction (Φ) profiles of small glass at (a) Us = 13.5 m/s, Gs = 
120 kg/m2s, m = 7.4, (b) Us = 13.5 m/s, Gs = 260 kg/m2s, m = 16.0, (c) Us = 17 m/s, Gs = 120 
kg/m2s, m = 5.9, and (d) Us = 17 m/s, Gs = 260 kg/m2s, m = 12.7. 
 

Dense versus Dilute Flow Conditions via Fiber Optic Probe: To provide independent, 
supporting evidence for the reverse core-annulus phenomenon observed via the Pitot tube and 
extraction probe presented above, a wavelet decomposition of the fiber-optic measurements for 
each material was also carried out. As described below, the reverse core-annulus phenomenon is 
confirmed by the fiber optic data for the locations, materials, and operating conditions indicated 
previously by the Pitot tube/extraction probe data (Section 4.2.4.1).  
 Figure 140 contains the fiber optic traces collected at riser wall (subplots on left: r/R = 
0.96) and riser center (subplots on right: r/R = 0.0) for the three materials for the upper region of 
the riser where the reverse core-annulus behavior was observed for two of the three materials 
(i.e., large glass beads and HDPE). For the large glass material, comparison of Figure 140a and b 
plotted on the same y-axis range reflects that a wider range of voltage and higher voltage values 
were obtained at r/R = 0.0 (Figure 140b), which indicates higher solid concentration at the center 
relative to the wall (Figure 140a) - i.e., reverse core-annulus. Similarly for large HDPE, a wider 
range of voltage and higher voltage values were obtained at r/R = 0.0 (Figure 140c) compared to 
at r/R = 0.96 (Fogire 140d), again providing another layer of evidence for the reverse core-
annulus phenomenon observed with the Pitot tube/extraction probe. On the other hand, for small 
glass, a wider range of voltage and higher voltage values were obtained at r/R = 0.96 (Figure 
140e) than r/R = 0.0 (Figure 140f), corroborating the traditional core-annulus profile obtained 
with the Pitot tube/extraction probe. Similar consistency between the fiber-optic data and the 
Pitot tube/extraction probe were obtained for the entire dataset, but omitted here for brevity. 
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Figure 140.  Fiber optic probe voltage traces for large glass beads at Us = 17m/s, Gs = 
260kg/m2s, h/H = 0.92 and at (a) r/R = 0.96 and (b) r/R = 0.0; large HDPE at Us = 17m/s, Gs = 
120kg/m2s, h/H = 0.92 and at (c) r/R = 0.96 and (d) r/R = 0.0; and small glass beads at Us = 
13.5m/s, Gs = 260kg/m2s, h/H = 0.27 and at (e) r/R = 0.96 and (f) r/R = 0.0. 

 
 Keeping in mind the potential challenges involved with calibration of fiber optic voltage 
for absolute concentration values(Matsuno, Yamaguchi et al. 1983; Herbert, Gauthier et al. 1994; 
Zhang, Johnston et al. 1998), further analysis of the fiber optic data using wavelet decomposition 
was carried out since it gives information on relative concentration rather than absolute values. 
The wavelet decomposition results again confirm the presence of the reverse core-annulus 
phenomenon observed with the Pitot tube/extraction probe. In particular, the results are displayed 
in Figure 141 through Figure 143 for the same set of conditions shown in Figure 137 through 
Figure 139 for large glass, large HDPE and small glass, respectively.  Similar to the 
Pitot/extraction data, the large glass and HDPE beads displayed reverse core-annulus and the 
small glass beads exhibited the traditional core-annulus.  Note that because data acquisition 
frequency was lower for large glass (100Hz, instead of 1000Hz as for large HDPE and small 
glass), as per Figure 133, the same signal frequency information will be found in lower scales 
(specifically, three scales lower) for large glass than for the other two materials. 
 For large glass, the near-wall data exhibited in Figure 141a through Figure 141c display 
exponentially decreasing functions, indicating more dilute conditions near the wall (similar to 
Figure 136a), while the data nearer to the riser center (Figure 141d through Figure 141f) gives 
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rise to left-skewed Gaussian plots (similar to Figure 136c), indicating denser conditions. Hence, 
the wavelet analysis of the fiber optic trace supports the presence of a reverse core-annulus for 
large glass beads, similar to the Pitot tube/extraction probe conclusion (Figure 137d). Similarly, 
Figure 142 verifies the reverse core-annulus phenomenon observed for HDPE, consistent with 
the data from the Pitot tube/extraction probe (Figure 138a). Finally, Figure 143 confirms the 
traditional core-annulus observed for the small glass beads demonstrated in Figure 139b via the 
Pitot tube/extraction probe. This wavelet analysis was carried out across all operating conditions 
for each riser position and for each material investigated, and the results are uniformly consistent 
with the reverse and traditional core-annulus trends obtained from the Pitot tube/extraction 
probe, but are not shown for the sake of brevity. Accordingly, the trends reported here are 
verified independently through two separate measurement techniques. 
 

 
Figure 141.  Normalized wavelet energy distribution plots of fiber optic data of large glass 
beads under operating condition of Us = 17m/s and Gs = 260kg/m2s, at h/H = 0.92 and r/R = (a) 
0.96, (b) 0.83, (c) 0.67, (d) 0.50, (e) 0.29, and (f) 0.0. 
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Figure 142. Normalized wavelet energy distribution plots of fiber optic data of large HDPE at 
operating condition of U s= 13.5m/s and Gs = 120kg/m2s, at h/H = 0.92 and r/R = (a) 0.96, (b) 

0.83, (c) 0.67, (d) 0.50, (e) 0.29, and (f) 0.0. 
 

 
Figure 143. Normalized wavelet energy distribution plots of fiber optic data of small glass at 
operating condition of Us = 13.5m/s and Gs = 260kg/m2s, at h/H = 0.47 and r/R = (a) 0.96, (b) 
0.83, (c) 0.67, (d) 0.50, (e) 0.29, and (f) 0.0. 
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Physical Origins of Reverse Core-annulus Flow:  Collectively, Figure 137 through Figure 
143 indicate the presence of a surprising deviation from the well-known core-annulus pattern at 
the top portion of the riser for two of the three materials.  Specifically, the reverse core-annulus 
phenomenon is associated with the larger-sized (650 m) of the Group B particles examined 
under these operating conditions. What is the origin of this unexpected deviation from the 
widely-reported core-annulus profile? Two hypotheses stemming from existing literature will be 
considered in the following paragraphs, namely (i) the impact of gas-phase turbulence associated 
with dilute flows (i.e., low 

 

φ , where 

 

φ  is the solid volume fraction averaged over the cross-
section area), and (ii) a rough-wall effect.  
 Sinclair and Jackson(Sinclair and Jackson 1989) first illustrated the ability of a kinetic-
theory-based model to predict core-annulus flow, though their model also predicted an 
unrealistic segregation of particles toward the pipe center (reverse core-annulus), which was 
traced to an undue sensitivity to the restitution coefficient (e). This unrealistic sensitivity was 
later eliminated by the incorporation of additional physical mechanisms: gas-phase turbulence in 
dilute flows (maximum m and 

 

φ  values of 4.2 and 0.006, respectively)(Bolio, Yasuna et al. 
1995), and clustering instabilities in denser flows (minimum m and 

 

φ  values are 9.5 and 0.04, 
respectively)(Hrenya and Sinclair 1997).   For the case of dilute flows (m < 8), both 
experiments(Tanaka, Takagi et al. 1989) and simulations(Tanaka and Tsuji 1991; Bolio, Yasuna 
et al. 1995) have revealed a mild (realistic) reverse core-annulus trend at dilute conditions. 
Moreover, with regards to the effect of particle size under dilute conditions, it was further found 
that larger particles have a higher tendency towards the reverse core-annulus 
phenomenon(Tanaka, Takagi et al. 1989; Bolio, Yasuna et al. 1995), which is in agreement with 
experimental results in this work that only the larger particles (namely, large glass and large 
HDPE) exhibit reverse core-annulus.  
 Consequently, the influence of gas-phase turbulence in dilute flow may serve as an 
explanation for the reverse core-annulus phenomenon observed in this work, because the reversal 
is only seen at the top of the riser where 

 

φ  is generally the lowest, as evidenced from the axial 
profiles of 

 

φ  exhibited in Figure 144. Nonetheless, it is worthwhile to note that the reverse core-
annulus profiles in previous work were observed for dilute conditions of 

 

φ  < 0.01 (whereas core-
annulus was observed for higher 

 

φvalues(Sinclair and Jackson 1989; Hrenya and Sinclair 
1997)); in this work, a reverse core-annulus profile is observed up to 

 

φ  = 0.02 (Figure 137b and 
d). Perhaps more importantly, the reversal of the core-annular effect is more accentuated by that 
observed in previous work(Tanaka, Takagi et al. 1989; Bolio, Yasuna et al. 1995), specifically in 
that the difference of solid concentration between wall and center was up to a factor of five in 
this work, whereas up to only a two-fold difference was reported before(Tanaka, Takagi et al. 
1989; Bolio, Yasuna et al. 1995).Hence, the effect of gas-phase turbulence alone appears 
inadequate to explain the phenomenon observed, thereby suggesting that an additional effect 
plays a role. 
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Figure 144. 

 

φ  profiles obtained via Pitot tube/extraction probe at each operating condition for 
(a) large glass, (b) large HDPE, and (c) small glass. 
 
 Along these lines, rough walls (increased friction coefficient) have been reported to not 
only enhance the prominence of the reversal of the traditional core-annulus profile in dilute 
flows(Benyahia, Syamlal et al. 2005), but in denser flow too, the traditional core-annulus profile 
is flattened(Zhou, Grace et al. 1996; Benyahia, Syamlal et al. 2007), thereby increasing the 
tendency towards reverse core-annulus. For dilute flows (m = 4), Benyahia et al.(Benyahia, 
Syamlal et al. 2005) found via predictions from a kinetic-theory-based model that increased 
friction at the walls increases the average solid volume fraction (

 

φ ) throughout the riser and also 
increases the prominence of the reverse core-annulus profile. With regards to denser flows, it has 
been corroborated experimentally(Zhou, Grace et al. 1996) that rough walls give lower voidage 
near the wall and more uniform Φ profile across the pipe radius, which has been observed via a 
kinetic-theory-based model too(Benyahia, Syamlal et al. 2007; Jin, Wang et al. 2010). To explain 
the effect of surface roughness, Jenkins and Louge(Jenkins and Louge 1997) reported that an 
increased friction coefficient increases energy of the velocity fluctuations as particles are 
scattered in collisions with the wall, causing an increase in granular temperature and thereby a 
decrease in the solids concentration.  All of the above works imply that a rough wall deflects 
more particles toward the riser center, hence causing deviation from the traditional core-annulus 
profile, which may then become flat or even be reversed as the wall becomes increasingly 
roughened. To further build on the physical picture of the impact of rough walls on the lateral 
distribution of particles, a schematic is given in Figure 145. In the case of smooth walls, Figure 
145a shows that upward flowing particles are more inclined to continue their vertical trajectory 
upwards. On the other hand, as seen in Figure 145b, diffuse particle-wall collisions resulting 
from rough walls imply that particles will be deflected away from the wall, hence understandably 
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reducing Φ at the wall and increasing Φ away from the wall compared to the smooth-wall case. 
Hence, rough walls may serve as an auxiliary explanation of the reverse core-annulus pattern 
observed in this work which occurs at higher solid loading than reported for the dilute flows 
work cited in the previous paragraph. 

 
Figure 145.  (a) Straight trajectory of particle travelling along smooth wall, and (b) particle 
deflected away from rough wall. 
  
As discussed above, although either turbulence effects in dilute flows or rough walls may 
independently lead to reverse core-annulus, it does not appear that either effect on its own is 
sufficient to produce the accentuated reverse core-annulus profiles as observed in this work, 
especially that observed for large glass in Figure 137. First, the reverse core-annulus profiles are 
more exaggerated than those attributed to gas-phase turbulence in dilute flows, possibly because 
higher solid loading is used. Second, the vertical walls in the current setup are quite smooth, 
especially the section of the riser wall where the topmost measurement was taken, since a new 
Plexiglass section was installed at that location; thus, it is not surprising that core-annulus flow is 
observed in most sections of the riser. Accordingly, an alternative explanation for the observed 
reverse core-annulus pattern is given below.  
 On closer inspection, despite the smooth vertical walls, the upper wall of the elbow exit is 
not expected to remain smooth due to erosion by particle bombardment. Figure 146 shows 
clearly that the upper, curved portion of the riser exit (located above the top measurement) used 
in this study is very rough due to continual, head-on bombardment by particles. Based on the 
drawing in Figure 147b, it is surmised that the reverse core-annulus behavior observed at the top 
of the riser may be due to roughness associated with the rounded elbow exit. While Figure 147a 
shows a schematic of an elbow exit with smooth walls, Figure 147b shows the same elbow but 
with rough walls, serving to paint a physical picture of what may be causing higher Φ in the riser 
axis near the riser top. The solid arrows represent the trajectory of the particles flowing upwards 
from the riser into the elbow exit, and the dotted arrows represent the deflected trajectory of the 
particles after hitting the wall of the elbow.  
 For a smooth wall (Figure 147a), particle-wall collisions are specular, implying that the 
angles of deflection largely equal the angles of incidence.  In contrast, for a rough wall (Figure 
147b), particle-wall collisions are diffuse, i.e., angles of deflection arising from particle-wall 
collision are much more varied. As illustrated in Figure 147, particles are more likely to deflect 
back toward the riser when the wall of the elbow exit is rough, hence causing a region of higher 
Φ away from the wall near the top of the riser.  
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Figure 146.  Photograph of the cross-section of the elbow exit (diameter = 0.30 m) of the riser, 
showing the roughness elements on the upper, curved wall.  
 

 
Figure 147.  Schematic of differences in particle trajectory after collision between (a) smooth 
wall of elbow exit, and (b) rough wall of elbow exit. 
 
 A logical ensuing question is why the reverse core-annulus profiles exist for some materials 
or conditions but not others. Recall that the reverse core-annulus phenomenon was observed for 
all conditions for the both bigger and denser material of large glass, only at some conditions for 
HDPE, and was absent for small glass. These differences can be traced to the Stokes number 
(St): 

 

St =
ρsdaveVrel

µg

                                                    (80) 

where Vrel is the relative velocity between the solid and gas phases and μg is the viscosity of air. 
In physical terms, St is the ratio of the inertia of the solid particle to the viscous forces in the gas. 
More explicitly, particles with larger St are more likely to follow more diffuse trajectories after 
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collision rather than following fluid streamlines, because of greater particle inertia relative to 
fluid viscous forces. Hence, roughened walls are most likely to exert the greatest effect on 
reversing the trajectory of particles with large St. To ascertain the effect of particle St on the 
reverse core-annulus profiles, Table 10 lists the St of the various materials, with Vrel 
approximated as the terminal velocity (Vt) of a single particle. Notably, the large glass particles, 
which have the most exaggerated reversal of the core-annulus profiles and which were observed 
for all four conditions, has the largest St (Table 10). It has been reported that particles with 
higher St tend to have a more extensive exit effect in terms of increased ΔP/Δh near riser 
exit(Pugsley, Lapointe et al. 1997), which agrees with this work in that large glass exhibits the 
highest increase of ΔP/Δh at the riser top (Figure 148a). For HDPE, the material with the second 
largest St, reverse core-annulus was only observed for two of the four conditions. Lastly, for the 
smaller glass materials, their smaller St indicates that they are more likely to follow fluid 
streamlines (smaller relaxation time) and thus less likely to bounce back into riser after collision 
with roughness elements. It is also worthwhile to note that this relationship between large St and 
reverse core-annulus serves well to explain why existing literature largely based on the smaller 
Geldart Group A particles (i.e., lower St) largely reports traditional core-annulus profiles. 
 

Table 10. Stokes number (St) of the particles. 

Material St 

Large glass 

 

8.3
µg  

Large HDPE 

 

1.6
µg  

Small glass 

 

0.5
µg  

 
Axial differential pressure (ΔP/Δh): Axial differential pressure (ΔP/Δh) profiles, which 

reflect solids concentration within the riser, of each of the three materials at all four operating 
conditions are depicted in Figure 148. The y-axis represents dimensionless height along the riser 
(h/H), and the x-axis represents ΔP/Δh. For the large glass material depicted in Figure 148a, an 
increase in ΔP/Δh is observed at the topmost position of the riser; this phenomenon is known as 
‘reflux’ and is due to the effect of the exit geometry(Bai, Jin et al. 1992; Martin, Derouin et al. 
1992; Zhou, Grace et al. 1994; Pugsley, Lapointe et al. 1997). Interestingly, the higher ΔP/Δh at 
the top of the riser is more attenuated for the lower Us conditions, implying that back-mixing 
may be more dependent on Us than Gs. It has been reported that a sharper riser exit geometry 
(e.g. L-shaped or T-shaped) increases the solids holdup in the top region of the riser due to 
particle reflux(Bai, Jin et al. 1992; Martin, Derouin et al. 1992; Zhou, Grace et al. 1994; Pugsley, 
Lapointe et al. 1997; Wu, Jiang et al. 2010), but not for a more gradual exit geometry restriction 
such as a rounded bend(Lim, Zhu et al. 1995) consistent with this study. Based solely on the exit 
geometry, the rounded elbow used in this work was not expected to culminate in strong reflux of 
solids at the top of the riser. However, as explained in the previous section (Figure 147), in the 
absence of an abrupt exit, the roughened walls of the rounded exit may have the same effect in 
terms of a stronger reflux for particles with relatively high St. Radial solids concentration 
profiles near a T-shape(Martin, Derouin et al. 1992) and L-shape(Lackermeier and Werther 
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2002) exit geometry have been reported, but the traditional core-annulus profiles prevailed 
despite those exits being more abrupt that the rounded elbow used in this work, presumably due 
to the lower St of the materials tested.  

 
Figure 148. Differential pressure (ΔP/Δh) profiles for (a) large glass, (b) large HDPE, and (c) 
small glass. 

 
 Notably, the ΔP/Δh profiles in Figure 148 appear consistent with the radially-averaged 
solid volume fraction (

 

φ ) profiles obtained with Pitot tube / extraction probe measurements 
(Figure 144). Specifically, higher measurements were similarly obtained at high h/H for large 
glass, and higher solid loadings of 12.7 and 16.0 give distinctly higher ΔP/Δh and 

 

φ  in each 
subplot.  

Summary:  Experiments in a pilot-scale circulating fluidized bed (CFB) riser have been 
carried out for three monodisperseGeldart Group B materials of different size and material 
density:  (i) large glass (dave = 650 μm, ρs = 2500 kg/m3), (ii) large HDPE (dave = 650 μm, ρs = 
900 kg/m3), and (iii) smaller glass (dave = 170 μm, ρs = 2500 kg/m3). Detailed solid volume 
fraction (Φ) profiles of the three materials are reported, providing a rich dataset towards 
understanding the impact of size and material density on riser flows. 

 Although a core-annulus solids concentration profile (i.e., dilute core and dense annulus) 
has been conventionally presumed, observations in this work using two independent 
measurement techniques indicate instead a reverse core-annulus profile (i.e., a dense core and 
dilute annulus) for some systems. As discussed, although either gas-phase turbulence effects in 
dilute flows or rough walls reported in previous works may independently lead to a slight 
reversal of core-annulus, it does not appear that either effect on its own is sufficient to produce 
the accentuated reverse core-annulus profiles observed in this work, especially that observed for 
large glass beads. To provide a physical picture to explain the exaggerated reverse core-annulus 
profile obtained at the top of the riser, it is hypothesized that roughness elements on the upper 
wall of the rounded elbow leads to a reversal of particles back into the riser center. More 
specifically, particle-wall collisions tend to be specular for smooth walls, but much more diffuse 
for roughened walls. Hence, particles are more likely to deflect back into the riser when the wall 
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of the elbow exit is rough, thereby causing a region of higher Φ away from the wall at the top of 
the riser.  
 In addition, the extent and likelihood of reverse core-annulus profiles can be linked to the 
Stokes number (St) of the material. Specifically, particles with larger St are more likely to follow 
more diffuse trajectories after collision rather than following fluid streamlines, because of greater 
particle inertia relative to fluid viscous forces. Hence, roughened walls are most likely to exert 
the greatest effect on reversing the trajectory of large-St particles. In particular, the larger glass 
beads have the highest St, and hence exhibit not only reverse core-annulus across all four 
operating conditions, but also the most pronounced reversal of the core-annulus profiles. For 
HDPE, the material with intermediate St, reverse core-annulus was only observed for two of the 
four conditions, namely the low Gs conditions.  Lastly, for the smaller glass beads, their smaller 
St indicates that they are more likely to follow fluid streamlines and thus less likely to maintain 
their reversed trajectory (back into riser) after collision with roughness elements. Accordingly, 
the higher the St of the particle, the higher the tendency towards reverse core-annulus; this 
observation puts forth an important distinction between the larger Geldart Group B and smaller 
Group A particles. 
 Finally, the results of this work are expected to contribute towards model validation, 
especially in terms of the different behavior of Geldart Group A and B particles, incorporation of 
wall roughness and exit effects. To date, the vast majority of experimental efforts have focused 
on Geldart Group A particles. The unexpected reverse core-annulus behavior and its associated 
physical causation reported in this work contribute an interesting caveat towards validating 
models. 
 
Task 4.5.2: Species Segregation5 

Abstract:  Experiments involving a gas-solid, pilot-scale circulating fluidized bed (CFB) 
have been carried out, with a focus on species segregation measurements in a riser. Three 
mixtures were considered: (i) a binary mixture with particles of different sizes (dave) but same 
material density (ρs), (ii) a binary mixture with particles of different material densities (ρs) but 
same size (dave), and (iii) a continuous particle size distribution (PSD). Local measurements of 
the composition (i.e., species segregation) of each mixture were obtained over a range of 
operating conditions. Similar to previous works, the results show that the more massive species 
(i.e., greater dave or ρs) preferentially segregates toward the wall in all cases.  Several new trends 
were also observed. First, for the binary mixtures, composition of the more massive species 
increases with riser height at the wall under some operating conditions. The operating conditions 
that cause this phenomenon are mutually exclusive for the size-difference and density-difference 
systems.  Second, for the continuous PSD, radial segregation is observed even when there is a 
net positive flux in the annular region, contrary to previous findings which indicated segregation 
only for conditions leading to a net downward flux in the annular region.  Finally, two qualitative 
differences between the binary and continuous mixtures were noted: (i) a monotonic decrease in 
species segregation is observed for the binary mixtures with an increase in the solid loading (m), 
while a non-monotonic trend is observed for the continuous PSD, and (ii) while the shape of the 
radial segregation profile is flattest at the riser bottom for the binary mixtures, the flattest radial 
profile is at the riser top for the continuous PSD. 

                                                 
5 Chew, Hays, Findlay et al., “Species segregation of binary mixtures and a continuous size distribution of 
Group B particles in riser flow”, submitted, Chemical Engineering Science, 2011. 
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Introduction: While Section 4.5.1 focuses on monodisperse materials, this section reverts 
back to polydispersity, specifically with respect to species segregation (de-mixing) 
characteristics. Also, whereas Task 4.3 is regarding species segregation in a bubbling fluidized 
bed, this section concerns species segregation in a moderately dense CFB riser.  Because species 
segregation varies along the riser, the gas-solid contact times of each species may vary and hence 
impact the overall efficiency of the unit. Although investigation into species segregation 
behavior in low-velocity bubbling fluidized beds has been fairly extensive (Rowe and Nienow 
1976; Nienow and Chiba 1985; Kunii and Levenspiel 1991; Lim, Zhu et al. 1995; Joseph, 
Leboreiro et al. 2007), a similar effort for CFBs is lacking.  
 The current work is divided into two categories:  binary mixtures (two species with particle 
size (dave) or material density (ρs) differences) and continuous particle size distributions (PSDs). 
The objectives of this experimental work are to (i) isolate the effect of dave and ρs on species 
segregation in binary mixtures, (ii) investigate a continuous PSD alongside the binary mixtures 
to better compare their species segregation trends, especially since qualitative differences 
between the two distributions have recently been observed for bubbling fluidized beds(Chew, 
Wolz et al. 2010; Chew and Hrenya 2011), and (iii) evaluate the impact of a wide range of 
operating conditions on the observed trends at all riser positions.  The vast majority of previous 
efforts have been targeted at only binary mixtures, in which the two species have both size and 
material-density differences. With regards to axial segregation for binary mixtures, both 
experiments(Bai, Nakagawa et al. 1994; Nakagawa, Bai et al. 1994; Werther and Hirschberg 
1997; Hirschberg and Werther 1998; Mathiesen, Solberg et al. 2000; Das, Meikap et al. 2008) 
and simulations(Mathiesen, Solberg et al. 2000; Zhou, Flamant et al. 2002; Lu and Gidaspow 
2003; Liu, Metzger et al. 2008) have indicated that the more massive species segregates towards 
the bottom of the riser. As for radial segregation, both simulation results(Lu and Gidaspow 2003; 
Benyahia 2008; He, Deen et al. 2009) and experimental data(Hirschberg and Werther 1998; 
Mathiesen, Solberg et al. 2000; Das, Meikap et al. 2008) are more scarce. Nonetheless, despite 
differences in material properties, operating conditions and CFB riser dimensions and 
configurations, the more massive (i.e., higher particle mass) species have been consistently found 
to preferentially segregate to the wall. Compared to their binary-mixture counterparts, 
segregation studies on continuous PSDs are rare(Hirschberg and Werther 1998; Karri and 
Knowlton 1998).  The trends observed to date are largely consistent with the segregation of the 
larger (i.e., more massive) species toward the bottom of the riser and toward the wall. 
 For the mixture types investigated here, the more massive species preferentially segregates 
toward the wall at all axial locations, as is consistent with previous experimental 
work(Hirschberg and Werther 1998; Karri and Knowlton 1998; Mathiesen, Solberg et al. 2000; 
Das, Meikap et al. 2008) and known granular temperature profiles(Lu, Liu et al. 2000; Lu, 
Gidaspow et al. 2001; Zhou, Flamant et al. 2002; Lu and Gidaspow 2003; Tartan and Gidaspow 
2004; Biggs, Glass et al. 2008; Songprawat and Gidaspow 2010). Comparison among the three 
systems indicate that the greater the mass ratio between the species, the greater the extent of this 
radial segregation observed, which corroborates previous work(Trujillo, Alam et al. 2003; 
Trujillo and Herrmann 2003; Galvin, Dahl et al. 2005; Yoon and Jenkins 2006; Liu, Metzger et 
al. 2008). With regards to axial segregation, the composition of the more massive species 
generally decreases with riser height at the riser center (r/R = 0), consistent with previous 
findings that exhibited an overall decrease of composition of heavier particles with 
height(Nakagawa, Bai et al. 1994; Hirschberg and Werther 1998; Das, Meikap et al. 2008). 
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Furthermore, the observed increase in extent of axial species segregation with mass ratio is 
linked to increase in single-particle terminal velocity (Ut) ratios(Hirschberg and Werther 1998). 
 In addition to the consistent trends between the current experiments and previous findings, 
several new observations also emerged.  First, with regards to the binary mixtures, a noteworthy 
observation involves the increase in the composition of the more massive species with riser 
height at the wall under some operating conditions. Interestingly, the operating conditions 
associated with this behavior for the size-difference binary mixture are mutually exclusive from 
those of the density-difference system. Second, with regards to the continuous PSD, while Karri 
and Knowlton(Karri and Knowlton 1998) found that radial segregation only exists when the 
annulus has a net downward, radial segregation is consistently observed in this work regardless 
of whether the annulus has a net upward or downward flux. Lastly, with regards to the 
differences in segregation behavior between binary mixtures and continuous PSD, two 
interesting observations are noted: (i) an increase in solid loading (m) correlates with a 
monotonic decrease in species segregation (both axial and radial) for the binary mixtures, while a 
non-monotonic trend is observed for the continuous PSD, and (ii) while the shape of the radial 
segregation profile is flatter at the riser bottom for the binary mixtures, the opposite trend is 
observed for the continuous PSD.  

Experimental Description – Experimental Setup: Experiments were conducted in the same 
circulating fluidized bed (CFB) as in Section 4.5.1 (Figure 127). 

Materials of Interest: The materials of interest are two binary mixtures - one with a 
difference in average particle diameter (dave) and the other with a difference in material density 
(ρs) - and a continuous PSD. Table 11 summarizes the basic parameters of each mixture 
investigated, with further details given below. 

Table 11. Polydisperse materials investigated. 

 
 Vol % Material dave (μm) ρs (kg/m3) σ/dave (%) 

Binary: Size-
difference 

50 Small Glass 170 2500 12 
50 Large Glass 650 2500 9 

Binary:  Density-
difference 

50 Large HDPE 650 900 11 
50 Large Glass 650 2500 9 

Continuous PSD 100 Small Glass 170 2500 25 
 
 The continuous PSD is made up of glass beads with ρs = 2500 kg/m3 and dave = 170 μm.  
The width of this distribution (defined as the ratio of standard deviation of mass-weighted PSD 
to the average particle diameter) is σ/dave = 25%. These glass beads are used as-is from the 
vendor (Midwest Finishing Systems). A representative sample was collected from the bulk with 
a sample thief and analyzed with sieve trays and a Ro-Tap sieve-shaker. The sample thief 
consists of two 1 m long concentric tubes with a small spacing in between to allow the tubes to 
rotate in opposite azimuthal directions. The inner tube is solid except for one chamber used for 
sample collection. The hollow outer tube has an opening that aligns with the collection chamber 
on the inner tube, and also has a pointed end for insertion into the drum of particles to obtain a 
representative sample. The resulting PSD is shown in Figure 149a, where fm is the mass fraction 
of each sieve cut normalized with respect to bin size (for fairer comparison among sieve cuts of 
different widths). 
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Figure 149.  PSDs of constituent materials: (a) continuous PSD of small glass with σ/dave = 25% 
and monodisperse small glass with σ/dave = 12%, (b) monodisperse large glass and large HDPE, 
each with σ/dave ~ 10%. 
 
 Unlike the continuous PSD, the materials used to obtain the binary mixtures require 
processing before the experiments. As presented in Table 11, the binary mixtures are made up of 
various sets of monodisperse particles with different material density (ρs) and size (dave), namely 
(i) “large” glass (ρs = 2500 kg/m3 and dave = 650 μm), (ii) “large” high-density polyethylene, 
HDPE (ρs = 900 kg/m3 and dave = 650 μm), and (iii) “small” glass (ρs = 2500 kg/m3 and dave = 
170 μm). Glass beads of both sizes and HDPE were acquired from Midwest Finishing Systems 
and Dyneon LLC, respectively. It is impossible for the “monodisperse” particles to be of 
identical size, so here monodisperse refers to materials obtained with as narrow a distribution of 
sizes as possible. More specifically, the materials procured from vendors were sieved using the 
Sweco industrial sieve, which is a continuous sieving procedure designed to process large 
quantities. Due to the continuous nature of this sieve, the particles are not perfectly separated 
between the various sieve sizes. Accordingly, a representative sample was obtained from each 
drum of sieved material using the sample thief and then further analyzed using a Ro-Tap sieve-
shaker. Figure 148 is a plot of mass-based frequency (fm) versus particle diameter. For each 
monodisperse material, σ/dave is approximately 10%. Furthermore, all particles used are 
approximately spherical, as noted in a previous work(Chew, Hays et al. 2011). 
 

Measurement Technique: To characterize the species segregation in the riser, an 
extraction probe was used to collect particles at various axial and radial positions along the riser. 
The extraction probe has an inner diameter of 0.017 m and is fabricated such that probe tip is 
oriented 90o to the probe shaft in order to measure the flux associated with upward or downward 
flow when the shaft is inserted horizontally. Samples were collected at five approximately 
equally-spaced axial positions along the riser. At each axial location, two sets of 11 radial 
measurements that are 90o apart in the horizontal plane were taken to determine if any 
asymmetries were present across the riser cross-section. For composition (species segregation) 
analysis, different methodologies are used for each mixture.  For the size-difference binary 
mixture, the Sympatec HELIOS PSD analyzer, which is based on laser diffraction, was used.  
For the density-difference binary mixture, the species were separated via immersion in water 
since glass beads sink while HDPE beads float. For the continuous PSD, the Ro-Tap sieve-
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shaker was utilized. Notably, volume percentage of each species can be derived with the methods 
and is used as a common denominator in comparing species segregation for the different 
mixtures. 
 Using the extraction probe, both the upward and downward mass flux at each local radial 
position (Gr) is measured by orientating the probe tip normal to the flow in the downward and 
upward direction, respectively.  At each location, the extraction probe is used to collect particles 
for 20 – 30 s. The net mass flux across the cross-section of the riser at a given axial position is 
denoted Gs and is calculated as  

 

 

Gs = (Gr,upward − Gr,downward ) × Ar[ ]
r=1

11 radial
positions

∑  (81)  

where the subscripts upward and downward refer to the flux directions, and Ar is the annular area 
corresponding to that radial position. (For example, for radial position rj, the corresponding 
annular area has an outer and inner radius of (rj+rj+1)/2 and (rj+rj-1)/2, respectively.)  
 To validate the extraction probe measurements, checks were made with regard to the (i) 
reproducibility of mass flux measurements over repeated runs and over various measurement 
durations, and (ii) consistency of the local mass flux integrated across the riser cross-section at 
each axial position, which ensures a mass balance. Reproducibility of the mass flux 
measurements for various measurement durations is illustrated in Figure 150a for large glass 
beads at Us = 17 m/s and a target Gs = 200 kg/m2s. At least two repeat measurements of Gr were 
carried out at various measurement durations. The results displayed in Figure 150a indicate that 
the scatter around the targeted Gs is about ±10% regardless of measurement duration. As a 
further validation of the extraction probe, Figure 150a b shows Gs measured at all axial positions 
for the large HDPE at Us = 13.5 m/s and Gs = 260 kg/m2s. The y-axis, x-axis and error bars 
represent the dimensionless riser height (h/H; where h is the height along the riser at which 
measurement is taken and H is the total height of the riser), the (radially) integrated mass flux 
(Gs), and the span of the two bi-directional measurements, respectively. Based on mass 
conservation, Gs should be consistent along the riser height, as is displayed in Figure 150a b with 
an acceptable tolerance of ±10%. 

 
Figure 150.  (a) Reproducibility of cross-sectional mass flux over repeated measurements and 
various measurement durations for large glass beads at Us = 17 m/s and Gs = 200 kg/m2s. (b) 
Axial variation of cross-sectional mass flux for large HDPE beads at Us = 13.5 m/s and Gs = 
260 kg/m2s. 
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Operating Conditions: Table 12 lists the operating conditions investigated for each 
mixture. The ranges of superficial gas velocity (Us) and overall mass flux (Gs) utilized were 
maximized based on the physical constraints of the fluidized material, experimental set-up, and 
instruments, as detailed below. Also listed in Table 12 is solid loading (m), which is a 
dimensionless quantity defined as the ratio of solid flux to gas flux, as given in Equation 70 

(

 

m =
Gs

Usρg

). Notably, a different set of operating conditions was used for the binary mixtures 

and the continuous PSD, primarily because high m leads to slugging associated with the large 
glass beads (highest single-particle terminal velocity, Ut, among the materials) in the binary 
mixtures. Accordingly, a direct comparison between the binary mixtures and the continuous PSD 
is not possible, and thus qualitative differences (if any) between the segregation behaviors of the 
two distribution types are the focus in this work. 
 

Table 12. Operating conditions for polydisperse materials. 
 

 Us (m/s) Gs (kg/m2s) m 

Binary 
Mixtures 

13.5 120 7.4 
13.5 260 16.0 
17 120 5.9 
17 260 12.7 

Continuous 
PSD 

10 50 4.2 
10 300 25.0 
15 50 2.8 
15 300 16.7 

  
 For the binary mixtures, the lower Us limit was set to 13.5 m/s to allow for higher mass 
flux (Gs) to be investigated, while the higher Us limit (17 m/s) was chosen to avoid too much 
pressure on the Plexiglas fronting the rectangular fluidized bed in the recirculation loop (Figure 
129). As for Gs, the lower bound (120 kg/m2s) was restricted by the sensitivity of the Pitot tube 
used as part of a corollary investigation (Chew, Hays et al. 2011)  at the higher Us limit. On the 
other hand, the upper Gs bound (260 kg/m2s) was restricted at the lower Us limit to deter 
slugging. Correspondingly, four combinations ofUs and Gs were examined for the binary 
mixtures (Table 12). 
 For the continuous PSD, the range of m was expanded since slugging was less of an issue 
in the absence of the larger glass beads and the Pitot tube was not used (since the momentum 
measurement by Pitot tube restricts its application to monodisperse materials). Accordingly, the 
lower Gs was set to 50 kg/m2s, which is the upper limit for some industrial gas-solids reaction 
processes (e.g., solid fuel combustion or aluminum calcination) (Arena 1997). On the other hand, 
the higher Gs was set to 300 kg/m2s, which is the lower limit for some industrial gas-phase 
reaction processes (e.g., fluid catalytic cracking (FCC) or Fischer-Tropsch synthesis) (Arena 
1997). As for Us, the lower limit was set to 10 m/s, below which slugging would prevail at the 
higher Gs. The upper limit was set to a conservative 15 m/s in light of the high pressure 
generated on the Plexiglas fronting the rectangular fluidized bed in the recirculation loop (Figure 
129). Hence, four combinations of Us and Gs were also examined for the continuous PSD (Table 
12). 
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Results and Discussion: Local measurements of the PSD were obtained at each set of 
operating conditions (Table 12) and for each of the three mixtures under consideration (Table 
11):  size-difference binary mixture, density-difference binary mixtures, and continuous PSD.  
Figure 151 depicts the radial segregation profiles of the size-difference binary mixture 
composed of glass beads with different sizes, specifically with a dave ratio of 3.8. The subplots 
of each figure contain data at each of the Us, Gs pairings given in Table 12. The vertical axis 
represents percentage, by volume, of the extracted sample that is composed of the larger glass 
beads, while the horizontal axis represents the dimensionless radius (r/R) of the riser cross-
section (where r is the radius at which measurement is taken and R is the radius of the riser). 
The data points represent average values of the two sets of bi-directional (90o apart) radial 
measurements taken at each axial position, and the error bars denote the span of the two values. 
Notably, the small error bars serve as verification of symmetry within the riser, which is not 
surprising given the design of the riser entrance region. The various profiles on each subplot 
represent measurements taken at different heights (h/H) along the riser, as indicated in the 
legend.  

  
Figure 151.  Radial segregation of a size-difference binary mixture (glass beads with dave ratio 
of 3.8) at different axial locations and under operating conditions of (a) Us = 13.5 m/s, Gs = 120 
kg/m2s, m = 7.4, (b) Us = 13.5 m/s, Gs = 260 kg/m2s, m = 16.0,  (c) Us = 17 m/s, Gs = 120 
kg/m2s, m = 5.9, and (d) Us = 17 m/s, Gs = 260 kg/m2s, m = 12.7. 

 
 Based on the results contained in Figure 151, the composition of larger glass beads 
increases monotonically towards the wall. This phenomenon of the more massive (i.e., larger for 
case of size-difference mixture) species segregating preferentially toward the wall agrees with 
previous experimental and theoretical work(Karri and Knowlton 1998; Mathiesen, Solberg et al. 
1999; Lu and Gidaspow 2003; Benyahia 2008; He, Deen et al. 2009). The physical explanation 
for such segregation behavior is related to the expected radial granular temperature profiles 
within the riser. In particular, it has been shown via both experiments(Tartan and Gidaspow 
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2004; Biggs, Glass et al. 2008) and kinetic-theory-based models(Lu, Liu et al. 2000; Lu, 
Gidaspow et al. 2001; Lu and Gidaspow 2003; Benyahia 2008; Songprawat and Gidaspow 2010) 
that lower granular temperature regions are found at the wall due to augmented dissipation of 
kinetic energy through (i) particle-wall collisions and (ii) increased particle-particle collisions 
due to the higher solid volume fraction expected in the annular region (i.e., core-annulus flow). 
The more massive species have a tendency to segregate preferentially toward the lower 
temperature region due to thermal diffusion(Lu and Gidaspow 2003), as is also found in 
granular(Hsiau and Hunt 1996; Jenkins 1998; Luding, Strauss et al. 2000; Xu, Louge et al. 2003; 
Dahl and Hrenya 2004; Galvin, Dahl et al. 2005; Liu, Metzger et al. 2007; Garzo and Reyes 
2010) systems. Not surprisingly, a similar influence of the temperature gradient on the species 
segregation in bubbling fluidized beds has also been noted(van Wachem, Schouten et al. 2001; 
Fan and Fox 2008; Annaland, Bokkers et al. 2009).  
 A second observation is that, generally, the radial species segregation profile is relatively 
flat at the bottom of the riser (h/H = 0.16) and becomes progressively accentuated with riser 
height. Bearing in mind that large glass beads represent 50% by volume of the mixture, it is 
worthwhile to note that the composition of large glass beads is as low as 20% by volume at the 
riser center (r/R = 0), and increases to 60% by volume at the wall (r/R = 1). Conversely, the 
composition of the small glass beads is 80% and 40% at the riser center and wall, respectively. 
Hence, the ratio of the volume percentage at r/R = 1 to r/R = 0 for the large glass beads is 3, 
while the ratio of the volume percentage at r/R = 0 to r/R = 1 for the small glass beads is only 2, 
which indicates that the larger (more massive) species exhibits a higher extent of segregation 
radially. 
 Similar radial species segregation profiles are portrayed in Figure 152 for the density-
difference binary mixture composed of large glass beads and HDPE of the same dave but different 
ρs, specifically with a ρs ratio of 2.8. In this system, the more massive (i.e., higher ρs for case of 
different-density systems) glass preferentially segregates to the wall at all axial positions and 
under all four operating conditions (though measurements closest to the wall show some 
variation). Compared to the size-difference system of Figure 151, the radial segregation profiles 
for the density-difference system (Figure 152) are significantly flatter (note the reduced range of 
the y-axis in Figure 152). For a fairer comparison between the two binary mixtures, the mass 
ratios between the species are calculated to be 55.9 for the size-difference binary mixture and 2.8 
for the density-difference binary mixtures. Accordingly, a physical explanation for the 
accentuated (radial) species segregation for the size-difference system lies in the greater mass 
ratio of the two species. Previous work corroborates with this results herein in that a greater mass 
ratio culminates in more pronounced species segregation for both gas-solid (Trujillo, Alam et al. 
2003; Liu, Metzger et al. 2008) and granular (Trujillo and Herrmann 2003; Galvin, Dahl et al. 
2005; Yoon and Jenkins 2006) systems. Another observation with similarity to the size-
difference case (Figure 151) is that species segregation profiles become progressively flatter 
lower in the riser.  
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Figure 152.  Radial segregation of a density-difference binary mixture (glass beads and HDPE 
with ρs ratio of 2.8) at different axial locations and under operating conditions of (a) Us = 13.5 
m/s, Gs = 120 kg/m2s, m = 7.4, (b) Us = 13.5 m/s, Gs = 260 kg/m2s, m = 16.0,  (c) Us = 17 m/s, 
Gs = 120 kg/m2s, m = 5.9, and (d) Us = 17 m/s, Gs = 260 kg/m2s, m = 12.7. 
 
 For a more straightforward comparison with the binary systems, the continuous PSD was 
analyzed in terms of two “species”. Namely, particles making up the larger and smaller 50% by 
mass (or volume) of the initial PSD (Figure 149) are considered as the larger (dave = 188 μm for 
the larger half of the mass distribution) and smaller (dave = 150 μm for the smaller half of the 
mass distribution) species, respectively.  Hence the dave ratio of the two species is 1.3. 
Accordingly, similar to Figure 151 and Figure 152, Figure 153 displays the radial profile of 
species segregation for the larger species making up the continuous PSD of glass beads. 
Consistent with the binary systems, it is observed that the more massive (larger) species 
preferentially segregate to the wall (r/R = 1), which agrees with previous work (Karri and 
Knowlton 1998). Although Karri and Knowlton (Karri and Knowlton 1998) also reported the 
segregation of larger particles toward the wall when investigating a continuous PSD, the 
presence of radial segregation was only observed for conditions in which the net annular flux 
was downward, whereas negligible segregation was observed at operating conditions in which 
the net annular flux was upward.  In contrast, radial segregation is observed here for all 
conditions, including those with a net upward annular flux.  In particular, although the net 
annular flux is downward only at h/H < 0.47 for all operating conditions other than at Us = 15 
m/s and Gs = 50 kg/m2s (Figure 153c), radial segregation of the larger species to the wall 
persists. As a possible explanation for the apparent discrepancy, consider first that an annular 
region with a net upward flux has nonzero values of both upward and downward flux, though the 
former is greater in magnitude than the latter.  Also, as reported in previous work (Hirschberg 
and Werther 1998; Das, Meikap et al. 2008), the PSD obtained for upward flux (probe tip 
pointing upward) at the wall consists of smaller particles than that for corresponding downward 
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flux (downward-pointing probe), as shown in Figure 154. Consequently, if the net upward flux 
annulus conditions that Karri and Knowlton (Karri and Knowlton 1998) operated were such that 
the ratio of upward flux to downward flux is relatively high, then the overall annular PSD may 
be shifted leftwards, and hence radial segregation effects may not significant.  
 

  
Figure 153.  Radial segregation of continuous PSD small glass at different axial locations and 
under operating conditions of (a) Us = 10 m/s, Gs = 50 kg/m2s, m = 4.2, (b) Us = 10 m/s, Gs = 
300 kg/m2s, m = 25.0, (c) Us = 15 m/s, Gs = 50 kg/m2s, m = 2.8, and (d) Us = 15 m/s, Gs = 300 
kg/m2s, m = 16.7. 
 

  
Figure 154.  PSD of upward flow versus downward flow at wall for continuous PSD of small 

glass under operating condition of Us = 10 m/s, Gs = 50 kg/m2s, m = 4.2, and h/H = 0.27. 
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 Furthermore, two other observations are noteworthy when comparing the radial segregation 
patterns for the continuous PSDs to those of the binary mixtures.  First, the continuous PSD has a 
mass ratio of 2.0, which is lower than either of the binary mixtures.  Thus, it is not surprising that 
the segregation profiles (Figure 153 are flatter than the two binary mixtures (Figure 151 and 
Figure 152). However, contrary to the binary systems in which the bottom-most position 
(h/H=0.16) exhibited the flattest radial profile, the flattest radial profile occurs at the top-most 
position (h/H=0.92) for this continuous PSD system. Such qualitative differences between 
binary-sized mixtures and continuous PSDs have not been previously documented. 
 Collectively, Figure 155 through Figure 157 depict the extent of axial segregation of the 
three mixtures investigated. Analogous to the radial segregation plots (Figure 151 through 
Figure 153), the subplots of each figure contain data at each of the Us, Gs pairings given in Table 
12. The vertical axis represents dimensionless height (h/H) along the riser, while the horizontal 
axis represents percentage by volume of the more massive species. The data points represent 
average values of the two sets of bi-directional (90o apart) radial measurements taken at each 
axial position, and the error bars denote the span of the two values. The various profiles on each 
subplot represent measurements taken at different dimensionless radius (r/R) across the riser, as 
indicated in the legend. In these figures, the more vertical the plotted lines are, the lesser the 
extent of axial segregation. 
 

  
Figure 155.  Axial segregation of a size-difference binary mixture (glass beads with dave ratio of 
3.8) at different radial positions and under operating conditions of (a) Us = 13.5 m/s, Gs = 120 
kg/m2s, m = 7.4, (b) Us = 13.5 m/s, Gs = 260 kg/m2s, m = 16.0,  (c) Us = 17 m/s, Gs = 120 
kg/m2s, m = 5.9, and (d) Us = 17 m/s, Gs = 260 kg/m2s, m = 12.7. 
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Figure 156.  Axial segregation of a density-difference binary mixture (glass beads and HDPE 
with density ratio of 2.8) at different radial locations and under operating conditions of (a) Us = 
13.5 m/s, Gs = 120 kg/m2s, m = 7.4, (b) Us = 13.5 m/s, Gs = 260 kg/m2s, m = 16.0,  (c) Us = 17 
m/s, Gs = 120 kg/m2s, m = 5.9, and (d) Us = 17 m/s, Gs = 260 kg/m2s, m = 12.7. 

  
Figure 157.  Axial segregation of continuous PSD of small glass at different radial locations and 
under operating condition of (a) Us = 10 m/s, Gs = 50 kg/m2s, m = 4.2, (b) Us = 10 m/s, Gs = 
300 kg/m2s, m = 25.0, (c) Us = 15 m/s, Gs = 50 kg/m2s, m = 2.8, and (d) Us = 15 m/s, Gs = 300 
kg/m2s, m = 16.7. 
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 In Figure 155, plots for the size-difference binary mixture are presented. Generally, the 
composition of the larger species decreases with riser height at the riser center (r/R = 0), 
consistent with previous findings that indicated an overall decrease of composition of coarser 
species with height(Nakagawa, Bai et al. 1994; Hirschberg and Werther 1998; Das, Meikap et al. 
2008). However, except at the lowest m condition (Figure 155c), the composition of the larger 
species surprisingly increases with height at the wall (r/R = 1) to above 50 volume % (which is 
the initial mixture composition). The physical explanation for the different axial segregation 
trends at r/R = 0 and 1 is unclear given the combined role of drag, granular temperature gradient, 
and gas-phase turbulence in the vertical direction, though future modeling studies are expected to 
aid in this regard. Finally, the most contoured plots are observed for the lowest solid loading 
condition (Figure 155c), which agrees with previous work (Nakagawa, Bai et al. 1994; 
Hirschberg and Werther 1998; Van de Velden, Baeyens et al. 2007) in that axial segregation 
increases (more contoured plots) as m decreases. 
 The axial species segregation profiles for the density-difference binary mixture are 
illustrated in Figure 156. Consistent with Figure 155, the greatest axial variation is found for the 
lowest m condition (Figure 156c). Similar to radial segregation, noting that the x-axis scale in 
Figure 156 is approximately half that in Figure 155, less axial segregation (more vertical plots) is 
observed for the density-difference system than for that of size-difference. Analogous to the 
hypothesis that increased radial segregation can be traced to an increased mass ratio of the 
species, Hirschberg and Werther (Hirschberg and Werther 1998) proposed that increased single-
particle-terminal-velocity (Ut) ratio of the species leads to increased axial segregation. Namely, 
the greater the difference in Ut of the species, the greater the difference in the driving force for 
elutriation (namely, Us-Ut) of each species is expected, and hence the greater the extent of axial 
segregation. Notably, the size-difference and density-difference binary mixture have Ut-ratios of 
4.1 and 1.9, respectively, which is consistent with the lesser axial segregation observed in the 
latter system (Figure 156). Another interesting observation is that, in sharp contrast to the size-
difference binary mixture, the composition of the more massive species surprisingly increases 
with height at the wall (r/R = 1) only at the lowest m condition (instead of except at the lowest m 
condition for the size-difference binary mixture). The physical explanation for the difference on 
the impact of m on axial segregation at the wall (r/R = 1) for the two binary mixtures remains 
elusive until future modeling efforts shed more light in this regard. 
 Finally, Figure 157 shows the axial species segregation profiles for the continuous PSD. 
Generally, less axial species segregation is observed for the continuous PSD than for any of the 
binary mixture (Figure 155 and Figure 156), which is consistent with the Ut-based hypothesis 
presented earlier that the extent of axial species segregation decreases with a decrease in Ut-ratio 
of the species. Hence, the continuous PSD is expected to have the least axial species segregation 
due to its lowest Ut ratio of 1.4. On a separate note, although Karri and Knowlton (Karri and 
Knowlton 1998) noted negligible axial species segregation in the core (r/R = 0), the lower Us 
conditions in this work display axial species segregation at r/R = 0 (Figure 157a and b), with the 
discrepancy presumably arising from differences in operating conditions. Specifically, Karri and 
Knowlton (Karri and Knowlton 1998) implemented a lower Us (5.9 m/s) than in this work. 
Interestingly, axial species segregation behavior for the continuous PSD deviates from the binary 
mixtures on two counts. First, the most extensive axial species segregation (i.e., most contoured 
plots, especially at r/R = 0.94) is observed for the operating condition of Us = 10m/s and Gs = 50 
kg/m2s (Figure 157a), which notably is not the condition with the lowest m. Accordingly, in 
contrast to the binary mixtures in which the extent of axial segregation decreases monotonically 
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with an increase in m, a non-monotonic behavior is noted for the continuous PSD.  Also, another 
difference with the binary mixtures is that the volume % of the larger species does not increase 
with height under any operating condition for the continuous PSD.  

Summary: A detailed experimental investigation on species segregation of Geldart 
Group B particles has been carried out in a pilot-scale CFB.  Three mixtures were investigated:  
(i) a binary mixture with particles of different size but equal material density, (ii) a binary 
mixture with particles of different density but equal size, and (iii) a continuous size distribution 
of particles with equal density. 

 In several respects, the results observed here mimicked those previously reported.  First, for 
all three systems and consistent with previous experimental work (Hirschberg and Werther 1998; 
Karri and Knowlton 1998; Mathiesen, Solberg et al. 2000; Das, Meikap et al. 2008), the more 
massive species preferentially segregates to the wall at all axial locations. This radial segregation 
behavior can be explained in terms of thermal diffusion, which drives the more massive species 
toward the lower granular temperature at the wall, as has been indicated from both experimental 
(Tartan and Gidaspow 2004; Biggs, Glass et al. 2008) and modeling (Lu, Liu et al. 2000; Lu, 
Gidaspow et al. 2001; Lu and Gidaspow 2003; Benyahia 2008; Songprawat and Gidaspow 2010) 
results.  Comparison among the three mixture types indicate that the greater the mass ratio 
between the species, the greater the extent of radial segregation observed. Hence, the highest 
segregation extent is for the size-difference binary mixture followed by the density-difference 
binary mixture and finally the continuous PSD, with mass ratios are 55.9, 2.8 and 2.0, 
respectively. Again, previous work in both gas-solid(Trujillo, Alam et al. 2003; Liu, Metzger et 
al. 2008) and granular(Trujillo and Herrmann 2003; Galvin, Dahl et al. 2005; Yoon and Jenkins 
2006) systems corroborates these trends.  Second, with regards to axial segregation, the 
composition of the more massive species decreases with riser height at the riser center (r/R = 0), 
which is consistent with previous findings(Nakagawa, Bai et al. 1994; Hirschberg and Werther 
1998; Das, Meikap et al. 2008). For axial segregation, the ratio of single-particle terminal 
velocity (Ut) is expected to dominate the extent of segregation(Hirschberg and Werther 1998).  
Consistent with this explanation, the most extensive axial segregation is observed here for size-
difference binary mixture.  
 Beyond the consistencies with previous experimental trends, several new observations 
emerged from the current effort.  First, for the binary mixtures, although the composition of the 
more massive species expectedly always decreases with height at r/R = 0 (core), an increase of 
the more massive species with height at r/R = 1 (annulus) is observed at some operating 
conditions. Interestingly, the operating conditions for which this behavior occurs are mutually 
exclusive for the size-difference and density-difference binary mixtures. Furthermore, the 
increase of the more massive species with height at the wall exists only for the binary mixtures 
and not for the continuous PSD, which was investigated under a wider range of m. The physical 
explanation for both the increase of massive species with height, and the different impact of 
operating conditions for the size-difference and density-difference binary mixtures is unclear at 
this point, but future modeling work on the effects of drag and granular temperature is expected 
to shed some light in this regard. 
 For the continuous PSD, two interesting findings emerged. First, while Karri and Knowlton 
(Karri and Knowlton 1998) found radial species segregation only for systems with a net 
downward annular flux, radial segregation is observed here regardless of the net direction of the 
annular flux.  Second, while Karri and Knowlton (Karri and Knowlton 1998) observed negligible 
axial species segregation at r/R = 0, axial segregation is observed at r/R = 0 for the lower Us 
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conditions examined in this work. One explanation for the discrepancy on the former is the 
different ratios of upward and downward fluxes at the annulus. On the other hand, the 
discrepancy for latter is presumably due to the higher Us implemented in this work, but further 
work is needed in this regard for a more through understanding. 
 Finally, with regards to the qualitative differences in species segregation between binary 
mixtures and continuous PSD, several interesting observations are noted. First, whereas a 
monotonic increase in species segregation (both axial and radial) for the binary mixtures occurs 
with an increase in m, a non-monotonic trend is observed for the continuous PSD. Specifically, 
the greatest extent of species segregation is observed for the operating condition with the lowest 
m for both binary mixtures, whereas the greatest extent of segregation was found at an 
intermediate m condition for the continuous PSD.  Second, while the shape of the radial 
segregation profile is flatter at the riser bottom for the binary mixtures, the opposite trend is 
observed for the continuous PSD. Third, while the composition of the more massive species 
increases with height at the wall (r/R = 1) under some operating conditions for the binary 
mixtures, the composition of the more massive species always decreases with height for the 
continuous PSD. 
 Collectively, the new species segregation trends reported here provide further insights into 
the high-velocity fluidization behavior of both binary mixtures and continuous size distributions. 
Perhaps more importantly, these results also reveal key qualitative differences between the 
segregation patterns in binary mixtures and continuous PSDs, as have previously been 
documented in bubbling fluidized beds ((Hoffmann and Romp 1991; Gauthier, Zerguerras et al. 
1999; Lin, Wey et al. 2002) and Task 4.3(Chew, Wolz et al. 2010)).  Such data is expected to be 
of value in the continued development and validation of polydisperse kinetic-theory-based 
models (for recent example, see Garzó et al. (Garzo, Dufty et al. 2007; Garzo, Hrenya et al. 
2007); for recent review, see Hrenya (Hrenya 2011)). Conversely, such continuum models are 
expected to provide physical insight into the new segregation trends reported here. 
 
Task 4.5.3: Mass Flux Profiles6 

Abstract:  Experiments targeted at understanding local mass flux behavior of Geldart 
Group B materials in the riser of a gas-solids circulating fluidized bed (CFB) have been carried 
out. Three monodisperse materials (with differences in particle size, dave, and/or material density, 
ρs), two binary mixtures - one with only a dave difference between the species (size-difference 
binary) and one with only a ρs difference (density-difference binary), and one continuous particle 
size distribution (PSD) have been investigated under four operating conditions. Results show that 
riser axial position has the greatest influence on mass flux behavior, especially near the riser top, 
where profile shapes are consistently an inverted U or V. Material type (i.e., monodisperse 
materials of different dave and/or ρs, or different types of polydispersity) and operating conditions 
effects are secondary, and such effects are most apparent at the riser bottom. An interesting 
observation involving binary mixtures is that, while the density-difference binary mixture 
mimics one of the constituent components, the size-difference binary mimics neither component. 
 

                                                 
6 Chew, Hays, Findlay et al., “Impact of material property and operating conditions on mass flux profiles 
of monodisperse and polydisperse Group B particles in the riser”, in preparation for submission in May 
2011. 
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Introduction:  In addition to the solids concentration (Section 4.5.1) and species 
segregation (Section 4.5.2) characteristics, understanding of other local behaviors is warranted 
for a complete picture of the fluidization behavior, which will aid in model validation and the 
design of future CFB units. Accordingly, the focus of this section (Section 4.5.3) is on the local 
mass flux behavior, and local cluster behaviors will be presented in Sections 4.5.4 and 4.5.5. 
Specifically, the objective here is to illustrate the impact of various factors, namely the local 
position in the riser, operating conditions, and particle materials (both monodisperse and 
polydisperse), on the mass flux values. Most work on local mass flux has unsurprisingly focused 
on fluid cracking catalyst (FCC)(van Breugel, Stein et al. 1969; Monceaux, Azzi et al. 1986; 
Bader, Findlay et al. 1988; Azzi, Turlier et al. 1990; Rhodes 1990; Herb, Dou et al. 1992; Miller 
and Gidaspow 1992; Rhodes and Laussmann 1992; Rhodes, Wang et al. 1992; Berruti, Chaouki 
et al. 1995; Wei, Lu et al. 1997; Mastellone and Arena 1999; Malcus, Cruz et al. 2002), which is 
a Geldart Group A material. However, Group A and B materials are well-known to fluidize 
differently(Geldart 1973).  As further evidence of the different physics at play in the two groups, 
Section 4.5.1(Chew, Hays et al. 2011)  presented a surprising reversal of the widely 
acknowledged core-annulus (dense core and dilute annulus) profiles for Group B materials which 
was traced to the higher Stokes number of Group B particles.  Hence, a need exists to determine 
the hydrodynamic behavior of Group B particles rather than to extrapolate the behavior of their 
Group A counterparts. 
 As indicated in a review(Lim, Zhu et al. 1995), contradictory mass flux trends are present 
in the literature are due to non-exhaustive datasets, which provide only a limited view of the riser 
(i.e., comparisons are made at only two riser axial positions and/or under only a couple of 
operating conditions). Radial mass flux profiles have been previously reported as an inverted U-
shape or inverted V-shape(van Breugel, Stein et al. 1969; Bader, Findlay et al. 1988; Azzi, 
Turlier et al. 1990; Herb, Dou et al. 1992; Rhodes and Laussmann 1992; Aguillon, Shakourzadeh 
et al. 1995; Marzocchella and Arena 1996; Coronella and Deng 1998; van der Meer, Thorpe et 
al. 2000; Liu, Grace et al. 2003; Salvaterra, Geldart et al. 2005; Andreux, Petit et al. 2008), but 
some work also showed flat or upright U-shape profiles(Qi and Farag 1993; Marzocchella and 
Arena 1996; Wei, Lu et al. 1997; Coronella and Deng 1998; Salvaterra, Geldart et al. 2005). 
Moreover, radial mass flux profiles have been shown to flatten with an increase in riser 
height(Bader, Findlay et al. 1988; Herb, Dou et al. 1992; Marzocchella and Arena 1996; Wei, Lu 
et al. 1997; Coronella and Deng 1998; Salvaterra, Geldart et al. 2005) or a decrease in solid 
loading (m, which is the ratio of mass flux to gas flux)(Herb, Dou et al. 1992; Aguillon, 
Shakourzadeh et al. 1995; Wei, Lu et al. 1997; Coronella and Deng 1998; Ye, Qi et al. 2009), but 
some other work indicate the opposite trends in that mass flux profiles flatten as riser height 
decreases(Salvaterra, Geldart et al. 2005) or m increases(Malcus, Cruz et al. 2002). In view of 
such contradictory trends, it seems that mass flux trends reported at certain heights and/or 
operating conditions may not apply to other riser heights or under other operating conditions. 
With regards to the effect of material type, Mastellone and Arena(Mastellone and Arena 1999) 
investigated the effect of particle size (one Group A, one Group B) and material density (two 
Group A) and indicated larger or less dense particles give flatter profiles, while smaller or more 
dense particles give lower wall flux. However, because data was collected at two riser heights, it 
is not certain if the trends attributed to material type hold at other axial positions or operating 
conditions. Furthermore, with regards to the concept of ‘similar-profiles’(Monceaux, Azzi et al. 
1986; Rhodes, Wang et al. 1992), it was shown at one axial position that normalized mass flux 
profiles (local solids flux divided by riser cross-sectional solids flux) become insensitive to 
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changes in overall mass flux (Gs) above a certain Gs. Keeping in mind the contradictory trends at 
different heights, it may not be possible to extrapolate ‘similar profiles’ for other riser heights. 
Apparently, the lack of an exhaustive dataset inhibits predictive understanding of the impact of 
various factors on local mass flux behavior in the riser, and hence a more comprehensive dataset 
characterizing the entire riser, and encompassing a wide range of operating conditions and 
different material types is worthwhile.  
 Notably, pertaining to polydispersity (i.e., presence of a range of particle sizes and/or 
material density), although polydispersity is ubiquitous in solids processing, a predictive 
understanding of the effects of polydispersity remains elusive (Sundaresan 2001; Muzzio, 
Shinbrot et al. 2002; Curtis and van Wachem 2004; Hrenya 2011). In the previous experimental 
studies that report radial mass flux profiles, none include an assessment of the impact of a binary 
mixture or continuous particle size distribution (PSD) on the mass flux. Because polydisperse 
systems exhibit different behavior from monodisperse systems (e.g. species segregation(Rowe 
and Nienow 1976; van Deemter 1980; Nienow and Chiba 1985; Fan, Chen et al. 1990; Kunii and 
Levenspiel 1991; Lim, Zhu et al. 1995; Werther and Hirschberg 1997; Rhodes 1998; Ottino and 
Khakhar 2000; Sundaresan 2001; Muzzio, Shinbrot et al. 2002; Hrenya 2011), clusters(Chew, 
Hays et al. 2011)) and since different behaviors have been reported among various categories of 
polydispersity (i.e., binary mixtures and continuous PSDs)(Hoffmann and Romp 1991; Gauthier, 
Zerguerras et al. 1999; Lin, Wey et al. 2002; Chew, Wolz et al. 2010; Chew, Hays et al. 2011; 
Chew and Hrenya 2011), investigation into the impact of the two categories of polydispersity 
(i.e., binary mixture and continuous PSD) on mass flux profiles is needed.  
 Hence, to bridge the gap in the current knowledge base, this experimental effort is aimed at 
collecting local mass flux measurements spanning the entire riser for various materials and 
various operating conditions. Specifically, the focus is on illustrating the impact of local position 
(radial and axial), operating conditions, and material type (i.e., various monodisperse and 
polydisperse materials) on mass flux behavior. With regards to material type, six materials are 
investigated: (i) three monodipserse materials differing in dave and/or ρs, (ii) two binary mixtures, 
namely one with only a dave difference between the species (i.e., size-difference binary) and one 
with only a ρs difference (i.e., density-difference binary), and (iii) a continuous PSD of particles 
with the same ρs.  
 Results show that axial position within the riser exerts the largest influence on the radial 
profiles of mass flux, especially near the riser top. Profile shapes are consistently inverted U- or 
V-shape at the topmost axial position, regardless of operating condition or material type (i.e., 
monodisperse materials of different dave and/or ρs, or different types of polydispersity). Material 
type and operating condition effects are secondary, and such effects are most apparent at the riser 
bottom. An interesting observation involving binary mixtures is that, while the density-difference 
binary mixture mimics one of the constituent components, the size-difference binary mimics 
neither component. 
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Experimental Description: 
Experimental Set-Up: A schematic of the circulating fluidized bed (CFB) is shown in 

Figure 129.  
Materials Investigated: Table 8 and Table 11 list the relevant parameters of the 

monodisperse and polydisperse materials, respectively. The particle size distributions (PSDs) are 
depicted in Figure 149, and photographs of the approximately spherical particles are shown in 
Figure 131. 

Operating Conditions: The operating conditions implemented are tabulated in Table 9 
and Table 12 for the monodisperse and polydisperse materials, respectively. Notably, the same 
set of four operating conditions were investigated for the monodisperse materials and binary 
mixtures, whereas a different set of four operating conditions were employed for the continuous 
PSD, due to constraints as explained in Section 4.5.2. 

To characterize the local mass flux behavior in the riser, an extraction probe was used to 
collect particles at various axial and radial positions of the riser. The extraction probe has an 
inner diameter of 0.017 m and is fabricated (at PSRI) such that probe tip is oriented 90o to the 
probe shaft in order to measure the flux associated with upward or downward flow when the 
shaft is inserted horizontally into the riser. Samples were collected at five approximately equally-
spaced axial positions along the riser. At each axial location, two sets of 11 radial measurements 
that are azimuthally 90o apart in the horizontal plane were taken to detect any asymmetries 
across the riser cross-section. It is worth noting that the extraction probe was operated non-
isokinetically(Rhodes, Laussmann et al. 1988; Rhodes and Laussmann 1992; Aguillon, 
Shakourzadeh et al. 1995; Zhang, Johnsson et al. 1997; Salvaterra, Geldart et al. 2005), after 
checks were made to ensure that the measurements were not dependent on suction velocity. The 
successful implementation of non-isokinetic operation on Group B particles is expected, since 
the associated higher Stokes number implies that the particles are less adept at following gas 
streamlines. 
Using the extraction probe, both the upward and downward mass flux at each radial position (Gr) 
is measured by orientating the probe tip normal to the flow in the downward and upward 
direction, respectively.  At each location, the extraction probe is used to collect particles for 20 – 
30 s. The net mass flux integrated across the cross-section of the riser at a given axial position is 
denoted Gs (which is set to agree with the imposed overall mass flux as listed in Table 9 and 

Table 12) and is calculated as per Equation 81 (

 

Gs = (Gr,upward − Gr,downward ) × Ar[ ]
r=1

11 radial
positions

∑ ). To 

express a representative mass flux at each local position, a net mass flux normalized with respect 
to Gs is defined as Gr,net,norm: 

 

Gr,net,norm =
Gr,upward − Gr,downward

Gs

 

 
 

 

 
    (82)                     

where the Gr is the local flux at radial position r, subscripts upward and downward refer to the 
flux directions, and Gs is the net mass flux integrated across the riser cross-section. The reasons 
for this normalization are threefold. Because of the experimental variations of approximately 
±10% in Gs, this normalization is performed to present fairer comparisons between the different 
(i) axial locations, (ii) materials (Table 8 and Table 11) and (iii) operating conditions (Table 9 
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and Table 12). Extraction probe measurements validations are explained in Section 4.5.2 and 
illustrated in Figure 150.  
 

Results and Discussion:  Before examining the results in detail, the matrices of subplots 
contained in Figure 158-Figure 162 for presentation of mass flux profiles warrants explanation. 
Specifically, each matrix in each figure is structured to provide a straightforward comparison 
among measurements at different riser positions, for different materials, and under different 
operating conditions. Each figure contains 20 subplots: the y-axes represent local mass flux 
normalized with respect to integrated flux at axial position (Gr,net,norm, as defined in Equation 82), 
and the x-axes represent dimensionless radius (r/R, where r is the radial position at which 
measurement was taken and R is the riser radius) of the riser. Notably, the same ranges of y-axes 
and x-axes are used for within each figure for a straightforward comparison among the subplots. 
Each of the four columns in the matrix contains radial profiles of mass flux for a given set of 
operating conditions (as indicated at the top of each column). The vertical position of a subplot 
within a column depicts the axial position of measurements (denoted as h/H on the right-hand-
side of each row, where h is the height at which measurement was taken and H is the total riser 
height): the bottom-most row depicts profiles at the lowest axial position (h/H = 0.16), with 
higher rows representing higher h/H, correspondingly the top-most row depicts profiles for the 
highest axial position of h/H = 0.92. Within a given subplot, each profile represents a different 
material, as indicated by the legend. 
 As per the matrix of figures described above, Figure 158 displays the radial mass flux 
(Gr,net,norm) profiles of the three monodisperse materials investigated (Table 8). Comparing the 
impact of axial position, type of monodisperse material, and operating conditions on the radial 
Gr,net,norm profiles, Figure 158 indicates that axial position has the greatest influence on the shape 
of the profiles. In particular, at the riser top (h/H = 0.92), radial Gr,net,norm profiles are inverted V-
shape for all materials and operating conditions. Notably, the dominant influence of axial 
position relative to other effects is similar to that of cluster profile trends(Chew, Hays et al. 2011; 
Chew, Hays et al. 2011), although the cluster profiles are similar at the bottom-most axial 
position (h/H = 0.16) (Chew, Hays et al. 2011; Chew, Hays et al. 2011) whereas the mass flux 
profiles here (Figure 158) are similar at the top-most position (h/H = 0.92). Interestingly, near the 
riser top (h/H = 0.92), despite the reverse core-annulus reported for the larger materials 
only(Chew, Hays et al. 2011), the mass flux profiles retain the same shape for all materials, and 
thus solids velocity appears to have a greater influence on mass flux than solids concentration 
(since mass flux is a function of both solids concentration and velocity).  

 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 201 

 
Figure 158.  Radial Gr,net,norm profiles for all three monodisperse materials investigated at 
different axial positions under operating conditions of (a) Us = 13.5 m/s, Gs = 120 kg/m2s, m = 
7.4, (b) Us = 13.5 m/s, Gs = 260 kg/m2s, m = 16.0, (c) Us = 17 m/s, Gs = 120 kg/m2s, m = 5.9, 
and (d) Us = 17 m/s, Gs = 260 kg/m2s, m = 12.7. 

When differences in the radial Gr,net,norm profiles do exist among materials, Figure 158 
reveals that these variations are most apparent (i) near the wall (r/R = 1) at low riser heights (h/H 
= 0.16) and (ii) near the center (r/R = 0) at high riser positions (h/H = 0.92). Interestingly, 
variations in cluster profiles are similarly at (i) and (ii)(Chew, Hays et al. 2011). In addition, only 
the larger materials (large glass and large HDPE) exhibit flat profiles at intermediate heights 
(h/H = 0.27 - 0.47) of the riser for all conditions, while the small-glass profiles do not flatten 
except at the lowest m condition (Figure 158c).  With reference to previous work, Mastellone 
and Arena(Mastellone and Arena 1999) reported at h/H = 0.4 that larger particles give flatter 
profiles, and smaller particles give lower wall flux. Comparatively, while Figure 158 shows 
profiles for larger particles (large glass and large HDPE) to be generally flatter at all axial 
positions, small glass has lower wall flux only for h/H ≤ 0.47; hence, because trends vary axially, 
a more complete picture of Gr,net,norm profiles throughout the riser is necessary. 

As for the impact of operating conditions on the radial Gr,net,norm profiles, changes in 
operating conditions affect the various monodisperse materials differently. Interestingly, the 
greatest impact of operating conditions is observed at different heights for each of the 
monodisperse materials, with the most variations occurring at h/H = 0.16, 0.27, and 0.92 for 
large glass, small glass, and large HDPE, respectively. Furthermore, Gs plays a role in variations 
of profiles at h/H = 0.16: the larger materials (large glass and large HDPE) are similar under low 
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Gs conditions, but the denser materials (large glass and small glass) are similar under high Gs 
conditions.  

To illustrate the impact of polydispersity on mass flux behavior, depicted in Figure 159 is 
the comparison of the mass flux (Gr,net,norm) profiles between the density-difference binary 
mixture and its constituent materials (monodisperse large glass and monodisperse large HDPE). 
Similar to the monodisperse materials (Figure 158), as riser height increases, radial Gr,net,norm 
profile shapes for the density-difference binary mixture evolve from flat at mid-height (h/H = 
0.27) to inverted V-shape at the topmost axial position (h/H = 0.92), implying axial position also 
has a significant influence even in the presence of polydispersity. Where a distinct variation 
between materials is observed, the density-difference binary mixture mimics large glass more 
than large HDPE, examples of which are near the wall at the riser bottom (h/H = 0.16) or near 
the center at the riser top (h/H = 0.92). 
 

 
Figure 159.  Radial Gr,net,norm profiles of density-difference binary mixture and constituent 
materials investigated at different axial positions under operating conditions of (a) Us = 13.5 
m/s, Gs = 120 kg/m2s, m = 7.4, (b) Us = 13.5 m/s, Gs = 260 kg/m2s, m = 16.0, (c) Us = 17 m/s, Gs 
= 120 kg/m2s, m = 5.9, and (d) Us = 17 m/s, Gs = 260 kg/m2s, m = 12.7. 
 

Analogous to Figure 159, Figure 160= compares the size-difference binary mixture to its 
constituent components (in this case, large glass and small glass). Similar to the trends for the 
monodisperse materials in Figure 158, the size-difference binary mixture exhibit the following 
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characteristics: (i) Gr,net,norm profile become inverted V-shape at the riser top (h/H = 0.92), and 
(ii) more material difference is observed at the riser wall (r/R = 1) at lower axial positions (h/H = 
0.16), but more material difference at the riser center (r/R = 0) as riser height increases (h/H = 
0.92). Notably, in contrast to the density-difference binary mixture, the size-difference binary 
mixture mimics neither constituent material strictly. 
 

 
Figure 160.  Radial Gr,net,norm profiles of size-difference binary mixture and constituent materials 
investigated at different axial positions under operating conditions of (a) Us = 13.5 m/s, Gs = 
120 kg/m2s, m = 7.4, (b) Us = 13.5 m/s, Gs = 260 kg/m2s, m = 16.0, (c) Us = 17 m/s, Gs = 120 
kg/m2s, m = 5.9, and (d) Us = 17 m/s, Gs = 260 kg/m2s, m = 12.7. 
 

In Figure 161, the two binary mixtures, which have a common constituent component 
(large glass), are directly compared. Notably, the radial profiles of Gr,net,norm of the two binary 
mixtures are very similar at h/H = 0.92, which could suggest a more dominant influence of large 
glass (the common constituent material) relative to the other component at the top-most axial 
position. Interestingly, the profiles are generally more similar at the higher Us conditions (Figure 
161c and d). Where material effects are apparent particularly for the lower Us conditions (Figure 
161a and b), the binary mixtures are different at the wall (r/R = 1) at lower axial positions (h/H ≤ 
0.27), and different at the center (r/R = 0) at intermediate heights (h/H = 0.47).  
 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 204 

 
Figure 161.  Radial Gr,net,norm profiles for size-difference and density-difference binary mixtures 
investigated at different axial positions under operating conditions of (a) Us = 13.5 m/s, Gs = 
120 kg/m2s, m = 7.4, (b) Us = 13.5 m/s, Gs = 260 kg/m2s, m = 16.0, (c) Us = 17 m/s, Gs = 120 
kg/m2s, m = 5.9, and (d) Us = 17 m/s, Gs = 260 kg/m2s, m = 12.7. 

 
It was initially presumed that species segregation(Chew, Hays et al. 2011) behavior would 

have some influence on or would be explicit in the mass flux profiles. In particular, previous 
species segregation results(Chew, Hays et al. 2011) on the same materials at the same operating 
conditions in the same riser showed that (i) the more massive (higher dave or ρs) species 
preferentially segregate to the wall, (ii) more extensive radial and axial species segregation was 
previously reported for the size-difference binary mixture as compared to the density-difference 
binary mixture, and (iii) least difference between species segregation behavior between the two 
binary mixtures was observed at the lower-most axial position (h/H = 0.16), since both exhibit 
flat species segregation profiles. Regarding (i), if higher composition of large glass is found at 
the wall, do the binary mixtures mimic large glass more at the wall? No - while the density-
difference binary mixture (Figure 159 mimics large glass throughout the entire cross-section 
(i.e., not only at the wall), the size-difference binary mixture (Figure 160) does not strictly mimic 
large glass at the wall. Pertaining to (ii), if more extensive radial segregation was found for the 
size-difference binary mixture (Figure 159), it should have a higher tendency to mimic large 
glass at the wall than the density-difference binary mixture (Figure 160), which is not the case. 
Figure 161 further shows that the binary mixtures become increasingly similar with height, 
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despite the extent of species segregation for the size-difference binary mixture increasing more 
than the density-difference binary mixture with height; on the contrary, where species 
segregation behaviors are similar at h/H = 0.16, the Gr,net,norm profiles are most different.  The 
elusiveness of species segregation phenomenon in the Gr,net,norm profiles should not be surprising. 
As noted previously from Figure 158, mass flux profiles are more dominated by solids velocity 
than concentration, since similar mass flux profiles of monodisperse materials are exhibited 
despite reverse core-annulus (i.e., dense core and dilute annulus) for the larger materials. 
Correspondingly, species segregation is linked to granular temperature gradient, and granular 
temperature is also linked to solids concentration(Lu, Liu et al. 2000; Lu, Gidaspow et al. 2001; 
Zhou, Flamant et al. 2002; Lu and Gidaspow 2003; Tartan and Gidaspow 2004; Biggs, Glass et 
al. 2008; Songprawat and Gidaspow 2010); therefore, since solids concentration has less effect 
on mass flux profiles, along the same vein as granular temperature, species segregation also is 
not apparent in mass flux profiles. 
 Finally, Gr,net,norm profiles for the small glass with continuous PSD (Table 11) are portrayed 
in Figure 162. Because the four operating conditions implemented for this continuous PSD are 
different from the other materials (Table 12), a direct comparison on the effect of material is not 
possible.  Nonetheless, the impact of axial position and operating conditions on the radial 
profiles are still obtainable. Similarities with results for other materials are apparent as the axial 
height has a greater influence on radial profiles than does the operating condition. Unlike the 
other materials investigated, however, at the topmost axial position (h/H = 0.92), profiles appear 
as a flatter inverted U-shape instead of the inverted V-shape for monodisperse materials (Table 
8) and binary mixtures (Figure 161). In addition, the Gr,net,norm profiles at the lowest m condition 
(Figure 162c) are distinctly different from the other three conditions (Figure 162a, b, and d) for 
h/H ≤ 0.47, due either to (i) a behavioral difference between continuous PSD and binary 
mixtures (as has been noted in previous work(Chew, Wolz et al. 2010; Chew, Hays et al. 2011; 
Chew, Hays et al. 2011; Chew and Hrenya 2011)), or (ii) the wider range of operating conditions 
investigated for this material. Along the lines of “similar profiles” (Monceaux, Azzi et al. 1986; 
Rhodes, Wang et al. 1992), which states a critical m exists above which Gr,net,norm profiles become 
similar, it is apparent that the lowest m condition (Figure 162c) in this case is below the critical 
m, and that the critical m lies between m = 2.8 (Figure 162c) and 4.2 (Figure 162a). Notably also, 
since the Gr,net,norm profiles are similar for h/H ≥ 0.73 across all four operating conditions (i.e., 
including m = 2.8 (Figure 162=c)), the magnitude of the critical m associated with the concept of 
“similar profiles” (investigated at h/H = 0.4(Rhodes, Wang et al. 1992)) decreases or disappears 
at higher heights, which presents another reason why an exhaustive dataset as in this work is 
necessary.  
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Figure 162.  Radial Gr,net,norm profiles for continuous PSD small glass investigated at different 
axial positions under operating conditions of (a) Us = 10 m/s, Gs = 50 kg/m2s, m = 4.2, (b) Us = 
10 m/s, Gs = 300 kg/m2s, m = 25.0, (c) Us = 15 m/s, Gs = 50 kg/m2s, m = 2.8, and (d) Us = 15 
m/s, Gs = 300 kg/m2s, m = 16.7. 

 
Summary:  An experimental suite targeted at mass flux measurements in a riser have 

been carried out in a pilot-scale CFB. The objective of this work is to understand the impact of 
(i) local riser positions (axial and radial), (ii) material type (various monodisperse materials and 
effect of polydispersity), and (iii) operating conditions on mass flux behavior. The particles 
investigated belong to Geldart Group B, and include three monodisperse materials (differing in 
dave and/or ρs), two binary mixtures (size-difference and density-difference), and a continuous 
PSD. Four operating conditions were implemented for each material, and local mass flux was 
measured at five axial positions along the riser, with two bi-directional (90 degrees azimuthally 
apart on the horizontal plane) sets of 11 radial positions at each axial position. 
 The most significant influence on mass flux profiles is the axial position in the riser (which 
is also the key factor for cluster trends(Chew, Hays et al. 2011; Chew, Hays et al. 2011)), 
especially near the riser top. Profiles shapes are inverted U- or V-shape at h/H = 0.92, regardless 
of material type (various monodisperse materials or various polydisperse systems) or operating 
conditions. Material type and operating conditions effects are secondary and inter-dependent, 
with effects most apparent at the bottom-most position (h/H = 0.16). As for the impact of 
polydispersity, the density-difference binary mixture mimics monodisperse large glass (one of 
the constituent components), whereas the size-difference binary mixture mimics neither 
constituent component. Finally, the effect of operating condition is more apparent for the 
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continuous PSD, but it is inconclusive whether it is due to an inherent difference between 
continuous PSD and binary mixtures (as has been noted in previous work(Chew, Wolz et al. 
2010; Chew, Hays et al. 2011; Chew, Hays et al. 2011; Chew and Hrenya 2011)), or due to the 
wider range of operating conditions implemented for this material. 

The mass flux characteristics presented here is part of a wider dataset of various riser 
characteristics (Sections 4.5.1 - 4.5.5) investigated with the same materials and operating 
conditions, which collectively provide a rich test-bed for validation of monodisperse and and 
particularly polypdisperse models(Hrenya 2011) (for recent polydisperse example, see (Garzo, 
Dufty et al. 2007; Garzo, Hrenya et al. 2007)). 
 
Task 4.5.4: Cluster characteristics of monodisperse materials7 
 

Abstract: Experiments in a circulating fluidized bed (CFB) riser with Geldart Group B 
particles have been carried out, with a focus on cluster characterization. In this section, the focus 
is on monodisperse materials; results for polydisperse materials are contained in Section 
4.5.5(Chew, Hays et al. 2011).  A fiber optic probe was used for detection of solids, and cluster 
identification was accomplished via wavelet decomposition. Using this threshold, three cluster 
characteristics were evaluated:  appearance probability, duration, and frequency.  Furthermore, 
the impact of three factors – riser position, operating condition, and material type – was 
examined.  Results indicate that: (i) of the three factors investigated, riser position has the most 
dominant influence on cluster characteristics, (ii) cluster appearance probability appears to be 
largely a function of riser position only, and is insensitive to changes in operating condition or 
material type, and (iii) cluster duration and frequency are influenced by the particle material and 
operating condition, though only from mid-height of the riser upwards. The results presented 
provide a comprehensive picture of factors affecting cluster trends. 

Introduction:  Similar to Section 4.5.1, this section deals only with monodisperse 
materials (Table 8), with a specific focus on the cluster characteristics of the monodisperse 
materials in a moderately dense CFB riser. The next section (Section 4.5.5) will explore the 
impact of polydispersity on clusters. Because clusters significantly affect the performance of the 
fluidized bed system in terms of solids mixing, entrainment, and heat and mass transfer, an 
enhanced understanding of cluster behavior is warranted.  
 Numerous experimental results on clusters have been reported, though seemingly 
contradictory trends have emerged.  For example, some works have indicated that overall (i.e., 
integrated across the riser cross-section) appearance probability of clusters decreases(Brereton 
and Grace 1993; Soong, Tuzla et al. 1995) or remains constant with height(Yang and Leu 2009), 
while other works indicate a decrease in appearance probability with height at the wall only(Wei, 
Yang et al. 1995; Manyele, Parssinen et al. 2002). As another example, an increase in the solid 
loading m (ratio of solids flux to air flux) has been shown to either increase(Horio, Morishita et 
al. 1988; Rhodes, Mineo et al. 1992; Zou, Li et al. 1994; Guenther and Breault 2007; Das, 
Meikap et al. 2008), decrease(Horio and Kuroki 1994; Wei, Yang et al. 1995; Sharma, Tuzla et 
al. 2000; Mostoufi and Chaouki 2004; Afsahi, Sotudeh-Gharebagh et al. 2009), or have no 
effect(Li, Zhu et al. 1995; Sharma, Tuzla et al. 2000) on cluster duration. The contradictory 
trends presumably stem from the lack of a complete dataset. More explicitly, most works only 

                                                 
7 Chew, Hays, Findlay et al., “Cluster characteristics of Geldart Group B particles in a pilot-scale CFB 
riser. I. Monodisperse”, in preparation for submission in May 2011. 
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involve one material, and/or the effect of changing operating conditions at one or two axial 
positions. Correspondingly, if cluster trends vary at different riser positions, over a wider range 
of operating conditions, or for different materials, different cluster trends may result. Therefore, 
the objective of the current effort is to generate a comprehensive dataset of cluster characteristics 
via local measurements spanning the entire riser, under various operating conditions, and for 
three monodisperse material types (i.e., different particle size, dave, and/or material density, ρs).  
 Notably, reports on the impact of material type on cluster characteristics have been 
especially scarce. Recently, Cocco et al.(Cocco, Shaffer et al. 2010) found polyethylene (PE) to 
exhibit increased tendency of clustering in both the bed and the freeboard compared to fluid 
cracking catalyst (FCC), and they attributed the difference to the higher electrostatics, lower 
restitution coefficient, and smoother surface associated with PE. In addition, it has been reported 
that coal generally has larger clusters than iron ore when compared at the same solids 
concentration conditions(Das, Meikap et al. 2008).  Another work(Sharma, Tuzla et al. 2000) 
compared glass beads of different sizes (70 and 120 μm) at only one axial position, and 
concluded that a larger particle size increases cluster duration and decreases cluster frequency, 
but does not affect cluster appearance probability. However, as indicated earlier, a gap in the 
knowledgebase exists due to the incompleteness of the datasets. For example, it is unclear if 
results taken at a single axial position also hold at other axial positions. 
 Collectively, previous works indicate that riser position, operating condition, and material 
type may influence the behavior of clusters. In view of the contradictory cluster trends reported, 
however, the focus of the current work is to generate a more complete landscape of cluster 
characteristics with respect to riser position, operating condition, and material type. Namely, the 
salient questions are twofold.  How do the local riser position (both axial and radial), operating 
condition (superficial gas velocity, Us, and overall solids flux, Gs), and material type influence 
cluster characteristics throughout the riser? Moreover, which factor (riser position, operating 
condition, or material type) exerts the greatest influence on cluster behavior? 
 To address these questions, cluster measurements have been carried out here for three 
monodisperse Group B materials in a CFB riser under four operating conditions.  Accordingly, a 
direct comparison of the impact of the various factors on cluster characteristics is possible. More 
specifically, a fiber optic probe was used for the detection of clusters via wavelet decomposition. 
Results indicate that (i) local riser position is the primary factor influencing all three cluster 
characteristics (appearance probability, duration, frequency), while operating conditions and 
material type are secondary effects, (ii) among the three cluster characteristics, appearance 
probability is most affected by local riser position and least affected by material type and/or 
operating condition, and (iii) compared to appearance probability, cluster duration and frequency 
is more affected by variations of material types and operating conditions (particularly near the 
top of the riser), although axial variation is still apparent.  
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Experimental Description: 
Experimental Setup:  The schematic of the CFB is shown in Figure 129. 
Materials Investigated and Operating Conditions Implemented: The three materials 

considered here are monodisperse Group B particles listed in Table 8. And the operating 
conditions are as listed in Table 9. 

Measurement Technique: The fiber optic probe used for cluster measurements was 
fabricated at Particulate Solid Research Incorporated (PSRI). The probe is a stainless steel tubing 
(outer diameter = 0.013 m) which houses two fibers, each with a diameter of 2000 μm.  One 
fiber is used to transmit infrared from a light-emitting diode (LED) source, while the other is the 
receiver conduit. Notably, the two fibers are aligned to converge towards the probe tip in order to 
reduce the sampling volume just beyond the probe tip, thereby reducing unnecessary scattering 
of the light source and enhancing sensitivity(Cocco, Cleveland et al. 1995). The key operating 
principle of the fiber optic probe is that the receiver fiber detects a higher voltage signal when 
infrared emitted from the transmitter fiber is blocked and reflected back to the receiver fiber, as 
occurs when the probe is surrounded by a denser (particle-rich) phase.  On the other hand, a 
lower voltage signal is obtained when infrared from the emitter is relatively unobstructed, as 
occurs when the probe tip is in a more dilute (gas-rich) phase. Accordingly, bubbles (gas-rich) in 
a bubbling fluidized bed manifest as downward spikes in a fiber-optic voltage trace, whereas 
clusters (particle-rich) in a riser (relatively gas-rich) manifest as upward spikes in a fiber optic 
voltage trace. As examples, fiber optic voltage traces in the riser of the CFB are shown for the 
case of background (i.e., absence of solids) in Figure 163a and in the presence of solids flow in 
Figure 163b, both as functions of time. Expectedly, it is observed that the presence of solids 
induces higher and a wider range of voltages. Hence, with a suitable threshold, cluster (i.e., flow 
structures denser than uniform distribution of particles) identification can be accomplished. 
 

 
Figure 163.  Example of traces obtained in CFB by fiber optic probe for (a) background (i.e., 
absence of solids), and (b) large HDPE at operating condition of Us = 13.5 m/s, Gs = 260 kg/m2s 
at h/H = 0.47 and r/R = 0.96. 
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 The choice of voltage threshold for cluster detection is an important consideration. A 
single-value threshold(Soong, Tuzla et al. 1995; Tuzla, Sharma et al. 1998; Sharma, Tuzla et al. 
2000; Manyele, Parssinen et al. 2002; Liu, Gao et al. 2005)  (for example, a fixed number of 
standard deviations above the mean voltage) implies a time-independent demarcation between 
the two phases, and such a threshold has been considered inadequate due to the dynamic nature 
of fluidized bed systems(Ellis, Briens et al. 2003; Guenther and Breault 2007; Yang and Leu 
2009). Specifically, because fluidized-bed systems have broad spectrum of solids concentration 
that evolve with time, identifying features like bubbles or clusters necessitates a data analysis 
method that takes into account the dynamic baseline of measured signals(Ren and Li 1998; Ellis, 
Briens et al. 2003; Guenther and Breault 2007; Yang and Leu 2009). Therefore, a critical 
drawback of a Fourier transform of such signals is that the time (dynamic) component is lost 
during analysis, and hence deficient when signal properties continuously change with time as in 
a fluidized bed system(Ren and Li 1998; Ellis, Bi et al. 2004). In the past decade, wavelet 
decomposition(Mallat 1989; Mallat 1998) has been acknowledged to be useful in its ability to 
extract different frequency ranges while retaining the timestamp of signals, thereby enabling 
classification of fluidized-bed measurement data into noise (micro-scale), flow structures like 
clusters or bubbles (meso-scale), and equipment (macro-scale)(Ren and Li 1998; Ellis, Briens et 
al. 2003; Zhao and Yang 2003; Yang and Leu 2009).  
 More specifically, wavelet decomposition(Mallat 1989; Mallat 1998) provides a means of 
extracting different frequency ranges of data signals by repeatedly breaking down the signal into 
higher-frequency details (D) and lower-frequency approximations (A), as illustrated in Figure 
133. At the first scale of decomposition (Scale 1), the signal of N Hz is divided into the first scale 
of approximation (A1) and the first scale of detail (D1), whereby A1 contains the lower half of the 
frequency range and D1 contains the higher half. Combined via wavelet reconstruction (which 
reverses wavelet decomposition), the A1 and D1 signals result in the original signal. With a 
further increase in scale from j to j+1, each approximation Aj is subsequently decomposed into 
low-frequency Aj+1 and high-frequency Dj+1 signals. Figure 134 shows the approximation and 
detail signals at various scales, illustrating explicitly the decrease in signal frequency with the 
increase of scales while preserving the timeline. For the interested reader, a thorough 
mathematical explanation of the wavelet decomposition technique can be found in Mallat(Mallat 
1989; Mallat 1998). In the current work, a data collection frequency of 100 Hz was used for 
large glass and a higher 1000 Hz was used for large HDPE and small glass (more details on this 
difference are given below), with wavelet decomposition of the signal accomplished via the 
wavelet toolbox in Matlab(Misiti, Misiti et al. 2002).   
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Figure 164.  Raw signal of fiber optic probe collected at 1000 Hz and corresponding 
approximations (Aj) and details (Dj) at various scales (j) of wavelet decomposition for small 
glass at operating condition of Us = 17 m/s, Gs = 260 kg/m2s at h/H = 0.16 and r/R = 0.0. 
 
 Before discussing which wavelet decomposition scale is appropriate to use as the threshold 
for cluster detection, it is worth noting that efforts have been made by previous researchers 
towards calibrating the voltage signals obtained from fiber optic probes to obtain solids 
concentration traces(Louge 1997; van Ommen and Mudde 2008).  Nonetheless, several works 
have noted the inefficacy of the fiber optic probe to give absolute concentration values due to the 
associated problematic calibration(Matsuno, Yamaguchi et al. 1983; Herbert, Gauthier et al. 
1994; Zhang, Johnston et al. 1998). Consequently, in this work, instead of calibrating the fiber 
optic probe signals to obtain quantitative values (magnitudes) for solids concentration, the raw 
voltage traces were instead analyzed for relative changes in concentration (via wavelet analysis) 
in order to obtain information on clustering.  
 To use wavelet analysis to extract information on clusters, a threshold for cluster 
identification is required. More specifically, the threshold should have a physical significance 
based on the ability of wavelet decomposition to demarcate the different scales (micro-scale, 
meso-scale, macro-scale)(Ren and Li 1998; Ellis, Briens et al. 2003; Zhao and Yang 2003; Yang 
and Leu 2009). Since information of clusters are represented in the meso-scale (Li, Wen et al. 
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1996; Ren and Li 1998; Ren, Mao et al. 2001; Guenther and Breault 2007; Wu, Apostolos et al. 
2007; Yang and Leu 2009), the scale corresponding to the meso-scale range is needed. 
Accordingly, normalized energy plots of the decomposed signals were inspected to determine the 
delineation among the various scales(Ren, Mao et al. 2001; Wu, Apostolos et al. 2007; Yang and 

Leu 2009). Specifically, the normalized relative energy of the detail signals at each scale (

 

EDj

EJ ,all

) 

is calculated based on Equation 79. 
 The corresponding normalized wavelet energy plots are displayed in Figure 165, where the 

x- and y-axes depict the scale of the wavelet decomposition and the normalized wavelet energy 

(

 

EDj

EJ ,all

), respectively. Notably, Figure 165 serves to illustrate the variations in the 

 

EDj

EJ ,all  
plots for 

different radial positions, different materials (Figure 165a versus Figure 165b), different 
operating conditions (Figure 165a versus Figure 165c), and at different data acquisition 
frequency (Figure 165b versus Figure 165d). Understanding these variations is key to the 
delineation of the micro-, meso- and macro-scales. Four observations are noteworthy. First, 

Figure 165 shows that the normalized energy (

 

EDj

EJ ,all

) changes with radial position, with profiles 

skewing leftwards as the riser center (r/R = 0) is approached from the wall (r/R = 1). In 
particular, Figure 165a and b represent signals from the highest m condition (Table 9) and at a 
dimensionless riser height (h/H, where h is the axial position where measurement was acquired 
and H is the total riser height) of 0.47 for small glass and large HDPE, respectively. At the same 

operating condition, it is apparent that the shapes of the 

 

EDj

EJ ,all

 plots are similar at each 

dimensionless radius (r/R, where r is the radial position where measurement was acquired and R 
is the total riser radius), and that the Gaussian-shaped plots become increasingly left-skewed as 
r/R decreases from 0.96 to 0.0. As indicated in a previous work(Chew, Hays et al. 2011), the 

shapes of the 

 

EDj

EJ ,all  
plots give an indication of the relative solids concentration at each location, 

with increasing left-skewedness correlating with increasing dilution (i.e., profiles look more 
similar to background signal).  Accordingly, the progression observed from the wall to the center 
is indicative of core-annulus flow. Second, a lower m condition gives plots that are more left-
skewed (Figure 165a versus c), and hence the dense-dilute interpretation is further validated, 
since the profiles are all skewed more leftward for the lowest m operating condition 
(Figure165c). A third observation is that different materials tend to have similar energy profiles 
when operated at the same riser conditions (Figure 165a and b), thereby indicating that the 
shapes of the plots are more dependent on flow conditions and relatively independent of 
material. Finally, in comparing Figure 165b and d, it is apparent that a lower data acquisition 
frequency (Figure 165d) for the same riser location and condition shifts the energy plots 
leftwards, because the same features (i.e., frequency ranges) appear at lower scales when data 
acquisition frequency is reduced (Figure 133). For example, for a 1000 Hz signal, A3 contains 
100 Hz information, which implies frequency ranges for a 1000 Hz data are at three scales higher 
than that for a 100 Hz data. 
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Figure 165.  Normalized energy plots at h/H = 0.47 for (a) 1000 Hz large HDPE data at 

highest m condition (Us = 13.5 m/s, Gs = 260 kg/m2s), (b) 1000 Hz small glass data at 
highest m condition (Us = 13.5 m/s, Gs = 260 kg/m2s), (c) 1000 Hz large HDPE data at 
lowest m condition (Us = 17 m/s, Gs = 120 kg/m2s), and (d) 100 Hz small glass data at 
highest m condition (Us = 13.5 m/s, Gs = 260 kg/m2s). 

 
 With these four observations from Figure 165 in mind, delineation among the different 
scales (micro-, meso-, and macro-scale) can be made. Notably, the background (absence of 
solids) signals on Figure 165 are exponentially decreasing functions, implying most of the 
energy in the signal is contained in the lowest (< 5) scale, which is expected since background 
signal contains largely noise (micro-scale). Accordingly, the boundary between micro- 
(background noise) and meso-scales is the scale where the energy level of the background signal 
approaches zero, which is at scale 5 for both the 1000 Hz and 100 Hz data. The demarcation 
between meso-scale (clusters) and macro-scale (equipment) should be the scale at which the 

energy contained in the 

 

EDj

EJ ,all

 plots for systems with solids (not background) approach zero, 

which are approximately scales 11 and 8 for data collected at 1000 Hz (Figure 165a-c) and 100 
Hz (Figure 165d), respectively. It is worthwhile to note that Yang and Leu (Yang and Leu 2009) 
used the same scale, namely 11, as the boundary between the meso-, and macro-scales for their 
1000 Hz fiber-optic data. 
 Armed with this demarcation of the physical scales for the fiber-optic data, the scale used 
for cluster identification should be within the meso-scale range to filter out the noise (micro-
scale) and equipment (macro-scale) influence. Referring to Figure 165, regardless of radial 
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position (i.e., dense or dilute conditions), the 

 

EDj

EJ ,all

 plots reflecting solids flow (i.e., except 

background) approach zero at the meso-/macro-scale boundary, and therefore scales 11 and 8 are 
physically reasonable thresholds for cluster identification for the 1000 Hz and 100 Hz data, 
respectively. Accordingly, for the 1000 Hz data contained in Figure 134, cluster identification 
involves comparing the raw signal with the corresponding A11 trace (i.e., threshold), and data 
points above the threshold are discerned as clusters(Yang and Leu 2009). Analogously, A8 is 
used as the threshold for the 100-Hz data. From this comparison, the appearance probability, 
duration, and frequency of clusters can be obtained. First, cluster appearance probability is the 
ratio of the number of data points above threshold to the total number of data points.  Second, 
cluster duration gives an approximate indication of a characteristic size of clusters (since clusters 
are expected to move laterally, thus not wholly captured by the probe), and is calculated as the 
average number of consecutive data points above the threshold.  Third, cluster frequency is the 
number of clusters per unit time, in which the number of clusters is the number of segments of 
consecutive data points above the threshold. As validation of the choice of scale of threshold 
(namely, A11 for 1000 Hz data and A8 for 100 Hz data) for cluster identification, Figure 166 
shows that the radial profiles of the cluster characteristics for 1000 Hz data becomes similar 
beyond Scale 11 (Figure 166a - c), while those for 100 Hz data become very similar beyond 
Scale 8 (Figure 166d - f). 

 
 

 
Figure 166.  Radial cluster profiles obtained with various wavelet-decomposed scales of 
approximation (Aj) as threshold for cluster identification for small glass collected at (a)-(c) 1000  
Hz and (d)-(f) 100 Hz under operating condition of Us = 13.5 m/s, Gs = 260 kg/m2s at h/H = 
0.47. 
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 The impact of data acquisition frequency on the three cluster characteristics is portrayed in 
Figure 167. The magnitudes of cluster characteristics expectedly change as data acquisition 
frequency changes, because higher data acquisition frequency allows finer time-specific features 
to be captured. For example, previous work indicates that a higher sampling frequency of 12,500 
Hz give rise to cluster durations and frequencies in the ranges of 0.002 - 0.02 s and 15 - 60 Hz 
(Guenther and Breault 2007), respectively, whereas a lower sampling frequency of 1000 Hz lead 
to cluster duration and frequency ranges of 0.03 - 0.08 s and 4 - 15 Hz(Sharma, Tuzla et al. 2000; 
Yang and Leu 2009), respectively. The reason for this trend is that the smallest cluster duration 
detected by 1000 Hz data is 10-3 s, but 12,500 Hz data can detect clusters with a duration as 
small as 8 x 10-5 s. Figure 167 verifies that changing data acquisition frequency changes the 
absolute values of cluster duration and frequency, but the shapes of the radial profile and 
differentiation between materials are preserved. Subsequently, because large glass data was 
collected at 100 Hz and small glass and large HDPE data were collected at 1000 Hz, all data in 
this work were analyzed at 100 Hz for straightforward comparison of material (size and density 
of particles) effect on cluster characteristics. 

 
Figure 167.  Effect of frequency of data acquisition on cluster trends of small glass and large 
HDPE at h/H = 0.92 and operating conditions of Us = 17 m/s, Gs = 120 kg/m2s. 
 

Results and Discussion: Figures 168-170 collectively display the cluster characteristics – 
appearance probability, duration, and frequency, respectively – as functions of dimensionless 
radius (r/R, where r is the radial position at which measurement was acquired and R is the radius 
of the riser) of the riser. Each figure contains 20 subplots, with each of the four columns 
representing the various operating conditions listed in Table 9, and each of the five rows 
representing a different axial position (h/H, where h is the axial position at which measurement 
was acquired and H is the height of the riser) in the riser. In addition, the three profiles within 
each subplot depicts each of the monodisperse materials listed in Table 8. The x- and y-axes 
ranges are kept constant within each figure for straightfoward comparison of trends. Data for 
large glass is lacking for h/H = 0.16 and 0.27, but an overview of the impact of riser position, 
operating condition, and material type on cluster behavior is illustrated nonetheless. 
 Figure 168 presents the cluster appearance probability trends. Among the three cluster 
cha(8racteristics (appearance probability, duration, frequency), appearance probability is least 
affected by material (particle size or density) and/or operating condition, suggesting that cluster 
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appearance probability is dominated by the effect of local position (axial and radial) within the 
riser.  

 

 
Figure 168.  Radial profiles of cluster appearance probability for different materials at various 
riser height and under various operating conditions. 
 
 More specifically, as observed in Figure 168 as height increases, radial profiles generally 
evolve from a U-shape at the riser bottom to flatter profiles at the riser top. The evolution of 
profile shapes results from appearance probability decreasing with height along the wall (r/R = 1) 
throughout the riser height, and only mildly increasing at the center (r/R = 0) from h/H = 0.16 to 
0.27. These plots present a more complete picture than previous work, which contain information 
only along limited or integrated sections of the riser and thus led to seemingly contradictory 
trends.  In particular, previous works have indicated that overall (i.e., integrated across the riser 
cross-section) appearance probability decreases(Brereton and Grace 1993; Soong, Tuzla et al. 
1995) with height or that appearance probability decreases with height only near the wall (and 
not at other radial positions)(Wei, Yang et al. 1995; Manyele, Parssinen et al. 2002), while others 
have reported that overall appearance probability remains constant with height(Yang and Leu 
2009). With regards to radial variation, it is only at the bottom-most axial position (h/H = 0.16) 
that all materials exhibit a generally increasing appearance probability towards the wall across all 
conditions, corroborating with previous work which focused only on limited parts of the riser 
(Brereton and Grace 1993; Li, Zhu et al. 1995; Soong, Tuzla et al. 1995; Wei, Yang et al. 1995; 
Manyele, Parssinen et al. 2002; Yang and Leu 2009).  However, Figure 168 shows that the same 
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trend is not strictly true for higher axial positions (h/H ≥ 0.27). With respect to the impact of 
operating conditions, Figure 168 shows that the effect of the four operating conditions 
investigated on cluster appearance probability is generally insignificant. It is noted in previous 
work that cluster appearance probability increases(Brereton and Grace 1993; Zou, Li et al. 1994; 
Wei, Yang et al. 1995; Manyele, Parssinen et al. 2002), decreases(Li, Xia et al. 1991), or is 
insensitive(Li, Zhu et al. 1995) to an increase of solid loading (m); these seemingly contradictory 
previous results can again be traced to data obtained from only a limited portion of the riser and 
lacking local details. For example, comparing Figure 168c and d at h/H = 0.16 reveals that 
increasing m increases appearance probability at the wall (r/R = 1) but decreases apperance 
probbility at the center (r/R = 0), which implies that a lack of a more complete dataset may lead 
to opposite trends; whereas the complete landscape given in Figure 168 shows clearly that the 
small change due to m is insignificant compared to the greater profile variations associated with 
the effect of riser height.  Finally, Figure 168 indicates that the role of material type (size or 
density of particles) on appearance probability is generally negligible. 
 Radial profiles of cluster duration are displayed in Figure 169.  Compared to appearance 
probability (Figure 168), variations of material properties and operating conditions exert more 
influence on the radial profiles of cluster duration particularly near the top of the riser, although 
axial variation is still most apparent.  

 

 
Figure 169. Radial profiles of cluster duration for different materials at various riser height and 
under various operating conditions. 
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 With regards to influence of axial position, for h/H ≤ 0.27, all cluster duration profiles are 
similarly U-shaped, implying the impact of material or operating condition is insignificant at 
lower riser positions. On the other hand, at higher axial positions (h/H ≥ 0.47), variations due to 
material and operating conditions become evident, with the general trend that the larger materials 
(large glass and large HDPE) have flat profiles, while small glass tends to retain the U-shape. It 
is also observed that as riser height increases, cluster duration generally decreases at the wall (r/R 
= 1), agreeing with previous work which show either a general decrease of radially-integrated 
duration with height (Li, Zhu et al. 1995; Soong, Tuzla et al. 1995; Yang and Leu 2009) or that 
only wall duration decreases with height (Horio, Morishita et al. 1988; Wei, Yang et al. 1995). 
However, it is noted in Figure 169 that duration remains approximately constant at the center 
(r/R = 0) with height.  Note that since the area at the center represents a smaller area relative to 
the annular area at the wall, the contributions from the riser center are drowned out when 
integrated radially, hence the results in this work do not necessarily contradict previous work. 
 As for the effect of operating conditions, similar profiles are observed at the same Gs 
conditions for h/H ≥ 0.27 (i.e., Figure 169a and c are similar, while Figure 169b and d are 
similar). Notably, at the riser center (r/R = 0), changing the operating conditions results in 
opposite trends for the different materials. In particular, while large glass exhibits higher 
durations under the higher m conditions (Figure 169b and d), small glass displays the highest 
duration at the lowest m condition (Figure 169c). Previous works have shown that an increase in 
solid loading (m) either increases (Horio, Morishita et al. 1988; Rhodes, Mineo et al. 1992; Zou, 
Li et al. 1994; Guenther and Breault 2007; Das, Meikap et al. 2008), decreases(Horio and Kuroki 
1994; Wei, Yang et al. 1995; Sharma, Tuzla et al. 2000; Mostoufi and Chaouki 2004; Afsahi, 
Sotudeh-Gharebagh et al. 2009), or does not affect(Li, Zhu et al. 1995; Sharma, Tuzla et al. 
2000) cluster duration; with the more exhaustive dataset presented in Figure 169, different trends 
are indeed seen depending on riser position, operating conditions, and particle material. 
 Pertaining to the impact of material properties on cluster duration (Figure 169), small glass 
consistently exhibits the highest duration towards the wall (r/R = 1), which agrees with previous 
work (Horio, Morishita et al. 1988; Soong, Tuzla et al. 1995; Wei, Yang et al. 1995; Sharma, 
Tuzla et al. 2000; Manyele, Parssinen et al. 2002; Yang and Leu 2009); however, for the larger 
materials (large glass and large HDPE), the radial trend of increasing duration towards the wall is 
observed only at h/H ≤ 0.27. Moreover, interestingly, under low Gs conditions (Figure 169a and 
c), large glass and large HDPE have very similar radial profiles, suggesting that particle size 
plays an influential role under such riser conditions. On the other hand, under high Gs conditions 
(Figure 169b and d), small glass and large HDPE are similar at r/R = 0, while large glass and 
large HDPE are similar at r/R = 1, thereby implying the dominance of different material property 
at different radial positions (i.e., center versus wall) under these operating conditions.   
 With reference to previous work, Cocco et al. (Cocco, Shaffer et al. 2010) compared cluster 
durations of similar-sized 70 μm FCC (fluid cracking catalyst, ρs = 1500 kg/m3) and PE 
(polyethylene, ρs = 400 kg/m3) at r/R = 0 and h/H = 0.9.  It was found that the less massive PE 
has a higher cluster duration, which is contrary to the trend observed here of the most massive 
large glass having highest duration at r/R = 0 and h/H = 0.92 for the higher Gs conditions (Figure 
169b and d). However, the higher duration displayed by PE has been attributed to higher 
electrostatics, lower restitution coefficient, and smoother surface compared to the FCC 
particles(Cocco, Shaffer et al. 2010). With reference to another work, Sharma et al. (Sharma, 
Tuzla et al. 2000) found that more massive 120 μm glass beads exhibit a higher cluster duration 
than 70 μm glass beads, especially at the wall at h/H = 0.4. This trend again looks to be different 
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under two of the four operating conditions (Figure 169a and d) in the current results, wherein 
small glass exhibits higher cluster duration (at the wall at h/H = 0.47) than other larger materials. 
Correspondingly, the influence of materials seems tied with operating conditions, and disparate 
material trends may manifest under different flow conditions. Where material impact is 
concerned, it is worthwhile to note that effects other than dave or ρs are also at play in the 
clustering phenomenon. In particular, clusters in gas-solids systems may arise due to the inelastic 
nature of particle collisions(Goldhirsch 2003) and/or gas-phase effects including the relative 
motion between the two phases (mean drag) and viscous damping of the granular energy by the 
fluid(Glasser, Sundaresan et al. 1998; Wylie and Koch 2000; Agrawal, Loezos et al. 2001).  
Accordingly, the differences between cluster characteristics observed here and those of previous 
works are likely to involve more than a simplistic dave or ρs effect, though such an analysis is 
well beyond the scope of the current effort.  
 The radial profiles of the final cluster parameter, namely cluster frequency, are displayed in 
Figure 170. Among the three cluster characteristics (appearance probability, duration, 
frequency), Figure 170 shows that the greatest influence of materials and operating conditions is 
exhibited in cluster frequency, even though axial position still plays an important role.  

 

 
Figure 170.  Radial profiles of cluster frequency for different materials at various riser height 
and under various operating conditions. 
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At lower axial positions (h/H ≤ 0.27), the radial profiles of cluster frequency are inverted 
U-shape regardless of material and operating conditions, although more material difference is 
apparent at lower Gs (Figure 170a and c) than at higher Gs conditions (Figure 170b and d). 
Higher up in the riser (h/H ≥ 0.47), the impact of material and operating condition variations 
increases, as reflected in the increasingly dissimilar profiles. Notably, similar to cluster duration 
(Figure 169), the trends for low Gs (Figure 170a and c) conditions are similar, while the trends 
for high Gs (Figure 170b and d) are similar. Regarding impact of operating condition, cluster 
frequency is greatest for the highest m (Figure 170b) for small glass (especially at the riser 
center), which agrees with previous work(Sharma, Tuzla et al. 2000; Manyele, Parssinen et al. 
2002; Yang and Leu 2009).  On the contrary, frequency is greatest for the lowest m condition 
(Figure 170c) for the larger materials (large glass and large HDPE), indicating again that the 
effects of operating condition and material property are coupled. Finally, with respect to impact 
of particle material, for h/H ≥ 0.47, small glass generally retains the inverted U-shape observed 
at lower h/H, large glass acquires a U-shape, while profile shapes for large HDPE are more 
varied depending on height and operating conditions. With reference to previous work, Guenther 
and Breault(Guenther and Breault 2007) noted cluster frequency decreases towards the wall at all 
heights for Group A-B cork particles, which is generally consistent with the small glass (closest 
to the Group A-B boundary of the three materials investigated) trends in Figure 170. Hence, the 
different profile shapes higher in the riser observed for the larger materials could in part be a size 
effect, although other effects like restitution coefficient may come into play as pointed out 
earlier.  

Summary:  Experiments have been carried out in a pilot-scale circulating fluidized bed 
(CFB) riser for three monodisperse Geldart Group B materials of different size and material 
density (namely, large glass, large HDPE, and small glass). A fiber optic probe was used for 
local measurements within the riser, and a physically-based threshold for cluster identification 
was derived via wavelet decomposition. Using this threshold, three cluster characteristics were 
determined:  appearance probability, duration, and frequency.  Local profiles of these cluster 
quantities for each of the three materials and each of the four operating conditions are reported.  
The resulting dataset reveals the impact of local riser position, operating condition, and material 
type on the cluster characteristics. 
 Collectively, the results give way to three major findings. First, among the three factors – 
riser position, operating condition, and material type – investigated, riser position has the most 
dominant influence on the cluster characteristics (appearance probability, duration, and 
frequency). Second, the cluster appearance probability is largely a function of riser position only, 
and is insensitive to changes in operating condition or material type. Third, although differences 
in the cluster duration and frequency do arise from changes in the material and/or operating 
condition, such differences are present only from mid-height of the riser upwards 
 It is worthwhile to note that the material effects examined here refer to size and/or material 
density effects of monodisperse particles, but the origin of clusters can be traced to dissipative 
nature of inelastic collisions(Goldhirsch 2003) as well as gas-phase effects(Glasser, Sundaresan 
et al. 1998; Wylie and Koch 2000; Agrawal, Loezos et al. 2001). Correspondingly, other than 
material size and density effect leading to drag force instability, other effects influencing 
instability include restitution coefficient, friction coefficient, particle shape, etc. This dataset on 
clustering behavior of monodisperse materials in a CFB riser, together with that for polydisperse 
materials in Section 4.5.5, is expected to serve as validation data for models incorporating such 
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effects, and more work is needed to shed more light on the dominant physics leading to 
instabilities in gas-solid flows and hence clusters. 
 
Task 4.5.5: Cluster characteristics of polydisperse materials8 
 

Abstract:  Experiments with a focus on understanding the impact of polydispersity on 
clustering characteristics (namely, appearance probability, duration and frequency) of Geldart 
Group B particles in a circulating fluidized bed (CFB) riser have been carried out. Three 
mixtures are considered: (i) a density-difference binary mixture, with species of different 
material density (ρs) but same particle sizes (dave), (ii) a size-difference binary mixture, with 
species of different dave but same material density ρs, and (iii) a continuous particle size 
distribution (PSD). Local cluster information spanning the entire riser was obtained over a range 
of operating conditions using a fiber optic probe. Results show that cluster trends for the binary 
mixtures are similar to those reported in Section 4.5.4(Chew, Hays et al. 2011) for monodisperse 
materials on two counts. First, local riser position has a significant influence on all three cluster 
characteristics, while effects of operating condition and material type are secondary. Second, 
among the three cluster characteristics, cluster appearance probability is most influenced by local 
position, and least affected by operating condition and material type. Furthermore, the density-
difference binary mixture exhibits distinctly lower cluster duration than either of its constituent 
components.  On the other hand, for the size-difference binary mixture, cluster duration mimics 
one constituent component, while frequency mimics the other. Comparing the two binary 
mixtures at any riser location, the density-difference binary mixture has lower cluster duration 
and higher frequency than the size-difference binary mixture regardless of local position. Finally, 
with respect to the continuous PSD, which was investigated under a wider range of operating 
conditions, the effect of operating condition is more apparent.  This deviation may be due to an 
inherent behavioral difference between binary mixture and continuous PSD and/or to the wider 
range of operating conditions examined. 

Introduction:  In the previous section (Section 4.5.4) on clustering in CFB risers with 
various monodisperse materials(Chew, Hays et al. 2011), a comprehensive picture of the impact 
of monodisperse material property (particle size and material density), local riser position, and 
operating conditions on cluster behavior was presented. The results indicate that riser local 
position plays a key role in influencing clusters compared to the material property and/or 
operating condition. Nonetheless, polydisperse systems have been known to exhibit different 
behaviors than their monodisperse counterparts(Sundaresan 2001; Muzzio, Shinbrot et al. 2002; 
Curtis and van Wachem 2004; Hrenya 2011) (e.g., mass flux profiles(Chew, Hays et al. 2011), 
species segregation(Rowe and Nienow 1976; Nienow and Chiba 1985; Fan, Chen et al. 1990; 
Kunii and Levenspiel 1991; Lim, Zhu et al. 1995; Werther and Hirschberg 1997; Rhodes 1998; 
Ottino and Khakhar 2000; Sundaresan 2001; Muzzio, Shinbrot et al. 2002; Hrenya 2011)), and 
thus the effect of polydispersity on clusters is of practical interest. In addition, different 
categories of polydispersity, namely binary mixtures and continuous particle size distributions 
(PSDs), have been reported to display qualitatively different trends in both bubbling 
beds(Hoffmann and Romp 1991; Gauthier, Zerguerras et al. 1999; Lin, Wey et al. 2002; Chew, 
Wolz et al. 2010; Chew and Hrenya 2011) and CFBs(Hirschberg and Werther 1998; Chew, Hays 

                                                 
8 Chew, Hays, Findlay et al., “Cluster characteristics of Geldart Group B particles in a pilot-scale CFB 
riser. II. Polydisperse”, in preparation for submission in May 2011. 
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et al. 2011; Chew, Hays et al. 2011; Chew, Parker et al. 2011), thereby motivating the 
investigation of both categories of polydispersity. 
 In an effort to build on the previous knowledge on cluster characteristics of monodisperse 
materials (see Section 4.5.4(Chew, Hays et al. 2011) and references therein), the objective of the 
current study is to experimentally investigate the effect of polydispersity on cluster 
characteristics in the same CFB riser as Section 4.5.4(Chew, Hays et al. 2011). Experiments have 
been carried out for two binary mixtures – one with only a material density, ρs, difference 
between the constituent components (density-difference binary), and one with only a particle 
size, dave, difference between the constituent components (size-difference binary) – as well as a 
continuous PSD, all belonging to Geldart Group B. Local cluster behavior is measured using a 
fiber optic probe and subsequent cluster identification and characterization is based on wavelet 
decomposition(Mallat 1989; Mallat 1998), which provides a means of delineating the different 
(micro, meso-, and macro) scales in fluidized bed systems(Ren and Li 1998; Ellis, Briens et al. 
2003; Zhao and Yang 2003; Yang and Leu 2009). In particular, the cluster characteristics 
extracted from fiber optic measurements include cluster appearance probability (fraction of time 
that clusters are observed), cluster duration (indicator of cluster size), and frequency (number of 
clusters per unit time). 
 The results indicate similar trends between the monodisperse materials(Chew, Hays et al. 
2011) and the mixtures, though some noticeable differences exist between the different 
categories of polydispersity examined.  Regarding the former, all three cluster characteristics 
depend most heavily on local riser position, while the effects of operating condition and material 
type (monodisperse material and mixture type) are secondary. Moreover, among the three cluster 
characteristics, cluster appearance probability is most influenced by riser local position, and least 
affected by operating condition and material type. Besides these similarities, differences in the 
clustering trends between the binary mixtures are also apparent. First, the density-difference 
binary mixture exhibits distinctly lower cluster duration than either of its constituent component. 
On the other hand, for the size-difference binary mixture, duration mimics one constituent 
component, while frequency mimics the other. Second, between the two binary mixtures, the 
size-difference binary mixture has higher cluster duration and lower cluster frequency than the 
density-difference binary mixture. Finally, with respect to the continuous PSD, the effect of 
operating conditions is more apparent, which may be due to a difference between the mixture 
types (binary vs. continuous) or to the wider range of operating conditions examined. 

Experiment Description: 
Experimental Set-up: The CFB riser used for experiments is identical to that in Figure 

129; the reader is referred to Section 4.5.1 for further details. The focus of this work is on 
polydisperse materials, specifically two binary mixtures - one with only a difference in particle 
size, dave (size-difference binary) and one with only a difference in material density, ρs (density-
difference binary) - and one continuous (Gaussian) particle size distribution (PSD), as listed in 
Table 11. The binary mixtures are made up of approximately monodisperse materials, which are 
detailed in Table 8. Accordingly, the cluster characteristics of the binary mixtures are compared 
with that of the constituent monodisperse materials Section 4.5.4(Chew, Hays et al. 2011)) to 
illustrate the effect of their binary nature. 

Operating Conditions: The operating conditions used in this investigation are listed in 
Table 12.  

Instrumentation and Cluster Analysis: Identical to the counterpart monodisperse work 
in Section 4.5.4(Chew, Hays et al. 2011), data acquisition via a fiber optic probe was 
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implemented at 100 Hz to obtain measurements at numerous axial and radial locations 
throughout the riser.  Wavelet analysis is used for cluster identification, and subsequent analysis 
is used to extract three characteristics of the clusters:  appearance probability, cluster duration, 
and cluster frequency.  For further details on these measurements and analysis, the reader is 
referred to Section 4.5.4(Chew, Hays et al. 2011). 

Results and Discussion:  The focus of this work is on understanding the impact of 
polydispersity on cluster characteristics. Each figure (Figure 171 through Figure 182) in this 
section contains 20 subplots, with each column of subplots depicting one of the four operating 
conditions (Table 12) investigated, and each row depicting one of the five riser axial positions 
(h/H, where h is the axial position at which measurements were taken, and H is the riser height), 
as indicated on the text at the right-most of the figure. While the y-axes denote cluster 
characteristics, the x-axes denote dimensionless radius (r/R, where r is the radial position at 
which measurements were taken, and R is the riser radius). The ranges of the axes are kept 
constant throughout each figure to provide more straightforward comparisons. The error bars 
represent the span of two repeat measurements taken at the same axial position but 90 degrees 
apart in the horizontal plane. Note that large glass data is lacking for h/H ≤ 0.27, while density-
difference binary mixture data is lacking for h/H = 0.92. 

Binary Mixtures:  Figures 171-173 display the cluster appearance probability of the 
binary mixtures. Specifically, Figure 171 compares the density-difference binary mixture with its 
constituent (monodisperse) components, Figure 172 compares the size-difference binary mixture 
with its constituent (monodisperse) components, and Figure 173 compares the two binary 
mixtures directly. Collectively, the three figures show that the radial profiles of appearance 
probability are largely a function of riser position for binary mixtures, which is consistent with 
the results on monodisperse systems presented in Section 4.5.4(Chew, Hays et al. 2011). In 
particular, the radial profiles are generally U-shaped lower (h/H = 0.16) in the riser and gradually 
flatten with height. In other words, neither material type (monodisperse materials, binary 
mixtures, etc.) nor operating condition causes significant variations in the profiles; the slight 
variations which are observed (e.g., Figure 171c, Figure 172d) do not follow a clear trend with 
local position or operating conditions. Therefore, the cluster appearance probability is most 
dependent on the local position in the riser. 
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Figure 171.  Local profiles of cluster appearance probability for density-difference binary 
mixture and constituent monodisperse materials. 
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Figure 172.  Local profiles of cluster appearance probability for size-difference binary mixture 
and constituent monodisperse materials.  

 
 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 226 

 
Figure 173.  Local profiles of cluster appearance probability for density-difference binary 
mixture and the size-difference binary mixture. 

 
 

Cluster duration profiles are presented in Figures 174-176. Analogous to previous plots, 
Figures 174 compares the density-difference binary mixture with its constituent (monodisperse) 
components, Figure 175 compares the size-difference binary mixture with its constituent 
(monodisperse) components, and Figure 176 compares the two binary mixtures directly. 
Compared to appearance probability (Figures 171-173), although the impact of local riser 
position remains dominant, profile variations resulting from differences in material types 
(monodisperse components and binary mixtures) and operating conditions are more noticeable, 
which is again analogous to the results presented for monodisperse systems in Section 4.5.4 
(Chew, Hays et al. 2011). Interestingly, a deviation from the monodisperse cluster duration 
trends(Chew, Hays et al. 2011) is observed in Figure 174 and Figure 175, in that profile 
variations due to material type are seen at the riser bottom (h/H = 0.16). More explicitly, at this 
position, the binary mixtures exhibit lower cluster duration than their constituent component 
(Figure 174 and Figure 175), whereas profile variations between the monodisperse materials are 
negligible (Section 4.5.4(Chew, Hays et al. 2011)). 
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Figure 174.  Local profiles of cluster duration for density-difference binary mixture and 
constituent monodisperse materials. 
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Figure 175.  Local profiles of cluster duration for size-difference binary mixture and constituent 
monodisperse materials. 
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Figure 176.  Local profiles of cluster duration for density-difference and size-difference binary 
mixtures. 

 
 Differences in cluster duration between the two types of binary mixtures are also 
noteworthy. In Figure 174, it is observed that the density-difference binary mixture generally 
exhibits lower cluster duration than either constituent component at all heights, which represents 
an interesting deviation from mass flux profiles, wherein the density-difference binary mixture 
mimics the large glass (i.e., higher ρs) component under all operating conditions(Chew, Hays et 
al. 2011). On the other hand, it is apparent in Figure 175 that the cluster duration profiles of the 
size-difference binary mixture mimics large glass (comparison not available for h/H ≤ 0.27) 
more than small glass, which also is an interesting contrast from mass flux profile results(Chew, 
Hays et al. 2011), wherein the size-difference binary mimics neither of the constituent 
components. Direct comparisons between the density-difference binary and size-difference 
binary mixtures in Figure 176 reveal that the former generally gives lower cluster duration than 
the latter throughout the riser and under all operating conditions investigated (comparison not 
available at h/H = 0.92).   
 The third cluster characteristic, cluster frequency, is illustrated in Figures 177-179. Similar 
to both cluster appearance probability (Figures 171-173) and duration (Figures 174-176), axial 
position still plays the most distinctive role in affecting the radial profiles of cluster frequency. In 
particular, near the riser bottom (h/H = 0.16), profiles are similar regardless of material (type of 
binary mixture) or operating condition, which is consistent with results of the monodisperse 
materials presented in Section 4.5.4 (Chew, Hays et al. 2011). On the other hand, dissimilar to 
appearance probability but similar to duration, variations due to material (monodisperse or 
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binary) and operating conditions are apparent, though less so than axial position. Specifically, 
differences between materials and operating conditions are more apparent for h/H ≥ 0.47, which 
again is consistent with the monodisperse results in Section 4.5.4(Chew, Hays et al. 2011). 
 

 
* 

Figure 177.  Local profiles of cluster frequency for density-difference binary mixture and 
constituent monodisperse materials. 

 
 

 
Figure 178.  Local profiles of cluster frequency for size-difference binary mixture and 
constituent monodisperse materials. 
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Figure 179.  Local profiles of cluster frequency for density-difference and size-difference binary 
mixtures. 
 
 Since frequency profiles are similar for various materials and operating conditions for h/H 
≤ 0.27, observations on differences between the binary mixtures will focus on h/H > 0.27. 
Superimposing the cluster frequency profiles of the density-difference binary mixture with the 
corresponding constituent components in Figure 177 indicates that, where material variations are 
more apparent (Figure 177b and d), the density-difference binary mixture mimics large glass at 
the center (r/R = 0) and large HDPE at the wall (r/R = 1). With regards to the size-difference 
binary mixture, Figure 178 reveals that magnitudes of the cluster frequency for the size-
difference binary mixture are generally more similar to that of small glass, which contrasts with 
the cluster duration trends (Figure 175), wherein the size-difference binary mixture mimics large 
glass more. Finally, Figure 179 shows that the cluster frequency of the size-difference binary 
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mixture is less than that of the density-difference mixture throughout the riser. Collectively, then, 
since the profiles of cluster appearance probability are similar for both binary mixtures (Figure 
173), it seems that the lower cluster duration exhibited by the density-difference binary mixture 
(Figure 176) is balanced by higher cluster frequency (Figure 179). 

Continuous PSD:  It is worthwhile to note that the set of four operating conditions 
implemented for the continuous PSD is different from that for the binary mixtures and 
monodisperse materials Table 12). Hence, a direct comparison between the continuous PSD and 
binary mixtures or monodisperse materials (Chew, Hays et al. 2011) is not straightforward. 
Nonetheless, the impact of local riser position and a wider range of operating conditions (wider 
range of m; see Table 12) on a continuous PSD is illustrated. 
 Appearance probability profiles for the continuous PSD are presented in Figure 180. In 
contrast to Figures 171-173 (wherein axial position is the dominant influence on radial profiles, 
and effect of operating condition is insignificant), operating conditions play more of a role in the 
appearance probability profiles especially at the riser bottom (h/H = 0.16). This difference may 
be due to (i) an inherent difference in the nature of the distribution (continuous PSD vs. binary 
mixtures) and/or (ii) the wider range of operating conditions (m) implemented. In particular, it is 
observed that lower m gives flatter profiles and higher m gives U-shaped profiles lower in the 
riser (h/H = 0.16). Pertaining to (i), behavioral differences between continuous PSDs and binary 
mixtures have been noted before in the species segregation patterns of both bubbling 
beds(Hoffmann and Romp 1991; Gauthier, Zerguerras et al. 1999; Lin, Wey et al. 2002; Chew, 
Wolz et al. 2010; Chew and Hrenya 2011) and CFBs(Hirschberg and Werther 1998; Chew, Hays 
et al. 2011), and hence it is plausible that the more apparent effect of operating conditions could 
be due to the different type of polydispersity (i.e., continuous PSD instead of binary mixture). 
With regards to (ii), Figure 180a and c are at lower m than the range investigated for binary and 
monodisperse, while Figure 180b and d are at higher m (Table 12). Correspondingly, it is 
possible that when operating conditions are m = 5.9 - 16.0 (binary mixtures and monodisperse 
materials), appearance probability profiles are only a function of riser position; however, when 
operating ranges are widened (m = 2.8 - 25.0), differences in appearance probability profiles 
become apparent at riser bottom.  
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Figure 180.  Local profiles of cluster appearance probability for continuous PSD of small glass. 
 

Figure 181 displays the cluster duration profiles for the continuous PSD. As is true for 
cluster appearance probability, the operating conditions are seen to play more of a role on cluster 
duration than is observed for monodisperse materials and binary mixtures (Figures 174-178). 
Analogously, the difference may stem from either a behavioral difference between continuous 
PSD and binary mixture, or the wider range of operating conditions implemented for the 
continuous PSD. In contrast to the trends for cluster appearance probability (Figure 180), 
however, differences between operating conditions is more evident near the top of the riser. In 
particular, higher m conditions (Figure 181b and d) lead to increasingly accentuated U-shape 
profiles with height, whereas lower m (Figure 181a and c) results in an inverted U-shape. Finally, 
similar to trends for the monodisperse and binary mixtures, the radial profiles exhibit a U-shape 
near the bottom of the riser, implying that riser axial position continues to play a key role at the 
riser bottom, regardless of the distribution type or wider range of operating conditions. 
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Figure 181. Local profiles of cluster duration for continuous PSD of small glass. 
 

Lastly, cluster frequency profiles for the continuous PSD are contained in Figure 182. 
Again, operating conditions are seen to play more of a role on cluster frequency than is observed 
for monodisperse and binary mixtures. Similar to cluster duration (Figure 181), at higher axial 
positions (h/H ≥ 0.47), different profile shapes manifest for different m conditions. At higher m, 
(Figure 182b and d), the inverted U-shapes of the frequency profiles become increasingly 
accentuated with riser height (for h/H ≥ 0.47), which implies increased radial variation with 
height. On the other hand, at lower m (Figure 182a and c), profile shapes transform from W-
shape to U-shape with height for h/H ≥ 0.47. In other words, an interesting distinction between 
high and low m conditions is that higher m conditions cause the riser-center (r/R = 0) frequency 
to increase and wall frequency to decrease with height, whereas the opposite effect is brought 
about at low m (i.e., center frequency decreases with height, while wall frequency increases with 
height). The physical reasoning as to why axial trends at the riser center and riser core differs and 
why different m are associated with opposite axial trends is unclear, but future modeling efforts 
are expected to provide more understanding of these features.   
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Figure 182.  Local profiles of cluster frequency for continuous PSD of small glass. 
 

Summary:  A detailed experimental investigation on cluster characteristics of polydisperse 
Geldart Group B particles in a pilot-scale CFB riser has been carried out. A fiber optic probe was 
used for local measurements and the threshold used for cluster identification was determined via 
wavelet decomposition. The resulting cluster measurements include appearance probability, 
duration, and frequency.  Three mixtures were investigated: (i) a density-difference binary 
mixture, (ii) a size-difference binary mixture, and (iii) a continuous size distribution of particles 
with equal material density.  

Generally speaking, the qualitative trends of the cluster characteristics for the binary 
mixtures investigated here are similar to those of the monodisperse materials reported in Section 
4.5.4(Chew, Hays et al. 2011), though small differences between the two types of binary 
mixtures are noteworthy. Regarding the former, the local riser position generally has the 
dominant effect on all three cluster characteristics (appearance probability, duration, and 
frequency). Furthermore, cluster appearance probability is most influenced by riser axial 
position, and least affected by operating condition and material type. Regarding differences 
observed between the two types of binary mixtures, for the density-difference binary mixture, 
cluster duration is distinctly lower than either component and neither of the three cluster 
characteristics mimic either component.  On the other hand, for the size-difference binary 
mixture, cluster duration mimics the large component, while cluster frequency mimics the small 
component. Comparing the two binary mixtures, the density-difference binary mixture has lower 
cluster duration and higher cluster frequency than the size-difference binary mixture.  
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For the continuous PSD, similar to trends for the binary mixtures and monodisperse 
materials(Chew, Hays et al. 2011), the local riser position still plays a key role on cluster trends, 
although the impact of operating condition is more apparent for all three cluster characteristics 
(appearance probability, duration, and frequency). The deviation can be attributed to either 
inherent differences between continuous PSDs and binary mixtures, and/or a wider range of 
operating conditions  (m = 2.8 to 25.0) examined as compared to the monodisperse and binary 
systems (m = 5.9 to 16.0). 

The experiments reported here, which represents the first experimental dataset on 
clustering in polydisperse systems, provide further insight into the high-velocity fluidization 
behavior of both binary mixtures and continuous PSDs. It is worthwhile to note that the 
polydispersity effects examined here refer to the impact of having a range of particle size and/or 
material density, but clustering instabilities are also linked to the dissipative nature of inelastic 
collisions(Goldhirsch 2003), which implies other particle properties (such as restitution 
coefficient, friction coefficient, particle shape) may play a role as well.  

The cluster measurements presented here is part of wider dataset for the same CFB unit and 
operating conditions; other local data available include cluster characteristics of monodisperse 
materials (Section 4.5.4(Chew, Hays et al. 2011)), mass flux (Section 4.5.3(Chew, Hays et al. 
2011)), solids concentration (and the surprising observation of reverse core-annular flow in 
Section 4.5.1)(Chew, Hays et al. 2011), and species segregation (Section 4.5.2)(Chew, Hays et 
al. 2011). Collectively, this dataset on various flow phenomena in a moderately dense CFB riser 
(Task 4.5) is expected to be valuable towards validating kinetic-theory based models, especially 
for quantitative predictions of clustering instabilities and various forms of polydispersity (for 
example, refer to(Garzo, Dufty et al. 2007; Garzo, Hrenya et al. 2007) for binary mixtures and 
(Murray, Hrenya et al. 2010) for continuous distributions). 
 
Task 4.6:  Model Validation (all investigators) 
 
Subtask 4.6.1:  Comparison with Experimental and DEM Simulation Data (all investigators).   

At this point, the fully specified model developed herein will be solved in order to 
compare to the data sets described above.  In particular, model predictions for species 
concentration will first be compared against the DEM-based data for granular (Task 4.1) 
without particle evolution due to agglomeration, etc.  In this manner, the role of the solid-solid 
interactions will be evaluated without a drag force present.  The predicted evolution of particle 
properties will then be tested against the corresponding granular DEM data to determine the 
ability of the DQMOM approach to predict segregation without the presence of drag force.  
Comparisons of model predictions to the experimental data will then be performed for the case 
of low-velocity beds (Task 4.3).  For each of the aforementioned comparisons with datasets 
characterized by a continuous size distribution, the models will be implemented with several 
different values of N in order to determine the required number of discrete sizes needed to 
properly represent the continuous distribution. 

 
(Fox reporting.)  The implementation of the quadrature-based moment method (Fox 

2008) in MFIX was tested by performing simulations of gas-particle flows in a two-dimensional 
vertical channel (0.1 x 1 m) with monodisperse particles and comparing the results with two-
fluid model simulations of the same case. The mass flow rate of the fluid-phase       (ρg = 1.2 
kg/m3) was fixed so that the fluid-phase Reynolds number is 1380, well below the transition to 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 237 

turbulence in a single-phase flow. This choice was made to remove the direct effect of the fluid 
turbulence on the formation of segregated structures from the system. The desired fluid-phase 
Reynolds number was obtained by setting the viscosity of the fluid phase to μg = 1.74 x 10-4 Pa s.  
 For the particle phase, a range of volume fractions between 0.0001 and 0.01 was 
considered, with a particle density of 1500 kg/m3. The particle diameter was set to 252 μm, and 
the restitution coefficients for both particle-particle and particle-wall collisions were set to ep = 
ew = 1, which corresponds to perfectly elastic collisions. 
 Wall boundary conditions were set to be specularly reflective. This condition is 
equivalent, in the two-fluid model, to a free-slip condition for the particle phase. No-slip 
conditions were used at the walls for the fluid phase. Periodic conditions with constant mass flow 
rates were adopted in the flow direction for both phases. A uniform field for all the properties 
was used as the initial conditions.  
 Results of a channel-flow simulation with particle-phase volume fraction of 0.01 obtained 
with MFIX-QMOM are reported in Figure 183, where snapshots of the time evolution of the 
particle-phase volume fraction are shown. The predictions of the two-fluid model for the same 
case are show in Figure 184.  At the beginning of the simulation, the particles, initially 
distributed uniformly in the channel, are accelerated towards the walls due to the mean fluid 
velocity gradient, where they are reflected and move towards the centre of the channel. This 
process leads to the formation of preferential particle-depleted vertical paths for the fluid phase, 
where it can accelerate. This separation however is unstable, due to the velocity gradient between 
the zone at low particle concentration and the one at higher particle concentration, as observed in 
Passalacqua et al. (2009). This leads to chaotic flow behavior, where particles tend to segregate 
towards the walls, originating the characteristic core-annular flow, with particles falling along 
the channel walls, with an oscillating upward flow in the centre. 
 A similar behavior is observed in the initial stages of the two-fluid model prediction, 
where particles are reflected by the walls and give origin to the preferential paths for the fluid 
phase (Figure 184, t = 1.45 s). However, the evolution of the system from this point on proceeds 
with the formation of two unstable structures on the sides of the flow, which leads to particle 
segregation. The main difference between the MFIX-QMOM and two-fluid model predictions is, 
however, the abundance of fine structures at high particle concentration in the two-fluid 
prediction (i.e., delta-shocks), which are not predicted by the QMOM model. The formation of 
these structures in two-fluid models can be explained by the fact that when particle trajectory 
crossing occurs, models tracking only the mean momentum are unable to predict correctly all the 
velocity moments (Desjardin et al., 2008). In such a situation, hydrodynamic models predict a 
delta-shock, since they cannot represent a situation where multiple distinct local particle 
velocities are present. Further grid refinement will exacerbate the segregation in the two-fluid 
model. Although not as easily distinguished in the snapshots in Figures 183 and 184 as in flow-
field animations, there are also clear differences between the MFIX-QMOM and the two-fluid 
predictions in the regions near the walls. In the MFIX-QMOM simulations, the falling particles 
form larger ‘blobs’ that cover several grids cells away from the wall, while in the two-fluid 
predictions the falling particles remain much closer to the wall.  We believe that these 
differences can be attributed to the differences in the boundary conditions for the granular 
temperature. 
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Figure 183. Particle-phase volume-fraction evolution predicted by MFIX-QMOM with an 
average particle-phase volume fraction of 0.01. 

 
Figure 184. Particle-phase volume-fraction evolution predicted by the two-fluid model with an 
average particle-phase volume fraction of 0.01. 
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Figure 185. Particle-phase volume-fraction evolution predicted by MFIX-QMOM with an 
average particle-phase volume fraction of 0.005. 

 
Figure 186. Particle-phase volume-fraction evolution predicted by the two-fluid model with an 
average particle-phase volume fraction of 0.005. 
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Figure 187. Particle-phase volume-fraction evolution predicted by MFIX-QMOM with an 
average particle-phase volume fraction of 0.001. 
 

 
Figure 188. Particle-phase volume-fraction evolution predicted by the two-fluid model with an 
average particle-phase volume fraction of 0.001. 
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 Similar results were observed in the case of an average particle-phase volume fraction of 
0.005, reported in Figure 185 (MFIX-QMOM) and Figure 186 (two-fluid model). The agreement 
between the two predictions is consistent during the initial stages of the simulations. However, 
the two-fluid model still shows a tendency to predict fine structures at high particle 
concentration, as observed in the previous case. The effect of the particle concentration on the 
development of the instability that leads to particle segregation was further investigated by 
considering two cases with lower mass loading. Figure 187 shows the evolution of the flow 
predicted by MFIX-QMOM in the case of an initial mean volume fraction of 0.001, while Figure 
188 reports the prediction of the two-fluid model in the same case. The mechanism that leads to 
the formation of an unstable flow is similar to that observed in the densest cases. However the 
transition to an unstable flow, and the consequent particle segregation phenomena, are slower 
and less evident, since the particle concentration is lower. The two-fluid model predicts a similar 
behavior to the one observed in Figure 184, with the formation of small structures not observed 
in the MFIX-QMOM prediction. 

 
Figure 189. Particle-phase volume fraction and granular temperature at 5 s predicted by MFIX-
QMOM with an average particle-phase volume fraction of 0.0001. 
  

An even more dilute case, with an average particle volume fraction of 0.0001 (mass loading 
0.13), was also considered. The results of the MFIX-QMOM predictions are reported in Figure 
189 For this case, after 5 s of simulation time, particles are still distributed almost uniformly 
across the channel, with the exception of near the walls, since in the wall zone the particle 
temperature is highest.  We did not obtain a convergent solution using the two-fluid model with 
the required convergence criteria used in the other cases; as a consequence results from two-fluid 
models are not reported. Although we cannot confirm it directly due to the finite duration of our 
simulation, it appears that the case shown in Figure 189 reaches a time-independent state where 
only gradients in the wall-normal direction are present. 
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 In the zone next to walls the net particle flux is zero, and, as a consequence the mean 
particle velocity is zero, but the velocity variance is high due to specular reflections. As observed 
in Passalacqua et al. (2009), this means that the local particle Mach number of the flow, defined 
using of the mean particle velocity and the granular temperature (Kogan, 1969), and the local 
Knudsen number, are large and well outside the range of validity of hydrodynamic models (Kn < 
0.1), even with the addition of partial-slip boundary conditions like those proposed by Johnson 
and Jackson (Johnson & Jackson, 1987). In the cases considered in this work, the Johnson and 
Jackson boundary conditions degenerate into free-slip conditions, since the walls are assumed to 
be frictionless. It is worth noting that the Johnson and Jackson boundary conditions imply a zero 
granular temperature flux at the wall, when perfectly specular conditions are imposed. This 
implies that the two-fluid models cannot convert the velocity of particles impinging on the wall 
into granular temperature, even though the velocity component normal to the wall is zero. As a 
consequence, the maximum in the granular temperature at the walls that is observed in Figure 
189 is not captured by the two-fluid model. 

 
Figure 190. Phase velocities predicted by MFIX-QMOM at 5 sec with an average particle-phase 
volume fraction of 0.0001. 
  
 The vertical velocity profiles for the case in Figure 189 are reported in Figure 190, and 
show that the flow has the typical profile of a stable channel flow. For this case, the particle mass 
loading is small enough to not have a destabilizing effect on the fluid phase. However, it is worth 
noting that the velocity profiles are not perfectly parabolic, due to the presence of the particles 
and the momentum coupling with the particle phase. Nonetheless, no instabilities develop and 
both phases attain a steady state. 
 The relative computational cost of MFIX-QMOM with respect to the two-fluid model in 
MFIX is in the range of 1.5–1.9. The longest simulation was the one with the highest particle-
phase volume fraction, which required 25.37 hours with the two-fluid model and 48.2 hours with 
MFIX-QMOM on a single core of an Intel Xeon CPU at 3.0GHz. It is worth noting that the 
hyperbolic nature of the QMOM model should make the MFIX-QMOM code highly scalable. In 
the dilute limit, the time step is limited only by the CFL number and the kinetic-based fluxes are 
stable for relatively large CFL number (e.g., CFL=1 for the first-order scheme). 
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 Work is in progress to extend the MFIX-QMOM code discussed in this work to denser 
flows (Fox and Vedula, 2009), in order to create an efficient and versatile tool, able to describe 
gas-particle flow over the full range of particle-phase volume fractions. Although not  reported 
here, the same approach for approximating the kinetic equation is used for  polydisperse gas-
particle flows by coupling a multi-component kinetic equation with the fluid solver. Such as 
approach naturally accounts for particle-particle collisions between like and unlike particles, as 
well as differences in the fluid drag depending on the particle type, and has been already 
implemented into MFIX, however further validation is required. 

The implementation of QMOM (Fox, 2008; Passalacqua et al., 2009) into MFIX has been 
further verified by performing a preliminary grid independence study in a 2-D channel flow of 
10 cm width, with periodic boundary conditions in the direction of the flow, whose length was 
set to 1 m. The objective of the study is to understand the influence of the spatial discretization 
on the numerical solution of the moment transport equations, and, in particular, on the formation 
of structures at higher particle concentration such as those reported in  Agrawal et al. (Agrawal, 
et al., 2001).  

The initial average volume fraction is 0.01, uniform in the whole computational domain.  
Both the fluid and the particle phase have zero velocity at the beginning of the simulation. 
Gravity acts along the vertical axis, in the opposite direction of the flow. A constant fluid mass 
flow rate is imposed, in order to have Reg < 1500, to avoid the transition to turbulence of the 
fluid phase in a single phase flow.  Three cases are considered, with grids of 40x400, 80x800 and 
100x1000 cells. Results were compared to the corresponding two-fluid simulation, performed 
using the default model in MFIX. The contour plots of the particle phase volume fraction, taken 
after the flow developed in the channel are reported in Figures 191, 192 and 193 for the three 
grid densities under consideration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 191. QMOM (left) and two-fluid (right) predictions – Grid 40 x 400 – t = 1.20 s. 
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Figure 192. QMOM (left) and two-fluid (right) predictions – Grid 80 x 800 – t = 1.20 s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 193. QMOM (left) and two-fluid (right) predictions – Grid 100 x 1000 – t=1.20 s. 
 
From the contour plots it is possible to observe that in both approaches under 

examination, after a transient phase, during which the flow develops, the particle phase 
segregates against the walls of the channel, originating the typical structure of core-annular flow,  
with particles falling down along the walls due to the insufficient drag force exerted by the fluid 
moving upward. However, significant differences can be observed in Figure 191, with a 40 x 400 
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grid, where the two-fluid model prediction shows the formation of many small structures with 
higher particle concentration, which are not observed in QMOM predictions. Increasing the grid 
density to 80 x 800, as done to obtain the results reported in Figure 192, did not significantly 
change the comparison: QMOM results show slightly sharper structures of the flow, but no 
structures of the size of the computational cell are observed, in clear opposition to what is shown 
in the plots obtained from the two-fluid simulations. A further increase of the grid density to 100 
x 1000 computational cells confirmed what is observed in the first two cases.  

As discussed in Passalacqua et al. (2009), the prediction of small structures observed in 
two-fluid models is due to the mathematical formulation of the equations, which are based on the 
hydrodynamic assumption. Such an hypothesis is not valid to describe flows with local Knudsen 
numbers greater than 0.1 even with the adoption of partial slip boundary conditions because the 
Knudsen layers extend inside the bulk of the fluid (Galvin, 2007). In flows like those considered 
in this study and typical of risers, the Knudsen number can reach values of the order of 10, 
clearly indicating that the regime is outside from the hydrodynamic range. Under these 
conditions, for finite Stokes numbers, particles trajectories can cross without collisions between 
particles, originating the phenomenon of particle trajectory crossing. This phenomenon can be 
described only by methods that account for multiple local velocities, as it happens in Lagrangian 
methods or in higher-order moment methods such as QMOM. If only the mean momentum 
equation is considered, particle trajectory crossing cannot be predicted (Desjardin et al., 2008), 
leading to the formation of delta shocks in the particle concentration, which are identified with 
clusters, whose size and number is sensitive to the grid resolution. These structures however do 
not represent an actual physical entity that characterizes the particle phase, but, as clarified 
above, are only a consequence of the limitations of the hydrodynamic models. 

Another achievement is the implementation in MFIX of the collisional term of the 
moment spatial fluxes (Fox and Vedula, 2009), in order to account for their effect, which become 
important for particle phase volume fractions greater than approximately 5%. The moment 
spatial fluxes can be written as the sum of a kinetic and collisional contribution, the latter of 
which originates from the collision integral. The rate of change of the moment of order γ due to 
collisions, in the case of finite-size particles can be written as 

 
 

 
 
 
 
where dp is the particle diameter, v is the pre-collisional particle velocity, and v' is the post-
collisional particle velocity, f(2) is the pair distribution function, g is the relative velocity vector 
and n is the unit vector along the direction of the particle centres. This term can be re-written as   

 
 

 
 

where the first term on the right-hand side corresponds to the rate of change of the moment for 
point particles, modified to introduce the radial distribution function g0, 
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and the second term is the collisional flux, with 
 
 
 
 
It is worth noting that the collisional flux becomes zero in the Boltzmann limit (point particles), 
and it is different from zero only for finite (non-zero) size particles. Moreover, when the particle 
volume fraction approaches its maximum value, the collisional flux becomes very big due to the 
presence of the radial distribution function g0, preventing further accumulation of particles and 
limiting the phase volume fraction itself. The role of collisional fluxes is shown considering two 
density waves moving in opposite direction, as shown in Figure 194. 
 If collisional fluxes are neglected, no limitation is imposed on the particle phase volume 
fraction, and the density reaches a maximum value of about 0.2, when the waves collide, as 
shown in Figure 195. On the other hand, when the collisional flux contribution is included, the 
evolution of the density profile is significantly influenced, and the maximum value of the particle 
concentration is limited to about 0.12, as shown in Figure 196.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 194. Density waves moving one towards the other before colliding 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 195.  Density peak without collisional fluxes 
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Figure 196. Density peak with collisional fluxes 
 

The iterative solution procedure previously used for QMOM has been modified to 
implicitly include the effect of the particle pressure in the equation of the first order moment M0, 
representing the particle-phase volume fraction. This modification to the solution algorithm, 
tested in 1-dimensional case, has proven to be very efficient in terms of computational times, and 
very robust in stably enforcing the particle packing limit. In particular, compared to the current 
implementation of QMOM into MFIX, where the time step is limited based on a Courant number 
defined as a function of the particle-phase speed of sound, the approach presented here led to an 
increase of the time-step size of up to two orders of magnitude (from  1.0 × 10-6 to 1.0 × 10-4 s), 
depending on the case under examination. The procedure is briefly summarized below. 

 
The first step in the development of the improved procedure is to consider the transport 

equations for the zero- (M0 = αa) and first-order moments (M1 = αaUa): 
 
 
 
 

and 
 
 
 
 

being 〈Aa〉, 〈Pa〉, and 〈Qa 〉 respectively the average acceleration term, the collision term and the 
collisional contribution to the flux. We notice that  
 
 
 
where the last term represents the particle pressure pa . We then recast the equation for the mean 
momentum in the form 
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where F is the sum of the kinetic flux and the off-diagonal part of the collisional flux. We notice 
than, that 
 

 
 

where G(αa) is the partial derivative of the particle pressure with respect to the phase volume 
fraction, given, in general, for QMOM by 
 

 
 
 
 

and, in case the restitution coefficient eij does not depend on the collision velocity, and only one 
specie is present, by 

 
 
 

 

which is the same expression used in hydrodynamic models with kinetic theory closures, where 
Θa is the granular temperature and g0 the radial distribution function. 

 
 At this point, it is possible to reformulate the equation for the zero-order moment by first  
predicting the flux from the equation of the first-order moment, using information from the 
previous time-step, and replacing the expression for the flux in the equation for M0, so that the 
force balance is directly included into it. The first step is to write the semi-discretized equation 
for the first-order moment, whose explicit form will clearly depend on the approach used to 
discretize the momentum coupling term. For simplicity, we include all the effects in a symbolic 
term, with the exception of the particle pressure 

 
 
 
 
 
 
 

where Fa contains all the force terms strongly dependent on the phase volume fraction, and the 
pressure gradient, while Ha includes the remaining terms. Interpolating this velocity on cell faces 
gives origin to the face velocity 

 
 
 
 

Observing that the equation for the zero-order moment can be written as 
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which, substituting the expression for the face velocity, becomes 
 

 
 
 

where φa
* = (αaUa)f. It is worth noticing that, since we are interested in preserving the positive 

features of the kinetic flux discretization, the divergence term on the left-hand side is treated 
fully explicitly, as already done in QMOM, including the effect of the non-diagonal terms of the 
collisional stress tensor, but without adding to φa

* the isotropic component of that tensor, since 
they are accounted for in the term on the right-hand side, which is discretized explicitly. 
 
 The solution procedure is the modified as follow 
 

The particle-pressure derivative is updated, based on information from the previous 
iteration. 

The modified equation for the zero-order moment is solved. Notice that the solution at this 
stage avoids inconsistencies in the value of the phase fraction in the rest of the solution 
procedure. 

Based on the updated value of the phase volume fraction, the remaining set of equations is 
solved to obtain the moments of order equal or greater than one. 

 
A convenient modification to the above procedure is to introduce under-relaxation for the 
equation of the zero-order moment, and perform sub-iterations on the equations for the zero- and 
first-order moment, until convergence, and then obtain the higher-order moments with a single 
solution step, using the updated, and stabilized, values of the phase volume fraction. 
  
 Before proceeding with the verification of the approach, it is worth noticing the 
differences and the similarities with what is currently done in MFIX. MFIX solves a volume 
fraction correction equation for the phase volume fraction when only one dispersed phase is 
present, while it explicitly introduces the particle-pressure term in the momentum equation when 
more than one dispersed phase is considered, stabilizing the numerical solution with adaptive 
time-stepping based on the evolution of solution residuals. In theory it would be possible to 
adopt a similar strategy for QMOM, however the following difficulties are present: 
 

The solution of a volume fraction correction equation would be not consistent with the 
approach used in the dilute regions, and it would require to define a criterion on the 
volume fraction, to decide when the moment equation is solved, and when the volume 
fraction correction is adopted. This potentially introduces inconsistencies in the solution 
process, while the proposed approach can be reliably used over the whole range of 
volume fractions, without changing the set of equations solved by the numerical 
algorithm. 

The approach can be extended to the case of multiple species, including the effect of the 
particle pressure implicitly in the equation for the zero-order moment, removing the 
possible source of instabilities due to the explicit treatment of the particle pressure in the 
momentum equation. 
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The proposed method preserves the possibility of discretizing the moment spatial fluxes 
with their kinetic formulation, which is essential to ensure a stable solution when 
discontinuous fields are present. 

Finally, the proposed approach is immediately applicable to the more versatile co-located 
grid arrangement, which is the natural choice when using QMOM, since no variable 
staggering is required. 

 
 The approach has been tested considering a one-dimensional problem of particles falling 
on the effect of gravity. Particles are initially located at a certain distance from the bottom of the 
computational domain, represented by a no-slip wall. Gravity and fluid drag act on the particles, 
which settle on the bottom of the container. The initial stage of the simulation is shown in Figure 
197, and the axial volume fraction profile after 1s of simulation is reported in Figure 198. It is 
possible to see that the phase is completely settled, and the concentration profile is well defined, 
properly showing the steep gradient at the interface without oscillations. 
 

 
 
 
 
 
 
 
 
 
 

Figure 197. Initial volume fraction 
profile (t = 0). Axial position on the 
horizontal axis. 
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Subtask 4.6.2:  Liaison to NETL experimental effort (Cocco).   

It is our understanding the NETL CFB cold flow test data for the core-annular (at least 
two solids), fast fluidization, and turbulent regimes already exists, including measurements of 
axial pressure profile, solids velocities, gas velocities, solids fractions, granular temperature, 
particulate turbulent kinetic energy and solids cluster size.  Thus, our team will not be 
responsible for data collection on this facility, but will use this data for purposes of code 
validation.  To facilitate this effort, Dr. Cocco will work with NETL personnel to survey the 
existing data for each of the aforementioned regimes, and make suggestions, if any, on 
additional tests that would be helpful for purposes of model validation. 
 

(Cocco reporting.)  PSRI and NETL discussed the various options to providing 
additional data sets to the modeling community as open source. The additional data will provide 
model developers with the data needed to validate their modeling efforts and concepts.  Instead 
of a data dump, PSRI and NETL objective was to provide a set of data that represented current 
industrial concerns while gone through some sort of vetting process within the technical 
community.  Based on the success of the previous two PSRI modeling challenge, it was decided 
that a third challenge problem would best meet this objective. 

The goals of this third modeling challenge were to provide a vetted set of data on 
fluidized beds and circulating fluidized beds to the research community, provide a set of 
challenge problems to test the current capabilities of today’s models and to us the results of these 

 
Figure 198. Final volume fraction profile (t=1s). 
Axial position on the horizontal axis. 
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test to depict areas where additional studies are needed.  The goal did NOT include judging who 
has the best model.   

PSRI provided the data and managed the testing procedure for hydrodynamics collected 
in a 3 ft diameter by 20 feet tall fluidized bed with Geldart Group A powder.  NETL provided the 
data and managed the testing procedures for their 12 inch diameter by 50 foot tall circulating 
fluidized bed with Geldart Group B particles. Several operating conditions were tested.  
Measurements included axial pressure drop profiles, differential pressure fluctuations and bubble 
void fraction profiles in a fluidized bed and axial pressure drop profiles, radial particle velocity 
and local solids flux profiles in a circulating fluidized bed.  Modelers were provided computer 
assisted drawings of the test facilities, particle property data, as well as data from minimum 
fluidization measurements to assist in setting up their simulations. In addition, modelers were 
given a second chance to refine their results once the data was released. 

Model predictions were compared against actual experimental results and vetted in a 
recent workshop at the Circulating Fluid Bed X.  The modelers were given detailed descriptions 
of the NETL and PSRI experimental facilities as well as information on the different bed 
materials tested.  Two general types of models were submitted: Eulerian-Eulerian and Eulerian-
Lagrangian. Both types of model had successes and failures indicating that good results are 
strongly influenced by resources such as available time, computational facilities, and experience 
level of the modeler.  By comparing the predicted behavior the strengths and weaknesses 
associated with the different modeling approaches were identified and shortcomings could be 
targeted for future development and improvements.  Details of these two problems are presented 
below. 

Bubbling Fluidized Bed Modeling Challenge – Experimental:  The bubbling fluidized 
bed tests were conducted in a 0.895 m inner diameter, 6.1 m tall test unit shown in Figure 199.  
Two air spargers were designed to provide a sufficient grid pressure drop to ensure good air 
distribution, while avoiding excessive pressure build-up in the plenum.  For test conducted at a 
gas velocity of 0.3 m/s, a 76-cm-diameter PVC pipe manifold shown in Figure 200 was used. 
The pipe manifold had fifty, 6-mm-diameter nozzles facing downward 30° from the vertical.  For 
tests conducted at a gas velocity of 0.6 m/s, a 10.2-cm-diameter PVC ring sparger shown in 
Figure 201 was used. The ring sparger had 39, 13-mm-diameter nozzles facing downward 30° 
from the vertical.  The ring sparger was installed 0.38 m above the pipe manifold.  Both air 
distributors were constructed of Schedule 80 grey PVC pipes and fittings. The primary cyclone 
of the unit had a 20-cm-diameter dipleg that returned solids onto the bed surface via an aerated 
trickle valve.  The secondary cyclone had a 15.2-cm-diameter dipleg that returned solids to the 
bed via an automatic L-valve at a height of 3.35 m.  A blower supplied fluidizing air and a 
butterfly valve installed downstream of a 76-mm-diameter orifice plate was used to control the 
air flow rate.  Experiments were conducted for four sets of operating conditions listed in Table 
13 using FCC catalyst particles of 3 and 12% fines less than 44 micron whose particle size 
distributions are shown in Figure 202.  The particle density was 1490 kg/m3 and the particle 
sphericity was assumed to be 0.98. Modelers were provided computer assisted drawings of the 
test facility, particle property data, as well as data from minimum fluidization measurements to 
assist in setting up their simulations. 

The measurements made at the four Test Cases are listed in Table 13 and these were (i) 
axial profiles of pressure drop per unit length (DP/gL), (ii) standard deviation of DP fluctuations 
across the entire bed at four circumferential locations, (iii) standard deviation of DP fluctuations 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 253 

across bed sections of 0.6 m height at four circumferential locations, 90 apart, and, (iv) radial 
bubble void fraction profiles at height z = 1.52 m for the Test Cases 1 and 4. 

 
Table 13.  Operating conditions for fluidized bubbling bed tests. 

 
Test 
Name 

F44, % < 44 
µm 

Static Bed 
Height, m 

Ug, m/s 
 

Measurements 

Case 1 3 3.66 0.3 A, B, C  
Case 2 3 1.22 0.3 A, B 
Case 3 3 2.44 0.6 A, B 
Case 4 12 2.44 0.6 A, B, C 
A: Axial ∆P/gL profiles, B: ∆P fluctuations across entire bed and across 61 cm tall 
sections of bed, C: Radial bubble void fraction profile 

 
 

413

Column
ID = 895 mm610

Ring Sparger
(Fig. 3)

Pipe Manifold
(Fig. 4)

To Baghouse 
Header, D = 20 cm

Primary Cyclone:
D = 50.8 cm
Dipleg 
Dia = 20.3 cm

Secondary Cyclone:
D = 45.7 cm
Dipleg 
Dia = 7.6 cm

D = 30

Dimensions
in cm

20.3 cm dia.
Trickle Valve

335

 
 
Figure 199.  Schematic drawing of the 0.9-m-diameter fluid bed unit used for the bubbling 
fluidized bed Test Cases 1 to 4. 
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Manifold Nozzles:
0.5 - in (1.3 - cm)-Dia. PVC Nipples, 2 in 
(5 cm) Long
Orifice Dia. = 15/64 in (0.6 cm)

30 30

Pipe Manifold Sparger:
Constructed From 3 in (7.6 cm)
PVC Pipe and Pipe Fittings
No. of Nozzles = 50

 

Air Inlet Air Inlet

 
Figure 200.  Drawing of the air distributor used for bubbling fluidized bed tests cases 1 and 2. 
 
 
 

Ring Sparger:
Constructed From 4 in (10.2 cm)
PVC Pipe and Pipe Fittings
No. of Nozzles = 36

Sparger Nozzles:
1- in (2.5-cm)-Dia. PVC Nipples, 3.25 in 
(8.3 cm) Long
Orifice Dia. = 0.5 in (1.3 cm),
Pitch = 2.125 in (5.4 cm), Staggered
and Facing Downwards 30 Degrees
From Vertical

30 30

23.625 in
(60 cm)

Air
Inlet

Air
Inlet

23.625 in
(60 cm)

2 in
(5 cm)

 
Figure 201.  Drawing of the air distributor used for bubbling fluidized bed tests cases 3 and 4. 
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Figure 202.  Particle size distribution of solids particles used in the bubbling fluidized bed tests. 
 
Pressure drop fluctuations were measured across the entire column at four radial orientations 
(Nos. 1, 2, 3 and 4 in Figure 203) and, across 24 in (61 cm) long sections 90-degrees apart at the 
same four radial orientations at a mid-point elevation of 1.52 m.  For Test Case 2 whose static 
bed height was 1.22 m, the mid-point elevation was lowered to 0.6 m.  Differential pressure 
fluctuations were measured using 6.3 mm OD x 0.89 mm wall thickness purged steel tubes 
connected to high frequency pressure transducers by 6.3-mm-diameter plastic tubing.  Pressure 
drops across vertical sections along the column height were using differential pressure 
transmitters connected with plastic tubing to pressure ports that were equipped with 6-mm-
diameter high-porosity snubbers.  Radial bubble void fraction profiles were measured with 
backscattered-type optical fiber bubble probes inserted in the unit (180 degrees apart as shown in 
Figure 203) at a height z = 1.52 m.  Bubble probe and differential pressure signals were 
simultaneously sampled at 1000 Hz for 3 minutes by a data acquisition system. The presence of 
gas bypassing was inferred from the differential pressure fluctuations and bubble voidage data 

The minimum fluidization tests were conducted in a 15.2-cm-inner diameter column, 
1.83 m tall clear acrylic column shown in Figure 204. The tests produced plots of the pressure 
drop DP2, measured across a 15.2 cm section of the bed shown in Figure 205, as a function 
superficial gas velocity. The plots in Figure 205 are referred to as the minimum fluidization 
curves. The column had a porous plate distributor. The fluidizing gas was compressed air 
measured by a mass flowmeter. Batches of 3 and 12% fines FCC catalyst particles weighing 
6.832 kg and 7.0 kg, respectively were used in the tests. Each batch was first fluidized for 3 min 
at Ug = 0.047 ft/s (0.0144 m/s) then DP2 was recorded by a data acquisition system for the 
following 2 minutes. The flowrate was then was reduced in steps and at each the bed was left 3 
minutes to attain steady state before DP2 was recorded for 2 minutes. The procedure was 
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automated and measurements were taken until the air flow rate reached zero.  Computer assisted 
drawings of the test facility, particle property data, as well as data from minimum fluidization 
measurements were made available to assist in setting up the simulations. 
 

 

60

Bubble 
Probe 1

∆P #3

0.9-m-Dia.
Column

Bubble 
Probe 2

∆P #1

∆P #4
∆P #2

 
Figure 203.  Circumferential measurement locations of bubble void fraction profiles and 
differential pressure fluctuations (assume DP#1 to be opposite DP#3). 
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ID = 152.4 mm
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DP2
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Air 

 
Figure 204. Experimental set up of unit used to establish the minimum fluidization curve for 
materials used in bubbling fluidized bed Test Cases 1 to 4. 
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Figure 205.  Minimum fluidization curves for solids particles used in the bubbling fluidized bed 
tests. 
 

Results and Discussion: CFD modeling results for the fluidized bed challenge problem 
were received from three modeling groups named hereafter BFB1, BFB2 and BFB3.  The key 
features of the BFB1, BFB2 and BFB3 models are summarized in Tables 14 and 15 (large tables 
are in Appendix I).  BFB1 modeled only Test Case 3 but used four different modeling 
approaches; three Eulerian-Eulerian and one Eulerian-Lagrangian. The first Eulerian-Eulerian 
model assumed the solids phase consisted of 80 micron spherical particles; the second modeled 
the solids phase as two particulate phases of sizes 80 and 30 microns and, the third assumed a 
particulate phase with a size distribution and maintained a population balance. The BFB1 
Eulerian-Langragian model used a particle size distribution to represent each parcel in the 
Lagrangian model for the particulate phase. The particle diameters, for particles in each parcel, 
were calculated from a Rosin-Rammler fit of the given particle size distribution. BFB2 modeled 
all the four Test Cases using a Eulerian-Eulerian model that treated the solids phase as consisting 
of monosized spherical particles of diameter equal to the Sauter mean diameter of the particle 
size distribution. BFB3 modeled the four Test Cases using an MP-PIC Eulerian-Lagrangian 
model that utilized the full particle size distribution.  This paper discusses the initial modeling 
results as well as the refined results, which were submitted after the experimental data were 
made public.  The refinements used in the calculations of the resubmitted results are denoted by 
(R) in Tables 15 and 16 and in the figures presented here. 
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Table 16.  Comparison of root mean square deviations of CFD model predictions from 
experimental data. 
 

 RMSD of 
∆P/g∆L 

RMSD of 
∆P/g∆L 

RMSD of 
∆P/g∆L 

RMSD of 
∆P/g∆L 

CFD Model Case 1 
FCC, 3% 
Fines 
H = 3.66 m 
Ug = 0.3 m/s 

Case 2 
FCC, 3% Fines 
H = 1.22 m 
Ug = 0.3 m/s 

Case 3 
FCC, 3% Fines 
H = 2.44 m 
Ug = 0.6 m/s 

Case 4 
FCC, 12% 
Fines 
H = 2.44 m 
Ug = 0.6 m/s 

BFB2 0.5775 0.9300 0.6694 0.6317 
BFB2 (R) 0.3962 0.8351 0.5049 0.4306 
BFB3 0.5365 3.8771 0.5986 3.2371 
BFB3 (R) 0.3389 8.2030 0.4974 1.2454 
BFB1 (a) - - 3.5099 - 
BFB1 (b) - - 1.2585 - 
BFB1 (c) - - 2.4426 - 
BFB1 (d) - - 1.1704 - 
BFB1 (d) (R)   1.391594  

 
Table 17. Comparison CFD models predictions on the variability of the standard deviation of 
DP fluctuations across four 61 cm tall sections around the column. 
 

 Is σ∆Ps significantly different at four circumferential locations 
around the column (= is gas bypassing present)? 

 Case 1 
FCC, 3% 
Fines 
H = 3.66 m 
Ug = 0.3 m/s 

Case 2 
FCC, 3% Fines 
H = 1.22 m 
Ug = 0.3 m/s 

Case 3 
FCC, 3% 
Fines 
H = 2.44 m 
Ug = 0.6 m/s 

Case 4 
FCC, 12% 
Fines 
H = 2.44 m 
Ug = 0.6 m/s 

Experiment YES NO (small) YES NO 
BFB2 NO NO NO NO 
BFB2 (R) NO NO NO NO 
BFB3 NO NO YES NO 
BFB3 (R) NO NO (small) YES YES 
BFB1 (d) - - NO - 
BFB1 (d) (R) - - NO - 

 
Axial pressure Drop Profiles: Modeling results axial pressure drop profiles were 

compared to experimental data both graphically and by means of the root mean square deviation 
(RMSD), calculated by Equation (82). 
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where xCFD,i is the model prediction of the measured data xEXPT,i and N is the total number of 
data points. The RMSD values for the four Test Cases are shown in Table 16. 

Figure 206 compares the experimental axial pressure drop profile with CFD model 
predictions of BFB2 for Test Case 1. The fines content was 3% fines, the static bed height was 
3.66 m and the superficial gas velocity was 0.3 m/s.  The initial modeling results underpredicted 
the data significantly whereas the refined results gave a very improved fit to the data. In the 
refinement the number of computational cells and the averaging time interval were increased 
from 7000 to 27000 and 40 s to 90 s, respectively.  As shown in Table 15, the refinement caused 
the root mean square deviation to decrease from 0.5775 to 0.3962. 

Figure  207 superimposes the initial and refined results of model BFB3 on the 
experimental data for Test Case 1. The refinement was to change the solids close-pack volume 
fraction from 0.52 to 0.625. The same was done to the other three Test Cases. The refinement 
changed RMSD from 0.5365 to 0.3389 and a significant improvement in the fit.  Models BFB2 
and BFB3 refined results are plotted in Figure 208 together with the experimental data.  Both 
models seem to perform nearly equally but they both gave lower predictions of the height of the 
expanded bed height. 
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Figure 206.  Comparison of experimental axial pressure drop profile with CFD model 
predictions of BFB2 for Test Case 1 (3% fines FCC, H = 3.66 m and Ug = 0.3 m/s). 
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Figure 207.  Comparison of experimental axial pressure drop profile with CFD model 
predictions of BFB3 for Test Case 1 (3% fines FCC, H = 3.66 m and Ug = 0.3 m/s).  
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Figure 208.  Comparison of the refined CFD model predictions of BFB2 and BFB3 with 
experimental axial pressure drop profile for Test Case 1 (3% fines FCC, H = 3.66 m and Ug = 
0.3 m/s).  
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Figure 209.  Comparison of experimental axial pressure drop profile with CFD model 
predictions of BFB2 for Test Case 2 (3% fines FCC, H = 1.22 m and Ug = 0.3 m/s).  
 

Test Case 2 results of the BFB2 model are compared to experimental data in Figure 210. 
The static bed height and superficial gas velocity were 1.22 m and 0.3 m/s, respectively. 3% 
fines FCC catalyst particles were used. The RMSD for the initial and the refined modeling 
results were 0.9300 and 0.8351, respectively. The model captures the main features of the 
experimental curve. The refinement had only a slight effect. Test Case 2 results of model BFB3 
are shown in Figure 211. The RMSD values were 3.8771 and 8.2030. The initial modeling 
results were closer to experimental values in the freeboard but underpredicted the pressure drop 
in the bed. The refinement shifted the curve to higher values, which made predictions better in 
the bed but worse in the freeboard region. It appears from Figure 212 shows that the BFB3 
model does a better job in the bed whereas the BFB2 model performs better in the freeboard. 
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Figure 210.  Comparison of experimental axial pressure drop profile with CFD model 
predictions of BFB3 for Test Case 2 (3% fines FCC, H = 1.22 m and Ug = 0.3 m/s).  
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Figure 211.  Comparison of the refined CFD model predictions of BFB2 and BFB3 with 
experimental axial pressure drop profile for Test Case 2 (3% fines FCC, H = 1.22 m and Ug = 
0.3 m/s). 
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Figure 212.  Comparison of experimental axial pressure drop profile with CFD model 
predictions of BFB2 for Test Case 3 (3% fines FCC, H = 2.44 m and Ug = 0.6 m/s).  
 

Model BFB2 results for Test Case 3 are plotted with experimental data in Figure 213. 
The bed height was 2.44 m, 3% fines FCC catalyst particles were used and the gas velocity was 
0.6 m/s. The first modeling results were significantly lower than experimental data except for the 
lower 1 m height of bed. The recalculated values came from 42840 computational cells instead 
of 8400 and that improved the RMSD value from 0.6694 to 0.5049. The fit was significantly 
better, but the model still underpredicted the pressure drop in nearly the whole bed height. Figure 
214 gives Test Case 3 results of model BFB3. There is a much relatively good fit of the refined 
results with experimental data. The RMSD value dropped from 0.5986 to 0.4974. 

Modeling results of BFB1 for Test Case 3 are presented in Figure 215. The Eulerian-
Eulerian model that treated the solids phase particles as monosized or consisting of only two szes 
of particles performed very poorly. They didn’t even capture the shape of the pressure drop 
profile. The Eulerian-Lagrangian DEM model was an improvement because it captured the 
profile’s shape but the pressure drop predictions in the bed were significantly lower compared to 
experimental data. The Eulerian-Eulerian plus population balance model produced better results 
but still it still underpredicted the bed pressure drop even more than BFB3 and BFB2 models as 
seen in Figure 216. Increasing the averaging time interval from 9 s to 80 s did not improve the 
predictions but rather made them worse.  
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Figure 213.  Comparison of experimental axial pressure drop profile with CFD model 
predictions of BFB3 for Test Case 3 (3% fines FCC, H = 2.44 m and Ug = 0.6 m/s).  
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Figure 214.  Comparison of experimental axial pressure drop profile with CFD model 
predictions of BFB1 for Test Case 3 (3% fines FCC, H = 2.44 m and Ug = 0.6 m/s).  
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Figure 215.  Comparison of the CFD model predictions of BFB1, BFB2 and BFB3 with 
experimental axial pressure drop profile for Test Case 3 (3% fines FCC, H = 2.44 m and Ug = 
0.6 m/s).  
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Figure 216.  Comparison of experimental axial pressure drop profile with CFD model 
predictions of BFB3 for Test Case 4 (12% fines FCC, H = 2.44 m and Ug = 0.6 m/s).  
 

Figure 217 compares experimental data to simulation results of BFB2 for Test Case 4 
where the static bed height and the gas velocity were 2.44 m and 0.6 m/s, respectively and the 
FCC catalyst fines content was 12%. The first results captured the bed density fairly well in the 
lower part of the bed but dropped significantly in the upper half before recovering to the 
transition-to-freeboard level. The freeboard values were lower than experimental data. On the 
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other hand, the refined model performed poorly in the lower half of the bed but fitted the rest of 
the data quite well. The initial and recalculated model results had RMSD values of 0.6317 and 
0.4306, respectively. 

Experimental data and modeling results of model BFB3 for Test Case 4 are compared in 
Figure 218. The correction of the solid close-pack volume fraction gave a significantly better fit 
of data in the bed but the model overpredicted the pressure drops in the freeboard region. The 
RMSD value changed from 3.2371 to 1.2454. Results of models BFB2 and BFB3 are shown 
together in Figure 219. In general, former seems to give a better fit in the bed while the latter 
gives better predictions in the transition and the freeboard regions. 
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Figure 217.  Comparison of experimental axial pressure drop profile with CFD model 
predictions of BFB2 for Test Case 4 (12% fines FCC, H = 2.44 m and Ug = 0.6 m/s).  
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Figure 218.  Comparison of experimental axial pressure drop profile with CFD model 
predictions of BFB2 and BFB3 for Test Case 4 (12% fines FCC, H = 2.44 m and Ug = 0.6 m/s).  
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Figure 219.  Comparison of standard deviation DP fluctuations measured across the entire bed 
at four locations around the column with CFD model predictions of BFB3, and BFB2 for Test 
Case 1 (z = 1.52 m, 3% fines FCC, H = 3.66 m and Ug = 0.3 m/s).  
 

Differential Pressure Fluctuations and Bubble Void Fraction Profiles: Differential 
pressure fluctuations and bubble probe data provided means of assessing the presence or absence 
of gas bypassing at each of the four operating conditions. Figure 219 compares experimental 
versus model calculation results of the standard deviation of DP fluctuations across 61 cm tall 
sections of bed at four circumferential orientations spaced 90 apart for Test Case 1. The static 
bed height was 3.66 m, the gas velocity was 0.3 m/s and the fines content was 3% < 44 µm.  The 
midpoint elevation of the measurement section was 1.52 m. The experimental data show a 
significant variation in the standard deviation of the DP fluctuations varied significantly around 
the bed. The standard deviation was about 45, 20 and 12 and 12 cm of water at locations 4, 3, 2 
and 1, respectively. This variation suggests that gas bypassing was occurring in the bed. The 
magnitude and circumferential variation of DP fluctuations intensity was not captured in the 
modeling results of BFB2. The BFB3 model appears to be a better predictor of DP fluctuations. 
BFB3 results are in the same order of magnitude as the experimental data but the data varied 
only slightly, from about 8.8 to 10.7 cm of water, around the column. The standard deviation of 
DP fluctuations across the entire bed for tests case 1 did not vary significantly around the column 
as shown in Figure 220. BFB2 and BFB3 predictions also did not show any circumferential 
variations but magnitudes of the best predicted standard deviation values were nearly 50% lower 
than the measured values. Figure 221 compares the radial bubble void fraction profile measured 
at z = 1.52 m with CFD model predictions of BFB2 and BFB3 for Test Case 1. The experimental 
profile is significantly skewed to one side of the column indicating gas bypassing occurring on 
that side of the column. The two CFD models failed to capture this gas bypassing, they both 
predicted a constant bubble void fraction of 0.7 across the diameter of column. 
 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 268 

1 2 3 4
0

5

10

15

20
 Experimental  BFB2  BFB2 (R)
 BFB3  BFB3 (R)

Test Case 1:   3% Fines FCC
H: 3.66 m, Ug: 0.3 m/s

St
an

da
rd

 D
ev

ia
tio

n 
of

 ∆
P 

Fl
uc

tu
at

io
ns

Ac
ro

ss
 E

nt
ire

 B
ed

, c
m

 o
f w

at
er

Circumferential Location
 

Figure 220.  Comparison of standard deviation DP fluctuations measured across the entire bed 
at four locations around the column with CFD model predictions of BFB3, and BFB2 for Test 
Case 1 (z = 1.52 m, 3% fines FCC, H = 3.66 m and Ug = 0.3 m/s). 
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Figure 221.  Comparison of radial bubble void fraction profile measured at z = 1.52 m with 
CFD model predictions of BFB3, and BFB2 for Test Case 1 (3% fines FCC, H = 3.66 m and Ug 
= 0.3 m/s). 
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Figures 222 and 223 compare the standard deviation DP fluctuations measured across 61 
cm tall sections and across the entire bed, respectively, with CFD models BFB2 and BFB3 
predictions for Test Case 2 (z = 0.3 m, 3% fines FCC, H = 1.22 m and Ug = 0.3 m/s). This was a 
test for a relatively short bed height and the DP fluctuations intensity variations were low 
suggesting a presence of weak gas bypassing. Bubble void fraction profiles were not measured.  
Both modeling groups underpredicted the local and overall DP fluctuations standard deviations 
by about 50% or more, with BFB3 being better than BFB2. 

Test Case 3 experimental and simulation results of models BFB1, BFB2 and BFB3 are 
compared in Figures 224 and 225. The static bed height was 2.44 m, the fines content was 3% 
and the superficial gas velocity was 0.6 m/s. The standard deviation of DP fluctuations measured 
across 61 cm tall sections at four locations around the bed were different suggesting that gas 
bypassing was occurring in the column. Model BFB3 predicted some variation in the standard 
deviation at the four locations but models BFB1 and BFB2 did not predict any significant 
variation. Models BFB2 and BFB3 predictions at two locations were nearly the same as the 
experimental data. Predictions of model BFB1 were very low compared to experimental data.  
There was no significant variation in experimental or CFD modeling results for the standard 
deviation DP fluctuations across the entire bed at locations 1 to 4 for Test Case 3. 
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Figure 222.  Comparison of standard deviation DP fluctuations measured across 61 cm sections 
at four locations around the column with CFD model predictions of BFB3, and BFB2 for Test 
Case 2 (z = 0.3 m, 3% fines FCC, H = 1.22 m and Ug = 0.3 m/s). 
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Figure 223.  Comparison of standard deviation DP fluctuations measured across the entire bed 
at four locations around the column with CFD model predictions of BFB3, and BFB2 for Test 
Case 2 (z = 0.3 m, 3% fines FCC, H = 1.44 m and Ug = 0.3 m/s.)  
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Figure 224.  Comparison of standard deviation DP fluctuations measured across 61 cm sections 
at four locations around the column with CFD model predictions of BFB3; BFB1; and BFB2 for 
Test Case 3 (z = 1.52 m, 3% fines FCC, H = 2.44 m and Ug = 0.6 m/s).  
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Figure 225.  Comparison of standard deviation DP fluctuations measured across the entire bed 
at four locations around the column with CFD model predictions of BFB3; BFB1; and BFB2 for 
Test Case 3 (z = 1.52 m, 3% fines FCC, H = 2.44 m and Ug = 0.6 m/s).  
 

Figure 226 shows the standard deviation DP fluctuations measured across bed sections of 
61 cm height at four locations around the column and the corresponding CFD predictions of 
models BFB2 and BFB3 for Test Case 4. In test 4, z = 1.52 m, fines content = 12% and Ug = 0.6 
m/s. There was no circumferential variation in the measured data which indicated that there was 
no gas bypassing in the bed. This is also supported by the symmetrical form of the measured 
radial bubble void fraction profile, as shown in Figure 228. Model BFB2 standard deviation 
predictions were not different at the four locations and they were lower than the experimental 
data. BFB2 calculated bubble void fraction profile (Figure 227) was symmetrical about the 
column axis but the values were greater than the measurements. Model BFB3 predicted a 
constant bubble void fraction of 0.7 across the bed cross section.  The first submitted BFB3 
simulation results of DP fluctuations standard deviation were more or less the same as the 
experimental data but the refined BFB3 results were higher than experimental values and they 
varied with measurement location suggesting gas bypassing presence in the bed.  

The standard deviation of DP fluctuations across the entire bed for Test Case 4 is plotted 
in Figure 228. There is a very close agreement of experimental data with predictions of model 
BFB2 and the first simulation results of model BFB3. The refined calculations of model BFB3 
gave standard deviation values, which were significantly greater than the experimental data but 
there was no variation with location around the bed. Table 17 summarizes the comparison of 
CFD models predictions on the variability of the standard deviation of DP fluctuations across 
four 61 cm tall sections around the column for the Test Cases. Gas bypassing was present in the 
bed at low fines content, tall bed heights and low gas velocities (Test Case 1 and 3). Operating 
with higher fines material, high gas velocity or short bed heights lower the chances of gas 
bypassing. 
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Figure 226.  Comparison of standard deviation DP fluctuations measured across 61 cm sections 
at four locations around the column with CFD model predictions of BFB3, and BFB2 for Test 
Case 4 (z = 1.52 m, 12% fines FCC, H = 2.44 m and Ug = 0.6 m/s).  
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Figure 227.  Comparison of standard deviation DP fluctuations measured across the entire bed 
at four locations around the column with CFD model predictions of BFB3; BFB1; and BFB2 for 
Test Case 4 (z = 1.52 m, 12% fines FCC, H = 2.44 m and Ug = 0.6 m/s).  
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Figure 228.  Comparison of radial bubble void fraction profile measured at z = 1.52 m with 
CFD model predictions of BFB3, and BFB2 for Test Case 1 (3% fines FCC, H = 3.66 m and Ug 
= 0.3 m/s).  
 

Circulating Fluidized Bed Model Challenge –  Experimental:  The NETL riser is 
nominally 15 m tall, 0.3 m ID, and solids were recycled into the riser bottom via an L-valve and 
exited the riser through a dead-end Tee configuration, as shown in Figure 229.  Fluidization 
particles were nominally 60 μm glass beads and 800 μm polyethylene beads with specific gravity 
of 2.5 and 0.9, respectively.  The operator varied operating conditions by adjusting the riser flow 
or standpipe aeration to control the solids circulating rate. Steady state conditions were defined 
as holding a constant set of flow conditions and maintaining a constant response in the pressure 
differentials over a five-minute period. For generating the data for the Challenge Problem, the 
unit was operated at 20oC air as the conveying gas. Laristat was added along with increasing 
the relative humidity in sufficient quantities to minimize static electric discharges and particles 
clinging to the riser walls. 
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Figure 229. Schematic of 30.48 cm ID NETL CFB facility. Values in the parentheses represent 
different locations for Group A tests. 

 
The rates of many energy conversion processes are limited by mass transport phenomena 

leading to the desire to use relatively small particles and high pressures.  Granular materials 
typically used in transport reactors are characterized as Geldart Group A or Group B.  Due to the 
different tendencies for these two materials to entrap gasses in the packed bed (Geldart, 1973), 
and because it is often observed that they behave different in the return loop of a CFB, it is 
hypothesized though never demonstrated that there may be differences in their performance in 
the riser of a CFB particularly when operated near the limits of dense suspension.  The data 
obtained utilizing these bed materials were therefore posed in the Challenge Problem. The 
operating conditions achieved at NETL using Group A and Group B materials for this Challenge 
Problem are enlisted in Table 18.  These are conditions that are near, but above, transition 
velocities for both granular materials and are relevant to many energy conversion process 
including refining, cracking, combustion, gasification, and gas cleanup.  In previous challenge 
problems computational models were unable to adequately simulate similar CFB configurations, 
particularly the abrupt riser outlet. 
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Table 18. Challenge Problem Test Conditions. 
 

MATERIAL 
 

CASE 
 

UG (M/SEC) 
 

MS  (KG/SEC) 
 

FR (SCMS) 
 

FSL (SCMS) 
 

PO (KPA) 
 

GROUP A 1 5.14±0.06 1.44±0.06 0.683±5E-3 0.001±2E-5 182±1.2 
2 5.14±0.02 9.26±0.09 0.682±2E-3 0.002±1E-5 167±1.7 

GROUP B 
 

3 5.71±0.05 5.54±0.07 0.476±3E-3 0.025±3E-3 100±0.4 
4 7.58±0.04 7.03±0.02 0.599±4E-3 0.089±4E-3 102±0.5 
5 7.58±0.02 14.00±0.21 0.640±4E-3 0.143±3E-3 105±0.5 

MEAS. 
UNCERTAINTY  
(% READING) 

 
±5 ±10 ±4 ±0.05 ±0.004 

 
The Group A glass bead test cases were both conducted holding the pressure at the base 

of the riser constant at nominally 0.85 atm.  The circulation rate was varied from Case 1 to Case 
2, while the gas velocity was held constant.  These tests were selected out of 100 tests conducted 
at this elevated pressures to represent dilute and core annular flow regimes.  The entire 
statistically designed test matrix spanned conditions from Ug = 1.3 to 7.7 m/s and Ms = 1.3 to 33 
kg/s. 

The Group B polyethylene bead tests were all conducted with ambient pressure at outlet 
of the CFB.  The three test cases reported represent the star points in a composite factorial test 
matrix in which the factorial points were reported previously (Shadle et al., 2008).   This entire 
test matrix represents transformed dependent parameters for gas velocity and solids circulation 
rate such that each condition represented a fixed relative distance from the fast fluidized bed - 
regime transition to core annular flow. The three test cases included in this Challenge Problem 
include: a case near the fast fluid bed transition (Case 3), and two conditions at the same 
superficial gas velocity - one in core annular flow (Case 4), and the second in dense suspension 
up-flow (Case 5).   The entire composite matrix included many of the detailed measurements 
described below spanned an operational range from Ug = 5.5 to 7.5 m/s and Ms = 1.4 to 14 kg/s.   

Besides regular pressure, temperature and humidity measurements, advanced techniques 
were utilized to measure detailed flow structure within the circulating fluidized beds. Mass 
circulation rate was continuously recorded by measuring the rotational speed of a twisted spiral 
vane located in the packed region of the standpipe bed (Ludlow et al., 2002, Ludlow et al., 
2008). This volumetric flow measurement was converted to a solids circulation using the 
measured packed bed density after correcting it based upon a model of the standpipe using the 
Ergun equation and aeration rates to simulate the measured pressure drops in the standpipe  
(Ludlow & Spenik, 2011). 

Local particle velocities were measured using a dual fiber bundle optic, as shown in 
Figure 230 and positioning the tip at the desired location in the riser of the NETL cold flow CFB 
(Guenther & Breault, 2007, Seachman et al., 2005).  Each fiber bundle contains an equal number 
of light transmission and light reception fibers. The fiber bundles were aligned vertically in the 
riser to measure the axial velocities of particles and cluster moving up and down.  The signals 
from each of the fiber optic bundles were cross-correlated to determine the particle transit times 
in each specified periods.  The velocities were calculated knowing the translational distance.  
The effective spacing between the fibers was determined using a spinning wheel moving at a 
controlled rotational rate (Zin et al., 2006). 
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(a) Fiber probe showing 

light emission 
(b) Particle passing through 

1st bundle 
(c) Fiber arrangement in 

bundle 
 

Figure 230. Optical fiber configuration for radial velocity measurement. 
 
Solid Flux was measured using a piezo probe, shown in Figure 231, which measures the 
impingement of particles on the surface of the transducer.  Such impacts produce voltage spikes, 
which can be interpreted as a mass flux.  One transducer is mounted at the end of a bent tube so 
that its active surface is pointing upward while the second is mounted on the end of a tube 
pointing downward.  Using this arrangement, upward and downward fluxes, which can follow 
each other very quickly in the turbulent riser, can be measured easily (Spenik & Ludlow, 2010. 
A comparison was made between these measured fluxes and those measured using: 1) an 
extractive sampling probe and 2) using Fiber Optic probe.  For the Group B polyethylene beads 
the extractive sampling was conducted as described by Miller and Gidaspow (1992) using a 1.9 
cm ID extractive probe traversing across the entire riser diameter two directions: both in-line 
with and perpendicular to the recycle solids entry and gas outlet.  The fiber optic probe was 
calibrated using the double acting isolation valves to quantify the relationship between solids 
loading and reflected light intensity (Zhang et al., 1998) and then using the cross-correlation of 
the time dependent signals from each to determine the duration that it took for particles to move 
from one fiber to the next.   

 
(a) Dual piezoelectric transducer 

probe 
(b) Piezoelectric probe 

size 
(c) Piezoelectric probe 

face 
 

Figure 231. Piezoelectric transducer configuration for radial solids flux measurement. 
 

High speed Particulate Image Velocimetry (HSPIV) measurements (Cocco et al., 2010) 
were made at a riser elevation of 9 m for the three Challenge Problem flow conditions.  HSPIV 
involves taking high speed videos of particle motion at frame rates on the order of 5000-50,000 
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frames per second.  Particle motion in the high-speed videos is tracked using proprietary 
software developed by the NETL.  From the tracked particle motion, particle trajectories and 
velocities are measured in two directions.  By measuring the number of particles in the field-of-
view, a simultaneous measurement of particle concentration is also achieved. The measurement 
uncertainty of an individual particle velocity of less than 1% and tracking accuracy of greater 
than 99.5% has been achieved with the HSPIV technique. Hence the fluctuations seen in the 
results are primarily due to the experimental fluctuations. 

Solids tracer experiments were conducted to characterize the hydrodynamics of a particle 
laden jet entering a particle laden riser, as shown in Figure 232. A phosphorescent dye was added 
to the high density polyethylene (HDPE) beads during their manufacture to allow tracking of all 
particles in use during these tests (Shadle Shadle et al., 2008).  Experimentally, the jet consisted 
of a flow of gas and solids 1.9 cm in diameter which was introduced perpendicular to the riser 
flow at a position 3.66 m above the distributor and in the same azimuthal direction as the bulk 
feed of solids being recycled into the riser.  Solids mass flow in the riser was measured through 
the use of a spiral device while gas flows were both measured and calculated.  The total gas flow 
came from three different sources: gas used to educt the solids into the jet, gas used to assist the 
flow of solids down from the feed hopper to the eductor, and gas flow which resulted from the 
pressure driven flow through the solids feed line.  In addition to measuring the mass flow of 
solids through the jet, the solids velocity was measured by means of simple “time of flight” 
experiments. The average jet velocity was reported to be 3.75 m/s for all three test cases. The 
value of 0.95 was found for the average solids void fraction calculated from the mass flow of 
solids through the jet and the jet velocity. 

Finally, time dependent pressure fluctuations were measured. High speed differential 
pressure measurements were acquired using Setra pressure transducers. Sampling rate was set at 
12,500 samples/sec for 30 seconds at each operating condition. 
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(a) Jet Injection (b) Typical jet penetration (c) Normalized response of jet penetration as a 

 function of radial position 
Figure 232. Configuration and response of jet penetration. 

 
Results and Discussion: Five modelers submitted results on circulating fluidized bed. The 
participating modelers were software developers, graduate students at the universities and 
research scientists at the government organization. A summary of the modelers contributions is 
presented in Table 19. 
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Table 19.  Modeling Information for Circulating Fluidized Bed Problem. 

 
 

Axial Pressure Profile and High Speed Pressure Fluctuations:  The axial pressure 
profile is perhaps the single most important characteristic of the circulating fluidized bed riser, 
which reflects the macro and meso-scale features of how the solids inventory is distributed along 
the length of the riser.  While the individual pressure transmitters varied in sensitivity to 
fluctuations, the process error can be evaluated by considering the deviations in second by 
second pressure measurements.  The process variations were an order of magnitude larger than 
the measurement errors; however, the variation in even these process uncertainties could not 
readily explain the axial variation in several of adjacent transmitters, particularly those in the 
highly loaded mixing zone near the bottom of the riser.  In order to better explain these variations 
it was decided to represent the process uncertainty assuming continuity along the riser height.  
For this reason the replicate ΔP/ΔLs were fitted using a polynomial dependence on axial location 
and evaluating the uncertainty from that general model. The resulting uncertainty pools the 
uncertainty across the entire axial profile, as shown in Figure 233.   
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Figure 233: Comparison of blindly modeled axial pressure profile against CFB experimental 
axial pressure profile. 
 

Regardless of the determination of uncertainty, each of these pressure profiles 
demonstrates the dense regions both above the solids inlet and below the riser exit, but to 
different degrees depending on the operating conditions.  The dense region at the top of the riser 
for glass beads Case 2, extends furthest down into the riser, and the acceleration region at the 
base was shorter than any observed in the Group B profile in Figure 233.  The higher solids flow 
Case 5 exhibited the longest mixing zone at the base and the shortest reflux zone at the top, 
except the very dilute glass bead Case 1.    

Figure 233 also shows composite graphs with all four models overlaid on the averaged 
experimental data.  This figure allows further graphical comparisons of the models to the data 
and to each other. It would appear that the simulation results were better in dilute cases, showing 
relatively low ΔP/ΔL at higher solid loadings. Both CFB1 and CFB2 models underestimated the 
inlet condition in dilute Case 1, the overall magnitude of CFB2 being the least among three 
models. The CFB1 model appeared to follow inlet profile at dense condition (Case2). The 
opposite appeared to be true for CFB3 model at the riser exit (Case 1).   

As can be seen from the leftmost graph of Figure 233, the E-E (CFB3) profile reasonably 
followed the experimental data starting from 10 m elevation to the top of the riser. The E-L trend 
seemed to match the measured profile up to 8 m from the riser bottom; however, it was unable to 
capture dense bed conditions near the exit (Case 2). Similarly, the CFB3 model failed to capture 
axial pressure profile at the top of the riser (Case 2). For these operating conditions, the E-L and 
E-E models consistently represented fully developed region although the E-E model predicted 
few humps in their axial profile.  

Blindly modeled pressure profiles were also predicted within the confidence interval 
defined for Case 3, 4, and 5 as depicted in Figure 233.  All models underestimated the axial 
pressure in Case 3 probably due to greatest variability in the profile itself. Moreover, the 
modeling results of CFB1 and CFB2 appeared unevenly distributed along the height. The CFB3 
and CFB5 predictions looked similar in fully developed region except the former model could 
not capture the outlet conditions properly. Based on graphical comparison, it would be unfair to 
state that the CFB3 modeler did not capture inlet trend for Case 5 because they did not submit 
results at the very bottom (1.04 m). It is not clear whether their results could have followed the 
axial profile at the inlet. Definitely, their predictions were out of trend in other cases (Case 3 and 
4).  The core annular regime of Case 4 showed the lowest variability and hence, all of these 
models appeared to predict axial profile successfully. The E-L model (CFB1) showed a hump 
around 5 m while the CFB3 model could not capture the data at the very top. The CFB5 
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significantly predicted both inlet and outlet conditions. For Case 5, both CFB3 and CFB5 
considerably modeled exit effect arising from the blind T configuration present at the riser outlet. 
The E-L model again shows a hump around 2 m elevation for this operating condition, as shown 
in Figure 233.  
 

Table 20.  Overall ΔPr comparison. 

 
 

As a quantitative comparison, twenty incremental pressure drops across the riser were 
summed up to obtain the total pressure drop  (ΔPr,m) from the simulation and compared it against 
the experimental total pressure drop (ΔPr,e) as a percent difference between the two Table 20.  
The experimental variability among replicates is also reported and they ranged from 2 to 13%. 
Note that the incremental pressure drops and ΔPr,e values, represented the arithmetic mean of 
many duplicates collected at different times. Simulated ΔPr,m deviated from the experimental 
mean ranging from -10% to 80%. The error between measured and modeled pressure drop with 
95% confidence is also shown in Table 20. The 95% confidence is an interval in which the error 
between population mean (unknown) and the sample mean (ΔPr,e in the present context) is 
believed to occur. The statement of confidence is not made directly concerning the magnitude of 
the modeling error, nor concerning an interval around the computational prediction (Shadle et 
al., 2008). The reason such statements cannot be made is that the fundamental quantity that is 
uncertain is the true experimental mean. Stated differently, although there is an error in the 
computational result, the actual uncertain quantity is the referent i.e., the true experimental 
value, not the computational result. As an illustration, Case 3 is considered where the prediction 
from one of the E-E models is compared against the total pressure drop mean: 
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Population mean ΔPr,e with 95% confidence = µ  (22.3, 23.3) kPa 
Modeling error Ě=(ΔPr,m – ΔPr,e) with 95% confidence  (9.6, 8.6) kPa  
 

In summary, the result of the validation metric was  with 95% 
confidence for the total riser pressure drop. The magnitude of overall modeling error in ΔPr,m 
was approximately 38% higher than the experimental data including its uncertainty.  

Fluidized beds are known to exhibit pressure fluctuations, which can be characterized 
using Fourier Transform to evaluate dominant frequencies of the process.  To evaluate these 
process fluctuations, high-speed pressure fluctuations were measured at the bottom, near the 
middle, and top of the riser and produced the power spectra in Figure 234. 
 

 
   
Figure 234:  Comparison of blindly modeled power spectra of high-speed pressure fluctuations 
against CFB experimental data. 
 

In all cases the amplitude drops off continuously with increasing frequency and the 
higher location in the riser.  The decrease in amplitude was greater above 1 Hz.  The case closer 
to fast fluidization (Case 3) and dense suspension upflow (Case 5) case had higher amplitudes 
than the core annular flow (Case 4).  The magnitude at the two axial location were similar for 
these cases; however, for the core annular condition the amplitude of the pressure fluctuations 
was significantly less at the higher tap location.  Unfortunately, for the modelers the high 
amplitude for the low frequency fluctuations suggests that time scales on the order of 100 
seconds or more may be necessary to capture the process dynamics. 

Three simulation results were submitted on the power spectra of high-speed pressure 
fluctuations. Amplitude variations for different axial locations were not substantially modeled for 
the test cases under consideration. All models showed higher magnitude response except the 
Eulerian-Lagrangian model for Case 5. At 2 m elevation, the E-L (CFB1) model compared 
favorably with the experimental amplitude. They also predicted low frequency response 
satisfactorily at 5 m location. The second E-L (CFB4) modeler predicted completely different 
behavior than typical CFB power spectra as their magnitude appeared to be significant towards 
higher frequency range. This seems unusual in CFB implying that the process does not show low 
frequency dynamics and the high frequency components engulf CFB during operations. Contrary 
to the magnitude response, both E-E and E-L models showed similar amplitude dependency on a 
signal frequency content. In the author’s opinion, this is the most important result of frequency 
analysis since one is interested in recognizing the distribution of signal’s strength at a particular 
range of frequencies rather than the amplitude of power itself. The application lies in filter design 
area of signal processing or controller design for the CFB process at dominant frequency of 
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interest. Mean dominant period of 8 seconds was observed for cases simulated that was 
commensurate with the experimental findings. 

Radial Solids Velocity Profile and Solids Mass Flux Profile:  The velocity profile from 
the fiber optic and the HSPIV are summarized in Figure 235.  Also shown are the 95% 
confidence levels which were estimated by fitting a second order polynomial with dependence 
on measurement height, azimuthal angle, radial location and different techniques. The effect of 
height was substantial and hence separate confidence level was measured for each vertical 
measurement location. It should be noted that for the purpose of this error analysis the 
uncertainties in individual mean vertical velocity measurements (instrumental uncertainty and 
biases) were not included. Deviations were much more prominent when looking at the very 
bottom of the riser as shown in the glass bead test cases (Case 1 and 2). To characterize the 
process variability or experimental uncertainty in radial velocity measurement for Case 3, 4 and 
5 at z = 8.88 m, velocities measured with dual multi fiber optic bundles (diamonds) and HSPIV 
(circles) were compared. As can be seen they matched closely.   
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Figure 235.  Comparison of blindly modeled radial solid velocity profile against CFB 
experimental radial solid velocity profile. 
 

The comparison between experimental data and simulation results for radial velocity 
profile are also presented in Figure 235. The elevation is shown in ascending order from left to 
right. The elevation covering 1.1 m and 1.93 m interval is the INLET, that between 8 m and 13.5 
m the MIDDLE and that between z = 14.27 and 15.55 m is the OUTLET. As a whole, the E-L 
(CFB1) profile looked linear with respect to the radius rather than curving downwards and rising 
up near the wall, the characteristic shown by the experiment. The E-E (CFB2) counterpart also 
simulated linear trend for the first test case. The magnitude of CFB2 was lower than that of the 
CFB1 at the INLET, and they predicted higher magnitude beyond r/R = 0.5 at the MIDDLE and 
OUTLET section of the riser. At every elevation, the E-L model moderately predicted radial 
profile throughout the azimuthal location; their results were primarily closer to the experiment 
near the center extending up to r/R = 0.7 or even beyond certain radial locations (e.g., Case 1 at z 
= 8.88 m or Case 2 at z = 15.55 m). The third E-E model (CFB3) could follow the experimental 
profile mostly at the MIDDLE and OUTLET section of the riser but they predicted higher 
magnitude than the experimental mean. For higher loading Case 2, both E-E and E-L models 
appeared to have difficulty predicting the radial velocity variations near the wall.  

Remaining three cases achieved with Group B materials are compared in Figure 235c,d 
and e. In these test conditions, the statistical hypothesis could not differentiate between two 
radial velocity profiles measured across different radial locations. The significance of difference 
was quantified using t-statistics. Consistent with this statistical observation, the CFB5 model 
appeared to predict similar radial profiles across two azimuths although t-statistics were not 
performed on their modeling results. This model appropriately captured parabolic flow profile 
increasing with riser superficial velocity Ug at the walls but displayed higher magnitudes near the 
center for Case 4 and 5. In both of these test cases, the E-L profile displayed mislaid parabola 
showing maximum of the profile away from the riser center.  For Case 3, at the middle of the 
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riser, radial profiles of E-L (CFB1) model were essentially similar across two azimuths albeit 
demonstrating higher magnitude than the experimental values. Apparently, the Euler-Lagrangian 
model suffered substantial deviation from the measured velocity profiles in all of these operating 
conditions. 

Referring to Figure 235f, other E-E model (CFB3) could not display statistical similarity 
between their calculated radial profiles for any of three test cases. On the other hand, the model 
predictions of CFB2 for all radial locations were identically the same. Also, the CFB2 model 
displayed somewhat parabolic trend of Case 3 at 6.23 m although they calculated lower 
magnitude of particle velocity. Along E-W or N-S direction in the middle of the riser, their 
simulation began closer to the wall, then under predicted and curved upward to match the profile 
again at the opposite face of the wall. At the outlet, they could only match the profile at the 
opposite face (either West or South face of the wall but not East or North face). For all elevations 
in test Case 4 and 5, and at the exit condition of Case 3, both profiles of the CFB3 model 
appeared distorted or skewed towards either face of the riser wall. Although their simulations 
presented relatively undistorted profile at the bottom and middle section of the riser, their 
comparisons did not show any significant improvement over velocity values. Only half of their 
profile (E-W) corresponded the experimental profile going from the center to the West face 
while their N-S counterpart represented radial profile from the North face to the center. 

To evaluate the quality of the local solids flux measurements, the measurements were 
integrated across the riser cross-section and compared to the measured solids flow rate.  While 
the measurements agreed closely at low solids velocities, the error increased as the solids flow 
rate increase such that the integrated fluxes were 25% lower than the spiral flow.  Even after 
replicate sampling data sets were obtained it was apparent that the extractive sampling was 
biased low compared to the spiral measurement for every test condition tested.  As a result, a 
series of tests were conducted to identify potential problems in the accuracy of the spiral solids 
flow measurement.  The three sources of error considered were (1) the inaccurate determination 
of the bed density (overestimating the density by 25%), (2) spurious noise or chatter in the 
encoder leading extraneous additional signals causing a higher reported rotation of the spiral, and 
(3) the assumption of uniform solids flow profile across the standpipe cross-section.    

Drain and weigh tests confirmed the packed bed densities were accurate at least at the 
low flows.  In any case, the packed bed would have to be fully fluidized to account for the 
deviations, yet this was never observed.  The standpipe pressure drops over the confined moving 
bed were inconsistent with fluidization occurring.  The drain and weigh experiments also 
confirmed that spurious chatter did not occur and did not contribute to the higher solids flow.  
Several standpipe tests were undertaken to evaluate the potential for non-uniform solids flow 
profile across the standpipe.  Solids tracer experiments conducted by flashing a bright light at 
different radial locations and then tracking the time of flight of the solids to move past two 
downstream photo-sensors confirmed the measurements of the spiral volumetric flows and 
demonstrated that even under the highest flow rates there was no distinguishable velocity profile.  
High-speed PIV measurements taken above the spiral confirmed this conclusion.  On the other 
hand, the extractive sampling profile did display an asymmetry such that the down-fluxes were 
highest in measurements taken on the side of the riser opposite from the probe entry point.  This 
suggests that the probe was causing some interference in these sampling measurements, which 
were in the direction leading to a low bias.  The same type of interference was observed when 
using the fiber optic probe to measure solids velocity.  Thus, it is recommended that extractive 
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sampling and other intrusive probes limit their measurement to the quadrant nearest the probe 
entry.   

Fiber optic probes are often used to measure the solids flux profile, but even when 
limiting the measurements to the nearest quadrant and calibrating the solids fraction using fast 
acting valves, this method led to significant scatter and relatively larger deviations depending 
upon which bundle (top or bottom) was selected for solids fraction.  The fiber optic probe tended 
to produce integrated solids fluxes which were higher than the solids flow measured from the 
spiral.   

The response of the piezo electric particle impact probe when integrated across the riser 
cross section produced solids flows that were within 10% of the measured solids flows.  Like the 
other measurements this deviation was largest at the highest flow rates, but the integrated flows 
were higher than that determined by the spiral.  The measurements involves determining a 
threshold which differentiates a particle impact from a gas pressure fluctuation, and this becomes 
more difficult, i.e. the signals are closer in intensity, when the solids are moving slowly.  In 
addition, when multiple particles such as those in a cluster hit simultaneously or shield the probe 
from the impact of particles in their wake, then the probe will underestimate the flux. The radial 
solids flux profiles are presented in Figure 236.  These represent net fluxes and demonstrate the 
significant upflow of solids flux near the wall for the dense suspension upflow case.  
Interestingly enough the lowest velocity Case 3 exhibited the flattest solids flux profile across the 
diameter of the riser.  Data on the relative upflux and downflux is also available.  
  Figure 236 shows the comparisons of E-E and E-L models against the solids flux profile 
measured at the same radial locations and elevations of the riser as radial solids velocity. For 
Case 3, the E-L profile displayed more or less radial symmetry across the riser cross-section; the 
most distorted profile was exhibited in the mid section of the riser. Likewise, the model profile 
across the NE-SW or N-S direction appeared symmetrical and within experimental uncertainty of 
Case 4 (Figure 236b). Seemingly, this characteristic is opposite to what was observed in the case 
of velocity profile. It suggested that the E-L model was able to predict solids fraction 
comparatively better than the solids velocity. There was a sudden shoot observed in their results 
near r/R = 0.33 and relatively smaller shoot at r/R = 0.83 at the top, even then they predicted 
East-to-West profile (indicated by the solid orange line) within the confidence bound of Case 4. 
The CFB5 model showed reasonable profile in core annulus regime while they over predicted 
Case 3 at all elevations of the riser. At the bottom, the CFB2 model started diverging from the 
experimental mean when moving from SE or NE direction towards opposite face of the riser 
wall. This occurred mainly beyond the riser center as can be observed from Figure 236a. Their 
profile appeared jagged at the middle and top sections of the riser (not shown). Unfortunately, 
the results of CFB3 model did not look very promising in both of these test cases. At dense 
suspension upflow regime, the solids flux measurement showed asymmetrical profile resulting 
from the upflow of solids along the wall and apparently presented most difficult situation in 
modeling. The CFB1 model could not capture asymmetry while other E-L (CFB4) model either 
predicted a constant profile or linear dependency of mass flux on radial locations. As can be seen 
from Figure 236c and d both E-E models also showed distorted results parallel to their E-L 
counterpart. The CFB3 model predicted jagged profile without any sign of matching upflow of 
solids (z = 6.23 m) near the wall. The CFB5 model appeared to follow the NE-SW profile at 6.23 
m (not shown) while moving towards SW direction but severely diverted near the wall. Few 
humps appeared in their flux profile in the middle and top section of the (Figure 236c and d). 
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Figure 236.  Comparison of blindly modeled radial solids mass flux profile against CFB 
experimental radial solids mass flux profile. 
 

Jet Penetration:  The jet penetration data is reported in Tables 21 and Figure 221.  
Initially, radial jet profile data was post processed by subtracting the average background signal 
collected during the initial 15 seconds from the “lighted” signal. The resulting data were 
normalized by dividing by the maximum of a signal at each position.  The average voltage was 
plotted as a function of radial position. Each curve was fitted with a 4th order polynomial.  The 
polynomial representation allowed to mathematically fixing the maximum location of the jet 
concentration.  Once the maximum location and its value were determined, the width of the 
curve at 1/2 of the maximum height was calculated.  
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Table 21.  Jet penetration measurements for Geldart Group B Particles. 

 
The results on jet penetration across a radius of CFB riser from the point of injection are 

depicted in Figure 238. There was relatively low penetration of solids into both densely loaded 
test Case 4 and 5 and moderately loaded Case 3.  While there is a clear tendency for the solids 
continued to penetrate deeper into the riser at the higher elevation, the process variability cannot 
distinguish the extent of penetration.  In other words, the jet penetration was statistically 
independent upon height.  It may be thought that at any given instant the peak of jet solids 
concentration could be essentially the same regardless of which height above the jet the 
measurement was taken. More significantly, the concentration of jet solids spreads out as the jet 
moves up the riser as characterized by the peak width. The E-L model simulated the penetration 
accurately in dense suspension upflow (Case 5) while the penetration was over predicted at the 
lowest gas velocity Case 3 and in transport core annulus Case 4. The solids concentration, gas, 
and solids velocities were subjected to strong fluctuations at the jet inlet due to unstable gas-solid 
flow through the feed nozzle (Li & Guenther, 2011). Whether this flow condition was specified 
at the jet inlet or neglected in the simulation is not clear from their submitted response. Neither 
was it clear whether other factors such as effect of gas turbulence on solids dispersion were 
critical in their simulation. The E-E model could not predict any penetration for Case 3. 
 

 
Figure 237. Comparison of simulated jet penetration against CFB experimental jet penetration 
data. 
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Figure 238.  Comparison of revised simulations against CFB experimental data. 

 
Observations: Models of fluidized bed are often transient solutions to one or another 

form of the Navier-Stokes equation.  These are computationally intensive calculations which 
even on today’s computers can take 30 days to resolve six seconds of simulated time. The effect 
is that modelers must use judgment to determine whether the simulation has reached steady state 
and how long to average the transient results to represent that steady state. This can be illustrated 
by comparing the refined profiles against the blind results submitted by the fifth modeler (CFB5) 
on circulating bed. They ran their simulation for a longer time going from 25 seconds to 50 
seconds and the results were time averaged over the last 10 seconds for both submissions. The 
percentage difference between experimental mean of riser total pressure drop (ΔPr,e) and their 
refined results were improved resulting in 26%, -5% and 9% error over their blind submission.   

The statement of the problem to be simulated is often a significant source of error in the 
simulation.  For instance, during the initial release of Challenge Problem, several mistakes were 
identified in the description of the flow conditions in standpipe.  These were readily corrected. 
There was also confusion among the modelers on the value of superficial gas velocity Ug 
reported at the bottom of the riser. This has been the topic of a recent report (Tingwen et al., 
2011).  The riser superficial gas velocity was reported as the pressure and temperature corrected 
superficial gas velocity at riser process conditions. It was obtained by adding the volumetric gas 
flow rate given at the riser bottom, gas flow coming from the L-Valve sparger and the amount of 
flow coming from the standpipe at standard conditions. This gas flow rate through the L-valve 
was predicted from the standpipe model that was developed to correct spiral circulation rate 
(Tingwen et al., 2011). The fifth CFB modeler believed that the improvement in their axial 
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pressure profile for Case 4 and 5 conditions were mainly because of the correction in their flow 
conditions. Initially, they used the riser superficial velocity by adding contribution from the L-
Valve sparger and standpipe aerations (FSL) to the composite Ug. They used the measured 
pressure at the bottom and exit of the riser to set the boundary conditions for their refined 
simulation which they believed to have small influence on their improved results. After a grid 
study, they used coarser grid (0.5M computational cells compared to 3.39M) to run their 
simulation for a longer time and produced a smoother and more symmetric radial velocity 
profile. These results were in closest agreement to the axial pressure profiles; however, neither 
coarse nor fine resolution simulations could display asymmetry in radial solids flux profile 
revealed by the experimental data.   

The first CFB modeler did not make any adjustments to their blindly submitted models. 
In their opinion, their first simulations did not have enough time to reach a pseudo-steady state. 
As a result, they allowed their simulations to continue until it was time for the refined data 
submission. Unfortunately, due to lack of time parametric studies were not undertaken, the 
results were not adjusted and the refined results matched the blind submission quite closely. 

Due to the realities of simulating 5 to 20 seconds of fluid bed performance models tended 
to express results related to the large temporal variations more so than the mean or time averaged 
values measured experimentally over 15-20 minutes. Certainly, the responses indicate that more 
model improvements could be gained by reducing the scope of future Challenge Problems 
thereby allowing more time for the model parametric sensitivity analyses.   

The fluidized bed model results appeared to be less sensitive to boundary conditions.  
Accurate solutions appeared to be tied to capturing the particle size distribution either with 
Lagrangian particles or a PDF representation.  Implicit and couple pressure integration is also 
needed to capture the subtle but important gas compression at the bottom of the bed; a precursor 
to gas bypassing.  Finally, the some simulations had time steps that exceeded the sampling rate 
for the pressure fluctuations.  Thus, model efficiency resulted in not capturing sub-time-step 
events such as pressure fluctuations due to gas bypassing. 

As in previous Challenge Problems, examination of the simulation results revealed that 
still some improvements are required in the CFD models to achieve better outcomes. The 
participating models could not capture inlet and exit effects on the axial pressure profile of the 
CFB more than 50% of the time. One of the reasons for the mismatch was the varying bed 
densities at different operating conditions.  The modeling discrepancies were larger in the higher 
solids loading, Case 2, and in a condition near fast fluidized regime, Case 3 (Table 15). 
Generally, the contribution of mass inventory in the riser to the pressure drop was higher from 
Group B materials than that from the Group A particles (Gidaspow, 1994). In experiments using 
same glass beads and HDPE materials, the solids flow going to the riser and the gas flows were 
completely cut off after steady state conditions were reached. The solids inventory in the riser 
were either weighed or transferred over to the standpipe.  The solids inventory was computed 
from the pressure drop across the riser and compared against the measured inventory to 
understand the contribution of different factors contributing to the pressure drops.  The solids 
inventory or weight contribution was found to be around 70% for Group A material and the rest 
came from wall friction term due to solids under dense transport conditions similar to Case 2.   
At high solids concentrations, there is a layer of moving solids near the wall and the wall 
supports part of the weight of solids, resulting in higher frictional contribution to the pressure 
drop (Shadle et al., 2008). In the case of Group B materials, almost all contribution ( 90%) 
came from the solids weight term. The solids fractions measured using an Electro-Capacitance 
Volumetric Tomography (ECVT) probe confirmed this observation. The solids fraction 
calculated from the pressure drop across the ECVT location (riser elevation between 8-11 m) 
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involving only the term of gravitational acceleration, and that obtained from the ECVT 
measurements matched closely. Whether the agreements were due to the measurement being 
taken in the fully developed region or whether it is generally the case for Group B materials, 
should be verified in future.  Computational models could be used to distinguish the contribution 
of each factor necessary to accurately predict pressure drop across the riser. Larger magnitude of 
estimated at higher loading case (Case 2) and near fast fluidization case (Case 3) suggests that 
the participating models did not capture the contribution of solids inventory.  To accurately 
capture the contribution of solids inventory to the momentum balance equation, additional work 
is needed to properly relate fundamental material properties (viscosity, strength, elasticity, grain 
shape, restitution coefficient etc) to their proper places in the CFD model. In the case of a wall 
stress, these properties may have a strong influence on the boundary conditions (Fan & Zhu, 
2011, 1998). Undoubtedly, the close predictions of one or other challenge problem models 
(submitted blindly) to the overall pressure drop measurements at dense suspension upflow, core 
annulus and dilute regimes are remarkable.  

The objective of comparing the CFD radial profiles to experiments was to determine 
whether the models could predict the radial in-homogeneities observed in real systems and in 
experiments. The key difficulty lies in understanding the lateral solids distribution mechanism in 
the riser in addition to their axial movement. The solids velocity profile pronouncedly exhibited 
local values of zero or values less than zero (i.e., when the solids in the annulus flow downward 
along the wall) for glass beads. Roughly thirty percent of time, either E-L or E-E models were 
able to describe solids distribution near the wall. These discrepancies between simulation results 
and experimental data highlight the challenges in correctly setting up the appropriate boundary 
conditions.  

The partial slip and/or turbulent wall boundary conditions used by the three modelers 
resulted in poor agreements of their predictions against the experimental solids velocity near the 
wall (Case 1 and 2 and most of Case 3, 4 and 5). The higher solids segregation closer to the wall 
using the slip conditions can be attributed to dissipation of energy due to collisions between 
solids and wall. Moreover, there is no general turbulence model in multiphase flow that 
adequately relates wall slip boundary conditions and interparticle collisions to the interaction 
between turbulence energy and its decay rate, therefore, turbulent viscosity, and the momentum 
interaction between the materials (Fan & Zhu, 1998).  

On the other hand, the no-slip wall boundary condition used by the fifth modeler had 
produced velocity profile in close agreement with the measured velocity profile for Case 3, 4 and 
5, especially near the wall. This can be attributed to the exclusion of dissipation caused by the 
particle-wall collisions. However, their models over predicted the magnitude of the solids 
velocity near the center even after refinement.  The sharp rise of the center velocity is caused by 
the fact that the thick annular region blocks the upward motion of the gas and the particles.  

By conservation of mass the smaller effective flow area leads to a correspondingly larger 
gas, and through the drag, a larger center particle velocity (Gidaspow, 1994. Qi et al. (2000) 
reported that the particles fed into the riser got elutriated immediately, and their simulated flow 
became rather dilute as a whole if the drag correlation derived from Ergun equation (a hybrid 
(Gisaspow, 1994 of Wen and Yu (1966) and Ergun (1952) equation was used by the fifth 
modeler) was employed. They claimed that those drag correlations were only suitable for low 
gas velocity and coarse particles, in which case terminal velocity was equal or close to the 
superficial gas velocity.  

It is obvious from Figure 238 that the distributions of radial flux across the riser cross-
section are asymmetrical showing the influence of entrance and exit regions. The phenomenon 
arises from a strong momentum interaction between gas and solids transferring a net rate of 
solids from the dilute core to the denser annulus (Rhodes, 1990, Yan et al., 2003). There is an 
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upflow of solids along the wall in a dense suspension upflow condition. Overall the predictions 
of the radial flux profiles from the CFD models compared only moderately with the experimental 
trend. As discussed in the case of radial solids velocity, several factors can be accounted for their 
mismatch with experimental solids flux across radial locations. Based on response obtained from 
the CFB3 modeler, the gas phase turbulence did not have significant influence on their voidage, 
velocity and pressure profiles. Their solid phase was considered to be monodisperse with the 
mean particle size and they planned to implement the experimental size distribution. However, 
they never provided answer to how sensitive their model was to the size distribution of the 
particulate material being used.  

Conclusions:  This Challenge Problem was set out to investigate the strengths and 
weaknesses associated with different modeling approach. The first question was “How well do 
the models compare to the fluidization process?” This research question also involved 
investigating how CFD models had improved over the past few years. In fact, the computational 
fluid models indeed made significant improvements within this short period of time. There were 
still some deficiencies such as inlet and outlet axial pressure profile agreement were out of 
experimental trend, unsatisfactory prediction of asymmetrical radial solids mass flux profile 
across the circulating bed cross-section. The fact that their modeling results came closer to the 
experimental reality simply by increasing the simulation time should not be underestimated. 
Based upon the amount of effort required to respond to this challenge problem it is clear that 
reducing the scope of the problem will be required to obtain a broader participation of modelers 
by making it a more manageable task.   

Nevertheless, there is now a framework from which to build.  The vision is to have a well 
characterized data base for model validation which can ultimately move forward towards a 
certification process. In this respect, NETL has already started several steps where small scale 
fluidized bed and 2D rectangular bed would be built, small scale tests would be devised to 
benchmark critical complex physics (involving low particle count thereby requiring simulation 
time less than two weeks on a Personal Computer), and validating flow process of interest such 
as reacting gas absorption and evolution in small scale (e.g., carbon capture unit), gasification of 
size and density fractions (e.g., drop tube furnace), granular temperature or particle-particle 
collisions, and particle wall impacts (e.g., high speed particle imaging).  
 
Subtask 4.6.3:  Code Validation using high-velocity  data (Sundaresan and model developers).   

The MFIX framework, modified to account for the new physical models developed as part 
of this work (KTGF, DQMOM, drag force, and gas-phase turbulence), will be compared to both 
simulation and experimental data obtained from high-velocity systems.  The model developers 
will ensure code “readiness” – i.e., that it is free of bugs (checked to a reasonable extent) and 
convergent for a trial case (e.g., PSRI or NETL data set).  At this point, the code will be 
transferred to Prof. Sundaresan, who will take the lead on running the code, including running 
on the NETL supercomputer facilities, sensitivity analyses to numerics and physics, and 
comparing with the validation data.  It is our understanding the NETL supercomputing facilities 
will be available to us in order to fully resolve particle clusters. 

In terms of simulation data, MFIX model predictions for segregation will be compared to 
the Eulerian-DEM simulations (no gas-phase turbulence) both without and with particle 
evolution to agglomeration (Task 4.2).  These results, coupled with those of the DEM 
comparisons, will illustrate the ability to predict solid-solid interactions and evolution both with 
and without a drag force present. 

In terms of experimental data, comparisons will be made with the NETL (Task 4.6.2) and 
PSRI (Task 4.5) data for core-annular flow, as well as NETL data for the fast fluidization and 
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turbulent regimes (Task 4.6.2).  These cases will contain both gas-phase and solid-phase 
instabilities, and thus will provide a benchmark for the newly-developed turbulence models. 

 
(Fox reporting.)  A set of simulations of a gas-particle flow in an idealized system were 

performed using QMOM, in order to investigate the formation of grid-dependent structures at 
higher local particle concentration. The system under consideration is represented by a square 
two-dimensional domain, whose sides measure 0.1m. The fluid phase, constituted by air, moves 
upwards, with a constant pressure gradient. The only external force acting on the system is due to 
the gravitational acceleration. The average particle volume fraction in the computational domain 
is set to 0.05. The particle density is 1500 kg/m3, the particle diameter is 75μm, the restitution 
coefficient is 0.98. The initial condition was set to ensure the average volume fraction is 0.05, 
however it was not set to be uniform, in order to favor the development of instabilities in the 
flow, reducing the computational time required to obtain a fully developed flow. It is interesting 
to report that, in QMOM simulations, we did not observe the onset of instabilities during the 
whole computed time, which was up to 15 seconds, if a uniform condition for all the variables in 
the system was specified.  Three different cases, with different levels of grid refinement, were 
considered, respectively, with 128 x 128, 200 x 200 and 300 x 300 grid points in the 
computational domain. Simulations were performed using the standard second-order numerical 
schemes in MFIX for the fluid-phase, based on the SuperBee limiter. The QMOM model used in 
the simulations was described above. The collision model used is the standard BGK linearized 
model, modified to account for inelastic collisions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 239.  Instantaneous volume fraction - 128 x 128 grid points. 
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The volume fraction contour plot for the gas on the coarsest grid considered (128 x 128 
grid points) is reported in Fig. 239. The diagram clearly shows the flow presents instabilities due 
to the interaction between the fluid and the particles. These instabilities cause the local 
accumulation of particles in some parts of the domain and the rarefaction of the particulate phase 
in other parts of the domain. Since the mean particle Stokes number is greater than unity, 
particles tends to segregate, as expected, in the zones with lower vorticity of the fluid phase. 

 
Figure 240.  Instantaneous volume fraction - 200 x 200 grid points. 
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In order to investigate the effect of the spatial resolution on the numerical solution of the 

model, the discretization of the computational domain has been refined. The volume fraction 
contour plot in Fig. 240 shows the results obtained with a grid made of 200 x 200 points. The 
similarity with the flow represented in Fig. 239 is evident, however, as expected, sharper 
gradients are present, since the refined grid resolution allows them to be captured. It is 
interesting to observe that the major change due to the refined grid is neither on the values of the 
local particle concentration, which is similar in both the cases under examination, nor on the size 
of the observed structures, but on the resolution of the fluid vortical structures, as it can be seen 
observing, for example, the better definition of the vortex on the left-hand border of the periodic 
domain. Finally, the volume fraction contours for the most refined case considered (300 x 300 
grid points) are reported in Fig. 241. In this case the shape of the structures observed is relatively 
different from those of Fig. 239 and 240, probably due to the better resolution of the flow, as 
indicated by the more defined vortical structures highlighted by the particle, however, in spite of 
the higher grid resolution, the simulations do not show the formation of structures in the particle-
phase, whose size is strongly dependent on the grid resolution. The size of the structures 
observed on average in the computational domain is almost unchanged for the three grids 
considered in the simulations. This contrasts with the predictions obtained with traditional two-
fluid model relying only on a reduced set of moments, which predict a strong dependence of the 
size of particle structures on the grid resolution, and can be explained in light of the intrinsic 
capabilities of QMOM for predicting particle trajectory crossing. A careful examination of the 

Figure 241.  Instantaneous volume fraction - 300 x 300 grid points. 
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figures, and, more easily, of the animations generated from the results of the simulations show, 
in fact, the presence of trajectory crossing, where cloud of particles hit each other, originate a 
locally and instantaneously higher zone of higher particle concentration, and then proceed along 
their path, with limited effect of collisions, which would tend to make the colliding clouds merge 
together. This phenomenon is particularly evident in the dilute parts of the domain, but it affects 
the whole behavior of the flow, since it limits the formation of the high number of small 
structures predicted by hydrodynamic models, which are actually delta-shocks, introduced by the 
mathematical formulation of the model, as explained in previous reports. 

Additional simulations, with higher grid resolution will be performed to clarify this 
aspect. However numerical difficulties were encountered in refining the grid in MFIX on the 
considered computational domain, for example to 400 x 400 grid points, since the code seems to 
be affected by segmentation faults if the grid resolution becomes very refined. 

The simulations presented in this report represent also a progress in the stabilization of 
QMOM in the dense limit, since local particle concentration reached values not far from the 
packing condition (the maximum observed value in the stored data was higher than 0.5). This 
stabilization was mainly obtained with an appropriate choice of the Courant number based on the 
particle-phase speed of sound, together with the implementation of the collisional fluxes 
described in previous reports. Work in the future will develop an implicit procedure, which will 
allow the use of larger time steps in the dense region. 

Particle Pressure Solver for QMOM:  The iterative solution procedure previously used 
for QMOM has been modified to implicitly include the effect of the particle pressure in the 
equation of the first order moment M0, representing the particle-phase volume fraction. This 
modification to the solution algorithm, tested in 1-dimensional case, has proven to be very 
efficient in terms of computational times, and very robust in stably enforcing the particle packing 
limit. The procedure is briefly summarized below. 

The first step in the development of the improved procedure is to consider the transport 
equations for the zero- (M0 = αa) and first-order moments (M1 = αaUa): 

 
 
 
 

and 
 
 
 
 

being <Aa>, < Pa >, and < Qa > respectively the average acceleration term, the collision term and 
the collisional contribution 
to the flux. We notice that  
 
 
where the last term represents the particle pressure pa . We then recast the equation for the mean 
momentum in the form 
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where F is the sum of the kinetic flux and the off-diagonal part of the collisional flux. We notice 
than, that 

 
 

where G(αa) is the partial derivative of the particle pressure with respect to the phase volume 
fraction, given, in general, for QMOM by 

 
 
 
 

and, in case the restitution coefficient eij does not depend on the collision velocity, and only one 
species is present, by 
 
 
 
which is the same expression used in hydrodynamic models with kinetic theory closures, where 
Θa is the granular temperature and g0 the radial distribution function. 
 At this point, it is possible to reformulate the equation for the zero-order moment by first  
predicting the flux from the equation of the first-order moment, using information from the 
previous time-step, and replacing the expression for the flux in the equation for M0, so that the 
force balance is directly included into it. The first step is to write the semi-discretized equation 
for the first-order moment, whose explicit form will clearly depend on the approach used to 
discretize the momentum coupling term. For simplicity, we include all the effects in a symbolic 
term, with the exception of the particle pressure: 

 
 
 
 
 
 
 

where Fa contains all the force terms strongly dependent on the phase volume fraction, and the 
pressure gradient, while Ha includes the remaining terms. Interpolating this velocity on cell faces 
gives origin to the face velocity: 

 
 
 

Observing that the equation for the 
zero-order moment can be written 
as 
 

 
 
which, substituting the expression for the face velocity, becomes 
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where φa

* = (αaUa)f. It is worth noticing that, since we are interested in preserving the positive 
features of the kinetic flux discretization, the divergence term on the left-hand side is treated 
fully explicitly, as already done in QMOM, including the effect of the non-diagonal terms of the 
collisional stress tensor, but without adding to φa

* the isotropic component of that tensor, since 
they are accounted for in the term on the right-hand side, which is discretized explicitly. 
The solution procedure is then modified as follow 

• The particle-pressure derivative is updated, based on information from the previous 
iteration. 

• The modified equation for the zero-order moment is solved. Notice that the solution 
at this stage avoids inconsistencies in the value of the phase fraction in the rest of the 
solution procedure. 

• Based on the updated value of the phase volume fraction, the remaining set of 
equations is solved to obtain the moments of order equal or greater than one. 

 
A convenient modification to the above procedure is to introduce under-relaxation for the 
equation of the zero-order moment, and perform sub-iterations on the equations for the zero- and 
first-order moment, until convergence, and then obtain the higher-order moments with a single 
solution step, using the updated, and stabilized, values of the phase volume fraction. 
 The approach has been tested considering a one-dimensional problem of particles falling 
due to the effect of gravity. Particles are initially located at a certain distance from the bottom of 
the computational domain, represented by a no-slip wall. Gravity and fluid drag act on the 
particles, which settle on the bottom of the container. The initial stage of the simulation is shown 
in Fig. 242, and the axial volume fraction profile after 1s of simulation is reported in Fig. 243. It 
is possible to see that the phase is completely settled, and the concentration profile is well 
defined, properly showing the steep gradient at the interface without oscillations. 
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Figure 242. Initial volume fraction 
profile (t = 0). Axial position on the 
horizontal axis. 

Figure 243.  Final volume fraction profile (t 
= 1s). Axial position on the horizontal axis. 
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Polydisperse Riser Flow:  The QMOM implementation into MFIX has been further 
validated considering a three-dimensional riser, and comparing the predictions of the model with 
the experimental data of He et al. (2009) in the same system. The computational domain 
considered in this work represents only a portion of the whole riser examined in the experiments, 
in the center of the column, with a height L (0.030 m), as represented by the dashed volume in 
Fig. 244. The other dimensions are W = 0.05 m and D = 0.015 m. The fluid phase is air at 
ambient temperature, while the particle phase is constituted by mono-disperse particles with 
diamenter of 335µm, density of 2500 kg/m3, restitution coefficient ep = 0.97.  

Periodic boundary conditions were imposed at the top and bottom of the computational 
domain, while no-slip conditions were used for the fluid phase at the wall, and reflective 
conditions were used for the particle phase. 

The fluid-phase mass flux was imposed to match the mean particle mass flux Gs of 10 
kg/(m3 s), by adapting the pressure gradient along the height of the computational domain. The 
grid density used in the simulations, taken from the work of He et al. (2009), is 25 grid points 
along W, 60 along L and 10 along D. Since the domain is periodic, averages are computed 
assuming the z direction to be homogeneous, and considering a symmetry plane, located at W/2, 
normal to the x direction. The RMS values are found by subtracting the time-averaged values 
from the instantaneous fields, and time averaging the square of the differences. The final RMS 
value are then the square root of time-averaged square differences. As convergence criterion for 
all the variables of the fluid-phase, a reduction of the residuals below 10−4 was required to 
consider the solution converged. 

 

 
Figure  244.  Schematic representation of the riser. 

 
An example of the instantaneous solids volume fraction field at t = 8 s obtained in the 

simulation performed using the quadrature-based moment method is reported in Fig. 245. 
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Figure 245. Time-averaged particle volume fraction profile and instantaneous countour plot at     
t = 8s, across the centerline (D/2). 

 
It can be seen that particles segregated at the walls of the riser, forming ensembles at 

higher volume fraction, which tends to move downward, since their weight wins over the 
resistance exerted by the fluid. As explained in Passalacqua et al. (2010), the flow evolves from 
the uniform initial conditions through an intermediate state where particles, due to the reflective 
conditions at the walls, tend to originate two vertical stripes parallel to the walls, with lower 
particle concentration. In these stripes the fluid accelerates, and the difference in shear causes the 
flow to become unstable. The instability quickly propagates to the whole flow, leading to the 
segregation of particles typically observed in riser flows. The time-averaged volume fraction 
(experimental data is not available for this quantity), is lowest in the center of the flow and 
highest at the walls, which is typical of core-annular flow. 

 
Results of the time-averaged components of the velocity obtained in the simulation 

performed using the quadrature-based moment method are reported in Fig. 246 and compared 
with the experiments of He et al. (2009). In all the reported plots, x = 0 represents the channel 
centerline, and x = 0.025 m indicates the channel wall. The predicted values of the axial velocity 
show a core-annular behavior, with negative values at the wall, indicating particles fall in that 
region of the system, and positive values in the center of the riser. Results are in acceptable 
agreement with the experimental measurements of He et al. (2009), and similar to those obtained 
by the same authors performing Lagrangian simulations. 

The convergence of the averages is considered satisfactory, in spite of the relatively short 
averaging time, since the values of the time-averaged velocity along the x direction, are 
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approximately zero, as expected when the flow reaches the steady-state condition. Note that for 
the experiments, the x velocity is not exactly zero, indicating that either the flow is not fully 
developed at this z location in the flow or that the experimental accuracy is of the order of the 
measured x velocity. 

 
Figure 246. Time averaged z (left) and x (right) components of the particle velocity. 
 
The root-mean-square (RMS) of the vertical component of the velocity of the particle 

phase is reported in Fig. 247 (left), and is in qualitative agreement with the experiments of He et 
al. (2009), but not in quantitative agreement. Both the experimental and the computational 
profiles show a minimum at the riser centerline, and the maximum value in proximity of the wall, 
but at a certain distance from it. The RMS velocity in the x direction, reported in Fig. 247 (right) 
is in quantitative agreement with the experimental data. Differences in the numerical predictions 
compared to the experimental data might depend on the simplified numerical configuration used 
in the simulation, where only one portion of the system is considered, and periodicity is assumed 
in the axial direction. Further reasons that could explain the differences are the choice of the drag 
law, as well as other sub-models used in the numerical model, and the systematic errors in the 
experimental measurements (He et al. 2009). 
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Figure 247.  RMS of the z (left) and x (right) velocity components of the particle velocity. 

 
The time-averaged granular temperature is reported in Fig. 248 (left). (Note that the 

granular temperature is not related to the RMS velocity statistics!) The values of Θp present a 
minimum at the wall of the channel, where the collision frequency is higher due to higher 
particle concentration, due to particle segregation, and a maximum in the core of the riser, where 
the flow is dilute and collisions are not predominant, as shown by the plot of the Knudsen 
number in Fig. 248 (right). 

Before proceeding to consider the behavior of the Knudsen number in detail, it is worth 
noticing that the flow is in transonic conditions, meaning that there are parts of the computational 
domain where the particle velocity is above or equal to the local particle-phase speed of sound 
(Ma > 1), and other parts of the system where the particle velocity is below the the local value of 
the speed of sound (Ma < 1). This is evident from the values of the time-averaged local particle 
Mach number Ma = |Up |/Θp 1/2 in Fig. 249, which shows the Ma is approximately between 6 × 
10−3 and 1.8. Under these conditions, two regimes are present in the system. Where Ma < 1, the 
flow is dominated by diffusive processes, regulated by the local value of the granular 
temperature, which has to be used to compute the characteristic velocity in this regime. When 
Ma > 1, the flow is dominated by convective phenomena, meaning that the transport of 
properties is mainly due to the convective transport of particles more than to diffusive 
phenomena, and the granular temperature has to be replaced by the local mean velocity 
magnitude in the definition of the characteristic velocity of the flow. The two zones are separated 
by a dashed line in Fig. 249 (left). Since the flow undergoes a transition between two different 
regimes, the definition of the Knudsen number is based on the mean particle velocity in the 
regions where Ma > 1, while it is based on the square root of the granular temperature when Ma 
< 1. 
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Figure 248. Time-averaged granular temperature (left) and Knudsen number (right). 
 
 

 
Figure 249.  Time averaged Mach number (left) and Stokes number (right). 

 
The values of the Knudsen number, computed assuming L = 2W D/(W + D), according to the 
definition of hydraulic diameter of the riser, are reported in Fig. 248 (right). The diagram shows 
the flow transitions from the slip regime, where 0.01 < Kn < 0.1 (Bird, 1994), in the region 
adjacent to the wall, to a more rarefied regime (transitional regime) in the center of the riser, 
where non-equilibrium phenomena are expected to happen. The two regions are separated by the 
dotted line. The lower value of Kn at the wall is justified by the higher particle concentration in 
that region of the system, which leads to higher values of the collision frequency, making the 
flow locally dominated by collisions. It is worth noticing that if an hydrodynamic model, derived 
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in the hypothesis of nearly zero Knudsen number (Continuum regime, Kn < 0.01) were used to 
perform the simulation, the adoption of partial slip boundary conditions would have been 
necessary to describe the behavior of the flow in the zone adjacent to the walls, where Kn < 0.1, 
however the model would have deviated from the correct behavior in the center of the riser, 
where higher values of the Knudsen number are present, and higher-order approximations of the 
kinetic equation than the hydrodynamic model are necessary. The Stokes number profile is 
reported in Fig. 249 (right), and reports values between 66.1 and 123.5, which indicate particles 
reaction to changes in the local conditions of the fluid flow are not instantaneous, but delayed 
and, since the flow is dilute, might lead to particle trajectory crossing. As pointed out in 
Desjardin et al. (2008), such phenomenon cannot be predicted by hydrodynamic models, since 
they only consider moments up to the second order, and define only one local velocity in each 
computational cell, whereas multiple local velocities are necessary to be able to capture the 
discontinuous velocity field that originates when particle trajectory crossing occurs. This 
becomes clear considering the particle velocity distribution function.  

In addition to the validation work, the integration of QMOM into MFIX has been 
improved allowing non-uniform initial conditions and boundary conditions to be specified 
through the standard MFIX input file. Future work is needed to parallelize the code, enabling it 
to be run on DMP machines, which is a requirement to more computationally expensive 
validation cases, and to perform grid independence studies. 
 
 (Sundaresan reporting.)  As part of subtask 4.6.3 we began by implementing the fluid-
particle drag model developed in Task 2.2 into the MFIX software.  This was performed at 
NETL by William Holloway under the supervision of Sofiane Benyahia.  The implementation of 
the fluid-particle drag model was rigorously checked in the dilute and concentrated limits in a 
single cell to ensure that the limiting behavior of the drag model was correctly reproduced by the 
code.  
 
Subtask 4.6.4:  Effect of polydispersity on clustering (Sundaresan, Fox, and Hrenya).   
The basic aim of this task is to answer the question:  how does polydispersity affect clustering?  
More specifically, is the frequency/intensity of clustering enhanced, attenuated, or constant with 
a change in the particle size distribution?  Also, do particles of one size tend to prefer the 
clustered regions while others prefer the dilute, or do they remain evenly distributed?  The 
proposed tasks, intended for comparison with trends of PSRI data (via wavelet analysis of fiber 
optic probe and high-speed photography, if available), are: 
 

(i) 3D simulations of riser flow with periodic boundaries (2D to be completed in 
Year 3 in conjunction with preliminary runs for INCITE proposal, as part of the 
existing validation task).  Both KTGF (Hrenya & Sundaresan) and DQMOM 
(Fox) models will be pursued. 
 

(ii) 3D simulations of fully-developed riser flow with solid boundaries (2D to be 
completed in Year 3 in conjunction with preliminary runs for INCITE proposal, 
as part of the existing validation task).  Both KTGF (Hrenya & Sundaresan) and 
DQMOM (Fox) models will be pursued. 
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(Fox reporting.)  The effort was then been concentrated in resolving a few numerical 
difficulties met while using the QMOM algorithm for polydisperse cases in MFIX. These 
difficulties were represented by sudden interruption of the numerical solution at random 
simulation times, and by corrupted solution with unphysical property profiles (volume fraction, 
velocities, …). The source of these problems was identified in an erroneous implementation of 
the multi-species Boltzmann collision integral, and has been corrected.  

Additionally, to reduce the computational cost for bi-disperse computations, a linearized 
multi-species collision operator, based on the work of Andries et al. (2002) was added to MFIX. 
This model, even if simplified compared to the Boltzmann collision integral, maintains the 
fundamental properties of the collision operator: 

• It ensures the number density function stays positive 
• It satisfies the principle of indifferentiability, according to which, if particles of 

different species are identical, the behavior has to be the same of a single-specie case. 
• The distribution function at equilibrium is non-isotropic Maxwellian. 
• The H-theorem on the irreversible entropy growth holds. 
This model has been validated showing its predictive capabilities in describing the 

homogenous cooling state. In particular, it was shown that the model reproduces the trend of the 
temperature ratio as a function of the mass ration in agreement with molecular dynamics results, 
while it over-estimates the value of the temperature ratio as a function of the particle diameter 
ratio. 

A simple test case to check the implementation was considered, constituted by a square 
domain of 0.1 x 0.1m, with periodic boundary conditions in the horizontal and vertical 
directions. A constant pressure gradient, sufficient to support the suspension was applied in the 
vertical direction. Two species were considered, with the following properties: 

  
Property Value 
Particle density [kg/m3] 2500 
Particle diameter – Specie 1 [µm] 650.0 x 10-6 
Particle diameter – Specie 2 [µm] 170.0 x 10-6 
Volume fraction – Specie 1 0.05 
Volume fraction – Specie 2 0.05 

 
A snapshot of the results is shown in the following pictures, obtained with a coarse 

computational grid of 64 x 64 points. A snapshot of the volume fraction contours is shown for 
both the species considered in the simulation. The simulation proceeded without observing 
numerical instabilities. Results show a high numerical diffusion, which however is explained by 
the relatively coarse computational grid used for testing purpose, to speed up the computation. 
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Figure 250.  Volume fraction contour plot of specie 1. 

 
Figure 251.  Volume fraction  contour plot of specie 2. 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 307 

The code validation effort proceeded with the comparison of simulations against the 
mono-disperse system of He et al. (2009), and on the validation of the implementation of 
QMOM for poly-disperse flows into MFIX against the experimental data of bi-disperse gas-
particle flow provided by PSRI.  

The mono-disperse case was already examined previously. We add here only the 
comparison with Lagrangian simulations performed by other authors on the same systems to 
compare with QMOM predictions. The simulated system is a three-dimensional axially-periodic 
channel with dimensions of 0.05m x 0.3 m x 0.015m. The fluid phase is air at ambient 
temperature. Particles have a density of 2500 kg/m3, and a diameter of 335 µm. The solids mass 
flux is 10 kg/(m2 s). 

As it can be observed in Figure 252, QMOM simulations of the mono-disperse gas-
particle flow predict the axial particle velocity in good agreement with Lagrangian simulations 
and experiments. The radial velocity however is under-estimated by QMOM compared to LE, 
the latter however shows a very noisy behavior, not always in good agreement with experiments. 
Figure 253 shows the particle RMS velocity. The radial RMS velocity predicted by QMOM is in 
good agreement with experiments, and in better agreement with experiments than the Lagrangian 
prediction. However, the axial RMS velocity is over-estimated by QMOM, while under-
estimated by LE. 
 

 
Figure 252.  Mean particle velocity. 
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Figure 253.  Particle RMS velocity. 

 
The experimental system under consideration for the bi-disperse cases is constituted by a 

cylindrical riser, sketched in Fig. 254. The riser column is 18.3m high and has an internal 
diameter of 0.3m, with an elbow exit connecting to separation and recirculation systems. 

 

 
Figure 254.  Schematic representation of PSRI riser. 

 
The system is characterized by a geometrical structure that cannot be properly represented in the 
available code. Additionally, the large dimensions of the system does not allow a satisfactory 
spatial discretization to be obtained, in order to perform a parametric study. As a consequence, 
the system was simplified into a two-dimensional channel as shown in Fig. 255, where D = 
0.30m, and H = 1m. 
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Figure 255.  Schematic representation of 2D channel. 

 
The bi-disperse mixture was composed by particles with density of 900 and 2500 kg/m3, and 
diameter of 170 and 650µm, depending on the case. The mass loading was chosen to be equal to 
16. A particle-particle restitution coefficient of 0.99 was used. The fluid velocity was set to 13.6 
m/s. Six cases are being considered, as shown in Table 22, where ρ is the density, dp the particle 
diameter, and φ is the phase fraction. 
 

Table 22. List of Test Cases. 
 

Case n. ρs1 [kg/m3] ρs2 [kg/m3] dp1 [µm] dp2 [µm] φ1/ φ 
      

1 2500 2500 650 170 0.25 
2 2500 2500 650 170 0.50 
3 2500 2500 650 170 0.75 
4 2500 650 650 650 0.25 
5 2500 650 650 650 0.50 
6 2500 650 650 650 0.75 

 
Simulations were performed imposing a perturbed initial condition to favor the development of 
the flow, and using MFIX automatic time-stepping functionality. Periodic boundary conditions 
were adopted in the vertical direction, while reflective conditions were used to describe walls. A 
computational grid of 60 x 100 points was used. The simulation time was decided based on the 
convergence of the time-averaged solution, which depends on the case under consideration. 
Averaging was started after the flow was fully developed and performed over 15 seconds. 

Since only a portion of the original riser is considered, only the property variation along 
the radius of the channel is compared against PSRI data, who reported the species segregation for 
different operating conditions. 
 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 310 

 
Figure 256.  Density segregation profiles: QMOM (right) and experiments (right). 

 

 
Figure 257.  Size segregation profiles: QMOM (right) and experiments (right). 

 
Figure 256 shows the species segregation profiles predicted by QMOM in the case of a binary 
mixture with density difference between the two species, compared. It can be observed that 
almost no species segregation is observed in QMOM simulations under these operating 
conditions. Only a slight increase in the percentage of the heaviest species is observed near the 
wall of the channel, and a lower concentration of the same species is present at the centre of the 
system. Size segregation profiles of each species are shown in Figure 257, which shows size 
segregation is predicted, however the intensity of the segregation in the simulations is 
significantly lower than what observed in the experiments. Only two of the six considered cases 
are reported, however the trends observed in Figs. 256 and 257 are very similar to those of other 
cases. 

The effect of the computational grid, of the simplifications made to the geometrical 
configuration and of the model parameters must be further investigated to interpret the 
differences between the experimental results and the simulations. 
 
 (Sundaresan reporting.)  An exploratory study was conducted where the predictions of 
the polydisperse kinetic theory model developed by Garzó et al. (2007a,b) (GHD) were 
compared with the polydisperse kinetic theory model of Iddir and Arastoopour (2005) (IA) for 
different binary particle size distributions in periodic domains using the polydisperse fluid-
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particle drag model developed in Task 2.2.  The GHD theory follows a mixture-based approach 
where separate continuity equations are solved for each particle phase, but a single momentum 
balance and a single granular energy equation are solved for the particle mixture.  These are 
supplemented by algebraic models for the diffusive flux of each particle type relative to the 
particle mixture, and algebraic constraints on the individual species granular temperatures.  In 
contrast, IA kinetic theory uses a species-based approach where continuity, momentum and 
granular energy equations are developed for each particle type.  Thus, the IA theory contains a 
larger number of differential equations than the GHD theory.  To compare these two modeling 
approaches, we performed simulation of gas-fluidization of binary mixtures of particles using 
both models; such simulations were performed in periodic domain and fine grids were employed 
to ensure that the domain-averaged statistics were essentially independent of grid size.  It was 
shown that both kinetic theory model frameworks admit qualitatively similar domain-averaged 
statistics.  Moreover, the nature of the observed clustering patterns was found to be qualitatively 
similar.  We then proceeded to establish a theoretical criterion to indicate when the mixture-
based GHD kinetic theory can be expected give similar predictions to the species framework of 
IA theory.  A detailed description of the work discussed in this paragraph can be found in a paper 
that was recently published in Chemical Engineering Science (see Holloway et al. (2011) in 
Appendix J). 
 
Subtask 4.6.5:  Comparison with PSRI data (Sundaresan, Fox, and Hrenya).   
This task is targeted at a direct comparison of KTGF (Hrenya & Sundaresan) and DQMOM 
(Fox) model predictions with the suite of PSRI experiments conducted in Year 3.  The subtasks 
include: 
 

(i) 2D and 3D simulations of fully-developed riser flow to compare with trends of 
PSRI measurements.  For example, how do local solids flux and PSD profiles 
change with input parameters (gas velocity, solids flux, PSD)?  This will also be 
extended to developing flow in order for comparison of axial trends, to the extent 
allowable by computational resources. 
 

(ii) Since the KTGF and DQMOM models are expected to be suitable in different 
regions of Knudsen number (Kn), a subset of the above simulations will be 
extended to lower and higher Kn (and other dimensionless parameters, time 
permitting) to test the relative performance of these models. Note that clustering 
systems are expected to have a combination of Kn – low Kn in the dilute region 
and dense region, with high Kn across the dilute/cluster interface. 
 

(iii) Time permitting, 2D and 3D simulations of riser with PSRI exit geometry will be 
performed, for comparison with experimental trends.  For example, are 
experimental observed asymmetries predicted near exit?  Is reverse core-annular 
flow predicted with larger particles, similar to experimental data? 

 
(Fox reporting.)  The validation of QMOM continued considering the laboratory scale 

circulating fluidized bed studied by Mathiesen et al. (2000), who reported experimental 
measurements of the particle properties (velocity, volume fraction), and the predictions obtained 
with a conventional Euler-Euler multi-fluid model with kinetic theory closures for the particle 
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phase. Such a system was selected since its size allowed reasonable computational time and the 
adoption of a proper discretization of the computational domain. The same system was recently 
considered in a numerical study with Euler-Lagrange methods by He et al. (2009). The published 
results of the Lagrangian simulations are used in this work for comparison with the predictions 
with QMOM, together with the experiments of Mathiesen et al. (2000). 

The circulating fluidized bed system under consideration is 0.032 m wide and 1 m tall, 
with a depth of 0.0012 m. He et al. (2009) showed that the system can be successfully 
represented with two-dimensional calculations without significant loss of accuracy in the 
numerical predictions, as a consequence only two-dimensional calculations were considered. 
Additionally, He et al. (2009) only simulated the central portion of the riser, considering only 0.3 
m of the total height. The same approach is adopted here. The domain was discretized with 25 
cells in the horizontal direction and 60 cells in the vertical direction. The fluid phase is air at 
ambient temperature (ρg = 1.2 kg/m3, μg = 1.8 x 10-5 Pa s), with a mean superficial velocity of 1 
m/s. Two particle types are present in the riser, both with a density of 2400 kg/m3, but with 
different sizes: dp1 = 120 µm, and dp2 = 185 µm. The initial conditions are specified to be 
uniform, with each particle phase volume fraction fixed at 0.0125. The simulation was performed 
for 20 s, averaging on the last 15 seconds. 

 
Figure 258.  Total volume fraction of the particle phase. 

 
Fig. 259 reports the total volume fraction of the particle phase, and compares it with the 
experimental measurements of Mathiesen et al. (2000) and the Euler-Lagrange simulations of He 
et al. (2009). The numerical simulations performed with QMOM predict particle segregation in 
fair agreement with the experimental data, showing the formation of a core-annular structure, as 
expected in riser flows. However the particle concentration at the wall is slightly under-
estimated, even though experimental data are not perfectly symmetric, due to the original 
configuration of the experimental system, where particles are fed by means of an injection on 
one side of the riser. 
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Similar results were obtained if the volume fraction of the particles with dp1 = 120 µm is 
considered, as shown in Fig. 259, which shows the values predicted by QMOM are in good 
agreement with both the Euler-Lagrange predictions and the Euler-Euler predictions of 
Mathiesen et al. (2000). Experimental measurements were not available for this quantity. 
A significantly different behavior is observed in Fig. 260, which reports the volume fraction of 
the heaviest particles. QMOM simulations predict almost no particle segregation, in agreement 
with what is observed already by Mathiesen et al. (2000) with their Euler-Euler simulations. 
Note that the comparison with Mathiesen’s simulations can only be qualitative, since their 
numerical configuration is different from the numerical configuration used by He et al. (2009) 
and reproduced in this work. QMOM predictions however are not in agreement with the 
Lagrangian results provided by He et al. (2009), where significant radial segregation is observed.  

 
Figure 259: Volume fraction of particles with dp1 = 120 µm. 
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Figure 260.  Volume fraction of particles with dp1 = 185 µm. 

 

Figure 161 shows the velocity of the particles with diameter of 120 µm. QMOM predictions 
provide a quantitative prediction of the negative particle velocity at the wall in agreement with 
both the Euler-Lagrange prediction and the Euler-Euler predictions of Mathiesen et al. (2000). 
The predicted value of the particle velocity at the wall agrees well also with the experimental 
data, which, however, are not symmetric and provide two different values at the sides of the 
riser. QMOM  over-estimates the particle velocity at the centre of the riser. This cannot be 
explained considering difference in the drag law, since the same correlation adopted by He at al. 
(2009) was used. However, He and co-workers modeled the fluid-phase turbulence with a sub-
grid scale model (which would tend to flatten the mean velocity profile), while turbulence effects 
were neglected in the QMOM simulation. 
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Figure 261.  Velocity of particles with dp1 = 120 µm. 

 
The velocity of particles with diameter of 185 µm is reported in Fig. 262. QMOM simulations 
are in agreement with the Euler-Euler simulations of Mathiesen et al. (2000), and predict the 
velocity near the walls and at the centre of the riser in agreement with the experiments, since the 
same observations done above on the asymmetry of the experimental data apply. In general 
however, the values of the velocity predicted by QMOM for this type of particles are under-
estimated in comparison to other simulations and published results.  

To conclude, QMOM simulations were performed considering the bi-disperse riser flow 
of Mathiesen et al. (2000). QMOM satisfactorily predicts both the volume fraction profiles and 
the velocity profiles in qualitative agreement with experimental data and Euler-Lagrange 
simulations of He et al. (2009). Quantitative agreement was observed for the total volume 
fraction profiles, the volume fraction profiles of the smallest particles, and the wall velocity of 
both particle species. Particle velocity was over-estimated at the center of the riser for the 
smallest particles, and under-estimated for the largest particles. No significant segregation was 
observed for the largest particles.  
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Figure 262.  Velocity of particles with dp1 = 185 µm. 

 

Electrostatic Model Implementation in MFIX 
An electrostatic force was added to the acceleration term. The electrostatic model 

equations are 
 

 
 

As a consequence, an additional Poisson equation is solved using the PDE solver already 
available into MFIX. 

An electrostatic separation case is simulated using a binary system in a vertical channel. 
The geometry is two-dimensional; with two parallel plates separated by a width of 0.1 m and 
height of 1.0 m. Periodic boundary conditions are applied in the flow direction, ensuring a 
constant mass flow rate of the gas phase. Walls are assumed to have equal and opposite non-zero 
electric potential. Specular reflective boundary conditions for the particle phase are assumed.  
The full Boltzmann collisional integral is solved to compute the collisions between the two 
species.  
The particle density is 2400 kg/m3, each species has a particle volume fraction equal to 0.0125, 
and the particle size is assumed to be the same (120µm) for both the species. The particle charge 
is 1.0 x 10-5 C/m3 (species 1 is positively charged and species 2 is negatively charged). The 
potential on the left wall is set to -10000 V, while the one on the right wall is set at 10000 V.  
At time zero, species 1 and species 2 are uniformly distributed. Species 1 is positively charged 
and species 2 is negatively charged. The left wall boundary condition has a negative and the right 
wall a positive electric potential. The contours of particle volume fraction at two flow times are 
shown in figure 263 and figure 264.  
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   (a)         (b)            
Figure 263.  Contours of species-1 volume fraction: (a) Time = 0.0 sec (b) Time = 0.15 sec. 

Figure 264.  Contours ofspecies-2 volume fraction: (a) Time = 0.0 sec (b) Time = 0.15 sec. 

   (a)        (b) 
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As expected, the positively charged of species 1 segregated towards the left wall, where a 
negative potential is applied and similarly the negatively charged of species 2 segregated towards 
the right wall, where a positive potential is applied. The time for separation of the charged 
species is dependent upon the charge of the species and the applied potential at the wall. The 
simple test case illustrated that the implementation correctly captures the physical behavior of 
charged particles. 

 
 (Sundaresan reporting.)  As part of subtask 4.6.5 we turned to the validation of 

the GHD polydisperse kinetic theory based model with the fluid-particle drag model developed 
in Task 2.2 against the experimental PSRI data set for binary systems gathered as part of  Task 
4.5.  The large size of the PSRI riser make highly resolved full-scale simulations infeasible.  
Consequently,  it was decided by the project team that we should perform fine scale simulations 
of binary gas-particle flow in axially periodic domains in order to compare the radial segregation 
profiles obtained from simulation with experimental results from the PSRI riser experiments with 
different binary particle size distributions.  A list of test cases can be found in Table 23.  The first 
three cases highlighted in red are intended to examine the species segregation behavior of 
differently sized particles, while the last three cases in blue are focused on interrogation of the 
species segregation behavior of different density particles. 

 
Table 23.  List of two-dimensional simulations performed.  Here, is the density of the ith 
particle type, di  is the density of the ith particle type,  is the volume fraction of the ith particle 
type,  is the total volume fraction, and Us is the superficial velocity of the gas phase. In all 
simulations below a constant fluid density and viscosity was used, namely 

and  . 
 

 
 

We have performed a set of 2D axially periodic channel flow simulations using GHD 
theory with the fluid-particle drag model developed in Task 2.2 (Holloway et al. (2010)) using 
free slip boundary conditions for the solid phases and a no-slip boundary condition for the gas 
phase.  In the GHD theory model framework we have varied the coefficient of restitution to 
examine its impact on the observed degree of segregation.  In addition, we have also performed 
2D axially periodic channel flow simulation using IA kinetic theory to compare with the 
predictions of GHD theory.  The lateral width of the channel in all cases was taken to be equal to 
the diameter of the riser used in the PSRI experiments.  We find that bidisperse systems, be it 
density or size difference, exhibit core-annular flow behavior as evidenced in Figure 265 (a)-(f).  
It should be noted that here that the dimensionless position from the centerline of the channel is 
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denoted via the variable . In Figures 265 (a)-(c) we show the volume fraction profiles 
obtained from simulation of Case 2 (see Table 23) using GHD theory with a coefficient of 
restitution of 0.99 for Figure 265 (a), GHD theory with a coefficient of restitution of 0.90 for 
Figure 265 (b), and IA theory with a coefficient of restitution of 0.99 for Figure 265 (c).  It is 
clear that all three different simulation results shown in Figures 265 (a)-(c) exhibit core annular 
flow behavior.  In Figures 265 (d)-(f) we show simulation results for Case 5 (i.e. each particle 
species has a different density) where we have used GHD theory with a coefficient of restitution 
of 0.99 GHD theory with a coefficient of restitution of 0.90 for Figure 265 (e), and IA theory 
with a coefficient of restitution of 0.99 for Figure 265 (f). Again, a clear core-annular flow 
profile is evident for light and heavy particle species.   

 
                                      (a)                                                                      (b) 

 
                                        (c)                                                                         (d) 
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                 (e)                                                                         (f) 

Figure 265.  Species volume fraction obtained from axially periodic two-dimensional gas-
particle flow simulations is given as a function of dimensionless radial coordinate for 
(a) Case 2 using GHD theory with a coefficient of restitution of 0.99 (see Table 23), (b) Case 2 
using GHD theory with a coefficient of restitution of 0.90, (c) Case 2 using IA theory with a 
coefficient of restitution of 0.99, (d) Case 5 using GHD theory with a coefficient of restitution of 
0.99, (e) Case 5 using GHD theory with a coefficient of restitution of 0.90, and (f) Case 5 using 
IA theory with a coefficient of restitution of 0.99. 
 

Figures 266(a)-(d) show the profiles of the volume percent of the heavy particle species.  
Here to be consistent with the nomenclature used in reporting the experimental measurements 
performed at PSRI we invoke the following definition of volume percent 

       

where  indicates a time-averaged quantity, and n is the number of particle species.  Here,     
Vol % is based upon the heavier particle type consistent with the experimental measurements of 
segregation obtained in the PSRI experiment.  Figures 266(a)-(d) reveal that, according to GHD 
theory, decreasing the coefficient of restitution enhances the degree of segregation of heavier 
particles toward the wall.  It is also notable the GHD theory predicts a larger degree of radial 
segregation when the coefficient of restitution decreases in cases where particle species have 
different sizes or densities.   

The IA and GHD theories predict qualitatively similar radial segregation profiles except 
near the walls in Figure 266(a) and 7 (b).  We believe that this discrepancy arises as a result of 
insufficient sampling when we construct our time averages.    

In all cases both GHD and IA theories do not capture the radial segregation profiles 
observed in the PSRI experimental data.  One source of this discrepancy could be due to the fact 
that the domain-averaged volume fractions used in the simulation cases in Table 23 were 
deduced from pressure drop data in the PSRI riser, which has been shown to be subject to large 
errors (Louge and Chang (1990)).  In addition, the PSRI experimental data set does not contain 
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individual species or total particle volume fraction data as a function of location in the riser due 
the experimental difficulty of measuring species particle volume fraction in bidisperse systems.  
As such, any method for the determination of the total volume fraction and species volume 
fractions that were present in this experiment a posteriori will be inherently subject to error. 

 
(a)                                                                       (b) 

 
                                        (c)                                                                       (d) 
Figure 266.  Comparison of volume percent profiles obtained in PSRI experiments and results 
obtained from axially periodic two-dimensional gas-particle flow simulations. (a) The radial 
segregation profiles obtained from simulations of GHD and IA kinetic theories (using a coefficient of 
restitution of 0.99) of Case 2 are compared with segregation data obtained from PSRI experiments.  
(b) The radial segregation profiles obtained from simulations of GHD and IA kinetic theories (using 
a coefficient of restitution of 0.90) of Case 2 are compared with segregation data obtained from PSRI 
experiments.   (c) The radial segregation profiles obtained from simulations of GHD and IA kinetic 
theories (using a coefficient of restitution of 0.99) of Case 4 are compared with segregation data 
obtained from PSRI experiments.  (d) The radial segregation profiles obtained from simulations of 
GHD and IA kinetic theories (using a coefficient of restitution of 0.90) of Case 4 are compared with 
segregation data obtained from PSRI experiments. 
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Another source of discrepancy between the experimental data and simulation results could arise 
as a result of the fact that our simulations presume the azimuthal variation in particle 
concentration has a negligible effect on the segregation profile.  To test this hypothesis we 
performed an axially periodic cylindrical gas-particle flow calculation using 30 radial grids and 
40 azimuthal grids, while limiting the number of axial grids to unity; thus, only radial and 
azimuthal variations in particle volume fraction are permitted.  In this study the IA polydisperse 
kinetic theory was used because it had provided numerical simulation results that resemble 
experimentally observed segregation profiles more closely than GHD theory.  The simulation 
results are shown via color plots of the particle volume fraction field that are given in a time 
series in Figure 267.  The particle volume fraction is clearly larger at the wall consistent with 
core-annular flow.  In addition, at late times it is observed that a concentrated cluster near the 
wall begins to rotate about the tube axis, with an azimuthal velocity that is roughly constant (see 
Figure 267). Particle volume fraction variations consistent with our observations have been 
reported previously in the research literature (Benyahia et al. (2007); Benyahia (2008)). These 
sustained azimuthal variations in particle volume fraction indicate that a two-dimensional 
simulation of the PSRI riser will not properly account for the azimuthal variations in particle 
concentration that are observed to exist via simulation.  To interrogate the effect azimuthal 
particle volume fraction variations we compare the average radial variation of species volume 
fraction obtained from 2D simulations to those obtained from axially periodic simulations in 
Figures 268(a) – (b).  It is clear that the azimuthal variation in particle volume fraction produces 
a higher concentration of particles near the wall.  This serves as evidence that azimuthal particle 
volume fraction variations could also be responsible for the observed differences between 
simulation and experimental results.  
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Figure 267.  Colorplots are given of the particle volume fraction φ  field in a time progression.  
These simulation results are obtained from simulations of Case 2 (see Table 23). 
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Figure 268.  Radial variation of (a) ϕ1  and (b) ϕ2  predicted from 3D axially symmetric and 
2D channel flow simulations.   

 
Goal V:  Project Management 
 
Task 5.1: Project Management (Hrenya and other investigators).   

This task will be led by Prof. Hrenya, with input from all investigators as needed to meet 
the reporting requirements.  Specific requirements include 

(i) Management Plan.  Plan the overall work scope and coordinate with all team 
members and NETL.  Review the contract work scope, establish key milestones 
and dates for deliverables, negotiate sub-award agreements, and submit final 
plan to DOE within 30 days after the start of the project.  

(ii) Progress Reports. Submit the mandated monthly/quarterly/annual reports, and 
execute the requisite managerial responsibilities and coordinating efforts.  
Includes updates to management plan generated in Task 6.1  

Final Report.  Prepare and submit the final technical report. 
 

Prior to the submission of this final report, all quarterly reports have been submitted.  The 
submission of this final report represents the last reporting requirement.  All milestones have 
been met, and the budgets are fully spent. 
 

3. PRODUCT AND/OR TECHNOLOGY TRANSFER ACTIVITIES 
 
Colorado: 
Journal Publications 
1) Murray, J.A., S. Benyahia, P. Metzger, and C. M. Hrenya, “Continuum representation of 

a continuous size distribution of particles engaged in rapid granular flow,” Physics of 
Fluids, submitted. 

2) Garzó, V., S. Tenneti, S. Subramaniam, and C. M. Hrenya, “Enskog kinetic theory for 
monodisperse gas-solid flows,” Journal of Fluid Mechanics, submitted. 
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3) Chew, J.W., D. M. Parker, and C. M. Hrenya, “Elutriation and species segregation 
characteristics of polydisperse mixtures of Group B particles in a dilute CFB riser,” AIChE 
Journal, in press. 

4) Chew, J. W., R. Hays, J. G. Findlay, T. M. Knowlton, S. B. R. Karri, R. A. Cocco and C. M. 
Hrenya, “Reverse Core-Annular Flow of Geldart Group B Particles in Risers,” Powder 
Technology, in press; invited paper for special issue.  

5) Murray, J. A., C. M. Hrenya, and V. Garzó, “Enskog Theory for Polydisperse Granular 
Mixtures. III. Comparison of dense and dilute transport coefficients and equations of state 
for a binary mixture,” Powder Technology, 22, 24-36 (2012). 

6) Chew, J. W., R. Hays, J. G. Findlay, T. M. Knowlton, S. B. R. Karri, R. A. Cocco and C. M. 
Hrenya, “Cluster characteristics of Geldart Group B particles in a pilot-scale CFB riser.  I.  
Monodisperse systems,” Chemical Engineering Science, 68, 72-81 (2012). 

7) Chew, J. W., R. Hays, J. G. Findlay, T. M. Knowlton, S. B. R. Karri, R. A. Cocco and C. M. 
Hrenya, “Cluster characteristics of Geldart Group B particles in a pilot-scale CFB riser.  II.  
Polydisperse systems,” Chemical Engineering Science, 68, 82-93 (2012). 

8) Chew, J. W., D. M. Parker, R. A. Cocco and C. M. Hrenya, “Cluster characteristics of 
continuous size distributions and binary mixtures of Group B particles in dilute riser flow,” 
Chemical Engineering Journal, 178, 348-358 (2011). 

9) Chew, J. W. and C. M. Hrenya, “Link between bubbling and segregation patterns in gas-
fluidized beds with continuous size distributions,” AIChE Journal, 57, 3003-3011 (2011). 

10) Mitrano, P. P., S. R. Dahl, D. J. Cromer, M. S. Pacella, and C. M. Hrenya, “Instabilities in 
the homogeneous cooling of a granular gas: A quantitative assessment of kinetic-theory 
predictions,” Physics of Fluids, 23, art. no. 093303, 8 pages (2011). 

11) Chew, J. W., R. Hays, J. G. Findlay, T. M. Knowlton, S. B. R. Karri, R. A. Cocco and C. M. 
Hrenya, “Impact of material property and operating conditions on mass flux profiles of 
monodisperse and polydisperse Group B particles in a CFB riser,” Powder Technology, 214, 
89-98 (2011). 

12) Chew, J. W., R. Hays, J. G. Findlay, T. M. Knowlton, S. B. R. Karri, R. A. Cocco and C. M. 
Hrenya, “Species segregation of binary mixtures and a continuous size distribution of Group 
B particles in riser flow,” Chemical Engineering Science, 66, 4595-4604 (2011). 

13) Holloway, W., S. Benyahia, C. M. Hrenya, and S. Sundaresan, “Meso-scale structures of 
bidisperse mixtures of particles fluidized by a gas,” Chemical Engineering Science, 66, 
4403-4420 (2011). 

14) Passalacqua, A., J. E. Galvin, P. Vedula, C. M. Hrenya, and R. O. Fox, “A quadrature-based 
kinetic model for dilute non-isothermal granular flows,” Communications in Computational 
Physics, 10, 216-252 (2011). 

15) Hrenya, C. M., “Kinetic theory for granular materials: Polydispersity,” in Computational 
Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice, S. Pannala, M. 
Syamlal, and T. O’Brien (eds.), IGI Global, Hershey, PA (2011). 

16) Chew, J. W., J. Wolz, and C. M. Hrenya, “Axial segregation in bubbling gas-fluidized beds 
with Gaussian and lognormal Distributions of Geldart group B particles,” AIChE Journal, 
56, 3049-3061 (2010). 

17) Tenneti S., R. Garg, C. M. Hrenya, R. O. Fox and S. Subramaniam, “Direct numerical 
simulation of gas-solid suspensions at moderate Reynolds number:  Quantifying the 
coupling between hydrodynamic forces and particle velocity fluctuations,” Powder 
Technology, 203, 57-69 (2010). 
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18) Hrenya, C. M., “Extraction of transport coefficients from molecular dynamics simulations:  
A perspective,” Industrial & Engineering Chemistry Research, 49, 5304-5409 (2010); 
invited paper for special issue honoring Dimitri Gidaspow. 

 
Invited Talks 
1) Keynote:  “Polydisperse Gas-Solid Fluidization:  Segregation, Bubbles, and Clusters,” 6th 

Sino-U.S. Chemical Engineering Conference, Beijing, China (Nov 2011). 
2)  “Experiments in Gas-Solid Fluidized Beds using Continuous Particle Size Distributions,” 

ZCAM Workshop on Granular and Active Fluids, Zaragoza, Spain (Sep 2011). 
3) “Polydispersity Model Development & Validation:  Report on Findings,” DOE NETL 2010 

Workshop on Multiphase Flow Science, Pittsburgh, PA (Aug 2011). 
4) “Segregation in Rapid Flows:  Continuum and DEM,” Granular Flows Summer School, 

University of Maryland, MD (Jun 2011). 
5) “An Overview of Modeling Activities for Solids Flows,” Hemlock Semiconductor 

Corporation, Midland, MI (Mar 2011). 
6) “Experiments and Model Development for Polydisperse, Gas-Fluidized Systems,” DOE 

NETL 2010 Workshop on Multiphase Flow Science, Pittsburgh, PA (May 2010). 
7) “Enskog-based Hydrodynamic Description of Gas-Solid Suspensions,” Southern Workshop 

on Granular Materials, Vina del Mar, Chile (Dec 2009). 
8) “Molecular Dynamics-Driven Transport Coefficients for Granular Flows: A Perspective,” 

Festschrift Session for Professor Dimitri Gidaspow's 75th Birthday, Annual Meeting of the 
American Institute of Chemical Engineers, Nashville, TN (Nov 2009). 

9) “Benefits and Shortfalls of Modeling Tools for Solids Flows,” UOP / Honeywell Invitational 
Lecture Series, Chicago, IL (May 2009). 

10) “Kinetic Theory of Polydisperse Granular Flows and Validation Data,” DOE NETL 
Workshop on Multiphase Flow Science, Morgantown, WV (Apr 2009). 

 
Contributed Conference Presentations 
1) Mitrano, P.P., A. Hilger and C. M. Hrenya, “Instabilities in a Freely Cooling Granular Gas: 

A Quantitative Comparison of DEM simulations and Kinetic-Theory-based models,” 64th 
Annual Meeting of American Physical Society Division of Fluid Dynamics, Baltimore, MD 
(Nov 2011). 

2) Chew, J. W., D.M. Parker and C. M. Hrenya, “Elutriation and Species Segregation 
Characteristics of Polydisperse Mixtures of Group B Particles In a Dilute CFB Riser,” 
Annual Meeting of the American Institute of Chemical Engineers, Minneapolis, MN (Oct 
2011). 

3) Chew, J. W., R. C. Hays, D. M. Parker, J. G. Findlay, T. M. Knowlton, S. B. R. Karri, R. A. 
Cocco and C. M. Hrenya, “Cluster Characteristics of Polydisperse Group B Particles In a 
CFB Riser,” Annual Meeting of the American Institute of Chemical Engineers, Minneapolis, 
MN (Oct 2011). 

4) Murray, J. A. and C. M. Hrenya, “Discrete Approximation of a Continuous Size Distribution 
for Use In Kinetic-Theory Predictions of Solids Flows,” Annual Meeting of the American 
Institute of Chemical Engineers, Minneapolis, MN (Oct 2011). 

5) Mitrano, P.P.,  S. R. Dahl and C. M. Hrenya, “Impact of Friction On Instabilities In the 
Homogenous Cooling of Granular Materials,” Annual Meeting of the American Institute of 
Chemical Engineers, Minneapolis, MN (Oct 2011). 
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6) Cromer, D. J., S. R. Dahl, P. P. Mitrano, M. S. Pacella, and C. M. Hrenya, “Predicting the 
Critical Length Scale for Clustering Instabilities in the Homogenous Cooling of Inelastic 
Particles,” Annual Meeting of the American Institute of Chemical Engineers, Salt Lake City, 
UT (Nov 2010). 

7) Chew, J. W. and C. M. Hrenya, “Linking Bubble Characteristics and Species Segregation in 
Bubbling Gas-Fluidized Beds,” Annual Meeting of the American Institute of Chemical 
Engineers, Salt Lake City, UT (Nov 2010). 

8) Murray, J. A., C. M. Hrenya and V. Garzo, “Extension of Kinetic Theory for Granular 
Binary Mixtures to Moderately Dense Flows,” Annual Meeting of the American Institute of 
Chemical Engineers, Salt Lake City, UT (Nov 2010). 

9) Chew, J. W., C. M. Hrenya, R. A. Cocco, R. C. Hays, J. G. Findlay, S. B. R. Karri, and T. 
M. Knowlton, “Observation of Reverse Core-Annulus Behavior in Risers and Its Relation to 
Stokes Number,” Annual Meeting of the American Institute of Chemical Engineers, Salt 
Lake City, UT (Nov 2010) 

10) Chew, J., J. Wolz, and C. M. Hrenya, “Linking bubbling and species segregation patterns in 
low-velocity fluidized beds (poster),” NETL 2010 Workshop on Multiphase Flow Science, 
Pittsburgh, PA (May 2010). 

11) Chew, J. W., C. M. Hrenya, R. A. Cocco, J. G. Findlay, S. B. R. Karri, T. M. Knowlton, 
“Observations of reverse core-annular flow in risers with Geldart group B particles,” Sixth 
World Congress of Particle Technology 6, Nuremberg, Germany (Apr 2010). 

12) Pacella, M., D. Cromer, and C. M. Hrenya, “Determination of a Critical Length Scale for 
Clustering Instability in Granular Systems (poster),” Annual Meeting of the American 
Institute of Chemical Engineers, Nashville, TN (Nov 2009). 

13) Chew, J., C. M. Hrenya, R. A. Cocco, J. G. Findlay, T. M. Knowlton, “Riser-Flow 
Measurements of Polydisperse Geldart Group B Particles,” Annual Meeting of the American 
Institute of Chemical Engineers, Nashville, TN (Nov 2009). 

14) Chew, J., J. Wolz, C. M. Hrenya, “Axial Segregation in Bubbling, Gas-Fluidized Beds with 
Continuous Size Distributions,” Annual Meeting of the American Institute of Chemical 
Engineers, Nashville, TN (Nov 2009). 

15) Chew, J., J. Wolz, C. M. Hrenya, “Experiments on the Local Segregation Patterns of Gas-
Fluidized Beds with Continuous Size Distributions (poster),” Powders & Grains 2009, 
Golden, CO (Jul 2009). 

16) Viswanathan, H., C. M. Hrenya, R. O. Fox, “Representation of a Continuous Particle Size 
Distribution Using a New Polydisperse Kinetic Theory,” Annual Meeting of the American 
Institute of Chemical Engineers, Philadelphia, PA (Nov 2008). 

 
Iowa State (Fox): During the course of this project, 1 book chapter and 14 journal papers were 
produced, along with 18 invited talks and 26 conference contributed presentations. 
 
Book Chapters 
1) Passalacqua, A., P. Vedula, R. O. Fox, Quadrature-based moment methods for polydisperse 

gas-solid flows. In S. Pannala, M. Syamlal, T. O’Brien (Ed.),  Computational gas-solids 
flows and reacting systems: theory, methods and practice, In press, IGI Global, Hershey, 
USA. 
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Journal Publications 
1) De Chaisemartin, S., L. Freret, D. Kah, F. Laurent, R. O. Fox, J. Reveillon, and M. Massot, 

“Eulerian models for turbulent spray combustion with polydispersity and droplet crossing,” 
Comptes Rendus Mecanique 337, 438-448, 2009. 

2) Kah, D., F. Laurent, L. Freret, S. de Chaisemartin, R. O. Fox, J. Reveillon, and M. Massot, 
“Eulerian quadrature-based moment models for dilute polydisperse evaporating sprays,” 
Flow, Turbulence, and Combustion, 85, 649-676 (2010). 

3) Fox, R. O., “Higher-order quadrature-based moment methods for kinetic equations,” Journal 
of Computational Physics 228, 7771-7791, 2009. 

4) Fox, R. O., “Optimal moment sets for the multivariate direct quadrature method of 
moments,” Industrial & Engineering Chemistry Research 48, 9686-9696, 2009. 

5) Liu, H., Z. Wang, and R. O. Fox, “A level set approach for dilute non-collisional fluid-
particle flows,” Journal of Computational Physics,230, 920-936 (2011). 

6) Desjardin, O., R. O. Fox, P. Villedieu, “A quadrature-based moment method for dilute fluid-
particle flows”, Journal of  Computational Physics, 227, 2514 – 2539, 2008. 

7) Fox, R. O., “A quadrature-based third-order moment method for dilute gas-particle flows”, 
Journal of Computational Physics 227, 6313, 2008. 

8) Fox, R. O., F. Laurent, and M. Massot, “Numerical simulation of spray coalescence in an 
Eulerian framework: direct quadrature method of moments and multi-fluid method”, Journal 
of Computational Physics 227, 3058, 2008. 

9) Fox, R. O., & P. Vedula, 2009, “Quadrature-based moment method for moderately dense 
polydisperse gas-particle flows”, Ind. Eng. Chem. Res., 49 (11), pp 5174–5187. 

10) Passalacqua, A., R. O. Fox, “Implementation of an iterative solution procedure for multi-
fluid gas-particle flow models on unstructured grids”, Powder Technology, 213, pp. 174-
187, 2011. 

11) Vikas, V., Z. J. Wang, A. Passalacqua, R. O. Fox, “Realizable high-order finite-volume 
schemes for quadrature-based moment method”, Journal of Computational Physics, Vol. 
230, Issue 13, pp. 5328-5352, 2011. 

12) Passalacqua, A., J. Galvin, P. Vedula, C.M. Hrenya, R. O. Fox, “A quadrature-based kinetic 
model for dilute non-isothermal granular flows”, Communications in Computational 
Physics, 10, pp. 216-252, 2011. 

13) Passalacqua, A., R. O. Fox, “Advanced continuum modelling of gas-particle flows beyond 
the hydrodynamic limit”, Applied Mathematical Modelling, Volume 35, Issue 4, pp. 1616-
1627, 2011. 

14) Passalacqua, A., R. O. Fox, R. Garg, S. Subramaniam, “A fully coupled quadrature-based 
moment method for dilute to moderately dilute fluid-particle flows”, Chemical Engineering 
Science, Vol. 65, pp. 2267-2283, 2010. 

 
Invited Talks 
1) Fox, R. O., “A quadrature-based moment method for polydisperse gas-solid flows,” 

Departmental Seminar, Ecole Centrale, Paris, France, 2009. 
2) Fox, R. O., “CFD modeling of chemical reactors: Current capabilities and future directions,” 

ChE Distinguished Lecturer Series, University of Utah, Salt Lake City, UT, 2009. 
3) Fox, R. O., “CFD modeling of chemical reactors: Current capabilities and future directions,” 

Departmental Seminar, Chemical Engineering, University of Minnesota, Minneapolis, MN, 
2009. 
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4) Fox, R. O., “Kinetic models for multiphase flow, kinetic description of multiscale 
phenomena,” CSCAMM, University of Maryland, College Park, MD, 2009. 

5) Fox, R. O., “Multiphase CFD for fluid-particle flows: Beyond the two-fluid model,” 
Keynote Speaker, CFD2009: The 7th International Conference on CFD in the Minerals and 
Process Industries, Melbourne, Australia, 2009. 

6) Fox, R. O., “Quadrature-based moment methods for multiphase chemically reacting flows,” 
Symposium in Honor of Prof. S. B. Pope, Cornell University, Ithaca, NY, 2009. 

7) Fox, R. O., “Quadrature-based moment methods for polydisperse gas-solid flows,” The 5th 
Sino-US Conference of Chemical Engineering, Beijing, China, 2009. 

8) Fox, R. O., “Quadrature-based moment methods,” International Workshop on Mathematics 
in Chemical Kinetics and Engineering 2009, Ghent, Belgium, 2009. 

9) Fox, R. O., “Advanced reactive multiphase flows,” Keynote Speaker, 3rd Latin American 
CFD Workshop Applied to the Oil Industry, Rio de Janeiro, Brazil, 2008. 

10) Fox, R. O., “CFD modeling of chemical reactors: Current capabilities and future directions,” 
Departmental Seminar, Chemical Engineering, The Ohio State University, Columbus, OH, 
2008. 

11) Fox, R. O., “CFD modeling of chemical reactors: Polydisperse multiphase flows,” 
ArcelorMittal, Mezieres-les-Metz, France, 2008. 

12) Fox, R. O., “Quadrature-based moment methods for dilute gas-solid flows,” Departmental 
Seminar, Chemical Engineering, Illinois Institute of Technology, Chicago, IL, 2008. 

13) Fox, R. O., “Quadrature-based moment methods for simulation of collisional gas-particle 
flows,” Departmental Seminar, Ecole Centrale, Paris, France, 2008. 

14) Fox, R. O., “Models for polydisperse multiphase flows,” Plenary Lecture, 45th European 
Two-Phase Flow Group Meeting, IMFT, Toulouse, France, 2007. 

15) Fox, R. O., “Quadrature-based moment methods for Boltzmann-like equations,” 
Computational and Mathematical Aspects of Material and Fluids, Iowa State University, 
Ames, IA, 2007. 

16) Fox, R. O., “Quadrature-based moment methods for Boltzmann-like equations,” Reaction 
Engineering International, Salt Lake City, UT, 2007. 

17) Fox, R. O., “Quadrature-based moment methods for polydisperse multiphase flows,” 
Departmental Seminar, Fluid Mechanics, IMFT, Toulouse, France, 2007. 

18) Fox, R. O., “Quadrature-based moment methods for polydisperse multiphase flows,” CFD 
Group, CERFACS, Toulouse, France, 2007. 

 
Contributed Conference Presentations 
1) Passalacqua, A., R. O. Fox, “Numerical simulation of turbulent gas-particle flow in a riser 

using a quadrature-based moment method”, 7th International Conference on Multiphase 
Flow (ICMF), Tampa, Florida, May 30th – June 4th, 2010. 

2) Vikas, V., Z. J. Wang, A. Passalacqua, R. O. Fox, “A fully coupled fluid-particle solver 
using quadrature-based moment method with higher-order realizable schemes on 
unstructured grids”, 7th International Conference on Multiphase Flow (ICMF), Tampa, 
Florida, May 30th – June 4th, 2010. 

3) Vikas, V., Z. J. Wang, A. Passalacqua, R. O. Fox, “Development of High-Order Realizable 
Finite-Volume Schemes for Quadrature-Based Moment Method”, 48th AIAA Aerospace 
Sciences Meeting, AIAA, Orlando, Florida, January 4th – 8th, 2010. 
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4) Passalacqua, A., R. O. Fox, “Multiphase CFD for gas-particle flows: beyond the two-fluid 
model”, Seventh International Conference on CFD in the Minerals and Process Industry, 
CSIRO, Melbourne, Australia, December 9th – 11th, 2009. 

5) Passalacqua, A., L. Marmo, CFD modelling of gas-solid flow in risers, ANIMP Multiphase 
Flow Engineering Section 9th International Conference “Multiphase Flow in Industrial 
Plants” Rome, Italy, September 20th-21st, 2004. 

6) Passalacqua, A., R. O. Fox, “Continuum Description Of Poly-disperse Multiphase Fluid-
particle Flows With Quadrature-based Moment Methods”, 48th Annual Technical 
Conference of Society of Engineering Sciences, Northwestern University, Evanston, IL, 
October 12-14, 2011. 

7) Passalacqua, A., R. O. Fox, “Implementation of an iterative solution procedure for multi-
fluid gas-particle flow models on unstructured grids – Multi-fluid models in OpenFOAM”, 
NETL 2011 Workshop on Multiphase Flow Science, Airport Marriott Station Square, 
Pittsburgh, PA, August 16th – 18th , 2011. 

8) Passalacqua, A., C. Yuan, R. O. Fox, P. Vedula, V. Vikas, Z. J. Wang, “Advanced 
quadrature-based models for gas-particle flows”, ASME 2010 3rd Joint US-European Fluids 
Engineering Summer Meeting, Open forum fluid-particle interactions in turbulence, August 
1st-5th, Montreal, Canada, FEDSM-ICNMM2010-31320. 

9) Fox, R. O., A. Passalacqua, C. Yuan, V. Vikas, Z. J. Wang, “Quadrature-based moment 
methods for gas-particle flows”, 2010 SIAM Annual Meeting, Numerical Methods for 
Kinetic Equations and Related Models, Pittsburgh, PA, July 12th –16th , 2010. 

10) Passalacqua, A., R. O. Fox, “Fully three-dimensional simulations of riser flows with a third-
order quadrature-based moment method”, NETL 2010 Workshop on Multiphase Flow 
Science, Pittsburgh Airport Marriot Hotel, Coraopolis, PA, May 4th – 6th, 2010 

11) Passalacqua, A., J. Galvin, P. Vedula, C. M. Hrenya, R. O. Fox, “A quadrature-based kinetic 
model for a dilute non-isothermal granular gas”, 62nd Annual Meeting of the APS Division 
of Fluid Dynamics, Minneapolis, November 22nd – 24th, 2009. 

12) Passalacqua, A., R. Garg, S. Subramaniam, R. O. Fox, “A fully coupled third-order 
quadrature-based moment method for the simulation of gas-particle flows”, AIChE Annual 
Meeting, Nashville, TN, 8th–13rd November, 2009. 

13) Passalacqua, A., P. Vedula, C. M. Hrenya, R. O. Fox, “A kinetic model for a non-isothermal 
granular gas with bi-disperse particles”, AIChE Annual Meeting, Nashville, TN, 8th–13rd 
November, 2009. 

14) Passalacqua, A., R. O. Fox, “A quadrature-based moment method for gas-particle flows”, 
Kinetic FRG: Annual Meeting (FRG2009), CSCAMM – CSIC building, University of 
Maryland, College Park, MD, September 21st-25th, 2009. 

15) Passalacqua, A., R. O. Fox, “Development of a quadrature-based moment method for 
polydisperse flows and incorporation in MFIX”, NETL 2009 Workshop on Multiphase Flow 
Science, Euro-Suites Hotel, Morgantown, WV, April 22nd-23rd, 2009. 

16) Passalacqua, A., P. Vedula, R. O. Fox, “Solution of the Boltzmann equation for fluid flows 
in microchannels at finite Knudsen numbers with a third-order quadrature-based moment 
method”, AIChE Annual Meeting, Philadelphia, November 16th-21st, 2008. 

17) Passalacqua, A., P. Vedula, C. M. Hrenya, R. O. Fox, “A kinetic-based model for a non-
isothermal granular gas with mono- and bi-dispersed particles”, AIChE Annual Meeting, 
Philadelphia, November 16th-21st, 2008. 



FINAL TECHNICAL REPORT (5/18/07 – 12/31/11) DE-FC26-07NT43098 
 
 
 

 331 

18) Freret, L., F. Laurent, S. de Chaisemartin, D. Kah, R. O. Fox, P. Vedula, J. Reveillon, O. 
Thomine, and M. Massot, “Turbulent combustion of polydisperse evaporating sprays with 
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Princeton (Sundaresan): During the course of this project, 5 journal papers were produced, 
along with 8 conference contributed oral presentations and 3 conference contributed poster 
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Journal Publications 
1) Yin, X., and S. Sundaresan, “Drag Law for Bidisperse Gas-Solid Suspensions Containing 

Equally Sized Spheres,” Industrial and Engineering Chemistry Research, 48, 227-241, 
(2008). 

2) Yin, X., and S. Sundaresan, “Fluid-particle drag in low-Reynolds-number polydisperse gas-
solid suspensions,” AIChE Journal, 55, 1352-1368, (2009). 

3) Holloway, W., X. Yin, and S. Sundaresan, “Fluid-particle drag in inertial polydisperse gas-
solid suspensions,” AIChE Journal, 56, 1995-2004, (2010). 
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5) Holloway, W., J. Sun, and S. Sundaresan, “Effect of microstructural anisotropy on the fluid-
particle drag force and the stability of the uniformly fluidized state,” J. Fluid Mech. (in 
revision) 

 
Contributed Conference Oral Presentations 
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2) Yin, X., W. Holloway, and S. Sundaresan, “Fluid-Particle Drag in Bidisperse Gas-Solid 
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suspensions,” National Energy Technology Laboratory Multiphase Flow Workshop, 
Morgantown, WV (April 2009). 

4) Holloway, W., J. Sun, and S. Sundaresan, “Fluid-particle drag in sheared particle 
configurations,” Annual Meeting of the American Institute of Chemical Engineers, 
Nashville, TN (November 2009). 

5) Holloway, W., S. Benyahia, C. M. Hrenya, and S. Sundaresan, “Meso-scale structures in 
binary gas-solid flows,” National Energy Technology Laboratory Multiphase Flow 
Workshop, Pittsburgh, PA (April 2010). 

6) Holloway, W., J. Sun, and S. Sundaresan, “Effect of microstructural anisotropy on the fluid-
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(October 2010). 
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Contributed Conference Poster Presentations 
1) Holloway, W., X. Yin, and S. Sundaresan. Fluid-particle drag in polydisperse gas-solid 

suspensions. Annual Meeting of the American Institute of Chemical Engineers, Nashville, 
TN (November 2009). 

2) Holloway, W., X. Yin, and S. Sundaresan. Fluid-particle drag in polydisperse gas-solid 
suspensions. Graduate Student Symposium, Princeton University, Princeton, NJ (November 
2009). 

3) Holloway, W., J. Sun, and S. Sundaresan.  Fluid-particle drag in sheared particle 
configurations. National Energy Technology Laboratory Multiphase Flow Workshop, 
Pittsburgh, PA  (April 2010). 

 
 
4. NOMENCLATURE 
 
A  area of fluidization column 

fA   Frame acceleration 
A(n)  acceleration of the nth particle

 

A’(n)  fluctuation in the acceleration of the nth particle  

Aj  approximation trace at the jth scale of wavelet decomposition 
Aj  jth component of the particle acceleration vector  

||b   anisotropy along the mean slip 

ijb   anisotropy of fluid-phase Reynolds stress 
b⊥   anisotropy perpendicular to the mean slip 

Lc   low wave number adjusting function constant 
cη   high wave number adjusting function constant 
C   energy spectrum function constant 
Cµ   eddy viscosity model constant 

d   Sauter mean diameter 
dave  average diameter of PSD 
dave  average particle diameter 

id   diameter of the ith particle species 

1 2,d d   particle diameter 

pd   particle diameter 

Sd   Sauter mean diameter 
Dgs  momentum exchange source term 

T
iD   thermal diffusion coefficient 

Dj  detail trace at the jth scale of wavelet decomposition 
mD   particle grid resolution 

D   Sauter mean diameter in a polydisperse suspension 
dp   particle diameter 
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Dα   diameter of the particles belonging to the size class α  

ijD   mutual diffusion coefficient 
F

ijD   mobility coefficient 

ijqD ,   Dufour coefficient 

jdW   Wiener process increment 
e   coefficient of restitution 

me   two-phase mixture energy  
E   energy spectrum function 

fE   mean flow kinetic energy 
f   single-particle velocity distribution function 

g α−f  total gas-solid force per unit volume acting on the particles belonging to the size 
class α  

fi  number density function 
Lf   low wave number adjusting function of energy spectrum function 

fη   high wave number adjusting function of energy spectrum function 
fm  mass-based frequency 

( )f r   weight function 
Fα  normalized drag fluid-particle force acting on the particles belonging to the size 

class α in a polydisperse suspension 
C

α β−F  total contact force acting on the size class α due to collisions with particles 
belonging to the size class β  

D α−F  total force due to viscous and fluctuating pressure contributions acting on the size 
class α  

Fi  force acting on the particle. 
Fi  instantaneous drag force acting on a particle   
Fi

*  modeled instantaneous drag force acting on a particle   
Fq  electrostatic force 
Fx  streamwise component of force 

 D r Rα=F  average force per particle due to viscous and fluctuating pressure contributions 

 r Rα=F  average gas-solid force per particle acting on a particle belonging to the size class    

( ),RemF φ  drag force per particle 
g   gravitational acceleration 
g  gravity 
gij   relative velocity 
g   mean pressure gradient 
( )g r   radial distribution function 

Gr,net,norm local normalized net mass flux 
Gs  overall mass flux 
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h  height at which measurement was taken 
H  height of particle bed 

fI   fluid-phase indicator function 
J   collisional operator 
k   turbulent kinetic energy 

fk   kinetic energy of fluid-phase velocity fluctuations 

0k   reference k 

pk   kinetic energy of solid-phase velocity fluctuations 
Kn  Knudsen number 
l   surface to surface distance 

Kl   dissipation length scale corresponding Kolmogorov scaling 

Tl   dissipation length scale corresponding Taylor microscale scaling 
L   large eddy length scale 

ijL    mobility coefficient 

intL   interstitial distance 

||L   eddy length scale 
L  Characteristic length scale 
L  transformation matrix 
m  mass of the particle 
m  solid loading, i.e., ratio of mass flux to gas flux 
mi, mj  particle mass 
Μ   number of realizations 
M   number of size classes 
Mf  momentum exchange term in the fluid-phase momentum equation 
Mi

0  zero order moment of the i-th specie 
n  number density 

( )sn   normal vector to particle surface towards the fluid phase 
( )fn   normal vector to particle surface towards the solid phase 

N  number of weights and abscissas 
n  power decay of k 
P   solid-phase pressure tensor 
p  pressure 
p  solid-phase pressure 
p, q, r   indexes of the moments (for example m111 has p = q = r = 1) 
pi   quadrature weights N the number of weights 

0p   energy spectrum function constant 
q  conduction of granular energy 
q  electric charge 
r  radius at which measurement was taken 
r   channel half-width 

  dimensionless radial position 
R  radius of column 
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R  radius of riser 
R  radius of the particle 
Re  Reynolds number 
Reλ   Taylor microscale turbulent Reynolds number 
ReL   turbulent Reynolds number 
Rem   mean slip Reynolds number 

,f ijR   fluid-phase Reynolds stress 

||R   two-point velocity correlation along the mean slip 
s  number of discrete species 
scont  segregation index of continuous size distribution  
smin  minimum number of discrete species needed to represent continuous PSD 
sm  Sauter-mean diameter 
S   source in the granular temperature 

SSS   steady state source in the granular temperature 

ijS   strain rate tensor (task 3) 

Ŝ   non dimensional source in the granular temperature 
*

SSS   normalized steady state source in the granular temperature 
Sij  source term in the second moment evolution equation (task 2) 
St  Stokes number 
t   time 

0t   reference time 

colt   dimensional time between successive collisions 
T   granular temperature 
Tij  component of the second moment of particle velocity in Koch’s (1999) notation 

SST   steady state granular temperature 

fu   fluid-phase instantaneous velocity 

, "f iu   fluid-phase velocity fluctuations 

iu   sedimentation velocity of species i 

, "p iu   solid-phase velocity fluctuations 
u, v, w   velocity components 
u   volume-weighted sedimentation velocity 

( )su   mixture mean solid velocity 
Ucf  superficial gas velocity for complete fluidization 
Uf  fluid-phase velocity 
Ug   mean gas velocity 
Ug  Gas velocity 
Us  superficial gas velocity 
Usα  Abscissa at node α 
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tU  terminal settling velocity of an isolated particle using Schiller-Naumann relation 
and Sauter mean diameter 

v   instantaneous particle velocity 

it
v   terminal settling velocity of an isolated particle of species i 
V volume of the computational domain 

fV   fluid-phase volume 
V(n)  velocity of the nth particle

 

V(n,α) velocity of the nth particle belonging to the size classα  
 
V99th-percentile  99th percentile of voltages in trace 
Vi  axial particle velocity 
vi  ith component of the particle velocity in a continuum description 
vi  velocity of the i-th specie 
vi’’ ith component of the particle fluctuating velocity. Fluctuation defined about the 

conditional mean velocity 
r Rα=v  mean velocity of solids belonging to the size classα  

Vmode   mode of voltages in trace 
Vol %   ratio of the flux of a particle of type i compared to the particle mixture 
Vp  particle volume 
Vthreshold  threshold voltage  
W  weight of bed 

W   mean-slip velocity 
(2,1)W  mean slip velocity between size classes 2 and 1 

x   position 
( )Ix   fluid-solid interface position 

X(n)  position of the nth particle 
yα   normalized diameter of the size classα  
 
Greek Symbols 
 
α   index of the size class 
β   high wave number adjusting function constant in task 3 

ijβ  coefficient tensor multiplying the mean slip velocity in the Langevin model (task 
2  

βg, βQMOM drag coefficient 
γ   coefficient tensor multiplying the fluctuating velocity in the Langevin model  
  (task 2) 
Г  Euler’s gamma function 

collΓ   collisional dissipation 

ijΓ   dissipation term in the second moment evolution equation 
δ  particle diameter 
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δ   boundary layer thickness 
δ   Dirac delta function 

ijδ   Kronecker delta 
ΔP/ Δh   differential pressure drop across particle bed 
ΔPbed  pressure drop across particle bed 
∆x  grid cell size 
ε   dissipation of k  

fε   dissipation of fk  
εg   gas volume fraction 
εs   particle phase volume fraction 
ζ   cooling rate due to inelastic collisions 
η    shear viscosity 
η   Komogorov length scale 
κ   wave number 
κ     bulk viscosity 
λ    thermal conductivity 

fµ   dynamic viscosity of the fluid phase 
μij  reduced mass: mi mj /(mi + mj) 
ν   fluid kinematic viscosity 

fν   kinematic viscosity of the fluid phase 

Tν   pseudo-turbulent eddy viscosity 
ξ   friction coefficient for Stokes drag (ξ = -6πµd/m ) 

0ξ     zeroth-order cooling rate 

Uξ     first-order transport coefficient for the cooling rate 

fπ   interphase TKE transfer 
Π   interphase TKE transfer of two-phase mixture energy evolution equation 

αρ   density of the particles belonging to the size classα  

fρ   fluid-phase density 
ρg   gas density 
ρp   particle density 
ρs  material density 

isρ   density of the ith particle phase 
σ  standard deviation of the mass-based particle size distribution 
σ  standard deviation of PSD 
Σ   tensor whose components are the source terms in the second moment equation 
τ   eddy turnovet time scale 

colτ   dimensionless time between successive collisions 
τf  fluid stress tensor 

ijτ   stress tensor 

visτ   dimensionless viscous relaxation time 
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φ   solid volume fraction  

iφ   volume fraction of the ith particle species 
φ   total solids volume fraction 
φ  electric potential 
Φ  solid volume fraction 
χ  cross-correlation coefficient 
 
Acronyms 
BGK  Bhatnagar-Gross-Krook. 
BVP  boundary-value problem. 
COR  coefficient of restitution 
DNS  direct numerical simulation 
DQMOM direct quadrature method of moments. 
GHD  kinetic theory of Garzo, Hrenya, and Dufty 
HDPE  high density polyethylene 
HKL  Hill, Koch and Ladd (2001) 
IVP  initial-value problem. 
LBM  lattice Boltzmann method 
MIS  multiple independent simulation 
PBE  population balance equation. 
PR-DNS particle-resolved direct numerical simulation 
PSD  particle size distribution 
PUReIBM particle-resolved uncontaminated-fluid reconcilable immersed boundary method 
QMOM quadrature method of moments. 
RH  relative humidity 
TG  Taylor-Green. 
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Enskog Theory for Polydisperse Granular Mixtures. I. Navier-Stokes order Transport
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A hydrodynamic description for an s-component mixture of inelastic, smooth hard disks (two
dimensions) or spheres (three dimensions) is derived based on the revised Enskog theory for the
single-particle velocity distribution functions. In this first portion of the two-part series, the macro-
scopic balance equations for mass, momentum, and energy are derived. Constitutive equations are
calculated from exact expressions for the fluxes by a Chapman–Enskog expansion carried out to first
order in spatial gradients, thereby resulting in a Navier-Stokes order theory. Within this context
of small gradients, the theory is applicable to a wide range of restitution coefficients and densities.
The resulting integral-differential equations for the zeroth- and first-order approximations of the
distribution functions are given in exact form. An approximate solution to these equations is re-
quired for practical purposes in order to cast the constitutive quantities as algebraic functions of
the macroscopic variables; this task is described in the companion paper.

I. INTRODUCTION

Flows of polydisperse particles (mixtures) are ubiquitous in nature and industry alike. Examples of the former in-
clude pyroclastic flows, landslides, pollutant transport, and planetary rings. Examples of the latter include pneumatic
conveying of grains, ores, and chemicals; fluidized-bed operation for power production and catalytic cracking; mixing
of pharmaceutical powders (medication and binder) and poultry feedstock (grains and vitamins). A non-uniform
particle distribution may be a property of the starting material itself, or it may be intentionally utilized in order to
improve process performance. For an example of the latter, the addition of fines to a relatively monodisperse material
has been shown to (i) decrease attrition in high-speed conveying lines [1], (ii) increase conversion in high-velocity,
fluidized-bed reactors [2] and (iii) improve heat transfer efficiency in a circulating fluidized bed (CFB) combustor [3].
Polydisperse materials are also known to exhibit counter-intuitive behaviors that have no monodisperse counterpart.
For example, agitation of polydisperse materials via vibration, free-fall, or flow down an incline leads to segregation
among unlike particles (de-mixing). Enhancing or suppressing this segregation tendency may be critical to process
performance, depending on whether the desired outcome is a separated or well-mixed state, respectively.

In the current effort, attention is restricted to rapid flows, in which particle collisions are assumed to be both
binary and instantaneous in nature. For monodisperse systems, kinetic-theory-based treatments have been successful
at predicting not only rapid granular flows (in which the role of the interstitial fluid is assumed negligible), but have
also been incorporated into models of high-velocity, gas-solid systems. In particular, kinetic-theory-based descriptions
are now standard components in both commercial and open-source CFD (computational fluid dynamics) software
packages for multiphase flows such as FluentR and MFIX (http://www.mfix.org/), respectively. Nonetheless, the
development and application of kinetic-theory-based descriptions for polydisperse systems is in its infancy relative to
their monodisperse counterparts, as has been highlighted in several recent review articles and perspectives [4, 5, 6, 7].
The main challenge associated with the derivation of kinetic-theory-based descriptions for mixtures is the increased
complexity associated with the additional hydrodynamic fields and associated transport coefficients, and in particular
with the accurate evaluation of the collisions integrals. Correspondingly, many of the early contributions resorted
to assumptions which are only strictly true in the limit of perfectly elastic spheres in a uniform steady state: a
Maxwellian (single-particle) velocity distribution [8, 9, 10] or an equipartition of energy [11, 12, 13, 14]. However, the
presence of a non-Maxwellian velocity distribution in granular flows is well-documented [15, 16, 17, 18, 19, 20, 21, 22],
and has been shown to have a significant impact on some transport coefficients [23]. Moreover, a non-equipartition
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of energy between unlike particles is widely established [24, 25, 26, 27, 28, 29, 30, 31, 32] , and has been shown to
significantly contribute to the driving force for segregation [33] and to lead to a reversal of the segregation direction
[34, 35, 36] in certain systems. A more recent theory [37] involves the lifting of both of these assumptions, except in
the evaluation of collision integrals involving two unlike particles, in which case a Maxwellian velocity distribution is
assumed for each particle type. Two current theories exist that do not involve either of these assumptions [38, 39],
though both are based on the Boltzmann equation and thus are limited to dilute flows. Another key difference
between existing polydisperse theories is the base state used in the Chapman–Enskog (CE) expansion. Some theories
[8, 9, 10, 11, 12, 13, 14, 37, 39] assume an expansion about a perfectly elastic (molecular equilibrium) base state,
and thus are restricted to nearly-elastic systems. However, in the CE method the base state must not be chosen a
priori, but rather it is determined as the solution to the kinetic equation to zeroth order in the gradient expansion.
This solution is found to correspond to the local homogeneous cooling state (HCS) and was used in Ref. [38] as the
reference state to determine the Navier-Stokes transport coefficients of a dilute mixture, without any restriction on
the level of inelasticity.

The objective of the current effort is twofold. First, a kinetic-theory-based description for the flow of an s-component
mixture in d dimensions is derived which (i) incorporates non-Maxwellian and non-equipartition effects, (ii) is appli-
cable to a wide range of restitution coefficients, and (iii) is applicable to both dilute and (moderately) dense flows. In
particular, a CE expansion of the revised Enskog theory for inelastic, hard spheres is carried out for both disks (d = 2)
and spheres (d = 3) up to the Navier-Stokes order. Second, the derivation of the resulting theory is critically compared
and contrasted to that of existing theories, in an effort to clearly reveal the implications of various treatments on
both the governing equations and constitutive relations. For this reason, the derivation is presented in a detailed and
somewhat pedagogical fashion. This work takes the form of two self-contained, companion papers. In this first paper,
the results of the exact analysis are given. The follow-on paper details the leading order approximations needed for
the explicit evaluation of all properties derived here: the distribution functions, the “equations of state” (cooling rate
and pressure), and the transport coefficients. In addition, the methodology used to obtain these results is critically
compared there to that of previous theories.

A confusing issue in the granular community is the context of the Navier-Stokes hydrodynamic equations in freely
cooling granular gases derived in this paper. The expressions for the Navier-Stokes transport coefficients are not
limited to weak inelasticity and so the calculations provided here apply even for strong dissipation. The Navier-
Stokes hydrodynamic equations may or may not be limited with respect to inelasticity, depending on the particular
states analyzed. The CE method assumes that the relative changes of the hydrodynamic fields over distances of the
order of the mean free path are small. For ordinary (elastic) gases this can be controlled by the initial or boundary
conditions. However, in the case of granular fluids the situation is more complicated since in some cases (e.g., steady
states such as the simple shear flow problem [40]) the boundary conditions imply a relationship between dissipation
and gradients so that both cannot be chosen independently. In these cases, the Navier-Stokes approximation only holds
for nearly elastic particles [40]. However, the transport coefficients characterizing the Navier-Stokes hydrodynamic
equations are nonlinear functions of the coefficients of restitution, regardless the applicability of those equations.

In spite of the above cautions, the Navier-Stokes approximation is relevant to describe a wide class of granular
flows. One of them corresponds to spatial perturbations of the HCS for an isolated system. Computer simulations
have confirmed the accuracy of the Navier-Stokes hydrodynamic equations with their associated transport coefficients
to quantitatively describe cluster formation [41]. The same kinetic theory results apply to driven systems as well.
This is so since the reference state is a local HCS whose parameters change throughout the system to match the
physical values in each cell. Another examples of good agreement between theory and simulation [42] and experiments
[43, 44] include the application of the Navier-Stokes hydrodynamics to describe density/temperature profiles in vertical
vibrated gases, supersonic flow past at wedge in real experiments [45], and nonequipartition and size segregation in
agitated granular mixtures [27, 28, 46]. In summary, the Navier-Stokes hydrodynamics with the constitutive equations
obtained in this paper constitute an important and useful description for many different physical situations, although
more limited than for elastic gases.

II. OVERVIEW OF DERIVATION

The theoretical basis for a hydrodynamic description of molecular gases is most completely established at low
density using the Boltzmann kinetic equation. There, the CE solution and its prediction of transport coefficients is
well-established from both computer simulation and experiment [47]. For a moderately dense gas there is no accurate
and practical generalization of the Boltzmann equation except for the idealized hard sphere fluid. In that case, the
Enskog kinetic equation describes the dominant positional corrections to the Boltzmann equation due to excluded
volume effects of other particles on a colliding pair [47]. The neglected velocity correlations are important only at
much higher densities. The derivation of hydrodynamics and evaluation of transport coefficients based on the Enskog
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kinetic equation leads to an accurate and unique description of moderately dense gases. The generalization to mixtures
requires a revision of the original Enskog theory for thermodynamic consistency (revised Enskog theory, or RET) [48],
and its application to hydrodynamics and mixture transport coefficients was accomplished twenty years ago [49].
As noted above, for granular (dissipative) gases, there remains an open problem of predicting transport properties
at moderate densities, as occur in current experiments and simulations. This problem is addressed here in its full
generality using the extension of this revised Enskog theory to inelastic collisions without limits on the number of
components, densities, temperature, or degree of dissipation. This subsumes all previous analyses for both molecular
and granular gases, which are recovered in the appropriate limits.

Due to the extreme length of the derivation, an outline of the steps involved is given here for easy reference.

• Section III. The starting point of the derivation process is the revised Enskog kinetic equations for mixtures
of inelastic, hard spheres. These equations for the single-particle, position and velocity distribution functions
of each species, {fi}, take the form of nonlinear, integro-differential equations, where the integral portion arises
from the collision operator.

• Section IV. The macroscopic variables of interest (number density {ni}, etc.) are defined exactly in terms
of moments of {fi} (e.g., ni (r) =

∫
dvfi (r,v,t), where v is the velocity of species i). Thus, the macroscopic

balance equations can be obtained by appropriate manipulation of the Enskog kinetic equations (e.g., multipli-
cation by dv followed by integration over the velocity to obtain the species mass balance). At this stage, all
of the constitutive quantities (cooling rate, stress tensor, conduction, and mass flux) appearing in the macro-
scopic balances are integral functionals of {fi}, which depend explicitly on space and time only through their
dependence on {fi}.

• Section V. In order to obtain a hydrodynamic description (one in which the constitutive quantities are
determined entirely by the macroscopic or hydrodynamic variables), the concept of a normal solution is intro-
duced. These are special solutions to the Enskog equations for which the {fi} depend on space and time only
through an implicit functional dependence on the macroscopic fields (or equivalently as explicit functions of
these local fields and their gradients at the spatial point of interest).

• Section VI. An exact analytical solution for {fi} is not a practical objective in the most general case, and thus
attention is restricted to states with small spatial gradients. In this case the gradients provide a small parameter,
allowing a small spatial gradients, or small Knudsen number, expansion (i.e., the CE expansion). The analysis

is carried out here to first (Navier-Stokes) order: fi = f
(0)
i + f

(1)
i , where f

(0)
i is the zeroth order solution and

f
(1)
i is the first-order correction (zero- and first-order in gradients, respectively). The kinetic equations then

become integral-differential equations for the determination of f
(0)
i and f

(1)
i .

• Section VII. Correspondingly, the constitutive equations are identified as functions of the hydrodynamic
variables and their gradients through their dependence on {fi}, with coefficients of the gradients defining the
transport coefficients. Hence, all equations of state (pressure and reference state cooling rate) and all transport

coefficients, which are integrals involving f
(0)
i , inherit this dependence on the hydrodynamic variables and their

gradients. The coefficients are determined from solutions to the integral equations.

This completes the derivation reported in this manuscript. Up until this point, the results are exact for Navier-
Stokes order hydrodynamics (first order in spatial gradients) of the RET. This determines the form of the Navier-Stokes
hydrodynamics, but more explicit dependence of the transport coefficients on the macroscopic variables requires a

corresponding explicit solution to the integral equations for f
(0)
i and f

(1)
i . One approximate method, known to be

accurate for ordinary fluids, is detailed in the follow-on paper [50], resulting in constitutive quantities that are algebraic
functions of the macroscopic variables.

III. REVISED ENSKOG KINETIC THEORY

The system considered is a mixture of {Ni} smooth hard disks (d = 2) or spheres (d = 3) of masses {mi} and
diameters {σi}, where the subscript i labels one of the s mechanically different species and d is the dimension. In
general, collisions among all pairs are inelastic and are characterized by independent constant normal restitution
coefficients {αij = αji}, where αij is the restitution coefficient for collisions between particles of species i and j,
0 < αij ≤ 1. The macroscopic (or hydrodynamic) properties of interest (number densities, flow velocity, and energy
density) are determined from the single particle position and velocity distribution functions fi(r1,v1; t), for i = 1, ..s,
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where fi(r1,v1; t)dr1dv1 is proportional to the probability to find a particle of species i in the position and velocity
element dr1dv1 at time t. The fundamental description of any system is based on the probability density for all

constituent particles and the Liouville equation for its time evolution; this is equivalent to solving the collective
equations of motion for all particles in the system and becomes computationally prohibitive for a large number
of particles. However, for the macroscopic fields only the reduced distribution functions {fi}, obtained from the
integration of the probability density over all except one particle’s position and velocity for each of the species, are
required for calculation of the macroscopic properties. The equations for these reduced distribution functions resulting
from the partial integrations of the Liouville equation, give rise to the BBGKY hierarchy equations. The first level of
this hierarchy gives the time dependence of {fi} [51, 52]

(
∂t + v1 · ∇r1+m

−1
i Fi(r1) · ∇v1

)
fi(r1,v1; t) = Ci(r1,v1; t), (3.1)

where

Ci(r1,v1; t) =
s∑

j=1

σd−1
ij

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12) (3.2)

×
(
α−2

ij fij(r1,v
′′
1 , r1 − σij ,v

′′
2 ; t) − fij(r1,v1, r1 + σij ,v2; t)

)
.

The left sides of these equations describe changes in the distribution functions due to motion in the presence of
external conservative forces Fi(r1). The right side describes changes due to collisions among the particles. The
function fij(r1,v1, r2,v2; t)dr1dv1dr2dv2 is proportional to the joint probability of finding a particle of species i in
dr1dv1 and one of species j in dr2dv2. The position r2 in these functions appears only for r2 = r1 ± σij , where
σij = σ̂σij and σij ≡ (σi + σj) /2; this means that the two particles are at contact. The vector σ̂ is a unit vector
directed along the line of centers from the sphere of species j to that of species i at contact and the integration
dσ̂ is over a solid angle for this contact sphere. The Heaviside step function Θ assures that the relative velocities
g12 = v1 − v2 are such that a collision takes place, and the “restituting” (pre-collisional) velocities v′′

1 and v′′
2 are

related to the post-collisional velocities by

v′′
1 = v1 − µji

(
1 + α−1

ij

)
(σ̂ · g12)σ̂, v′′

2 = v2 + µij

(
1 + α−1

ij

)
(σ̂ · g12)σ̂ (3.3)

where µij = mi/ (mi +mj). It is convenient for the discussion here to write that equation in a more symbolic form
by introducing the notation

X(v′′
1 ,v

′′
2 ) = b−1

ij X(v1,v2), (3.4)

so that b−1
ij is a general substitution operator that changes the argument of a function to its precollision velocities

given by (3.3). Then, changing variables σ̂ → −σ̂ in the second term on the right side of (3.1) and noting that
b−1
ij σ̂ · g12 = −α−1

ij σ̂ · g12 gives the equivalent form [51, 52]

(
∂t + v1 · ∇r1+m

−1
i Fi(r1) · ∇v1

)
fi(r1,v1; t) = −

s∑

j=1

σd−1
ij

∫
dv2

∫
dσ̂(α−1

ij b
−1
ij + 1)(σ̂ · g12)

×Θ(−σ̂ · g12)fij(r1,v1, r1 − σij ,v2; t). (3.5)

This demonstrates that the two particle distributions fij appear only on the contact hemisphere given by Θ(−σ̂ ·g12),
correponding to particles that are directed toward each other and hence have a change in their velocities.

Equation (3.1) becomes a kinetic theory (i.e., closed equations for the set of fi) only after specifying fij on the
right side as a functional of the set of fi (the alternative of making approximations at higher levels of the BBGKY
hierarchy has not been productive in general for molecular gases). As indicated above, this is required for fij only
when the particles are at contact and on that hemisphere for which the relative velocities are directed toward each
other. In this restricted context, the Enskog kinetic theory results from a neglect of velocity correlations, i.e. the
Enskog approximation

fij(r1,v1, r2,v2; t) → χij (r1, r2 | {ni}) fi(r1,v1; t)fj(r2,v2; t). (3.6)

Spatial correlations arising from volume exclusion effects are retained through the factor χij (r1, r2 | {ni}). In the
special case of a uniform system, it is simply related to the nonequilibrium pair correlation function gij (|r1 − r2| ; {ni})
(probability density to find a particle of species i at r1 and j at r2) by [53]

gij (σij ; {nk}) =
1 + αij

2αij
χij (σij ; {nk}) (3.7)
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This relationship is proved in Appendix A and provides some partial interpretation for χij . It is important to note
that these correlation functions are functionals of the actual species densities {ni} (defined below in Eq. (4.1)). This
functional dependence is what distinguishes the RET from the original “standard” Enskog theory (SET), where the
gij are functions of the species densities at the single position of interest, r1. Some partial justification for the
approximation (3.6) for ordinary atomic fluids is given in Appendix A, where it is known to provide accurate results
for moderately dense gases, and reasonable estimates even for dense gases. Its use for granular gases is justified largely
from expectations based on these results for ordinary fluids.

Substitution of the Enskog approximation (3.6) into the exact first level hierarchy equations (3.1) defines the RET
for the distribution functions {fi}

(
∂t + v1 · ∇+m−1

i Fi(r1) · ∇v1

)
fi(r1,v1; t) =

s∑

j=1

Jij [r1,v1 | f(t)] . (3.8)

The collision operators {Jij [r1,v1 | f(t)]} are given by

Jij [r1,v1 | f(t)] ≡ σd−1
ij

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

×
[
α−2

ij χij (r1, r1 − σij | {ni}) fi(r1,v
′′
1 ; t)fj(r1 − σij ,v

′′
2 ; t)

−χij (r1, r1 + σij | {ni}) fi(r1,v1; t)fj(r1 + σij ,v2; t)] . (3.9)

The corresponding Boltzmann equations for a dilute mixture follow from this result since χij (r1, r1 − σij | {ni}) → 1
at low density. Furthermore, on length scales of the order of the mean free path or greater, the different centers
(r1, r2 = r1 ± σij) of the colliding pair in Eq. (3.9) can be neglected (r1 ≈ r2) since the diameters of the particles
are small compared to the mean free path at low density. As will be shown below, a nonzero distance between the
particle centers gives rise to the collisional contributions to the transport coefficients, which are not present in dilute
systems. These two modifications to fij result in the usual Boltzmann description for a granular mixture. The results
obtained here therefore encompass earlier work on granular mixtures at low density [38]. In the elastic limit, αij → 1,
these equations become the Enskog theory for mixtures of dense molecular gases studied in Ref. [49].

As happens for elastic collisions, the inelastic Enskog equation provides a semiquantitative description of the
hard sphere system that neglects the velocity correlations between the particles that are about to collide (molecular
chaos assumption). The Enskog approximation is expected to be valid for short times since as the system evolves
corrections to the Enskog equation due to multiparticle collisions, including recollision events (“ring” collisions) should
be incorporated. The latter are expected to be stronger for fluids with inelastic collisions where the colliding pairs
tend to be more focused. Therefore, some deviations from molecular chaos have been observed in molecular dynamics
(MD) simulations [54, 55, 56] of granular fluids as the density increases. Although the existence of these correlations
restricts the range of validity of the Enskog equation, there is substantial evidence in the literature for the validity
of the Enskog theory at moderate densities and higher restitution coefficients especially at the level of macroscopic
properties (such as transport coefficients). In the case of molecular dynamics (MD) simulations, the Enskog theory
compares quite well with simulations for the radial distribution function [53], the self-diffusion coefficient [57, 58], the
kinetic temperatures of a binary mixture in homogeneous cooling state [59], and the rheological properties of a mixture
under simple shear flow [60, 61]. The agreement between MD and Enskog equation is good for moderate densities
(solid volume fraction up to 0.15) and even conditions of strong dissipation (restitution coefficients αij > 0.7). For
higher densities the α range is more limited but the Enskog theory still captures the relevant qualitative features.
The Enskog transport coefficients for a monocomponent gas [62] have also been tested against NMR experiments
of a system of mustard seeds vibrated vertically [43, 44]. The average value of the coefficient of restitution of the
grains used in this experiment is α = 0.87, which lies outside of the quasielastic limit (α ≈ 0.99). Comparison
between theory and experiments shows that the Enskog kinetic theory successfully models the density and granular
temperature profiles away from the vibrating container bottom and quantitatively explains the temperature inversion
observed in experiments [63]. All these results clearly show the applicability of the Enskog theory for densities outside
the Boltzmann limit and values of dissipation beyond the quasielastic limit. In this context, one can conclude that
the Enskog equation provides a unique basis for the description of dynamics across a wide range of densities, length
scales, and degrees of dissipation. No other theory with such generality exists.

IV. MACROSCOPIC BALANCE EQUATIONS

In the previous section, the Enskog assumption (3.6) was used to obtain a closed set of kinetic equations (3.8) for
a moderately dense mixture of inelastic hard spheres. The result takes the form of nonlinear, integral-differential
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equations for the distribution function fi, which contains information on a microscopic scale. In this section, this
theory will be used to obtain the corresponding description on the macroscopic (or hydrodynamic) scale. First,
the relevant macroscopic variables will be identified and defined. Next, the corresponding balance equations will be
derived. Finally, expressions for the equations of state (pressure and cooling rate) and fluxes will be presented as
integral expressions containing fi.

The variables of interest for a macroscopic description of the mixture are the number densities for all species,
{ni (r, t)} (or equivalently, the mass densities {ρi (r, t) = mini (r, t)}), the total energy density, e (r, t), and the total
momentum, p (r, t). These are expected to be the s + 1 + d slow variables that dominate the dynamics for long
times through a closed autonomous set of equations, the hydrodynamic equations. The reasoning behind this is
that these are the densities for global conserved quantities in molecular fluids, and therefore have decay times set by
the wavelength of the excitations. Long wavelength (space scales large compared to the mean free path) phenomena
therefore persist at long times (compared to a mean free time) after which the complex transient microscopic dynamics
has become negligible. For granular fluids, the energy is not conserved but is characterized by a cooling rate at long
wavelengths. Still, this cooling rate may be slow compared to the transient dynamics and thus the energy remains a
relevant slow variable. This is confirmed by MD simulations showing a rapid approach to this cooling law after only
a few collisions [59].

These macroscopic variables will be referred to collectively as the hydrodynamic fields. They are defined without
approximation in terms of moments of the distribution functions

ni (r, t) ≡
∫
dvfi(r,v; t), i = 1, ..s, (4.1)

e (r, t) ≡
s∑

i=1

∫
dv

1

2
miv

2fi(r,v; t) (4.2)

p (r, t) ≡
s∑

i=1

∫
dvmivfi(r,v; t) (4.3)

The time dependence occurs entirely through the distribution function and hence is determined from the Enskog kinetic
equations (3.8). However, rather than solving the kinetic equation to determine this complete time dependence it is
useful for the purposes of deriving the simpler hydrodynamic description to first obtain the balance equations. These
equations express the time derivative of the hydrodynamic fields in terms of local fluxes and sources due to collisions
or the external force. These equations and the identification of the fluxes follow in detail from the form of the collision
operators in (3.2) as shown in Appendix B (in fact they are obtained there exactly from the first hierarchy equation
(3.1) without the Enskog approximation (3.6) and hence are exact). The results for the balance equations are

∂tni (r, t) +m−1
i ∇ · ji (r, t) = 0, (4.4)

∂te (r, t) + ∇ · s (r, t) = −w (r, t) +
s∑

i=1

m−1
i Fi (r) · ji (r, t) , (4.5)

∂tpβ (r, t) + ∂rγ
tγβ (r, t) =

s∑

i=1

ni (r, t)Fiβ (r) . (4.6)

The explicit expressions for ji, s, w and tγβ are contained in Appendix B and not shown here since they are cast in a
more convenient form below.

The mass fluxes {ji (r, t)} , energy flux s (r, t), and momentum flux tβγ (r, t) describe the rate of transport of the
hydrodynamic fields through a given cross sectional area. They consist of parts due to pure convection and parts due
to collision. To identify the convective (kinetic) parts, the local flow field U (r, t) is defined in terms of the momentum
density by

p (r, t) ≡ ρ (r, t)U (r, t) , ρ (r, t) =

k∑

i=1

mini (r, t) , (4.7)
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where the second equation defines the mass density. Also, the energy density is written in terms of the internal energy
density e0 (r, t) in the local rest frame, plus the energy due to flow

e (r, t) = e0 (r, t) +
1

2
ρ (r, t)U2 (r, t) . (4.8)

In terms of U (r, t) the fluxes become

ji (r, t) = ρi (r, t)U (r, t) + j0i (r, t) , (4.9)

sβ (r, t) =

(
e0 (r, t) +

1

2
ρ (r, t)U2 (r, t)

)
Uβ (r, t) + Pβγ (r, t)Uγ (r, t) + qβ (r, t) , (4.10)

tβγ (r, t) = ρ (r, t)Uβ (r, t)Uγ (r, t) + Pβγ (r, t) . (4.11)

The first terms on the right sides describe convective transport, while the diffusion fluxes j0i (r, t) , heat flux q (r, t),
and pressure tensor Pβγ (r1, t) describe the residual transport for each fluid element in its local rest frame. Before
giving their forms more explicitly, it is instructive to insert (4.9)–(4.11) into ( 4.4)–(4.6) to get the equivalent form
for the balance equations

Dtni + ni∇ ·U +m−1
i ∇ · j0i = 0, (4.12)

Dte0 + (e0δγβ + Pγβ) ∂rγ
Uβ + ∇ · q = −w (r, t) +

s∑

i=1

m−1
i Fi (r) · j0i (r, t) , (4.13)

ρDtUβ + ∂rγ
Pγβ =

s∑

i=1

ni (r, t)Fiβ (r) , (4.14)

where Dt = ∂t + U · ∇ is the material derivative.
The independent hydrodynamic fields are now {ni (r, t)}, e0 (r, t), and U (r, t). The remaining quantities in the

balance equations are the energy loss rate w (r, t), the mass fluxes {j0i (r, t)}, the heat flux q (r, t), and the pressure
tensor Pβγ (r1, t). These quantities, which are defined in terms of the distribution functions, are obtained by the
explicit forms for ji, s, w, and tγβ given in Appendix B together with Eqs. (4.9)–(4.11).

Specifically, the energy loss rate is due to inelastic collisions

w (r, t) ≡ 1

4

s∑

i,j=1

(
1 − α2

ij

)
miµjiσ

d−1
ij

∫
dv1

∫
dv2

∫
dσ̂

×Θ(σ̂ · g12)(σ̂ · g12)
3fij(r1,v1, r1 + σij ,v2; t), (4.15)

whereas the diffusion flux arises from convective (kinetic) transport

j0i (r1, t) ≡ mi

∫
dv1V1fi(r1,v1; t), (4.16)

where V1 = v1 − U(r, t) is the velocity in the local rest frame. The heat flux has both “kinetic” and “collisional”
transfer contributions

q (r1, t) ≡ qk (r1, t) + qc (r1, t) , (4.17)

with

qk (r1, t) =

s∑

i=1

∫
dv1

1

2
miV

2
1 V1fi(r1,v1; t), (4.18)
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qc (r1, t) =
k∑

i,j=1

1

8
(1 + αij)mjµijσ

d
ij

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)

×(σ̂ · g12)
2 [(1 − αij) (µji − µij) (σ̂ · g12) + 4σ̂ · Gij)

×σ̂

∫ 1

0

dxfij(r1 − xσij ,v1, r1 + (1 − x) σij ,v2; t), (4.19)

where Gij = µijV1 + µjiV2 is the center-of-mass velocity.
Similarly, the pressure tensor has both kinetic and collisional contributions

Pγβ (r1, t) ≡ P k
γβ (r1, t) + P c

γβ (r1, t) , (4.20)

where

P k
γβ (r1, t) =

s∑

i=1

∫
dv1miV1βV1γfi(r1,v1; t), (4.21)

P c
γβ (r1, t) =

1

2

s∑

i,j=1

mjµij (1 + αij)σ
d
ij

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)

2

×σ̂β σ̂γ

∫ 1

0

dxfij(r1 − xσij ,v1, r1 + (1 − x)σij ,v2; t). (4.22)

Equations (4.12)–(4.14) together with the definitions (4.15)–(4.22) represent the macroscopic balance equations for a
granular mixture, without restrictions on the densities or degrees of dissipation. In the case of a three-dimensional
system (d = 3), the above equations reduce to previous results [64] derived for hard spheres. When the approximate
form (3.6) is used in the first hierarchy equation and in these expressions for the cooling rate and fluxes, the Enskog
theory results.

For historical consistency with the usual constitutive equations for a ordinary fluid, the temperature T (r, t) is used
in the following instead of the internal energy density e0 (r, t), with the definition

e0 (r, t) ≡ d

2
n (r, t) T (r, t) . (4.23)

As a definition, this amounts only to a change of variables and there are no thermodynamic implications involved in
the use of this temperature for a granular fluid. The corresponding hydrodynamic equation for T (r, t) follows directly
from (4.13)

d

2
n (Dt + ζ) T + Pγβ∂rγ

Uβ + ∇ · q − d

2
T

s∑

i=1

m−1
i ∇ · j0i =

s∑

i=1

m−1
i Fi · j0i. (4.24)

To obtain these results the continuity equation has been used

Dtρ+ ρ∇ · U = 0. (4.25)

This follows from the definitions of ρ and U and the conservation laws for the {ni (r, t)} . A related consequence is

s∑

i=1

j0i = 0, (4.26)

so that only s− 1 dissipative mass fluxes are independent. Finally, the “cooling rate” ζ has been introduced in (4.24)
by the definition

ζ =
2

dnT
w =

1

2dnT

s∑

i,j=1

(
1 − α2

ij

)
miµjiσ

d−1
ij

∫
dv1

∫
dv2

∫
dσ̂,

×Θ(σ̂ · g12)(σ̂ · g12)
3fij(r1,v1, r1 + σij ,v2; t). (4.27)
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V. CONCEPT OF A NORMAL SOLUTION AND HYDRODYNAMICS

The form of the equations of state and fluxes given in the previous section, (4.16)–(4.22) and (4.27), are cast as
functionals of the distributions {fi}, which depend explicitly on space and time. As a result, the macroscopic balance
equations are not entirely expressed in terms of the hydrodynamic fields, and thus do not comprise a closed set of
equations. If these distributions can instead be expressed as functionals of the hydrodynamic fields (normal solution),
then ζ (r, t), {j0i (r, t)}, q (r, t), and Pβγ (r1, t) also will become functionals of the hydrodynamic fields through (4.16)–
(4.22) and (4.27). Such expressions are called “constitutive relations”. They provide the missing link between the
balance equations and a closed set of equations for the hydrodynamic fields alone. Such a closed set of equations
defines “hydrodynamics” in its most general sense.

It is seen, therefore, that any derivation of hydrodynamics proceeds first by construction of normal solutions to the
kinetic equations. More precisely, a normal solution is one whose space and time dependence occurs entirely through
the hydrodynamic fields, denoted

fi(r1,v1; t) = fi(v1 | {yβ (r1, t)}), (5.1)

where {yβ (r1, t)} denotes generically the set of hydrodynamic fields

yβ⇔{T,U, {ni (r, t)}} . (5.2)

Therefore, the space and time derivatives of the kinetic equation are given by

(∂t + v1 · ∇r) fi(v1 | {yβ (r1, t)}) =

∫
dr
δfi(v1 | {yβ (t)})

δyη (r; t)
(∂t + v1 · ∇r) yη (r; t) . (5.3)

Furthermore, the balance equations for the hydrodynamic fields (4.12)–(4.14) can be used to express ∂tyη (r; t) in
(5.3) in terms of space derivatives of the hydrodynamic fields. For such a solution for fi, Eqs. (4.16)–(4.22) and (4.27)
give directly by integration the desired constitutive relations.

The determination of fi(v1 | {yβ (r1, t)}) from the kinetic equations (3.8) is a very difficult task in general, and
further restriction on the class of problems considered is required at this point to make progress. Any functional of
the fields can be represented equivalently as a local function of the fields and all of their gradients. In many cases,
gradients of high degree are small and may be negligible so that the normal distribution becomes

fi(v1 | {yβ (r1, t)}) → fi(v1; {yβ (r1, t) ,∇r1yβ (r1, t) , · · · }) (5.4)

This representation does not imply that the low degree gradients are small, and fi may be a non-linear function of
the relevant gradients. This occurs in many important applications for granular fluids [40]. In the limiting case where
the low-degree gradients can be controlled by boundary or initial conditions and made small, a further Taylor series
expansion can be given

fi(v1 | {yβ (r1, t)}) → f
(0)
i (v1; {yβ (r1, t)}) + f

(1)
i (v1; {yβ (r1, t)}) + · · ·

→ f
(0)
i (v1; {yβ (r1, t)}) + Yiα(v1; {yβ (r1, t)}) · ∇r1yα (r1, t) + · · ·

(5.5)

It follows that the leading order distributions have the exact properties

ni (r, t) ≡
∫
dvf

(0)
i (v; {yβ (r, t)}), i = 1, ..s, (5.6)

d

2
n (r, t)T (r, t) ≡

s∑

i=1

∫
dv

1

2
miV

2f
(0)
i (v; {yβ (r, t)}), (5.7)

ρ (r, t)U (r, t) ≡
s∑

i=1

∫
dvmivf

(0)
i (v; {yβ (r, t)}), (5.8)

and the corresponding moments of all higher order terms in (5.5) must vanish. Generalization of this type of gradient
expansion for the normal solution to include a class of nonlinear gradients in the reference state has been discussed
recently [65, 66].
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As is standard for molecular gases, the gradient expansion will be taken with respect to the reference local HCS, i.e.
that resulting from the neglect of all gradients in the functional but evaluated at the value of the fields at the chosen
point and time {yβ (r1, t)}. This point is crucial in our analysis since most of the previous results have taken elastic

Maxwell distributions as the base state. Note that in the CE method the form of f
(0)
i comes from the solution to

the kinetic equation to zeroth order in gradients and cannot be chosen a priori. Accordingly, f
(0)
i (v1; {yβ (r1, t)}) →

f
(0)
i (V1; {yβ (r1, t)}), where V= |v − U(r, t)| is homogeneous and isotropic with respect to its velocity dependence.

This symmetry implies that the leading (zero) order contributions to (4.16) and (4.17) for the vector fluxes {j0i (r, t)}
and q (r, t) must vanish, and this contribution to the pressure tensor Pγβ must be isotropic (proportional to δγβ).
Similar symmetry considerations to the first order contribution (linear in the gradients) determines the exact structure
of the constitutive equation to this order. Based on these symmetry considerations, the constitutive quantities are
known to take the forms

ζ (r, t) → ζ(0) ({yβ (r, t)}) + ζU ({yβ (r, t)})∇ ·U (r, t) , (5.9)

j0i (r, t) → −
s∑

j=1

mimj
nj (r, t)

ρ (r, t)
Dij ({yβ (r, t)})∇ lnnj (r, t)

−ρ (r, t)DT
i ({yβ (r, t)})∇ lnT (r, t) −

s∑

j=1

DF
ij ({yβ (r, t)})Fj (r) , (5.10)

q (r, t) → −λ ({yβ (r, t)})∇T (r, t)

−
s∑

i,j=1

(
T 2 (r, t)Dq,ij ({yβ (r, t)})∇ lnnj (r, t) + Lij ({yβ (r, t)})Fj (r)

)
,

(5.11)

Pγλ (r, t) = p ({yβ (r, t)}) δγλ − η ({yβ (r, t)})
(
∂rγ

Uλ (r, t) + ∂rλ
Uγ (r, t) − 2

d
∇ ·U (r, t)

)

−κ ({yβ (r, t)})∇ · U (r, t) . (5.12)

The unknown quantities in these constitutive equations (5.9)–(5.12) include the cooling rate ζ(0) ({yβ (r, t)}), the
hydrostatic granular pressure p ({yβ (r, t)}), and the transport coefficients ζU , Dij , D

T
i , DF

ij , Dq,ij , Lij , η, and κ.

These quantities can be expressed as explicit functions of the hydrodynamic variables once f
(0)
i and f

(1)
i are known.

The equations governing the solution of f
(0)
i and f

(1)
i are found using the CE method, as described below.

VI. CHAPMAN–ENSKOG NORMAL SOLUTION

The CE method is a procedure for constructing an approximate normal solution. It is perturbative, using the
spatial gradients as the small expansion parameter. More precisely, the small parameter is Knudsen number (Kn),
defined as the gradient of the hydrodynamic fields relative to their local value times the mean free path. This means
that the conditions for the solution are restricted to small variations of the hydrodynamic fields over distances of the
order of the mean free path. In the presence of an external force it is necessary to characterize the magnitude of this
force relative to the gradients as well. Here, it is assumed that the magnitude of the force is first order in perturbation
expansion. This allows comparison with the results of Ref. [49] for the elastic case.

The perturbation is carried out by considering the Enskog kinetic equations successively at each order in the

gradients. As described below, the zeroth order equation is first obtained for f
(0)
i . Next, the first order equation for

f
(1)
i is obtained. This expansion leads to integral-differential equations for the determination of f

(0)
i and f

(1)
i , which

are solved explicitly in the follow-on paper [50].
As detailed in Appendix C, to zeroth order in the gradients, the kinetic equation (3.8) becomes

(∂tT ) ∂T f
(0)
i (v1; {yβ (r1, t)}) =

s∑

j=1

J
(0)
ij

[
v1 | f (0)(t)

]
, (6.1)
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where

J
(0)
ij

[
v1 | f (0)(t)

]
≡ χ

(0)
ij (σij ; {ni (r1, t)})σd−1

ij

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

×
[
α−2

ij f
(0)
i (V ′′

1 ; {yβ (r1, t)})f (0)
j (V ′′

2 ; {yβ (r1, t)})

−f (0)
i (V1; {yβ (r1, t)})f (0)

j (V2; {yβ (r1, t)})
]
. (6.2)

All spatial gradients are neglected at this lowest order. Equation (6.1) determines the velocity dependence of

f
(0)
i (V1; {yβ (r1, t)}); the space and time dependence is local and entirely through the fields {yβ (r1, t)} at the space

and time point of interest. This has been exploited by writing the time dependence of f
(0)
i in terms of the time

dependence of the fields, and recognizing that all time derivatives of the latter are proportional to space gradients,
except the temperature, through the balance equations

∂tni = 0, ∂tT = −ζ(0)T, ∂tU = 0. (6.3)

Here, ζ(0) is the cooling rate (4.27) to zeroth order in the gradients

ζ(0) =
1

2dnT

s∑

i,j=1

(
1 − α2

ij

)
miµjiχ

(0)
ij (σij ; {ni (r1, t)})σd−1

ij

∫
dv1

∫
dv2

∫
dσ̂

×Θ(σ̂ · g12)(σ̂ · g12)
3f

(0)
i (V1; {yβ (r1, t)})f (0)

j (V2; {yβ (r1, t)}). (6.4)

Similarly, the functional dependence of χ
(0)
ij (r1, r2 | {ni}) on the compositions to zeroth order in the gradients has the

functional dependence on the densities replaced by {ni} → {ni (r1, t)}, at the point of interest. The result is transla-

tional and rotational invariant χ
(0)
ij (r1, r2 | {ni}) → χ

(0)
ij (|r1 − r2| ; {ni (r1, t)}) , a function of the densities. Finally,

gradients in the distribution functions of the collision operators must be neglected, e.g. f
(0)
i (v1; {yβ (r1 + σij , t)}) →

f
(0)
i (v1; {yβ (r1, t)}).
A further simplification of these equations for the lowest order distribution functions occurs when they are written

in terms of the corresponding dimensionless forms {φi}

f
(0)
i (V ; {yβ}) = niv

−d
0 (T )φi (V ∗; {n∗

i }) , (6.5)

with the definitions

V∗ =
V

v0(T )
, v0(T ) =

√
2T

m
, n∗

i = niσ
d
i , m =

1

s

s∑

i=1

mi. (6.6)

The solution depends on the flow field only through the relative velocity V. Furthermore, since there is no external
energy scale the temperature can occur only through the scaling of the dimensionless velocity through the thermal
velocity v0(T ). Equation (6.1) now takes the dimensionless form

− 1

2
ζ∗∇V∗ · (V∗φi) =

∑

j

J
(0)∗
ij (V ∗ | φi) , (6.7)

where ∇V∗ ≡ ∂/∂V∗ and

ζ∗ =
ℓ

v0
ζ(0), J

(0)∗
ij =

ℓ

n
vd−1
0 J

(0)
ij , ℓ =

1

nσd−1
, n =

s∑

i=1

ni, σ =
1

s

s∑

i=1

σi. (6.8)

The solution to this equation is a universal function of the magnitude of the velocity V ∗ and is otherwise independent
of the temperature and flow field. For a one component fluid it is independent of the density as well. However, for

mixtures it is parameterized by the dimensionless species densities through the factors χ
(0)
ij (σij ; {n∗

i }) . Equation (6.1)
has the same form as the corresponding dimensionless Enskog equations for a strictly homogeneous state. The latter
is called the HCS. Here, however, the state is not homogeneous because of the requirements (5.6)–(5.8). Instead it is
a local HCS. As said before, an important point to recognize is that the occurrence of this local HCS as the reference
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state is not an assumption of the CE expansion but rather a consequence of the kinetic equations to lowest order in
the gradient expansion.

The analysis to first order in the gradients is similar and the details are given in Appendix C. The result has the
form (5.5)

f
(1)
i → Ai (V) · ∇ lnT +

s∑

j=1

B
j
i (V) · ∇ lnnj

+Ci,γη (V)
1

2

(
∂γUη + ∂ηUγ − 2

d
δγη∇ ·U

)

+Di (V)∇ ·U +

s∑

j=1

E
j
i (V) · Fj . (6.9)

The contributions from the flow field gradients have been separated into independent traceless and diagonal com-
ponents, as follows from fluid symmetry. The velocity dependence of the gradient contributions is contained in the
functions Ai (V) ,Bj

i (V) , Ci,γη (V) ,Di (V), and E
j
i (V). The kinetic equations determine these functions as the

solutions to the integral equations

((
L − 1

2
ζ(0)

)
A

)

i

= Ai, (6.10)

(
LB

j
)
i
− nj

∂ζ(0)

∂nj
Ai = B

j
i , (6.11)

((
L +

1

2
ζ(0)

)
Cγη

)

i

= Ci,γη, (6.12)

((
L +

1

2
ζ(0)

)
D
)

i

= Di, (6.13)

((
L + ζ(0)

)
E

j
)

i
= E

j
i . (6.14)

The linear operator L is given by

(LX)i =
1

2
ζ(0)∇V · (VXi) + (LX)i , (6.15)

(LX)i = −
s∑

j=1

(
J

(0)
ij

[
v1 | Xi, f

(0)
j

]
+ J

(0)
ij

[
v1 | f (0)

i , Xj

])
, (6.16)

and the inhomogeneous terms are defined by

Ai,γ (V) =
1

2
Vγ∇V ·

(
Vf

(0)
i

)
− p

ρ
∂Vγ

f
(0)
i +

1

2

k∑

j=1

Kij,γ

[
∇V ·

(
Vf

(0)
j

)]
, (6.17)

Bj
i,γ (V) = −Vγnj∂nj

f
(0)
i − ρ−1(∂Vγ

f
(0)
i )nj(∂nj

p)

−
s∑

ℓ=1

Kiℓ,γ

[(
nj∂nj

+
1

2

(
nℓ
∂ lnχ

(0)
iℓ

∂nj
+ Iiℓj

))
f

(0)
ℓ

]
, (6.18)
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Ci,γβ (V) =
1

2

(
Vγ∂Vβ

f
(0)
i + Vβ∂Vγ

f
(0)
i − 2

d
δβγV · ∇Vf

(0)
i

)

+
1

2

s∑

j=1

(
Kij,γ [∂Vβ

f
(0)
j ] + Kij,β [∂Vγ

f
(0)
j ] − 2

d
δβγKij,λ[∂Vλ

f
(0)
j ]

)
, (6.19)

Di(V) =
1

d
V · ∇Vf

(0)
i − 1

2

(
ζU +

2

nTd
p

)
∇V ·

(
Vf

(0)
i

)

+

s∑

j=1

(
nj∂nj

f
(0)
i +

1

d
Kij,γ

[
∂Vγ

f
(0)
j

])
, (6.20)

E
j
i (V) = −

(
∇Vf

(0)
i

) 1

mj

(
δij −

njmj

ρ

)
, (6.21)

where the operator Kij,γ [X ] is defined by Eq. (C16).
This completes the construction of the normal solution to the revised Enskog equations up through first order

in the gradients. Equation (6.7) determines the f
(0)
i through the definition (6.5); solution to the linear integral

equations (6.10)–(6.14) determines the f
(1)
i through the definition (6.9). The unknown fluxes and cooling rate of the

hydrodynamic equations can then be calculated with these solutions. This is made explicit in the next section.

VII. CONSTITUTIVE EQUATIONS AND TRANSPORT COEFFICIENTS

The forms for the constitutive equations to first order in the gradients are given by Eqs. (5.9)–(5.12). The explicit
representations for the coefficients in these equations are given in terms of the solutions to the integral equations for

f
(0)
i and f

(1)
i of the previous section. Details of the simplification of these expressions in terms of f

(0)
i and f

(1)
i are

given in Appendix F and only the final results are presented here.

Recall that the results below are based on the assumption that the external force is of the same magnitude as f
(1)
i ;

a force of different magnitude would result in different constitutive relations.

A. Cooling Rate

The cooling rate is calculated from Eq. (4.27), resulting in the form (5.9)

ζ → ζ(0) + ζU∇ · U, (7.1)

with

ζ(0) =
B3

2dnT

s∑

i,j=1

(
1 − α2

ij

) mimj

mi +mj
χ

(0)
ij σ

d−1
ij

∫
dv1

∫
dv2f

(0)
i (V1)f

(0)
j (V2) g

3
12, (7.2)

and

ζU = −d+ 2

dnT
B4

s∑

i,j=1

(
1 − α2

ij

)
µjiχ

(0)
ij σ

d
ijninjT

(0)
i

+
B3

dnT

s∑

i,j=1

(
1 − α2

ij

) mimj

mi +mj
χ

(0)
ij σ

d−1
ij

∫
dv1

∫
dv2 g

3
12f

(0)
i (V1)Dj(V2). (7.3)

The constant Bn is defined by

Bn ≡ π(d−1)/2 Γ
(

n+1
2

)

Γ
(

n+d
2

) . (7.4)
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Also in (7.3) the species temperatures
{
T

(0)
i

}
have been defined by

d

2
niT

(0)
i =

∫
dv

1

2
miV

2f
(0)
i ({ni} , T, V ). (7.5)

There is no special significance to these quantities other than naming the integral on the right side, which is a specified

function of the hydrodynamic fields {ni} and the global temperature T through f
(0)
i .

B. Mass Fluxes

The mass fluxes are determined from the definition of (4.16) leading to the form (5.10) to first order in the gradients

j0i → −
s∑

j=1

mimj
nj

ρ
Dij∇ lnnj − ρDT

i ∇ lnT −
s∑

j=1

DF
ijFj . (7.6)

The transport coefficients are identified as

DT
i = −mi

ρd

∫
dvV · Ai (V) , (7.7)

Dij = − ρ

mjnjd

∫
dvV · Bj

i (V) , (7.8)

DF
ij = −mi

d

∫
dvV · Ej

i (V) . (7.9)

C. Energy Flux

The energy flux to first order in the gradients is given by (5.11)

q → −λ∇T −
s∑

i,j=1

(
T 2Dq,ij∇ lnnj + LijFj

)
. (7.10)

There are both kinetic and collisional transfer contributions according to Eq. (4.17), q ≡ qk + qc. The kinetic
contributions to the transport coefficients are identified as

λk =

s∑

i=1

λk
i = − 1

dT

s∑

i=1

∫
dv

1

2
miV

2V · Ai (V) , (7.11)

Dk
q,ij = − 1

dT 2

∫
dv

1

2
miV

2V · Bj
i (V) , (7.12)

Lk
ij = −1

d

∫
dv

1

2
miV

2V · Ej
i (V) . (7.13)

For convenience below, the partial thermal conductivities λk
i have been introduced in Eq. (7.11). The collision transfer

contributions are obtained from (4.19) to first order in the gradients. These are calculated in Appendix F with the
results

λc =
s∑

i,j=1

1

8
(1 + αij)mjµijσ

d
ijχ

(0)
ij

{
2B4 (1 − αij) (µij − µji)ni

[
2

mj
λk

j + (d+ 2)
T

(0)
i

mimjT
ρDT

j

]

+
8B2

2 + d
ni

[
2µij

mj
λk

j − (d+ 2)
T

(0)
i

mimjT
(2µij − µji) ρD

T
j

]
− T−1CT

ij

}
, (7.14)
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Dc
q,ij =

s∑

p=1

1

8
(1 + αip)mpµipσ

d
ipχ

(0)
ip {2B4 (1 − αip) (µip − µpi)

×ni

[
2

mp
Dk

q,pj + (d+ 2)
T

(0)
i

T 2

mjnj

ρmi
Dpj

]

+
8B2

d+ 2
ni

[
2µpi

mp
Dk

q,pj − (d+ 2) (2µip − µpi)
T

(0)
i

T 2

njmj

miρ
Dpj

]
− T−2CT

ipj

}
,

(7.15)

Lc
ij =

s∑

p=1

1

8
(1 + αip)mpµipσ

d
ipχ

(0)
ip {2B4 (1 − αip) (µip − µpi)

×ni

[
2

mp
Lk

pj + (d+ 2)
T

(0)
i

mimp
DF

pj

]

+
8B2

d+ 2
ni

[
2µpi

mp
Lk

pj − (d+ 2) (2µip − µpi)
T

(0)
i

mimp
DF

pj

]}
, (7.16)

where the coefficients CT
ij and CT

ipj are given by Eqs. (F27) and (F28). These expressions also depend on the transport

coefficients of the mass fluxes, DT
i , Dij , and DF

ij given by Eqs. (7.7), (7.8), and (7.9), respectively, and on the kinetic

contributions λk
i , Dk

q,ij , and Lk
ij .

D. Momentum Flux

The pressure tensor is evaluated from Eqs. (4.20)–(4.22). To zeroth order in the gradients, one gets the pressure p
as

p ({ni} , T ) =
1

d
P (0)

γγ ≡ pk ({ni} , T ) + pc ({ni} , T ) =
1

d
P (0)k

γγ +
1

d
P (0)c

γγ , (7.17)

where

p = pk + pc, (7.18)

pk = nT, pc = B2

s∑

i,j=1

µji (1 + αij)σ
d
ijχ

(0)
ij ninjT

(0)
i . (7.19)

Similarly the shear viscosity is η = ηk + ηc where

ηk =

s∑

i=1

ηk
i , ηk

i = − 1

(d+ 2)(d− 1)

s∑

i=1

∫
dvmiVλVγCi,λγ (V) , (7.20)

ηc =
2B2

(d+ 2)

s∑

i,j=1

µij (1 + αij)χ
(0)
ij niσ

d
ijη

k
j +

d

d+ 2
κc. (7.21)

Finally, the bulk viscosity is κ = κk + κc where

κk = 0, κc =
B3 (d+ 1)

2d2

s∑

i,j=1

mjµij (1 + αij)χ
(0)
ij σ

d+1
ij

∫
dv1

∫
dv2f

(0)
i (V1)f

(0)
j (V2)g12. (7.22)
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VIII. DISCUSSION

The most complete and accurate description of mixtures for ordinary fluids is based on the revised Enskog kinetic
equations for hard spheres. The explicit construction of solutions to those equations by the CE expansion to first
order in the gradients was given more that twenty years ago in Ref. [49]. These solutions, together with the macro-
scopic balance equations obtained from the kinetic equations, provide a self-consistent derivation of Navier-Stokes
hydrodynamics for mixtures and the identification of expressions for all the Navier-Stokes parameters (equations of
state, transport coefficients). In the context of the chosen kinetic theory, the analysis and the expressions for these
parameters are exact. At this formal level questions of principle could be addressed, prior to the introduction of
subsequent approximations for practical evaluations. For example, it was shown that application of the analysis to
the original and revised Enskog theories leads to qualitatively different Navier-Stokes hydrodynamics, only one of
which is consistent with irreversible thermodynamics. Since no approximations were involved this was sufficient to
reject the Enskog kinetic theory in favor of its revised version [48].

The present work is simply an extension of that in Ref. [49] to inelastic hard sphere granular mixtures. Modification
of the collisions to account for inelasticity leads to significant differences from ordinary fluids in detail, but the formal
structure of the CE expansion remains the same. Similarly, granular Navier-Stokes hydrodynamics results exactly
from the CE solution to first order in the gradients and the corresponding modified balance equations. The form of
these hydrodynamic equations and expressions for the transport coefficients are exact, as in the ordinary fluid case.
The primary motivation for this analysis is to provide the basis for practical applications, as noted in the Introduction,
and described in the following paper. However, at the formal level, important fundamental questions can be addressed
and clarified as well.

The existence of hydrodynamics for granular fluids has been questioned, due to the many known differences from
ordinary fluids: there is no equilibrium or even stationary reference state; the temperature is not a hydrodynamic
field (failure of energy conservation), or conversely, multiple temperature fields could be required for mixtures (failure
of equilibrium state equipartition for the corresponding granular HCS). In the end, qualitative discussions must be
resolved by controlled analysis. Here, the validity of the RET for some range of densities and degree of dissipation has
been assumed as a mesoscopic basis for possible macroscopic dynamics in a granular mixture. As shown in the text,
sufficient conditions are the macroscopic balance equations (verified) and a normal solution to the kinetic equations.
The normal solution is defined in terms of a chosen set of hydrodynamic fields, and the question of hydrodynamics
reduces to its existence. The details of the Appendices give the explicit construction of this solution to first order
in the gradients, together with a proof of the existence of solutions to the associated integral equations. It can be
concluded from this that a closed set of hydrodynamic equations for the species densities, flow velocity, and a single
temperature exist for sufficiently small gradients.

This conclusion is consistent with the observations that the reference state is not equilibrium, depends on the cooling
temperature, energy loss can be large at strong dissipation, and the kinetic temperatures of species are different. None
of these facts compromises implementation of the CE expansion for solution to the kinetic equation. The parameters of
the resulting Navier-Stokes equations incorporate such effects through the integral equations that determine them, and
their dependence on the time dependent fields. This in turn affects the solutions to the Navier-Stokes equations under
different physical conditions, and is responsible for some of the observed peculiarities of granular fluids. Clearly,
it is important to get the details of the Navier-Stokes equations accurately before concluding that any observed
experimental phenomenon is hydrodynamic or not. This is another primary motivation for the present work.

These details entail solution to the equation for the reference state and solution to the integral equations for the
transport coefficients, to determine them as functions of the hydrodynamic fields (temperature, flow field, and species
densities) and the system parameters (restitution coefficients, masses, particle sizes). There has been considerable
study of the reference state, as an expansion about a Gaussian for relatively small velocities (asymptotic forms for
large velocities are known as well). The integral equations can be solved approximately as truncated expansions in a
complete set of polynomials with Gaussian weight factors. For ordinary fluids the leading approximation is generally
quite accurate, and the following paper gives its extension to the granular mixture. Still, there are open questions
about this approximation for strong dissipation and large mechanical disparity (e.g., mass ratio). Previous results
obtained for granular mixtures at low-density [67, 68] and for the shear viscosity of a heated granular mixture at
moderate density [64] have shown the accuracy of the above approximation, even for strong dissipation.

An accurate solution to the integral equations will predict the transport coefficients as functions of the dissipation.
There is only one correct result for this dependence, given by the formulas obtained here. However, its measurement
in a given experiment or simulation can entangle and affect this dependence of the transport coefficients due to higher
order gradients beyond the Navier-Stokes limit. It may be tempting to compare experimental or simulation data to
a corresponding Navier-Stokes solution, adjusting the transport coefficients for a best fit and reporting these as the
“measured” values. This can be misleading for granular fluids under conditions where the size of the gradients increase
with the degree of dissipation. For such states, strong dissipation can require additional terms in the constitutive
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equations beyond those of Navier-Stokes order [40, 69, 70]. This does not mean that the results obtained here are not
correct at strong dissipation, only that they must be distinguished carefully from other effects of the same order. A
careful tabulation of the Navier-Stokes results given here (e.g., via Monte Carlo simulation) is required for an accurate
analysis of experiments of current interest. It is an interesting new feature of granular fluids that hydrodynamic states
beyond Navier-Stokes order may be the norm rather than the exception.
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APPENDIX A: RET AND SPATIAL CORRELATIONS AT CONTACT

In the case of ordinary fluids, the Enskog approximation can be understood as a short time, or Markovian approx-
imation. This follows if the initial distribution has the Enskog form

fij(r1,v1, r1 − σij ,v2; t = 0) = fi(r1,v1, t = 0)fj(r1 − σij ,v2; t = 0)χij (r1, r1 − σij | {nk}) . (A1)

In fact, this is a quite plausible class of initial conditions since correlations in that case are generally induced by the
interparticle structure that is independent of the velocities. Then at finite times, it is assumed that fij(r1,v1, r1 −
σij ,v2; t) becomes a functional of fi

fij(r1,v1, r1 − σij ,v2; t) = Fij(r1,v1, r1 − σij ,v2; t | fi(t)). (A2)

The Enskog approximation corresponds to evaluating this functional at t = 0

fij(r1,v1, r1 − σij ,v2; t) → Fij(r1,v1, r1 − σij ,v2; t = 0 | fi(t)). (A3)

Thus for the special class of initial conditions the Enskog approximation is asymptotically exact at short times, and
assumes that the generator for dynamics at later times is the same as that initially. This idea provides a simple mean
field theory for particles with continuous potentials of interaction, but is more realistic for hard spheres where there
is instantaneous momentum transport at the initial time. The presence of inherent velocity correlations for granular
fluids suggests that the form (A1) is less justified than in the ordinary fluid case. However, it is noted that velocity
correlations are present for any nonequilibrium state even with elastic collisions and it is known that the Enskog
equation still provides a good approximation in these latter cases.

An important exact boundary condition for hard spheres is given by [53]

Θ(σ̂ · g12)fij(r1,v1, r1 − σij ,v2; t) = α−2
ij b

−1
ij Θ(−σ̂ · g12)fij(r1,v1, r1 − σij ,v2; t). (A4)

This equation implies that the distribution of particles that have collided is the same as those about to collide, but
with their velocities changed according to the collision rules. In general the two particle distribution function can be
written as

fij(r1,v1, r1 − σij ,v2; t) = Θ(−σ̂ · g12)fij(r1,v1, r1 − σij ,v2; t)

+Θ(σ̂ · g12)fij(r1,v1, r1 − σij ,v2; t). (A5)

If the Enskog approximation (A3) is introduced in the first term on the right side of (A5), then the corresponding
approximation on the right side of Eq. (A5) gives the approximate two particle distribution function at contact as

fij(r1,v1, r1 − σij ,v2; t) → Θ(−σ̂ · g12)χij (r1, r1 − σij | {nk}) fi(r1,v1; t)fj(r1 − σij ,v2; t)

+ α−2
ij b

−1
ij Θ(−σ̂ · g12)χij (r1, r1 − σij | {nk}) fi(r1,v1; t)

×fj(r1 − σij ,v2; t)

= Θ(−σ̂ · g12)χij (r1, r1 − σij | {nk}) fi(r1,v1; t)fj(r1 − σij ,v2; t)

+α−2
ij Θ(σ̂ · g12)χij (r1, r1 − σij | {nk}) fi(r1,v

′′
1 ; t)

×fj(r1 − σij ,v
′′
2 ; t). (A6)
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Since v′′
1 and v′′

2 are functions of both v1 and v2 there are velocity correlations on the complementary hemisphere,
even when they are neglected on the precollision hemisphere.

An important consequence of (A6) is the relationship of χij (r1, r1 − σij | {ni}) to the pair correlation function
gij (r1, r1 − σij | {nk}) defined by

ni (r1)nj (r1 − σij) gij (r1, r1 − σij | {nk}) =

∫
dv1

∫
dv2 fij(r1,v1, r1 − σij ,v2; t) (A7)

Use of the approximation (A6) gives the result

ni (r1)nj (r1 − σij) gij (r1, r1 − σij | {nk}) =
1 + αij

αij
χij (r1, r1 − σij | {nk})

∫
dv1

∫
dv2

×Θ(−σ̂ · g12)fi(r1,v1; t)fj(r1 − σij ,v2; t),

(A8)

where a change of variables has been made in the integration of the second term in (A6)

∫
dv1

∫
dv2X(v′′

1 ,v
′′
2 ) = αij

∫
dv′′

1

∫
dv′′

2 X(v′′
1 ,v

′′
2 ). (A9)

For a uniform system, gij (r1, r2 | {nk}) → gij (|r1 − r2| ; {nk}) and this expression reduces to

gij (σij ; {nk}) =
1 + αij

2αij
χij (σij ; {nk}) (A10)

Equation (A10) is the result quoted in the text and provides the interpretation for χij (r1, r1 − σij | {nk}) . For
elastic collisions χij (σij ; {nk}) is indeed the pair correlation function at contact. The Enskog theory in that case
takes χij (r1, r1 − σij | {nk}) to be the pair correlation function for an equilibrium nonuniform fluid whose densities
are equal to those for the actual nonequilibrium state being considered. This assumption is based on the fact
that structural correlations for hard spheres are entirely due to excluded volume effects which should be similar for
equilibrium and nonequilibrium states. It is reasonable to extend this choice for χij (r1, r1 − σij | {nk}) to granular
fluids as well. Its accuracy can be judged by measuring (via MD simulation) the pair correlation given by (A10) with
this choice on the right side. This has been done for the one component fluid, indicating reasonable results over a
range of values for the restitution coefficient [53].

APPENDIX B: BALANCE EQUATIONS AND FLUXES

The macroscopic balance equations follow from the definitions (4.1)–(4.3) and the first hierarchy equation (3.1)

∂tni + ∇r1 ·
∫
dv1v1fi =

∫
dv1Ci, (B1)

∂te+ ∇r1 ·
s∑

i=1

∫
dv1

1

2
miv

2
1v1fi −

s∑

i=1

Fi ·
∫
dv1v1fi =

s∑

i=1

∫
dv1

1

2
miv

2
1Ci, (B2)

∂tpβ + ∂r1γ

s∑

i=1

∫
dv1miv1γv1βfi −

s∑

i=1

niFiβ =

s∑

i=1

∫
dv1miv1βCi. (B3)

The integrals over the collisional contribution Ci are analyzed below with the results
∫
dv1Ci = 0, (B4)

s∑

i=1

∫
dv1

1

2
miv

2
1Ci = −∇ · sc − w, (B5)
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s∑

i=1

∫
dv1miv1βCi = −∂rγ

tcγβ. (B6)

Use of these expressions in (B1)–(B3) gives the balance equations (4.4)–(4.6) of the text with

ji = mi

∫
dv1v1fi, (B7)

s =

s∑

i=1

∫
dv1

1

2
miv

2
1v1fi + sc, (B8)

tγβ =

s∑

i=1

∫
dv1miv1γv1βfi + tcγβ. (B9)

The terms w, sc, and tcγβ arising from the collisional contribution Ci are identified by further analysis of the left

sides of (B5) and (B6). To do so consider the general expression for some arbitrary function ψi (v1)
∫
dv1ψiCi =

s∑

j=1

σd−1
ij

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)ψi (v1)

×
[
α−2

ij fij(r1,v
′′
1 , r1 − σij ,v

′′
2 ; t) − fij(r1,v1, r1 + σij ,v2; t)

]
. (B10)

The restituting velocities are functions of the given velocities, v′′
1 = v′′

1 (v1,v2), v′′
2 = v′′

2 (v1,v2), defined by (3.3).
These relations can be inverted to get

v1 = v′′
1 − µji (1 + αij) (σ̂ · g′′

12)σ̂, v2 = v′′
2 + µij (1 + αij) (σ̂ · g′′

12)σ̂. (B11)

Therefore, in the first term of (B10) it is possible to change integration variables from dv1dv2 to dv′′
1dv

′′
2 , with a

Jacobian αij to get
∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)ψi (v1)α

−2
ij fij(r1,v

′′
1 , r1 − σij ,v

′′
2 ; t)

=

∫
dv′′

1

∫
dv′′

2

∫
dσ̂ Θ(−σ̂ · g′′

12)(−σ̂ · g′′
12)ψi (v1 (v′′

1 ,v
′′
2 )) fij(r1,v

′′
1 , r1 − σij ,v

′′
2 ; t)

=

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)ψi (v′

1 (v1,v2)) fij(r1,v1, r1 + σij ,v2; t), (B12)

where use has been made of (σ̂ · g12) = −αij(σ̂ · g′′
12). In the last line the dummy variables (v′′

1 ,v
′′
2 ) have been

relabelled (v1,v2), and a change of integration from σ̂ to −σ̂ has been performed. Accordingly v1 (v′′
1 ,v

′′
2 ) has been

relabelled v′
1 (v1,v2) with (B11) becoming in this notation

v′
1 = v1 − µji (1 + αij) (σ̂ · g12)σ̂, v′

2 = v2 + µij (1 + αij) (σ̂ · g12)σ̂. (B13)

This is the direct scattering law, which differs from the restituting scattering law (3.3) for αij 6= 1. With this
transformation the integral (B10) is

∫
dv1ψiCi =

s∑

j=1

σd−1
ij

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)

× (ψi (v′
1) − ψi (v1)) fij(r1,v1, r1 + σij ,v2; t). (B14)

The special choice ψi (v1) = 1 proves (B4) above.
Next, consider the sum of (B14) over all species

s∑

i=1

∫
dv1ψiCi =

s∑

i,j=1

σd−1
ij

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)

× [ψi (v′
1) − ψi (v1)] f

(2)
ij (r1,v1, r1 + σij ,v2; t)

=
1

2

k∑

i,j=1

σd−1
ij

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)

×{[ψi (v′
1) − ψi (v1)] fij(r1,v1, r1 + σij ,v2; t)

+ [ψj (v′
2) − ψj (v2)] fji(r1,v2, r1 − σij ,v1; t)} . (B15)
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The second equality is obtained from the first by taking half the sum of the first plus an equivalent form obtained by
interchanging v1 and v2, interchanging i and j, and changing σ̂ to −σ̂. To simplify this further, note the relation
fji(r1,v2, r1 − σij ,v1; t) = fij(r1 − σij ,v1, r1,v2; t) and arrange terms as

s∑

i=1

∫
dv1ψiCi =

1

2

s∑

i,j=1

σd−1
ij

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)

× {[ψi (v′
1) + ψj (v′

2) − ψi (v1) − ψj (v2)] fij(r1,v1, r1 + σij ,v2; t)

+ [ψi (v′
1) − ψi (v1)] [fij(r1,v1, r1 + σij ,v2; t) − fij(r1 − σij ,v1, r1,v2; t)]} .

(B16)

The first term of the integrand represents a collisional effect due to scattering with a change in the velocities. The
second term is a collisional effect due to the spatial difference of the colliding pair. This second effect is called
“collisional transfer”. It can be written as a divergence through the identity

fij(r1,v1, r1 + σij ,v2; t) − fij(r1 − σij ,v1, r1,v2; t)

=

∫ 1

0

dx
∂

∂x
fij(r1 − xσij ,v1, r1 + (1 − x) σij ,v2; t)

= ∇r1 · σij

∫ 1

0

dx fij(r1 − xσij ,v1, r1 + (1 − x) σij ,v2; t).

(B17)

Using the identity (B17), Eq. (B16) can be finally written as

s∑

i=1

∫
dv1ψiCi =

1

2

s∑

i,j=1

σd−1
ij

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)

× {[ψi (v′
1) + ψj (v′

2) − ψi (v1) − ψj (v2)] fij(r1,v1, r1 + σij ,v2; t)

+ ∇r1 · σij [ψi (v′
1) − ψi (v1)]

∫ 1

0

dx fij(r1 − xσij ,v1, r1 + (1 − x) σij ,v2; t)

}
.

(B18)

Now, apply this result to the case ψi = miv1. Since the total momentum is conserved in all pair collisions,
ψi (v′

1) + ψj (v′
2) − ψi (v1) − ψj (v2) = 0 for this case and (B18) gives (B6) with

tcγβ ≡ −1

2

s∑

i,j=1

σd
ij

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)σ̂γ

×
(
miv

′
1β −miv1β

) ∫ 1

0

dx fij(r1 − xσij ,v1, r1 + (1 − x) σij ,v2; t)

=
1

2

s∑

i,j=1

miµji (1 + αij)σ
d
ij

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)

2σ̂γ σ̂β

×
∫ 1

0

dx fij(r1 − xσij ,v1, r1 + (1 − x) σij ,v2; t). (B19)

The analysis leading to (B6) follows from (B16) in a similar way with ψi = miv
2
1/2. However, since energy is not

conserved in pair collisions the first term on the right side does not vanish. Instead, it represents the collisions energy
loss w

w = −
s∑

i,j=1

1

4
σd−1

ij

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)

(
miv

′2
1 +mjv

′2
2 −miv

2
1 −mjv

2
2

)
fij(r1,v1, r1 + σij ,v2; t)

=
1

4

s∑

i,j=1

(
1 − α2

ij

)
miµjiσ

d−1
ij

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)

3

×fij(r1,v1, r1 + σij ,v2; t). (B20)



21

The second term on the right side of (B18) gives the collisional transfer contribution to the flux

∇ · sc = −∇r1 ·
s∑

i,j=1

1

4
miσ

d
ij

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)σ̂

(
v′21 − v2

1

) ∫ 1

0

dx fij(r1 − xσij ,v1, r1 + (1 − x) σij ,v2; t)

= ∇r1 ·
s∑

i,j=1

1

4
(1 + αij)miµjiσ

d
ij

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)

2
σ̂

× [µji (1 − αij) (σ̂ · g12) + 2σ̂ · (µijv1 + µjiv2)]

×
∫ 1

0

dx fij(r1 − xσij ,v1, r1 + (1 − x) σij ,v2; t). (B21)

This confirms (B5) and identifies sc, which has the equivalent form (obtained by taking half the sum of forms with i
and j interchanged)

sc =

s∑

i,j=1

1

8
(1 + αij)miµjiσ

d
ij

∫
dv1

∫
dv2

∫
dσ̂ Θ(σ̂ · g12)(σ̂ · g12)

2

×σ̂ [(1 − αij) (µji − µij) (σ̂ · g12) + 4σ̂ · (µijv1 + µjiv2)]

×
∫ 1

0

dx fij(r1 − xσij ,v1, r1 + (1 − x)σij ,v2; t). (B22)

APPENDIX C: CHAPMAN–ENSKOG SOLUTION

As described in the text a normal solution to the kinetic equation is a non-local functional of the hydrodynamic
fields fi(v1 | {yβ (t)}). This is equivalent to a function of the fields at a point and all their derivatives at that point

fi(r1,v1 | {yβ (t)}) = fi(v1; {yβ (r1, t)} ; {∂r1yβ (r1, t) ; ..}). (C1)

If the gradients are small, this function can be expanded in the appropriate dimensionless small parameter

fi(v1 | {yβ (t)}) = f
(0)
i (v1; {yβ (r1, t)}) + f

(1)
i (v1; {yβ (r1, t)} ; {∂r1yβ (r1, t)}) + · · · (C2)

where f
(0)
i is a function of the fields alone, f

(1)
i is a function of the fields and linear in their gradients, and so on.

Thus the kinetic equation can be solved perturbatively by requiring that contributions from common order in this
gradient expansion vanish.

To perform this ordering it is necessary to expand the collision operators of (3.9)

Jij [r1,v1 | f(t)] ≡ σd−1
ij

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

×
[
α−2

ij χij (r1, r1 − σij | {ni}) fi(r1,v
′′
1 ; t)fj(r1 − σij ,v

′′
2 ; t)

−χij (r1, r1 + σij | {ni}) fi(r1,v1; t)fj(r1 + σij ,v2; t)] . (C3)

For the purposes here it is sufficient to go up through first order. The distribution functions evaluated at r1 ± σij

become

fi(v1; {yβ (r1 ± σij , t)} ; {∂r1yβ (r1 ± σij , t) ; · · · }) → (1 ± σij · ∇r1) f
(0)
i (v1; {yβ (r1, t)})

+f
(1)
i (v1; {yβ (r1, t)} ; {∂r1yβ (r1, t)})

= f
(0)
i (v1; {yβ (r1, t)}) ±

(
∂yβ

f
(0)
i (v1; {yβ (r1, t)})

)
σij · ∇r1yβ (r1, t)

+f
(1)
i (v1; {yβ (r1, t)} ; {∂r1yβ (r1, t)}). (C4)

The functional expansion of χij (r1, r1 ± σij | {ni}) to this order is obtained by a functional expansion of all species
densities about their values at r1

χij (r1, r1 ± σij | {ni (t)}) = χ
(0)
ij (σij | {nk (r1, t)}) (C5)
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+

s∑

ℓ=1

∫
dr′

δχij (r1, r1 ± σij | {ni})
δnℓ(r′, t)

|δn=0 (nℓ(r
′) − nℓ(r1)) + ..

→ χ
(0)
ij (σij ; {nk (r1, t)}) +

s∑

ℓ=1

(∇r1nℓ(r1; t)) ·
∫
dr′ (r′ − r1)

δχij (r1, r1 ± σij | {ni})
δnℓ(r′, t)

|δn=0 . (C6)

The arrow denotes the leading terms of a Taylor series for (nℓ(r
′) − nℓ(r1)) . The integral can be simplified by noting

at δn = 0 the functional integral has translational invariance

δχij (r1, r1 ± σij | {ni})
δnℓ(r′, t)

|δn=0= Fijℓ (r1 − r′, r1 ± σij − r′) (C7)

so

∫
dr′ (r′ − r1)

δχij (r1, r1 ± σij | {ni})
δnℓ(r′, t)

|δn=0=

∫
dr′
(
r′ ± 1

2
σij

)
δχij

(
∓ 1

2σij ,± 1
2σij | {ni}

)

δnℓ(r′, t)
|δn=0 (C8)

= ±1

2
σij

∂ lnχ
(0)
ij (σij ; {nℓ (r1)})
∂nℓ (r1)

+

∫
dr′r′

δχij

(
∓ 1

2σij ,± 1
2σij | {ni}

)

δnℓ(r′, t)
|δn=0 (C9)

The expansion for χij (r1, r1 ± σij | {ni (t)}) becomes

χij (r1, r1 ± σij | {ni (t)}) = χ
(0)
ij (σij ; {nk (r1, t)})

[
1 ± 1

2
σij ·

s∑

ℓ=1

∇r1 lnnℓ(r1; t)

×
(
nℓ (r1)

∂ lnχ
(0)
ij (σij ; {nℓ (r1)})
∂nℓ (r1)

+ Iijℓ(σij ; {nk (r1, t)})
)]

.

(C10)

The last line defines Iijℓ(σij ; {nk (r1, t)}) as

Iijℓ(σij ; {nk}) ≡
2nℓ(r1, t)

χ
(0)
ij (σij ; {nk}) σij

∫
dr′ (σ̂ij · r′)

δχij

(
− 1

2σij ,+
1
2σij | {ni}

)

δnℓ(r′, t)
|δn=0 . (C11)

These results give the expansion of Jij [r1,v1 | fi] to first order in the gradients

s∑

j=1

Jij [r1,v1 | f ] →
s∑

j=1

J
(0)
ij

[
v1 | f (0)

i , f
(0)
j

]
−
(
Lf (1)

)

i
(C12)

−
s∑

j=1

Kij,γ [v1 | ∂yβ
f

(0)
j (t)]∂γyβ (r1, t) (C13)

−
s∑

j,ℓ=1

(
nℓ

∂ lnχ
(0)
ij (σij ; {nk})
∂nℓ

+ Iijℓ(σij ; {nk})
)
Kij,γ [v1 | f (0)

j (t)]∂γ lnnℓ(r1; t) (C14)

with the definitions ∂γX ≡ ∂X/∂rγ ,

J
(0)
ij [v1 | gi, fj ] ≡ χ

(0)
ij (σij ; {ni (r1, t)}) σd−1

ij

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

×
[
α−2

ij gi(V
′′
1 )fj(V

′′
2 ) − gi(V1)fj(V2)

]
, (C15)
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Kij,γ [Xj] = σd
ijχ

(0)
ij

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)σ̂γ

×
[
α−2

ij f
(0)
i (r1,V

′′
1 ; t)Xj(r1,V

′′
2 ) + f

(0)
i (r1,V1; t)Xj(r1,V2)

]
. (C16)

Finally, L is a linear operator defined over s dimensional vectors {Xi} whose components are labelled by the species

(LX)i = −
s∑

j=1

(
J

(0)
ij

[
v1 | Xi, f

(0)
j

]
+ J

(0)
ij

[
v1 | f (0)

i , Xj

])
. (C17)

It remains to choose the magnitude of the external forces Fi to consistently order this expansion. To be specific,
and for comparison with Ref. [49] it is assumed here to be of first order in the gradients.

1. Zeroth Order

At lowest order all gradients of the hydrodynamic fields are neglected, and (3.8) becomes

∂
(0)
t f

(0)
i (v1; {yβ (r1, t)} =

s∑

j=1

J
(0)
ij

[
v1 | f (0)

i ({yβ (r1, t)}), f (0)
j ({yβ (r1, t)})

]
. (C18)

The notation ∂
(0)
t for the time derivative means that the balance equations are to be used to zeroth order in the

gradients

∂
(0)
t f

(0)
i (V1; {yβ (r1, t)} =

(
∂yβ

f
(0)
i (V1; {yβ (r1, t)})

)
∂

(0)
t yβ (r1, t)

= −ζ(0) ({yβ (r1, t)}) T∂Tf
(0)
i (V1; {yβ (r1, t)}). (C19)

Use of (C19) in (C18) gives the zeroth order equation (6.1) of the text.

2. First Order

The kinetic equation for contributions of first order in the gradients is

∂
(0)
t f

(1)
i +

(
Lf (1)

)

i
= −

(
∂

(1)
t + v1 · ∇r1 +m−1

i Fi · ∇v1

)
f

(0)
i −

s∑

j=1

Kij,γ [v1 | ∂yβ
f

(0)
j ]∂γyβ

−1

2

s∑

j,ℓ=1

Kij,γ

[
v1|
(
nℓ

∂ lnχ
(0)
ij

∂nℓ
+ Iijℓ

)
f

(0)
j

]
∂γ lnnℓ, (C20)

where ∇r ≡ ∂/∂r and ∇V ≡ ∂/∂V. The first term on the right side of (C20) can be expressed explicitly in terms of

the gradients, where now ∂
(1)
t means that the balance equations are to be used with only terms of first order in the

gradients

(
∂

(1)
t + v1 · ∇r1+m

−1
i Fi · ∇V1

)
f

(0)
i = m−1

i Fi · ∇V1f
(0)
i +

(
∂yβ

f
(0)
i

)(
D

(1)
t + V1 · ∇r1

)
yβ

=



m−1
i Fi − ρ−1

s∑

j=1

njFj



 · ∇V1f
(0)
i

−
(
∇V1f

(0)
i

)
·
(
−ρ−1∇r1p+ V1 · ∇r1U

)

−
(
∂T f

(0)
i

)((
TζU +

2

nd
p

)
∇ ·U − V1 · ∇r1T

)

+

s∑

j=1

(
∂nj

f
(0)
i

)
(−nj∇ ·U + V1 · ∇r1nj) . (C21)
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In (C21), D
(1)
t ≡ ∂

(1)
t +U ·∇ and use has been made of the fact that f

(0)
i depends on U only through the combination

V1 = v1 − U, so that

∇Uf
(0)
i = −∇V1f

(0)
i . (C22)

The pressure gradient can be expressed in terms of the temperature and density gradients

∇r1p =
p

T
∇r1T +

s∑

j=1

(
∂nj

p
)
∇r1nj , (C23)

to give

(
∂

(1)
t + v1 · ∇r1+m

−1
i Fi · ∇v1

)
f

(0)
i = m−1

i Fi · ∇V1f
(0)
i − ρ−1
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j=1

nj∇V1f
(0)
i ·Fj

+

(
p

ρT
∇v1f
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i + V1∂T f

(0)
i

)
· ∇r1T

+

s∑
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(
ρ−1∂nj

p∇v1f
(0)
i + V1∂nj

f
(0)
i

)
· ∇r1nj

−




(
ζU +

2

nTd
p

)
T∂Tf

(0)
i +

s∑

j=1

nj∂nj
f

(0)
i



∇ ·U

−V1γ(∂V1η
f

(0)
i )∂γUη. (C24)

Equations (C20) for the first order distributions, f
(1)
i , now become

∂
(0)
t f

(1)
i +

(
Lf (1)

)

i
= Ai (V1; {ni}) · ∇ lnT +

s∑

j=1

B
j
i (V1; {ni}) · ∇ lnnj

+Ci,γη (V1; {ni})
1

2

(
∂γUη + ∂ηUγ − 2

d
δγη∇ ·U

)

+Di (V1; {ni})∇ ·U +

s∑

j=1

E
j
i (V1; {ni}) · Fj . (C25)

The functions of velocity on the right side of (C25) are identified as

Ai,γ (V) =
1

2
Vγ∇V ·

(
Vf

(0)
i

)
− p

ρ
∂Vγ

f
(0)
i +

1

2

k∑

j=1

Kij,γ

[
∇V ·

(
Vf

(0)
j

)]
, (C26)

Bj
i,γ (V) = −Vγnj∂nj

f
(0)
i − ρ−1(∂Vγ

f
(0)
i )nj(∂nj

p)

−
s∑

ℓ=1
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[(
nj∂nj

+
1

2

(
nℓ
∂ lnχ

(0)
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∂nj
+ Iiℓj

))
f

(0)
ℓ

]
, (C27)

Ci,γβ (V) =
1

2

(
Vγ∂Vβ

f
(0)
i + Vβ∂Vγ

f
(0)
i − 2

d
δβγV · ∇Vf

(0)
i

)

+
1

2

s∑
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(
Kij,γ [∂Vβ

f
(0)
j ] + Kij,β [∂Vγ

f
(0)
j ] − 2

d
δβγKij,λ[∂Vλ

f
(0)
j ]

)
, (C28)

Di(V) =
1

d
V · ∇Vf

(0)
i − 1

2

(
ζU +

2

nTd
p

)
∇V ·

(
Vf

(0)
i

)

+
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j=1

(
nj∂nj

f
(0)
i +

1

d
Kij,γ

[
∂Vγ

f
(0)
j

])
, (C29)
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E
j
i (V) = −

(
∇Vf

(0)
i

) 1

mj

(
δij −

njmj

ρ

)
. (C30)

Upon deriving (C26)–(C30), use has been made of the relations

T∂T f
(0)
i = −1

2
∇V ·

(
Vf

(0)
i

)
, ∂Uβ

f
(0)
i = −∂Vβ

f
(0)
i . (C31)

The tensor derivative of the flow field ∂γUη has been expressed in terms of its independent trace and traceless parts,

using the spherical symmetry of f
(0)
i , e.g.

(
Vγ∂Vη

f
(0)
i

)
∂γUη = V̂γ V̂η(V ∂V )f

(0)
i (∂γUη) = V̂γ V̂β(V ∂V f

(0)
i )

1

2
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= V̂γ V̂η(V ∂V f
(0)
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1

2

(
∂γUη + ∂ηUγ − 2

d
δγη∇ ·U

)

+
1

d
(V ∂V f

(0)
i )∇ ·U, (C32)

and a similar analysis of the contribution from
∑s

j=1 Kij,γ [v | ∂Vβ
f

(0)
j ]. Equation (C25) is an inhomogeneous, linear

integral equation, where the inhomogeneity (the right side) is a linear combination of the the external force and the
gradients of the hydrodynamic fields. The coefficients of these fields are specified functions of the velocity V. Since

by definition f
(1)
i is proportional to the external force and the gradients of the hydrodynamic fields, it must have the

form

f
(1)
i → Ai (V) · ∇ lnT +

s∑

j=1

B
j
i (V) · ∇ lnnj

+Ci,γη (V)
1

2

(
∂γUη + ∂ηUγ − 2

d
δγη∇ ·U

)

+Di (V)∇ ·U +

s∑

j=1

E
j
i (V) · Fj . (C33)

The unknown functions of the peculiar velocity, Ai,B
j
i , Ci,γη,Di, and E

j
i are determined by solving Eq. (C25). By

dimensional analysis, Ai (V) = v−d
0 ℓ1−dA

∗
i (V∗), B

j
i (V) = v−d

0 ℓ1−dB
j∗
i (V∗), Ci,γη (V) = v

−(d+1)
0 ℓ1−dC∗

i,γη (V∗),

Di (V) = v
−(d+1)
0 ℓ1−dD∗

i (V∗), and E
j
i (V) = m−1v

−(d+2)
0 ℓ1−dE

j∗
i (V∗), where ℓ is an effective mean free path and

A
∗
i (V∗), B

j∗
i (V∗), C∗

i,γη (V∗), D∗
i (V∗), and E

j∗
i (V∗) are dimensionless functions of the reduced velocity V∗ = V/v0,

v0 =
√

2T/m being a thermal speed. Consequently,

∂
(0)
t Ai (V) = −ζ(0)T∂T Ai (V) =

1

2
ζ(0)∇V · (VAi (V)) , (C34)

∂
(0)
t B

j
i (V) = −ζ(0)T∂T B

j
i (V) =

1

2
ζ(0)∇V ·

(
VB

j
i (V)

)
, (C35)

∂
(0)
t Ci,γη (V) = −ζ(0)T∂TCi,γη (V) =

1

2
ζ(0)Ci,γη +

1

2
ζ(0)∇V · (VCi,γη (V)) , (C36)

∂
(0)
t Di (V) = −ζ(0)T∂TDi (V) =

1

2
ζ(0)Di +

1

2
ζ(0)∇V · (VDi (V)) , (C37)

∂
(0)
t E

j
i (V) = −ζ(0)T∂T E

j
i (V) = ζ(0)

E
j
i (V) +

1

2
ζ(0)∇V ·

(
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j
i (V)

)
. (C38)

In addition,

∂
(0)
t ∇ lnT = ∇∂(0)

t lnT = −∇ζ(0) = −1

2
ζ(0)∇ lnT −

s∑

j=1

nj
∂ζ(0)

∂nj
∇ lnnj . (C39)
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Since the external force and gradients of the fields are all independent, Eq. (C25) can be separated into independent
equations for the coefficients of each. This leads to the set of linear, inhomogeneous integral equations

((
L − 1

2
ζ(0)

)
A

)

i

= Ai, (C40)

(
LB

j
)
i
− nj

∂ζ(0)

∂nj
Ai = B

j
i , (C41)

((
L +

1

2
ζ(0)

)
Cγη

)

i

= Ci,γη, (C42)

((
L +

1

2
ζ(0)

)
D
)

i

= Di, (C43)

((
L + ζ(0)

)
E

j
)

i
= E

j
i . (C44)

The linear operator L is

(LX)i =
1

2
ζ(0)∇V · (VXi) + (LX)i . (C45)

Notice that (C40) can be used in (C41) to give the equivalent representation for the latter

(
L
(
B

j −
(
2nj∂nj

ln ζ(0)
)

A

))

i
= B

j
i −

(
2nj∂nj

ln ζ(0)
)
Ai. (C46)

This completes the CE solution up through first order in the gradients and first order in the external force. Once

(6.1) has been solved for f
(0)
i the integral equations for Ai, B

j
i , Ci,γη, Di, and E

j
i can be solved for f

(1)
i . Then, the

cooling rate, heat flux, and pressure tensor can be calculated as linear functions of the gradients and the external
force, and the explicit forms for the transport coefficients identified.

APPENDIX D: AN EIGENVALUE PROBLEM FOR L

To simplify and interpret the linear integral equations defining the first order solutions
{
f

(1)
i

}
it is useful to identify

a special set of eigenvalues and eigenfunctions for the operator L. Consider the equation for f
(0)
i

− ζ(0)T∂T f
(0)
i =

s∑

j=1

J
(0)
ij

[
r1,v1 | f (0)

i , f
(0)
j

]
. (D1)

Since the temperature occurs through the form (6.10), the temperature derivatives can be expressed as velocity
derivatives

1

2
ζ(0)∇V ·

(
Vf

(0)
i

)
=

s∑

j=1

J
(0)
ij

[
r1,v1 | f (0)
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(0)
j

]
. (D2)

Noting that ζ(0) ∝
√
T , the derivative of this equation with respect to T gives directly

(
LT∂T f

(0)
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i
=

1

2
ζ(0)T∂T f

(0)
i . (D3)

where use has been made of (C34), i.e. T∂Tf
(0)
i = −∇V ·

(
Vf

(0)
i

)
/2. An equivalent dimensionless form is

(
L∇V ·

(
Vf (0)

))

i
=

1

2
ζ(0)∇V ·

(
Vf

(0)
i

)
. (D4)
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In a similar way, differentiation of (D2) with respect to each component of the flow velocity gives

(
L∂Uγ

f (0)
)

i
= −1

2
ζ(0)∂Uγ

f
(0)
i . (D5)

Finally, differentiate (D2) with respect to each of the species densities and noting that the density dependence of
all quantities occurs only through the f (0)’s and the χij ’s, one gets
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f (0)
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This last form can be simplified by taking into account (D4) to get
(
L
(
∂nℓ

f (0) + ∂nℓ
ln ζ(0) |

χ
(0)
ij

∇V ·
(
Vf (0)

)))

i
= 0. (D7)

In summary, there are s+d+1 eigenvalues and eigenfunctions of the operator L. Equations (D4) and (D5) identify
these for the eigenvalue ζ(0)/2 and the d–fold degenerate value −ζ(0)/2, respectively. Equation (D7) identifies the
eigenfunctions for the s– fold degenerate eigenvalue 0. In dimensionless form this eigenvalue problem is written as

(
LΨ(m)

)

i
= λ(m)Ψ

(m)
i . (D8)

The eigenvectors are

Ψ
(ℓ)
i = nℓ∂nℓ
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i

)
, Ψ
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i = −v0∂Vγ

f
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i , (D9)

with the corresponding eigenvalues

λ(m) ⇔
(

0, .., 0,
1

2
ζ(0),−1

2
ζ(0),−1

2
ζ(0),−1

2
ζ(0)

)
. (D10)

These eigenvalues are the same as those of the linearized hydrodynamic equations in the long wavelength limit. This
provides a direct link between hydrodynamics and the spectrum of the linearized Enskog operator. In addition to this
physical interpretation, the eigenvalues and eigenfunctions allow a practical formulation of the integral equations, as
follows.

1. Biorthogonal set

Define a scalar product by

(a, b) =

s∑

i=1

∫
dVa†i (V) bi (V) , (D11)

where the dagger denotes complex conjugation. A biorthogonal basis set is then defined by the eigenfunctions Ψ
(m)
i

above, and

ψαi =

(
δi1
ni
, ..
δis
ni
,

(
2mi

dm
V ∗2 − 1

)
,
mi

ρ
V∗

)
, (D12)

where V∗ = V/v0. The orthonormality condition

s∑

i=1

∫
dV∗ψαi (V∗)Ψβi (V∗) = δαβ (D13)
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is easily verified. An associated projection operator is given by

(PX)i =
∑

α

Ψαi (V∗)
∑

j

∫
dV∗ψαj (V∗)Xj (V∗) . (D14)

It follows from (D14) that P2 = P . The corresponding orthogonal projection is

Q = 1 − P . (D15)

Consider the quantity (PLX)i

(PLX)i =
∑

α

Ψαi (V∗)
∑

j

∫
dV∗ψαj (V∗) (LX)j
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(s+1)
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j=1

2mj
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∫
dV∗V ∗2 (LX)j . (D16)

Only the projection onto Ψ
(s+1)
i contributes due to conservation of species number and momentum. It follows then

that

(PLA)i = 0,
(
PLB

j
)
i
= 0,

(
PLE

j
)
i
= 0, (PLC)i = 0. (D17)

The terms with A,Bj , and E
j vanish from symmetry since these all vectors; the last equality follows because C has

zero trace. Next, note that

ζU∇ · U = ζ(1) =
2

dnT

s∑

i=1

∫
dv1
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2
miv

2
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or equivalently

Ψs+1
i ζU = Ψ2i
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∂V ∗

η
f (0)
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[
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η
f (0)

]
. (D19)

This can be used to eliminate the explicit occurrence of the transport coefficient ζU in the integral equation (C43).
Finally, two additional identities are needed for the proofs of Appendix E

− ∂V ∗

γ
f

(0)
i

p− nT

v2
0ρ

= P
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1

2v0
Kij,γ [∇V∗ ·
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(0)
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], (D20)

(
∇V∗f

(0)
i

) (
v2
0ρ
)−1

nj∂nj
(p− nT ) = −P
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ℓ=1

1

v0
Kiℓ[

(
nj∂nj

+
1

2
Iiℓj

)
f

(0)
ℓ ]. (D21)

APPENDIX E: SOLUBILITY CONDITIONS AND UNIQUENESS

The results of Appendix D allow proof that the integral equations have solutions and that they are unique. These
equations have the generic form

(L− λ)X = X, (E1)
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where λ is one of the eigenvalues (D10). Let relation X be a solution to (E1). Then adding any solution to the
corresponding homogeneous integral equation also gives a solution

X ′ = X + cΨ, (E2)

where (L − λ) Ψ = 0. However, the property

(
Pf (1)

)

i
=
∑

α

Ψαi (V)
∑

j

∫
dvψαj (V) f

(1)
j (V) = 0 (E3)

follows from the fact that the average densities, temperature, and flow velocity are given exactly by the first order

term f
(0)
i , so that contributions to these averages from all higher order terms must vanish. Equivalently, (E3) implies

P





A

B
j

C
D
E

j




= 0. (E4)

Consequently, the solution to (E1) with the condition (E4) is unique.
To show that solutions exist the integral equations are written in the equivalent form

(
Q
(
L− 1

2
ζ∗
)

A

)

i

= QAi, (E5)

(
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∂nj
A

))

i

= Q
(
B

j
i − 2nj
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∂nj
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(
Q
(
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1

2
ζ(0)

)
Cγη
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i

= QCi,γη, (E7)

(
Q
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1

2
ζ∗
)
D
)

i

= QDi, (E8)

(
Q (L + ζ∗)E

j
)
i
= QE

j
i . (E9)

These equations are the same as (C40)–(C44). The appearance of the factors of Q simply represent a convenient
rearrangement of those equations, using the identities of Appendix D. They show that the relevant linear operator
is Q (L − λ) where λ is one of the eigenvalues (D10). The orthogonal projection Q identifies the left eigenfunctions
with zero eigenvalue as being those of the biorthogonal set ψαi in (D12). According to the Fredholm alternative
[71], solutions to these equations exist if and only if the inhomogeneity is orthogonal to the null space of the left
eigenfunctions. Here, all the inhomogeneities on the right sides of (E5)–(E9) appear explicitly orthogonal to this null
space. Hence, solutions exist and are unique.

APPENDIX F: DETAILS OF THE CONSTITUTIVE EQUATIONS

The cooling rate, and fluxes of mass, momentum, and energy are given exactly as explicit integrals of solutions to
the kinetic equation. Once the CE solution is obtained, approximately to first order in the gradients, these expressions
give the cooling rate and fluxes in the form of the constitutive equations (5.9)–(5.12). The objective of this Appendix
is to simplify these expressions to the extent possible without making any approximations. This is accomplished in
most cases by performing solid angle integrations using the results

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)n = π(d−1)/2 Γ

(
n+1

2

)

Γ
(

n+d
2

)gn ≡ Bng
n, (F1)
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∫
dσ̂Θ(σ̂ · g)(σ̂ · g)n

σ̂ = Bn+1g
nĝ, (F2)

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)nσ̂kσ̂ℓ =

Bn

n+ d
gn (nĝkĝℓ + δkℓ) , (F3)

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)nσ̂kσ̂ℓσ̂m = gn Bn+1

n+ d+ 1
[(n− 1) ĝkĝℓĝm + ĝmδkℓ + ĝkδmℓ + ĝℓδkm] , (F4)

where d is the dimension (d ≥ 2), and Γ (x) is the usual Gamma function

Γ (x+ 1) = xΓ (x) , Γ

(
1

2

)
=

√
π, Γ (1) = 1. (F5)

In addition, for the sake of convenience, henceforth we will use the notation g12 ≡ g.
To get the collisional transfer contributions to the fluxes, one has to consider the following expansion
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∫ 1

0

dxχij (r1 − xσij , r1 + (1 − x) σij | {ni})

×fi(r1 − xσij ,v1; t)fj(r1 + (1 − x) σij ,v2; t)

→ χ
(0)
ij (σij ; {ni}) f (0)

i (v1; t)f
(0)
j (v2; t)

+
1

2
χ

(0)
ij (σij ; {ni})

[
f

(0)
i (v1; t)∂yβ

f
(0)
j (v2; t) − f

(0)
j (v2; t)∂yβ

f
(0)
i (v1; t)

]
σij ·∇yβ
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]

+f
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j (r1,v2; t)δχij , (F6)

where δχij is defined by

δχij =

s∑

ℓ=1

(∇r1nℓ(r1; t)) ·
∫ 1

0

dx

∫
dr′ (r′ − r1)

δχij (r1 − xσij , r1 + (1 − x)σij | {ni})
δnℓ(r′, t)

|δn=0 (F7)

The functional derivative is evaluated at δn = 0 and so it depends only on differences of pairs of coordinates, as in
(C7). A change of variables then makes the dependence on x explicit

∫
dr′ (r′ − r1)

δχij (r1 − xσij , r1 + (1 − x) σij | {ni})
δnℓ(r′, t)

|δn=0=

∫
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(
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1

2
σij − xσij

)

×δχij
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− 1

2σij ,
1
2σij | {ni}

)

δnℓ(r′′, t)
|δn=0

= −
(
x− 1

2

)
σij

∂χ
(0)
ij (σij | {ni})
∂nℓ(r′′, t)

|δn=0 +

∫
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δχij

(
− 1

2σij ,
1
2σij | {ni}

)
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σij

[(
x− 1

2

)
nℓ

∂ lnχ
(0)
ij (σij ; {nk})
∂nℓ

− 1

2
Iijℓ(σij ; {nk})

]
, (F8)

where Iijℓ(σij ; {nk}) is defined in (C7). Finally, then

δχij =
1

2
χ

(0)
ij

s∑

ℓ=1

(∇r1 lnnℓ(r1; t)) · σij (Iijℓ(σij ; {nk})) . (F9)

1. Cooling rate

Since ζ is a scalar, the only gradient contributions are proportional to ∇·U, and (4.27) to first order in the gradients
becomes

ζ = ζ(0) + ζU∇ ·U, (F10)
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with

ζ(0) =
1

2dnT

s∑

i,j=1

(
1 − α2
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)
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j (V2), (F11)

ζU =
1

2dnT

s∑

i,j=1

(
1 − α2

ij

)
miµjiχ

(0)
ij σ

d−1
ij

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)3

×
[
1

d
f

(0)
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i (V1)Dj(V2)

]
. (F12)

Performing the solid angle integrals gives

ζ(0) =
B3

2dnT
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) mimj

mi +mj
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∫
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j (V2), (F13)

ζU =
B4
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) mimj

mi +mj
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∫
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3f
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i (V1)Dj(V2). (F14)

Finally, an integration by parts in the first term of the velocity integrals gives the result quoted in the text

ζU = − d+ 2
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) mimj

mi +mj
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mi +mj
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dv1

∫
dv2 g

3f
(0)
i (V1)Dj(V2), (F15)

where the species temperatures are defined by

d

2
niT

(0)
i =

∫
dv

1

2
miV

2f
(0)
i (V). (F16)

In the case of mechanically equivalent particles, Eq. (F15) reduces to previous results obtained for a monocomponent
gas [62, 72].

2. Mass Flux

The mass fluxes are determined from the definition of (4.16)

j0i (r1, t) → mi

∫
dvVf

(1)
i (r1,v; t)

=
1

d

∫
dvmiV ·



Ai (V)∇ lnT +

s∑

j=1

(
B

j
i (V)∇ lnnj + E

j
i (V)Fj

)


 , (F17)

where the contribution from f
(0)
i vanishes. The transport coefficients according to (5.10) are identified as

DT
i = −mi

ρd

∫
dvV · Ai (V) , (F18)

Dij = − ρ

mjnjd

∫
dvV · Bj

i (V) , (F19)

DF
ij = −mi

d

∫
dvV · Ej

i (V) . (F20)



32

3. Energy Flux

The energy flux to first order in the gradients is obtained from Eqs. (4.18) and (4.19) as

q = qk + qc. (F21)

The kinetic contribution is

qk =

s∑

i=1

∫
dv1

1

2
miV

2
1 V1f

(1)
i (r1,v1; t)
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1

d
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1

2
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2
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+
1

d
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∫
dv1

1

2
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2
1 V1 ·

(
B

j
i (V1)∇ lnnj + E

j
i (V1)Fj

)
. (F22)

The contributions proportional to derivatives of the flow velocity vanish from symmetry. The collisional transfer
contribution is

qc =

s∑

i,j=1

1

8
(1 + αij)mjµijσ

d
ijχ

(0)
ij

∫
dv1

∫
dv2
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f
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1

2
f

(0)
i (V1)∂yβ

f
(0)
j (V2)σij · ∇yβ

]
, (F23)

where Gij ≡ µijV1 +µjiV2 . The contribution from δχij in (F9) vanishes from symmetry. The angular integrals can
be performed to get

qc
γ =
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i,j=1

1

8
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(0)
ij
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∫
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}
.

(F24)

Interchanging the labels i, j and v1,v2 it is seen that the contributions from f
(1)
i and f

(1)
j are the same. For the

same reason the contributions from ∂yβ
f

(0)
i and −∂yβ

f
(0)
j are the same. The first terms of the integrand give velocity

moments of f
(1)
j of degree one and three, which are proportional to the (partial) mass and kinetic energy fluxes. Finally,

the only contributions from ∂yβ
f

(0)
i are those that are scalar functions of the velocities, i.e. those proportional to

temperature and species density gradients. The final result is therefore
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]
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(F25)
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where j
(1)
0i is defined by Eq. (F17) and the partial kinetic energy flux is

qk
i =

∫
dv

mi

2
V 2Vf

(1)
i (V). (F26)

The constants CT
ij and CT

ijp are

CT
ij =

B3

d

∫
dv1

∫
dv2

[
− (1 − αij) (µij − µji) g

3 + 4g (g · Gij)
]
f

(0)
i (V1)T∂Tf

(0)
j (V2), (F27)

CT
ijp =

B3

d

∫
dv1

∫
dv2

[
− (1 − αij) (µij − µji) g

3 + 4g (g ·Gij)
]
f
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i (V1)np∂np

f
(0)
j (V2). (F28)

The expression of CT
ij can be simplified when one takes into account the relation

T∂Tf
(0)
j (V) = −1

2
∇V ·

(
Vf

(0)
j (V)

)
, (F29)

and integrates by parts in (F27). The result is

CT
ij = −2B3

d
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dv1

∫
dv2f
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i (V1)f
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g (g ·Gij) + g3
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. (F30)

On the other hand, no significant further simplification of Eq. (F28) is possible until f
(0)
i is specified in detail.

The heat flux is seen to have the form (5.11),

q (r, t) → −λ∇T −
s∑

i,j=1

(
T 2Dq,ij∇ lnnj + LijFj

)
, (F31)

so the transport coefficients now can be identified

λ = λk + λc, Dq,ij = Dk
q,ij +Dc

q,ij , Lij = Lk
ij + Lc

ij . (F32)

The kinetic parts are,

λk =

s∑

i=1

λk
i = − 1

dT

s∑
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∫
dv
mi

2
V 2V · Ai (V) , (F33)

Dk
q,ij = − 1

dT 2

∫
dv
mi

2
V 2V · Bj

i (V) , (F34)

Lk
ij = −1

d

∫
dv
mi

2
V 2V · Ej

i (V) , (F35)

while the collisional transport parts are given by Eqs. (7.14)–(7.16).

4. Momentum Flux

The momentum flux to first order in the gradients is obtained from (4.20)–(4.22)

Pγλ ≡ P k
γλ + P c

γλ, (F36)
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where

P k
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γλ =

1
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∫
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. (F38)

A contribution to (F38) proportional to the density gradients from the expansion of χij(r1 − xσij , r1 + (1 − x)σij)
vanishes from symmetry. For similar reasons, the only gradients contributing to both (F37) and ( F38) are those from
the flow field. The terms proportional to Di in (C33) also do not contribute due to the orthogonality condition (E4).
The solid angle integrations can be performed with the results

P k
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, (F39)
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An integration by parts in the velocity integral, and use of fluid symmetry gives, finally
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γλ = δγλ
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The pressure tensor therefore has the form (5.12), and the pressure, shear viscosity, and bulk viscosity are identified
in terms of their kinetic and collisional transfer contributions. Their expressions are given by Eqs. (7.18)–(7.22),
respectively.
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[23] V. Garzó, J. M. Montanero, and J. W. Dufty, Phys. Fluids 18, 083305 (2006).
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[36] V. Garzó, Europhys. Lett. 75, 521 (2006).
[37] H. Iddir and H. Arastoopour, AIChE J. 51, 1620 (2005).
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The linear integral equations defining the Navier-Stokes (NS) transport coefficients for polydis-
perse granular mixtures of smooth inelastic hard disks or spheres are solved by using the leading
terms in a Sonine polynomial expansion. Explicit expressions for all the NS transport coefficients are
given in terms of the sizes, masses, compositions, density and restitution coefficients. In addition,
the cooling rate is also evaluated to first order in the gradients. The results hold for arbitrary degree
of inelasticity and are not limited to specific values of the parameters of the mixture. Finally, a
detailed comparison between the derivation of the current theory and previous theories for mixtures
is made, with attention paid to the implication of the various treatments employed to date.

I. INTRODUCTION

In the first portion [1] of this two-paper effort on the development of a kinetic-theory-based description of mixtures, a
rigorous Chapman-Enskog (CE) expansion of the revised Enskog theory (RET) for an s -component mixture of inelastic
hard spheres was carried out to first (Navier-Stokes) order in spatial gradients. The expansion was performed about
a homogeneous cooling state (HCS), which is the zeroth-order solution of the kinetic equation for the single-particle
velocity distribution function fi of species i. Unlike previous theories for mixtures which derive from expansions
about an elastic base state [2, 3, 4, 5, 6, 7, 8, 9, 10], this CE expansion does not impose any constraints on the
level of dissipation. The resulting theory is thus expected to be applicable to a wide range of restitution coefficients.
Furthermore, because the derivation used the RET as its starting point (as opposed to the Boltzmann equation as
used in Ref. [11]), the results are expected to be applicable to dilute and moderately dense systems. The theory is
not expected to be applicable to systems dense enough for ring collisions to play a significant role, since such velocity
correlations are not accounted for in the RET.

This formally exact analysis for Navier-Stokes order hydrodynamics, reported in the companion paper, resulted in

integral-differential equations for the zeroth-order f
(0)
i and first-order f

(1)
i distribution functions as well as integral

expressions (in terms of f
(0)
i and f

(1)
i ) for each of the equations of state (cooling rate and pressure) and the transport

coefficients {Dij , D
T
i , D

F
ij , η, κ, λ,Dq,ij , Lij}. Of these, only the pressure could be directly evaluated and cast in alge-

braic expressions of the macroscopic (hydrodynamic) variables. Hence, in this second part of the work, approximate
methods are used to obtain algebraic equations for the kinetic and collisional contributions to the cooling rate and

transport coefficients. In particular, the equations for f
(0)
i have previously been solved [12] via a combination of scal-

ing arguments and an approximation to the distribution function based on leading-order Sonine polynomials. Recent
results derived for binary granular mixtures at low-density [11, 13] have shown that the influence of the non-Gaussian

(higher-order) corrections of f
(0)
i to the transport coefficients is in general negligible, except for quite large values of

dissipation and velocities. For this reason, we use leading order in the Sonine polynomial expansion (Maxwellians) at

different temperatures to evaluate integrals over the distributions f
(0)
i . The solutions for the f

(1)
i are also found using

a truncated polynomial expansion. These forms for f
(0)
i and f

(1)
i are then used to obtain practical expressions for

the cooling rate and transport coefficients. Namely, the resulting, algebraic constitutive equations depend explicitly
on the hydrodynamic variables only and not on the distribution functions of the mixture. Collision integrals are
reduced to Gaussian forms and evaluated using standard integration techniques; a computer package of symbolic

∗ Electronic address: vicenteg@unex.es
‡ Electronic address: hrenya@colorado.edu
† Electronic address: dufty@phys.ufl.edu

http://arXiv.org/abs/cond-mat/0702110v2
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calculations (Mathematica) was used to check their analytical evaluation. Wherever possible, limiting values of the
equations of state and transport coefficients were verified by comparison with previously published works in the cases
of mechanically equivalent particles [14, 15], binary mixtures at low-density [11, 16], and simple shear flow states for
binary mixtures at moderate density [17]. All analytic calculations of both papers were performed independently and
cross-checked.

Finally, as mentioned in the Introduction of the companion paper, a myriad of treatments has appeared in the
literature for the derivation of kinetic-theory-based descriptions of granular mixtures. To help put the current effort
in the context of previous contributions, Sec. VI contains a breakdown of the theoretical contributions to date, along
with a critical discussion of the ramifications of each treatment.

II. EULER ORDER PARAMETERS

The hydrodynamic equations to first order in the spatial gradients (Euler order) have as unknown (phenomenolog-
ical) parameters the pressure and the cooling rate,

p = p(T, {ni}), ζ(T, {ni}) = ζ(0)(T, {ni}) + ζU (T, {ni})∇ · U. (2.1)

The pressure p(T, {ni}) has been evaluated exactly in the previous paper [1] [Eqs. (7.18) and (7.19)] with the result

p(T, {ni}) = nT +
πd/2

dΓ
(
d
2

)
s∑

i=1

s∑

j=1

µjiσ
d
ijχ

(0)
ij ninj(1 + αij)Ti, (2.2)

where henceforth, for the sake of convenience, we will use the notation Ti ≡ T
(0)
i with T

(0)
i defined by Eq. (7.5) of Ref.

[1]. Detailed forms for the functions χ
(0)
ij are discussed in Appendix C. The leading order cooling rate, ζ(0)(T, {ni}),

also is given there by Eq. (7.2) as an integral over f
(0)
i . For reasons just mentioned above, these integrals are performed

using the leading order Sonine approximation for f
(0)
i

f
(0)
i (V) → fi,M (V) = ni

(
mi

2πTi

)d/2
exp

(
−miV

2

2Ti

)
, (2.3)

and V = v − U is the peculiar velocity. The result is [14, 16]

ζ(0)(T, {ni}) = ζ
(0)
i (T, {ni})

=
4π(d−1)/2

dΓ
(
d
2

) v0

s∑

j=1

χ
(0)
ij njµjiσ

d−1
ij

(
θi + θj
θiθj

)1/2

(1 + αij)

[
1 − µji

2
(1 + αij)

θi + θj
θj

]
,

(2.4)

where n =
∑
i ni is the total density, v0(t) =

√
2T/m is a thermal velocity, m = (

∑
jmj)/s, µij = mi/(mi+mj), and

θi = miT/mTi. The ζ
(0)
i (T, {ni}) are species cooling rates, measuring the decrease of kinetic energy of each species.

This is an implicit definition of ζ(0)(T, {ni}). The equality of cooling rates for all i gives s−1 equations for the species
temperatures Ti in terms of T . A final equation is given by the condition that the total kinetic energy is the sum of
species energies nT =

∑s
i=1 niTi. With the species temperatures determined as functions of T and {ni}, Eq. (2.4)

gives the cooling rate ζ(0)(T, {ni}). In all of the following expressions, it is understood that the Ti(T, {ni}) have been
determined in this way.

At first order in gradients, there is a contribution to the cooling rate from ∇ · U. The proportionality coefficient
ζU is a new transport coefficient for granular fluids. Two different contributions can be identified

ζU = ζ(1,0) + ζ(1,1). (2.5)

The coefficient ζ(1,0) is given by an integral over f
(0)
i and its velocity derivative. It has been evaluated explicitly in

Appendix F of Ref. [1] with the result

ζ(1,0) = − 3

nT

πd/2

d2Γ
(
d
2

)
s∑

i=1

s∑

j=1

ninjµjiσ
d
ijχ

(0)
ij (1 − α2

ij)Ti. (2.6)
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The second term of Eq. (2.5), ζ(1,1), is given by

ζ(1,1) =
1

nT

π(d−1)/2

dΓ
(
d+3
2

)
s∑

i=1

s∑

j=1

σd−1
ij χ

(0)
ij mjµij(1 − α2

ij)

∫
dv1

∫
dv2 g

3f
(0)
i (V1)Dj(V2), (2.7)

where the unknown functions Di(V) are the solutions to the linear integral equations

((
L +

1

2
ζ(0)

)
D
)

i

+
1

2
ζ(1,1)(Di)∇V ·

(
Vf

(0)
i

)
= Di. (2.8)

Here, ∇V ≡ ∂/∂V and the linear operator L is

(LX)i =
1

2
ζ(0)∇V · (VXi) + (LX)i , (2.9)

where L is the linearized Enskog collision operator

(LX)i = −
s∑

j=1

(
J

(0)
ij

[
v1 | Xi, f

(0)
j

]
+ J

(0)
ij

[
v1 | f (0)

i , Xj

])
, (2.10)

J
(0)
ij [v1 | Xi, fj] ≡ χ

(0)
ij (σij ; {ni (r1, t)})σd−1

ij

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

×
[
α−2
ij Xi(V

′′
1 )fj(V

′′
2 ) −Xi(V1)fj(V2)

]
, (2.11)

and v′′
1 ,v

′′
2 are the precollision velocities associated with v1,v2 for the colliding pair of species i and j. The same

linear operator L appears below in the definitions of all other transport coefficients as well. The inhomogeneity of
Eq. (2.8), Di(T, {ni}), is given by

Di =

(
1

d

(
1 − p

nT

)
− 1

2
ζ(1,0)

)
∇V ·

(
Vf

(0)
i

)
− f

(0)
i +

s∑

j=1

nj
∂f

(0)
i

∂nj

+
1

d

s∑

j=1

Kij,β [∂Vβ
f

(0)
j ], (2.12)

and the operator Kij,β is given by (B1) of Appendix B. An approximate solution to this integral equation is obtained

by using f
(0)
i , p, ζ(0), and ζ(1,0) as determined above, and the leading order term in an expansion of Di(V) in a

complete set of Sonine polynomials

Di(V) → ei,Dfi,M (V)Fi(V). (2.13)

The lowest order Sonine polynomial contributing in this case is

Fi(V) =

(
mi

2Ti

)2

V 4 − d+ 2

2

mi

Ti
V 2 +

d(d+ 2)

4
, (2.14)

as determined by the fact that Di(V) is a scalar and orthogonal to 1 and V 2. Finally, ei,D is the projection of Di
along Fi

ei,D =
2

d(d+ 2)

1

ni

∫
dv Di(V)Fi(V). (2.15)

Note that the polynomials are defined for each species in terms of the weight factor fi,M (V) characterized by the
mass and temperature of that species [11]. The coefficients ei,D are determined by substituting (2.13) into the integral
equation (2.8), multiplying by Fi(V), and integrating over V (this assures that the integral equation is exactly satisfied
in the subspace spanned Fi) to get the algebraic equations

s∑

j=1

(
ψij −

3

2
ζ(0)δij

)
ej,D = ei,D. (2.16)
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The collision frequencies ψij are defined by

ψii = − 2

d(d+ 2)

1

ni




s∑

j=1

∫
dvFiJ

(0)
ij [fi,MFi, f

(0)
j ] +

∫
dvFiJ

(0)
ii [f

(0)
i , fi,MFi]



 , (2.17)

ψij = − 2

d(d+ 2)

1

ni

∫
dvFiJ

(0)
ij [f

(0)
i , fj,MFj ], (i 6= j). (2.18)

The inhomogeneity on the right-hand side of (2.16) is computed in Appendix B with the result

ei,D =
1

d

s∑

j=1

∫
dvFi(V)Kij,γ [∂Vγ

f
(0)
j ]

=
πd/2

4dΓ
(
d
2

)
s∑

j=1

ninjχ
(0)
ij σ

d
ijµji(1 + αij) [8(d+ 2)(µij − 1)

+4(13 + 2d+ 9αij)µji − 48µ2
jiθ

−1
j (θi + θj)(1 + αij)

2

+15µ3
jiθ

−2
j (θi + θj)

2(1 + αij)
3
]
. (2.19)

The explicit form of the collision frequencies ψij are displayed in Appendix A, so the coefficients ei,D can be determined
by solving the algebraic Eqs. (2.16) with all coefficients determined.

Finally, ζ(1,1) is given in terms of ei,D by substitution of Eq. (2.13) into (2.7), with the result

ζ(1,1) = ei,D
3π(d−1)/2

4dΓ
(
d
2

) v3
0

nT

s∑

i=1

s∑

j=1

σd−1
ij χ

(0)
ij mjµij(1 − α2

ij)θ
−3/2
i θ

1/2
j (θi + θj)

−1/2. (2.20)

III. NAVIER-STOKES ORDER TRANSPORT COEFFICIENTS

The hydrodynamic equations to second order in the spatial gradients have contributions to the mass flux, pressure
tensor, and heat flux from the Chapman-Enskog expansion proportional to gradients of the species densities, tem-
perature, and flow velocity and to an external applied force (of the same order of magnitude as the gradients). For
fluid symmetry, this leads to (s − 1)(2s + 1) transport coefficients for the mass flux, the shear and bulk viscosity
for the pressure tensor, and 2s2 + 1 coefficients for the heat flux. The mass flux coefficients are determined from
integral equations in the same way as ζ(1,1), just described. The pressure tensor and heat fluxes have “kinetic” and
“collisional” transfer parts, i.e. of the forms

ω = ωk + ωc.

The contributions ωk are determined from integral equations like that for ζ(1,1); the collisional transfer contributions

have been reduced in the previous paper to specific integrals over f
(0)
i and can be computed explicitly by using the

multi-temperature Maxellians (2.3). The analysis is similar to that for the cooling rate and many of the details are
transferred to the Appendices.

A. Mass Flux

To first order in the spatial gradients, the mass flux j
(1)
0i is given by

j
(1)
0i = −

s∑

j=1

mimjnj
ρ

Dij∇ lnnj − ρDT
i ∇ lnT −

s∑

j=1

DF
ijFj , (3.1)

where ρ =
∑
i ρi =

∑
imini is the total mass density of the mixture, Dij are the mutual diffusion coefficients, DT

i

are the thermal diffusion coefficients and DF
ij are the mobility coefficients. These transport coefficients are defined as

Dij = − ρ

dmjnj

∫
dvV · Bj

i (V), (3.2)
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DT
i = −mi

dρ

∫
dvV · Ai(V), (3.3)

DF
ij = −mi

d

∫
dvV · Eji (V). (3.4)

The functions Ai(V), Bji (V), and E
j
i (V) verify the linear integral equations

((
L − 1

2
ζ(0)

)
A

)

i

= Ai, (3.5)

(
LB

j
)
i
− nj

∂ζ(0)

∂nj
Ai = B

j
i , (3.6)

((
L + ζ(0)

)
E
j
)

i
= E

j
i , (3.7)

where the linear operator L and the inhomogeneous terms Ai, B
j
i , and E

j
i are given by Eqs. (6.16), (6.17), and (6.20)

of the preceding paper [1]. The approximate solutions to these equations are obtained in the same manner as that
for ( 2.8). The leading order Sonine polynomial in all of these cases is V, since all are vectors

Ai(V) → − ρ

niTi
DT
i fi,M (V)V, (3.8)

B
j
i (V) → −mimjnj

ρniTi
Dijfi,M (V)V, (3.9)

E
j
i (V) → − 1

niTi
DF
ijfi,M (V)V, (3.10)

The coefficients are now projections of Ai, B
j
i , and E

j
i along V, which are identified in terms of the transport

coefficients through Eqs. (3.2)–(3.4). Multiplication of Eqs. (3.5)–(3.7) by miV and integrating over the velocity
yields the algebraic equations determining all mass flux transport coefficients

s∑

j=1

(νij − ζ(0)δij)D
T
j = − 1

dρ

∫
dvmiV · Ai(V), (3.11)

s∑

ℓ=1

(
νiℓ −

1

2
ζ(0)δiℓ

)
mℓ

mi
Dℓj −

ρ2

mimj

∂ζ(0)

∂nj
DT
i = −1

d

ρ

mimjnj

∫
dvmiV · Bj

i (V), (3.12)

s∑

ℓ=1

(
νiℓ +

1

2
ζ(0)δiℓ

)
mℓ

mi
DF
ℓj = −1

d

∫
dvmiV ·Ej

i (V). (3.13)

The new collision frequencies νij are

νii = − 1

dniTi

s∑

j 6=i

∫
dvmiV · J (0)

ij [fi,MV, f
(0)
j ], (3.14)

νij = − 1

dnjTj

∫
dvmiV · J (0)

ij [f
(0)
i , fj,MV], (i 6= j). (3.15)

Note that the self-collision terms of νii arising from J
(0)
ii [fi,MV, f

(0)
i ] do not occur in (3.14) since these conserve

momentum for species i. The above collision frequencies were already evaluated in the Boltzmann limit (except for
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the factors χ
(0)
ij ) [11, 16]. The details will not repeated here and only the results are quoted in Appendix A. The

integrals on the right hand side of Eqs. (3.11), (3.12), and (3.13) can be performed using the definitions of Ai, B
j
i ,

and E
j
i . The result is

∫
dvmiV · Ai = dp

ρi
ρ

(
1 − ρniTi

ρip

)
+

1

2

s∑

j=1

∫
dvmiVγKij,γ [∇V · (Vf (0)

j )], (3.16)

∫
dvmiV · Bj

i = −dnj
∂

∂nj
(niTi) + d

ρi
ρ
nj

∂p

∂nj

−
s∑

ℓ=1

∫
dvmiVγKiℓ,γ

[(
nj∂nj

+
1

2

(
nj∂nj

lnχ
(0)
iℓ + Iiℓj

))
f

(0)
ℓ

]
,

(3.17)

∫
dvmiV · Ej

i = d
nimi

mj

(
δij −

njmj

ρ

)
. (3.18)

The integrals appearing in Eqs. (3.16) and (3.17) that involve the operator Kij,γ [X ] have been evaluated in Appendix
B. They are given by Eqs. (A18), (B6), and (B7). With these results, Eqs. (3.11), (3.12), and (3.13) become

s∑

j=1

(νij − ζ(0)δij)D
T
j = −pρi

ρ2

(
1 − ρniTi

ρip

)
+

πd/2

dΓ
(
d
2

) ni
ρ

s∑

j=1

njµijχ
(0)
ij σ

d
ijTj(1 + αij), (3.19)

s∑

ℓ=1

(
νiℓ −

1

2
ζ(0)δiℓ

)
mℓ

mi
Dℓj =

ρ2

mimj

∂ζ(0)

∂nj
DT
i +

ρ

mimj

∂

∂nj
(niTi) −

ni
mj

∂p

∂nj

+
πd/2

dΓ
(
d
2

) ρni
mj

s∑

ℓ=1

χ
(0)
iℓ σdiℓ µℓi(1 + αiℓ)

{(
Ti
mi

+
Tℓ
mℓ

)

×
[
δjℓ +

1

2

nℓ
nj

(
nj

∂

∂nj
lnχ

(0)
iℓ + Iiℓj

)]
+
nℓTℓ
mℓ

∂

∂nj
ln γℓ

}
,

(3.20)

s∑

ℓ=1

(
νiℓ +

1

2
ζ(0)δiℓ

)
mℓ

mi
DF
ℓj = −nimi

mj

(
δij −

njmj

ρ

)
, (3.21)

where γi ≡ Ti/T is the temperature ratio. An explicit form for Iiℓj is chosen in Appendix C. The solution of the
set of algebraic equations (3.19)–(3.21) gives the dependence of the coefficients Dij , D

T
i , and DF

ij on the restitution
coefficients αij and the composition, the density, and the sizes and masses of the constituents of the mixture.

B. Pressure Tensor

The constitutive equation for the pressure tensor P
(1)
αβ , proportional to the velocity gradients, is

P
(1)
αβ = −η

(
∂rαUβ + ∂rβUα − 2

d
δαβ∇ · u

)
− κδαβ∇ · u. (3.22)

Here, η is the shear viscosity coefficient and κ is the bulk viscosity. The coefficient η has kinetic and collisional
contributions while κ only has a collisional contribution κc (and so, vanishes for dilute gases)

η = ηk + ηc, κ = κc. (3.23)

The collisional transfer contributions have been analyzed in the preceding paper [1] [Eqs. (7.21) and (7.22)]. These
expressions reduce to those previously derived in the monodisperse case [14, 15], and in the case of binary mixtures of
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hard spheres [17]. The integrals over f
(0)
i (V) are easily performed in the multi-temperature Maxwellian approximation

(2.3) with the results

κc =
π(d−1)/2

d2Γ
(
d
2

)
s∑

i=1

s∑

j=1

mimj

mi +mj
ninjv0σ

d+1
ij χ

(0)
ij (1 + αij)

(
θi + θj
θiθj

)1/2

, (3.24)

ηc =
2πd/2

Γ
(
d
2

) 1

d(d+ 2)

s∑

i=1

s∑

j=1

njσ
d
ijχ

(0)
ij µji(1 + αij)η

k
i +

d

d+ 2
κc. (3.25)

1. Kinetic contribution ηk

As noted above, there is no kinetic part of the bulk viscosity, κk = 0, so κ is given entirely by (3.24). The kinetic
contribution to the shear viscosity, ηk, is defined by

ηk =

s∑

i=1

ηki = − 1

(d− 1)(d+ 2)

s∑

i=1

∫
dv miVαVβCi,αβ(V). (3.26)

The second equality identifies the partial contribution ηki of the species i to the shear viscosity ηk in terms of Ci,αβ(V),
which is the solution to the integral equation

((
L +

1

2
ζ(0)

)
Cαβ

)

i

= Ci,αβ , (3.27)

where Ci,αβ is given by Eq. (6.18) in the preceding paper [1]. It is symmetric and traceless so the leading Sonine
approximation for the function Ci,αβ(V) is

Ci,αβ(V) → −fi,M (V)
ηki
niT 2

i

Ri,αβ(V), (3.28)

where

Ri,αβ(V) = mi

(
VαVβ − 1

d
V 2δαβ

)
. (3.29)

The partial contributions ηki are obtained by multiplying the integral equation (3.27) with Ri,αβ and integrating over
the velocity to get the set of equations:

s∑

j=1

(τij −
1

2
ζ(0)δij)η

k
j = niTi −

1

(d− 1)(d+ 2)

s∑

j=1

∫
dvRi,αβKij,α[∂Vβ

f
(0)
j ], (3.30)

The collision frequencies τii are

τii = − 1

(d− 1)(d+ 2)

1

niT 2
i




s∑

j=1

∫
dvRi,αβJ

(0)
ij [fi,MRi,αβ , f

(0)
j ] +

∫
dvRi,αβJ

(0)
ii [f

(0)
i , fi,MRi,αβ ]



 , (3.31)

τij = − 1

(d− 1)(d+ 2)

1

njT 2
j

∫
dvRi,αβJ

(0)
ij [f

(0)
i , fj,MRj,αβ ], (i 6= j). (3.32)

The explicit forms of τii and τij are displayed in Appendix A, and the integral appearing on the right hand side of
Eq. (3.30) has been evaluated in Appendix B with the result

∫
dvRi,αβKij,α[∂Vβ

f
(0)
j ] = − πd/2

Γ
(
d
2

) d− 1

d
mininjµjiσ

d
ijχ

(0)
ij (1 + αij)

×
[
µji(3αij − 1)

(
Ti
mi

+
Tj
mj

)
− 4

Ti − Tj
mi +mj

]
. (3.33)
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In the case of a three-dimensional system (d = 3), Eq. (3.33) reduces to the one previously derived for hard spheres
[17]. In addition, for identical particles previous results [12, 15] obtained for monodisperse gases are also recovered.

With the right side of Eqs. (3.30) now determined the algebraic equations

s∑

j=1

(τij −
1

2
ζ(0)δij)η

k
j = niTi +

mininjµji

d(d+ 2)Γ
(
d
2

)πd/2σdijχ
(0)
ij (1 + αij)

×
[
µji(3αij − 1)

(
Ti
mi

+
Tj
mj

)
− 4

Ti − Tj
mi +mj

]
, (3.34)

can be solved to determine the partial contributions ηki . Their sum then gives the kinetic contribution to the shear
viscosity, ηk. Finally, adding this to the collisional transfer contribution of (3.25 ) gives the total shear viscosity.

C. Heat Flux

The constitutive equation for the heat flux q(1) has contributions proportional to gradients of the densities and the
temperature, and terms proportional to an applied force (taken to have the same order of magnitude as the gradients)

q(1) = −
s∑

i=1

s∑

j=1

(
T 2Dq,ij∇ lnnj + LijFj

)
− Tλ∇ lnT, (3.35)

where λ is the thermal conductivity coefficient and Dq,ij are the Dufour coefficients. As in the case of the shear
viscosity, the transport coefficients Dq,ij , Lij and λ have kinetic and collisional contributions

Dq,ij = Dk
q,ij +Dc

q,ij , Lij = Lkij + Lcij , λ = λk + λc. (3.36)

The collisional transfer contributions λc, Dc
q,ij , and Lcij are given in the preceding paper by Eqs. (7.14)–(7.16)

λc =
s∑

i=1

s∑

j=1

1

8
(1 + αij)mjµijσ

d
ijχ

(0)
ij

{
2B4 (1 − αij) (µij − µji)ni

[
2

mj
λkj + (d+ 2)

Ti
mimjT

ρDT
j

]

+
8B2

2 + d
ni

[
2µij
mj

λkj − (d+ 2)
Ti

mimjT
(2µij − µji) ρD

T
j

]
− T−1CTij

}
, (3.37)

Dc
q,ij =

s∑

p=1

1

8
(1 + αip)mpµipσ

d
ipχ

(0)
ip {2B4 (1 − αip) (µip − µpi)

×ni
[

2

mp
Dk
q,pj + (d+ 2)

Ti
T 2

mjnj
ρmi

Dpj

]

+
8B2

d+ 2
ni

[
2µpi
mp

Dk
q,pj − (d+ 2) (2µip − µpi)

Ti
T 2

njmj

ρmi
Dpj

]
− T−2CTipj

}
,

(3.38)

Lcij =
s∑

p=1

1

8
(1 + αip)mpµipσ

d
ipχ

(0)
ip {2B4 (1 − αip) (µip − µpi)

×ni
[

2

mp
Lkpj + (d+ 2)

Ti
mimp

DF
pj

]

+
8B2

d+ 2
ni

[
2µpi
mp

Lkpj − (d+ 2) (2µip − µpi)
Ti

mimp
DF
pj

]}
. (3.39)

The constants, Bk, are defined by Eq. (A19) of Appendix A, and

CTij = −2B3

d

∫
dv1

∫
dv2f

(0)
i (V1)f

(0)
j (V2)

{
gG2

ij + g−1 (g ·Gij)
2 + (1 + µji)g (g · Gij)

+µjiµijg
3 +

3

4
(1 − αij)(µji − µij)

[
g (g ·Gij) + g3

]}
, (3.40)
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CTipj =
B3

d

∫
dv1

∫
dv2

[
− (1 − αip) (µip − µpi) g

3 + 4g (g ·Gip)
]
f

(0)
i (V1)nj∂nj

f (0)
p (V2), (3.41)

where Gip = µipV1 + µpiV2. In the first Sonine approximation these integrals have the explicit forms

CTij = −2π(d−1)/2

dΓ
(
d
2

) ninjv
3
0(θi + θj)

−1/2(θiθj)
−3/2

×
{
2β2

ij + θiθj + (θi + θj) [(θi + θj)µijµji + βij(1 + µji)]
}

−3π(d−1)/2

2dΓ
(
d
2

) ninjv3
0(1 − αij)(µji − µij)

(
θi + θj
θiθj

)3/2 [
µji + βij(θi + θj)

−1
]
,

(3.42)

CTipj =
4π(d−1)/2

dΓ
(
d
2

) ninpv
3
0(θi + θp)

−1/2(θiθp)
−3/2 {δjpβip(θi + θp)

−1

2
θiθp

[
1 +

µpi(θi + θp) − 2βip
θp

]
∂ ln γp
∂ lnnj

}

+
π(d−1)/2

dΓ
(
d
2

) ninpv3
0(1 − αip)(µpi − µip)

(
θi + θp
θiθp

)3/2(
δjp +

3

2

θi
θi + θp

∂ ln γp
∂ lnnj

)
,

(3.43)

where βip ≡ µipθp − µpiθi. With these expressions, the collisional contributions to the heat flux are explicitly known.
For mechanically equivalent particles, all the above expressions for the collision transfer contributions reduce again
to the previous results obtained for monocomponent gases [14, 15].

1. Kinetic contributions

The kinetic parts of the transport coefficients λk, Dk
q,ij , L

k
ij are defined respectively as

λk = − 1

dT

s∑

i=1

∫
dv

mi

2
V 2V · Ai(V), (3.44)

Dk
q,ij = − 1

dT 2

∫
dv

mi

2
V 2V · Bj

i (V), (3.45)

Lkij = −1

d

∫
dv

mi

2
V 2V · Eji (V). (3.46)

where Ai(V), B
j
i (V), and E

j
i (V) are again the solutions to (3.5)–(3.7). The leading Sonine approximations of (3.8)–

(3.10) are not adequate to determine the general leading order for these transport coefficients, since the coefficients
DT
i , Dij , and DF

ij vanish for a simple one component fluid. This would imply a vanishing thermal conductivity λ as
well. Consequently, it is necessary to include here the next (second order) Sonine polynomial

Ai(V) → fi,M (V)

[
− ρ

niTi
VDT

i − 2

d+ 2

Tmi

niT 3
i

λiSi(V)

]
, (3.47)

B
j
i (V) → fi,M (V)

[
−mimjnj

ρniTi
VDij −

2

d+ 2

T 2mi

niT 3
i

dq,ijSi(V)

]
, (3.48)

E
j
i (V) → fi,M (V)

[
− 1

niTi
VDF

ij −
2

d+ 2

mi

niT 3
i

ℓijSi(V)

]
, (3.49)
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where the next order polynomial Si(V) is

Si(V) =

(
1

2
miV

2 − d+ 2

2
Ti

)
V. (3.50)

In the above equations, it is understood that the transport coefficients DT
i , Dij , and DF

ij are given by Eqs. (3.19)–(
3.21), respectively. The coefficients λi, dq,ij , and ℓij are the projections along Si:

λi = − 1

dT

∫
dv Si(V) · Ai(V), (3.51)

dq,ij = − 1

dT 2

∫
dv Si(V) · Bj

i (V), (3.52)

ℓij = −1

d

∫
dv Si(V) · Eji (V). (3.53)

In terms of λi, dq,ij and ℓij , the transport coefficients λk, Dk
q,ij , and Lkij become

λk =

s∑

i=1

λi +
d+ 2

2T

ρTi
mi

DT
i , (3.54)

Dk
q,ij = dq,ij +

d+ 2

2T 2

mjnjTi
ρ

Dij . (3.55)

Lkij = ℓij +
d+ 2

2

Ti
mi

DF
ij . (3.56)

Since DT
i , Dij , and DF

ij are known from the analysis above it remains to determine λi, dq,ij and ℓij . The alge-
braic equations determining them are obtained by substituting (3.47)–(3.49) into the integral equations (3.5)–(3.7),
multiplying Eq. (3.5) by Si(V) and integrating over the velocity. The results are

s∑

j=1

(γij − 2ζ(0)δij)λj = λi, (3.57)

s∑

ℓ=1

(
γiℓ −

3

2
ζ(0)δiℓ

)
dq,ℓj = dq,ij (3.58)

s∑

k=1

(
γik −

1

2
ζ(0)δik

)
ℓkj = ℓij , (3.59)

with the inhomogeneities given by

λi = −d+ 2

2

ρ

Ti

niT
3
i

Tmi

s∑

j=1

ωij − ζ(0)δij
njTj

DT
j +

d(d+ 2)

2d

niT
2
i

miT

− 1

2Td

s∑

j=1

∫
dv Si,β(V)Kij,β [∇V · (Vf (0)

j )], (3.60)

dq,ij = −d+ 2

2

ninjT
3
i

miT 2

(
mj

ρTi

s∑

ℓ=1

mℓ
ωiℓ − ζ(0)δiℓ

nℓTℓ
Dℓj +

∂ζ(0)

∂nj
λi −

1

Ti

∂ lnTi
∂nj

)

+
1

dT 2

s∑

ℓ=1

∫
dv Si,γ

(
Kiℓ,γ [nj∂nj

f
(0)
ℓ ] +

1

2

(
nℓ∂nj

lnχ
(0)
iℓ + Iiℓj

)
Kiℓ,γ [f (0)

ℓ ]

)
,

(3.61)
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ℓij = −d+ 2

2

niT
2
i

mi

s∑

k=1

ωik − ζ(0)δik
nkTk

DF
kj . (3.62)

Use has been made of the results
∫
dv Si ·Ai(V) = −d(d+ 2)

2

niT
2
i

mi
+

1

2

s∑

j=1

∫
dv Si,β(V)Kij,β [∇V · (Vf (0)

j )], (3.63)

∫
dv Si · Bj

i (V) = −d(d+ 2)

2

ninjTi
mi

∂Ti
∂nj

−
s∑

ℓ=1

∫
dv Si,β(V)Kiℓ,β

[(
nj∂nj

+
1

2

(
nℓ
∂ lnχ

(0)
iℓ

∂nj
+ Iiℓj

))
f

(0)
ℓ

]
, (3.64)

∫
dv Si(V) · Ej

i (V) = 0. (3.65)

The collision frequencies introduced here are

γii = − 2

d(d+ 2)

mi

niT 3
i




s∑

j=1

∫
dv Si · J (0)

ij [fi,MSi, f
(0)
j ] +

∫
dv Si · J (0)

ii [f
(0)
i , fi,MSi]



 , (3.66)

γij = − 2

d(d+ 2)

mj

njT 3
j

∫
dv Si · J (0)

ij [f
(0)
i , fj,MSj ], (i 6= j). (3.67)

ωii = − 2

d(d+ 2)

mi

niT 2
i




s∑

j=1

∫
dvSi · J (0)

ij [fi,MV, f
(0)
j ] +

∫
dv Si · J (0)

ii [f
(0)
i , fi,MV]



 , (3.68)

ωij = − 2

d(d+ 2)

mi

niT 2
i

s∑

j=1

∫
dv Si · J (0)

ij [f
(0)
i , fj,MV]. (i 6= j). (3.69)

The explicit expressions for the above collision frequencies are also displayed in Appendix A.
The inhomogeneous terms (3.60) and (3.61) involve integrals over the operator Kij,γ . These are evaluated in

Appendix B
∫
dv Si,γ(V)Kij,γ [∇V · (Vf (0)

j )] = − πd/2

Γ
(
d
2

)ninjµijχ(0)
ij σ

d
ijTj(1 + αij)

{
Ti
mi

[
(d+ 2)(µ2

ij − 1)

+(2d− 5 − 9αij)µijµji + (d− 1 + 3αij + 6α2
ij)µ

2
ji

]
+ 6

Tj
mj

µ2
ji(1 + αij)

2

}
, (3.70)

∫
dv Si,γ(V)Kij,γ [f (0)

j ] =
πd/2

2Γ
(
d
2

)mininjχ
(0)
ij σ

d
ijµji(1 + αij)

×
{[

(d+ 8)µ2
ij + (7 + 2d− 9αij)µijµji + (2 + d+ 3α2

ij − 3αij)µ
2
ji

] T 2
i

m2
i

+3µ2
ji(1 + αij)

2
T 2
j

m2
j

+
[
(d+ 2)µ2

ij + (2d− 5 − 9αij)µijµji + (d− 1 + 3αij + 6α2
ij)µ

2
ji

]

× TiTj
mimj

− (d+ 2)

(
Ti
mi

+
Tj
mj

)
Ti
mi

}
, (3.71)

∫
dvSi,γ(V)Kiℓ,γ [nj∂nj

f
(0)
ℓ ] =

∫
dvSi,γ(V)

(
Kiℓ,γ [δℓjf (0)

ℓ ] − 1

2
Kiℓ,γ [∇V · (Vf (0)

ℓ )]
∂ ln γℓ
∂ lnnj

)
. (3.72)

This completely determines the parameters of the integral equations (3.57)–(3.59). Their solution determines λi,
dq,ij and ℓij , and hence the transport coefficients λk, Dk

q,ij , and Lkij through Eqs. (3.54)–(3.56). In the special case
of mechanically equivalent particles, this description reduces to those previously obtained for a monodisperse gas
[14, 15].
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IV. SUMMARY AND DISCUSSION

First, a brief summary of the results obtained in the two papers presented here is given. The revised Enskog kinetic
equation was used as the basis for deriving exact balance equations for the hydrodynamic fields. The pressure, cooling
rate, mass flux, momentum flux, and energy flux were determined from the kinetic theory as linear combinations of
the gradients of these fields and an applied force. These are the constitutive equations that convert the exact balance
equations into closed equations for the hydrodynamic fields (Navier-Stokes equations, at this order of gradients). The
coefficients in these equations are the pressure, leading order cooling rate, and the transport coefficients. Formally
exact expressions for these coefficients were obtained in the first paper, expressed as integrals over solutions to integral
equations via the Chapman-Enskog method for constructing a solution to the kinetic equation. In the present paper,
these exact expressions were evaluated using approximate solutions to the integral equations. The approximation
consists of expanding the unknown functions in a complete set of polynomials, and truncating that expansion to
convert the integral equations to algebraic equations that can be solved by standard matrix methods. Here, the
detailed forms for those equations or their solutions have been given in terms of the hydrodynamic fields and other
parameters of the problem. The result is a complete description of the hydrodynamic equations to Navier-Stokes order
with all parameters determined explicitly from the theory. Due to the complexity of the analysis it may be useful to
give the specific location of the final results. The pressure is given by Eq. (2.2) and the lowest order cooling rate by
Eq. (2.4). The equivalence of all species cooling rates determine the species temperatures as well (to this order in the
gradients). The only transport coefficient for the cooling rate to first order is given by (2.20) and the solution to the
algebraic equations (2.16). The transport coefficients characterizing the mass flux are the solutions to the algebraic
equations (3.19)–(3.21). The momentum flux has two transport coefficients, the shear and bulk viscosities. These
are given by Eqs. (3.23)–(3.26) and the solutions to the algebraic equations (3.34). Finally, the transport coefficients
for the heat flux are given by Eqs. (3.36)–(3.39), (3.54)–(3.56), and the solutions to the algebraic equations (3.57)–
(3.59). Detailed forms for the collision frequencies and other input functions are presented in the Appendices. These
explicit “constitutive relations” together with the exact macroscopic balance equations for species mass densities, flow
velocity, and temperature (Eqs. (4.12), (4.14), and (4.24) of the previous paper) complete the practical description of
Navier-Stokes hydrodynamics for a moderately dense, multi-component granular mixture based on the revised Enskog
kinetic equation.

In the remainder of this Discussion the relationship to several previous works on kinetic-theory-based descriptions of
granular mixtures in the literature is considered. These contributions, which are abbreviated according to the initials of
authors and the final two digits of the publication year, are listed in Tables I and II. To help put the current effort in the
context of previous works, Tables I and II also list the applicability of each contribution (dimensionality and number of
species), the starting kinetic equation (Boltzmann or Enskog), and the specific mechanics and assumptions used in the
derivation process: the standard Enskog theory (SET) vs. the revised Enskog theory (RET), pair correlation function

χ
(0)
ij , solution method, order and base state of expansion, single particle velocity distribution function [Maxwellian (M)

and non-Maxwellian (nM)], energy distribution [energy equipartition (EE) and non-energy equipartition (nEE)], and
hydrodynamic variables. In the subsections below, each of these various treatments are detailed and their implications
are discussed.

Dimensionality

The number contained in Table I refers to the dimensionality of the particles. Namely, 2D refers to circular
particles (disks) that are constrained to motion in a plane, while 3D refers to spherical particles that can move
in all three dimensions. Although systems of practical importance are three-dimensional, two-dimensional theories
have appeared in the literature for purposes of comparing with molecular-dynamics (MD) simulations. Specifically,
early MD simulations were performed in two dimensions due to computational constraints, whereas three-dimensional
simulations are now common. The WA99 theory is applicable to 2D only, the JM87 and GHD theories are derived
for both 2D and 3D, while all remaining theories JM89, Z95, H06, GD02, R03, IA05, and S06 are for 3D systems.

Number of Species

Most mixture theories to date have been targeted at binary mixtures, in which the two species can differ in size,
mass, restitution coefficient, and density (JM87, JM89, WA99, H01, GD02, R03, and S06). Some recent theories have
been derived for a more general system of s distinct species (Z95, IA05, and GHD).

Kinetic Theory

Two kinetic theories have been used in the development of hydrodynamic equations for mixtures, namely the
Boltzmann equation and the Enskog equation for hard spheres. The difference between these two equations stems
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from the treatment of the two-particle distribution function fij . For the Boltzmann equation, fij is assumed equal to
the product of the two single-particle distribution functions (fij = fifj). This lack of spatial and pre-collisional velocity
correlations between the two particles restricts the Boltzmann equation to dilute systems. The Enskog equation, on
the other hand, accounts for positional correlations (but not pre-collisional velocity correlations) via the equilibrium
pair correlation function at contact χij , namely fij = χijfifj (the Enskog approximation). More specifically, χij
accounts for excluded volume effects encountered in denser flows, and thus the corresponding Enskog kinetic theory
is applicable to moderately dense flows. The Enskog approximation is expected to deteriorate at higher densities as
ring collisions and their associated velocity correlations become important. The prevalence of such correlations has
also been found to depend on the restitution coefficient; namely, velocity correlations have been observed to increase
as the restitution coefficient decreases. Thus, theories based on the Enskog equation are applicable to both dilute and
moderately dense flows (JM87, JM89, Z95, WA99, H01, R03, IA05, and GHD), while theories using the Boltzmann
equation as a starting point are restricted to dilute flows (GD02 and S06).

From a practical perspective, the upper limit of concentration that a given kinetic theory should be applied to
depends on the desired level of accuracy. As a quick gauge to the range of validity of the Boltzmann equation, the
limiting case of a monodisperse system is considered using the theories of Garzó and Dufty [14] and Lutsko [15],
which are based on the Enskog equation and thus are applicable to both dilute and dense flows. According to these
theories, the dense collisional contributions to the pressure (absent in the Boltzmann equation) are 4% and 18% for
solids volume fractions of 0.01 and 0.05, respectively, at α = 0.9. A similar estimate of the range of validity of the
Enskog equation is not available, since the impact of velocity correlations on granular hydrodynamics has not been
extensively studied.

SET vs. RET

For those contributions listed in Table I that employ the Enskog equation, two different approaches are possible –
the SET and the RET. As mentioned previously, the difference between SET and RET traces to the choice of the

pair correlation function, χ
(0)
ij . In SET, χ

(0)
ij is a function of concentration (i.e., depends on local value only) at a

single position of interest, whereas for RET χ
(0)
ij is treated as a functional of concentration (i.e., depends on the local

value and its gradient) at the two particle centers. In SET, the location (e.g., midpoint) at which to evaluate χ
(0)
ij for

mixtures is unclear [18]. Regardless of the choice, however, the resulting diffusion force is found to be inconsistent
with irreversible thermodynamics, unlike in RET [19].

The implications of the SET vs. RET treatment on the resulting theory depends on the type system being
examined. For the case of monodisperse systems, SET and RET lead to the same Navier-Stokes transport coefficients
[19, 20, 21, 22] but different inhomogeneous equilibrium states [19, 20, 21]. For mixtures, however, different Navier-
Stokes transport coefficients are obtained from SET and RET. More specifically, although the fluxes appearing in
the momentum and energy balances are the same for SET and RET [q and Pγβ in Eqs. (4.13) and (4.14) in the
companion paper], the diffusion flux [j0i in Eq. (4.12) in companion paper] takes on different forms [23]. Although the
quantitative impact of such differences on segregation predictions has not been investigated in detail, it is clear that
RET is the appropriate approach since it is consistent with irreversible thermodynamics. The Enskog-based theories
of JM89, Z95, WA99, and GHD use RET, whereas JM87, H01, R03, and IA05 utilize SET.

Pair Correlation Function

As noted in Table I, various forms of the pair correlation function χ
(0)
ij have been used in conjunction with mixtures.

Its explicit forms can be found in the references displayed in the table.

Solution Method

With the exception of Zamankhan [4], all of the efforts to date on mixtures have implemented a Chapman-Enskog
(CE) expansion to solve the kinetic equation. By definition, the CE expansion involves a perturbative expansion
about low Knudsen numbers (where Kn is defined as the ratio of the mean free path to the characteristic length of
the mean-flow gradients) or “small gradients,” and thus is not applicable to systems in which free-molecular (non-
continuum) effects play a non-negligible role. The Grad moment method, as was employed by Zamankhan [4] does
not contain similar restrictions, though the derivation is necessarily more complex and thus has not been performed
without resorting to other simplifying assumptions (e.g., equipartition of energy).

Order of Chapman-Enskog Expansion
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For each of the entries in Table I that employ the CE expansion to solve the kinetic theory equation, all expansions
are carried out to first order in spatial gradients – i.e., to the Navier Stokes (NS) order. Nonetheless, evidence of
higher-order effects has been noted in a range of granular flows, and Burnett-order effects (second order in spatial
gradients) in particular have been shown to be linked to the anisotropy in the stress tensor [24]. Examples of systems
in which significant higher-order effects have been identified include the upper region of an open-ended, vibro-fluidized
bed [25, 26], the vanishing heap of a vibrated, granular material [27], dilute flow around an immersed cylinder [28],
simple shear flow [29], the Knudsen layer adjacent to a thermal (energy-providing) boundary [30], and in the continuum
interior of a thermally-driven granular gas [31]. For the case of monodisperse systems, several theories[24, 32, 33, 34]
and boundary conditions[25, 26, 35] have been developed that account for such higher order effects in a limited class
of systems (dilute, sheared flow, open boundary, etc.). Analogous work has not been reported for mixtures [36, 37],
however, and thus the incorporation of higher-order effects does not serve as a differentiator between those theories
listed in Table II that employ the CE expansion. Nonetheless, the possible presence of such higher-order effects should
be kept in mind when comparing these theories with experiments and simulations for purposes of validation.

Base State of Chapman-Enskog Expansion

As described in the companion paper, hydrodynamics results from a “normal solution” to the kinetic equation,
whose space and time dependence occurs only through the hydrodynamic fields. The CE expansion is a systematic
method for constructing this normal solution as an expansion in powers of the Knudsen number, or spatial gradients
of the fields. At zeroth order in these fields, the kinetic theory determines the form of the distribution function
to be the “local equilibrium” Maxwellian for molecular fluids. However, in the presence of dissipation the kinetic
theory requires a different solution at zeroth order, the “local homogeneous cooling” (HCS) distribution. The HCS
distribution agrees with the local Maxwellian only for α = 1. It is possible to make an expansion in both Knudsen
number and (1 − α), in which case the lowest order term is indeed the Maxwellian. Such a double expansion is
necessarily limited to asymptotically weak dissipation. The theories of JM87, JM89, WA99, H01, R03, IA05, and
S06 are of this type with the corresponding implicit limitation. The theories of GD02 and GHD, on the other hand,
expand only in the Knudsen number, with HCS as the leading order solution and hence no a priori limitation on
the degree of dissipation. Quantitatively, the difference between the two types of expansions has been examined in
monodisperse systems via a comparison of the dissipation rate obtained in MD simulations [31]. As an example, at
a volume fraction of 0.3 and α = 0.75, an error of 23% is obtained when using a theory [38] based on an expansion
about α = 1 , while an error of 7% is obtained when using a theory [14] based on an expansion about the HCS. For
both theories, the level of mismatch is found to increase with concentration and dissipation levels.

Order of Sonine polynomial expansion

To make the analytical evaluation of the collision integrals possible, a truncated Sonine polynomial expansion is
employed. All theories listed in Table I employ the lowest, non-zero order of the polynomial expansion (leading
term), except for the weak dissipation theory of S06 which carries out the expansion to third order. Nonetheless, the
transport coefficients of S06 agree with those of GD02 in the common domain of validity, namely in the nearly elastic
limit [10].

The accuracy of a given Sonine polynomial approximation can be tested via comparison with discrete simulation
Monte Carlo (DSMC) results. DSMC provides a numerical solution of the starting kinetic (Boltzmann or Enskog)
equation for a specific system, and thus provides a check for the existence of a normal solution, the order of the
gradient expansion (e.g., Navier Stokes), and the truncated Sonine polynomial. For dilute granular mixtures, good
agreement between DSMC and the theory of Garzó and Dufty [11] was found for the shear viscosity, even for strong
dissipation [39]. This agreement for the shear viscosity is also present for moderately dense systems [17]. A similar
comparison was carried out for the diffusion coefficient for a system with an impurity [40]. The agreement is again
excellent, except when the size or mass disparity is large, in which case the second Sonine approximation leads to a
significant improvement over the first Sonine approximation.

Single Particle Velocity Distribution

In an effort to simplify the evaluation of collision integrals, some previous works have assumed that the single particle
velocity distribution function is Maxwellian (M). Strictly speaking, such an assumption is valid only for perfectly elastic
spheres in equilibrium [41]. Numerous experimental, theoretical, and simulation studies of inelastic, monodisperse
systems have indicated that the distribution function departs from Maxwellian [42, 43, 44, 45, 46, 47, 48, 49]. For the
case of perfectly elastic mixtures, an estimate of the impact of this effect is given by Willits and Arnarson [6], who
compare the shear viscosity predictions of two theories with that of MD simulations. For this particular system, the
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only effective difference between the two theories is that one contains a Maxwellian assumption and the other does
not. For disks with a diameter ratio of 1.25 and over a range of solids fractions from 0.05 to 0.4, the non-Maxwellian
(nM) theory exhibits very good agreement with the simulations. The Maxwellian-based predictions, on the other
hand, are significantly lower in value since the Maxwellian assumption precludes the kinetic contribution to the shear
stress and simplifies its collisional counterpart. Although similar studies on the impact of non-Maxwellian effects on
other constitutive quantities are not available, it is clear that a non-Maxwellian treatment is critical for the accurate
prediction of shear stress. Of the mixture theories presented in Table I, those of JM87, H01, and R03 are based on a
Maxwellian assumption, while those of JM89, WA99, Z95, GD02, S06, and GHD incorporate non-Maxwellian effects.
The theory of IA05 takes a hybrid approach, in which collision integrals involving unlike particles are evaluated based
on Maxwellian distributions, whereas collisions integrals involving like particles account for non-Maxwellian effects.

Energy Distribution

Similar to the assumption of a Maxwellian velocity distribution, the assumption of an equipartition of energy (EE)
has also been made periodically in an effort to simplify the evaluation of collision integrals. Again, an equipartition
of energy between unlike particles is only expected for a perfectly elastic system in equilibrium. Numerous theoretical
[12, 39, 50], simulation [51, 52, 53, 54, 55, 56], and experimental [57, 58, 59] studies of granular materials provide
evidence that an equipartition of energy does not exist, and that the level of non-equipartition of energy (nEE) increases
as the restitution coefficient decreases (dissipation increases) and as the mass ratio gets further from unity. The impact
of such non-equipartition has recently been evaluated in the context of species segregation. In particular, Galvin,
Dahl and Hrenya [60] have found that the driving forces for species segregation that arise from non-equipartition are
significant over a moderate range of parameters for the case of a thermally-driven system. Furthermore, for the case
of an intruder particle in the presence of gravity, both Brey et al.[61], Garzó [62], and Yoon and Jenkins[63] have
found that the direction of species segregation may reverse due to non-equipartition effects. Together, these studies
indicate the importance of non-equipartition in a variety of systems. The mixture theories of JM87, H01, GD02, R03,
IA05, and GHD include the effects of non-equipartition, while those of JM89, WA99, Z95, and S06 do not account
for non-equipartition.

Hydrodynamic Variables

The appropriate choice of hydrodynamic variables to include in a hydrodynamic theory depends on the timescale
associated with a given variable [64]. First consider the case of a molecular gas, in which two timescales are relevant
– the “kinetic” time scale and the “hydrodynamic” time scale. The kinetic time scale is “fast” and representative of
the time between collisions (i.e., mean free time). The hydrodynamic time scale is “slow” and is set by the gradients
in the system; this is the timescale over which macroscopic variables change.

It is important to note that the velocity distribution function fi (and thus the Boltzmann and Enskog equations)
carries information with it on the kinetic time scale. However, the macroscopic variables (ni, U , and T for the case of
a molecular gas) correspond to velocity moments of fi that are collisional invariants – i.e., ni, U , and T are conserved
upon collision. As a result, they will stay constant over a time on the order of a mean free path, and vary in time
over the much longer hydrodynamic time scale. It is this property which defines the appropriate (minimum set of)
hydrodynamic variables needed to describe a system.

To illustrate the above point, consider the time evolution of mixture temperature (T ) and species temperature (Ti),
again for the case of a molecular gas with more than one species present:

DT

Dt
= (energy flux)

DTi
Dt

= (energy flux) +

(
collisional exchange (source/sink)
between unlike species

)

Note that T is a collisional invariant (the total energy is conserved upon collision and thus no “source” term is
present), but that Ti is not a collisional invariant since the energy associated with a given species can change upon
collision with another species. Also note that the time scale of the flux term is set by gradients (e.g., Fourier’s law),
whereas the time scale of the source term is collisional in nature and thus relatively “fast.” Hence, the mixture
temperature T is characterized by one (slow) timescale and the species temperature is characterized by two (slow
and fast) timescales. The corresponding physical picture is the following: each species is expected to have a rapid
relaxation after a few collisions to a distribution near local equilibrium (local mixture temperature), and then all
temperatures evolve according to the slow hydrodynamic mode. Thus, the relevant hydrodynamic (macroscopic)
variable is T since it is associated with a conserved quantity; all other variables (Ti) are enslaved to it. Thus, solving
a separate balance for Ti is superfluous – indeed this is not done for molecular gases.
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Next, consider a granular system in which the particles engage in dissipative collisions. Three timescales need to
be considered, as illustrated by the balances below:

DT

Dt
= (energy flux) +




inelastic
dissipation
(sink)





DTi
dt

= (energy flux) +




inelastic
dissipation
(sink)



+

(
collisional exchange (source/sink)
between unlike species

)

As with the molecular systems, the energy flux is characterized by a slow (hydrodynamic) time scale and the collisional
exchange between species is characterized by a fast (kinetic) time scale. In the granular system, inelastic dissipation
also occurs, and its corresponding time scale is not as obvious. More specifically, the dissipation rate depends not
only on the collisional frequency (kinetic time scale), but also on the value of restitution coefficient. As α approaches
unity, the dissipation rate goes to zero, and the time scale becomes large (hydrodynamic time scale). In other words,
it is unclear a priori whether this term is characterized by a fast or slow timescale.

The previous observation leads to the question: for moderate (smaller) values of α, does the time scale become fast
enough to approach the kinetic time scale or is there still a separation of time scales? If the latter is assumed (that
the time scale associated with inelastic dissipation is much longer than that of the kinetic time scale), Garzó and
Dufty [12] have shown that in a HCS two-component system, (i) the cooling rates associated with mixture and species
temperatures are equal and (ii) the ratio of species temperature (T1/T2) remains constant – i.e., all temperatures
decay at the same rate but their ratios remain constant. Further note that T1/T2 is not equal to one for unlike
particles – i.e., a non-equipartition of energy is predicted. To test this assumption of the separation of timescales,
MD simulations of a binary mixture in HCS were performed by Dahl et al. [54]. The simulation results indicate that
a constant value of T1/T2 is achieved after only a few collisions, and this behavior was confirmed over a wide range
of parameters.

As a result of the aforementioned finding that the timescale associated with inelastic dissipation is hydrodynamic
(slow) in nature, the physical picture is analogous to that of a molecular system Namely, each species has a rapid
relaxation to a local “equilibrium” state (now characterized by a constant value of non-equipartition) – HCS – and
is then enslaved to slow (hydrodynamic) evolution. Thus, the relevant hydrodynamic variables are the same – ni, U,
and T – and the balance of additional variables (such as Ti) would be superfluous.

The practical implications of using ni, U, and T as the hydrodynamic variables in granular flows are twofold.
First, only a single balance for T is needed, instead of separate balance for each Ti. The reduction in the number of
governing equations is expected to lead to a considerable decrease in computational overhead. Second, the level of
non-equipartition is in a state of local “equilibrium” due to the fast time time scale of Ti, and thus T1/T2 depends
on local values of flow field variables and particle properties (mixture composition, α, etc.). Hence, even though
a non-equipartition of energy is indeed present, it does not appear explicitly in the transport coefficients. Instead,
its dependency on the flow field variables is incorporated into the transport coefficients – i.e., the effect of non-
equipartition is implicitly contained in the transport coefficients. It can be solved for explicitly once the flow field
variables have been solved for using, for example, the relation derived by Garzó and Dufty [12].

Of the non-equipartition theories listed in Table II, GD02 and GHD use T as the hydrodynamic variable for the
granular energy field, whereas the other non-equipartition theories use Ti (JM87, H01, R03, IA05). The choice of
hydrodynamic variable(s) is a non-issue for theories which invoke an equipartition assumption (JM89, Z95, WA99,
S06) since they inherently assume T = Ti and thus use T as the energy variable. (It is worthwhile to note that S06
defines temperature differently than others, namely TS = 3T . Furthermore, IA06 uses a species temperature Ti,IA,
which is defined in terms of velocity fluctuations relative the mean species velocity, rather than the mass-averaged
velocity used for T .)

Recapitulation

Unlike previous Enskog-based (dense) theories, the current effort is based on an expansion about the homogeneous
cooling state and employs ni, U , and T as the hydrodynamic variables. The former extends the range of validity to
strong dissipation levels while the latter results in fewer balance equations, thereby reducing the computational cost.
This approach was first put forth by Garzó and Dufty [11] who instead used the Boltzmann equation as their starting
kinetic equation; the current work thus extends the domain of applicability from dilute to moderately dense flows.
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TABLE I: Hydrodynamic Descriptions of Granular Mixtures

Pair

Correlation

Number Kinetic SET Function

References Abbrev. Dimension of Species Theory vs. RET χ
(0)
ij

[2] JM87 2D and 3D 2 Enskog SET 2D [2], 3D [65]

[3] and [5] JM89 3D 2 Enskog RET 3D [65]

[4] Z95 3D s Enskog RET [66]

[6] and [67] WA99 2D 2 Enskog RET 2D [2]

[7] H01 3D 2 Enskog RET [65]

[11] GD02 3D 2 Boltzmann – –

[8] R03 3D 2 Enskog SET [68]

[9] IA05 3D s Enskog SET [69]

[10] S06 3D 2 Boltzmann – –

current work GHD 2D and 3D s Enskog RET 2D [70], 3D [71]

TABLE II: Hydrodynamic Descriptions of Granular Mixtures

Chapman- Chapman- Single

Enskog Enskog Sonine Particle Hydro-

Solution Expansion Expansion Expansion Velocity Energy dynamic

Ref. Method Order Base State Order Distribution Distributon Variables

JM87 CE NS α = 1 1st M nEE ni, Ui, Ti

JM89 CE NS α = 1 1st nM EE ni, Ui, T

Z95 Grad’s method – – – nM EE 13 moments

WA99 CE NS α = 1 1st nM EE ni, Ui, T

H01 CE NS α = 1 1st M nEE ni, Ui, Ti

GD02 CE NS HCS 1st nM nEE ni, Ui, T

R03 CE NS α = 1 1st M nEE ni, Ui, Ti

IA05 CE NS α = 1 1st M/nM nEE ni, Ui, Ti,IA

S06 CE NS α = 1 3rd nM EE ni, Ui, Ts

GHD CE NS HCS 1st nM nEE ni, Ui, T
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APPENDIX A: COLLISION FREQUENCIES

In this Appendix we display the expressions for the collision frequencies appearing in the evaluation of the kinetic
contributions to the transport coefficients and in the first order contributions to the cooling rate. As noted in the
main text, most of these frequencies (those corresponding to the transport coefficients) have been obtained in the low-

density limit (except for the factors χ
(0)
ij ) [16] for arbitrary dimensions by considering the Maxwellian approximation

for the zeroth-order distribution functions f
(0)
i . Their expressions are

νii =
2π(d−1)/2

dΓ
(
d
2

)
s∑

j 6=i

njσ
d−1
ij χ

(0)
ij µjiv0(1 + αij)

(
θi + θj
θiθj

)1/2

, (A1)

νij = −2π(d−1)/2

dΓ
(
d
2

) niσ
d−1
ij χ

(0)
ij µijv0(1 + αij)

(
θi + θj
θiθj

)1/2

, (A2)

τii =
2π(d−1)/2

d(d + 2)Γ
(
d
2

)v0
{
niσ

d−1
i χ

(0)
ii (2θi)

−1/2(3 + 2d− 3αii)(1 + αii)

+2
s∑

j 6=i

njχ
(0)
ij σ

d−1
ij µji(1 + αij)θ

3/2
i θ

−1/2
j

[
(d+ 3)βijθ

−2
i (θi + θj)

−1/2

+
3 + 2d− 3αij

2
µjiθ

−2
i (θi + θj)

1/2 +
2d(d+ 1) − 4

2(d− 1)
θ−1
i (θi + θj)

−1/2

]}
, (A3)

τij =
4π(d−1)/2

d(d+ 2)Γ
(
d
2

)v0niχ(0)
ij σ

d−1
ij µijθ

3/2
j θ

−1/2
i (1 + αij)

×
[
(d+ 3)βijθ

−2
j (θi + θj)

−1/2 +
3 + 2d− 3αij

2
µjiθ

−2
j (θi + θj)

1/2

−2d(d+ 1) − 4

2(d− 1)
θ−1
j (θi + θj)

−1/2

]
, (A4)

ωii =
π(d−1)/2

Γ
(
d
2

) 2

d
√

2
σd−1
i niχ

(0)
ii v0θ

−1/2
i (1 − α2

ii)

+
π(d−1)/2

Γ
(
d
2

) 2

d(d+ 2)

s∑

j 6=i

njχ
(0)
ij σ

d−1
ij v0µji(1 + αij)(θi + θj)

−1/2θ
1/2
i θ

−3/2
j Aij , (A5)

ωij =
π(d−1)/2

Γ
(
d
2

) 2

d(d+ 2)
njχ

(0)
ij σ

d−1
ij v0µji(1 + αij)(θi + θj)

−1/2θ
1/2
i θ

−3/2
j Cij , (A6)

γii =
π(d−1)/2

Γ
(
d
2

) 8

d(d+ 2)
σd−1
i niχ

(0)
ii v0(2θi)

−1/2(1 + αii)

[
d− 1

2
+

3

16
(d+ 8)(1 − αii)

]

+
π(d−1)/2

Γ
(
d
2

) 1

d(d+ 2)

s∑

j 6=i

njχ
(0)
ij σ

d−1
ij v0µji(1 + αij)

(
θi

θj(θi + θj)

)3/2 [
Eij − (d+ 2)

θi + θj
θi

Aij

]
,

(A7)

γij = −π
(d−1)/2

Γ
(
d
2

) 1

d(d+ 2)
niχ

(0)
ij σ

d−1
ij v0µij(1 + αij)

(
θj

θi(θi + θj)

)3/2 [
Fij + (d+ 2)

θi + θj
θj

Cij

]
. (A8)
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In the above equations, v0 =
√

2T/m is the thermal velocity, θi = miT/mTi, and we have introduced the dimensionless
quantities

Aij = (d+ 2)(2βij + θj) + µji(θi + θj)
{
(d+ 2)(1 − αij) − [(11 + d)αij − 5d− 7]βijθ

−1
i

}

+3(d+ 3)β2
ijθ

−1
i + 2µ2

ji

(
2α2

ij −
d+ 3

2
αij + d+ 1

)
θ−1
i (θi + θj)

2 − (d+ 2)θjθ
−1
i (θi + θj),

(A9)

Cij = (d+ 2)(2βij − θi) + µji(θi + θj)
{
(d+ 2)(1 − αij) + [(11 + d)α12 − 5d− 7]βijθ

−1
j

}

−3(d+ 3)β2
ijθ

−1
j − 2µ2

ji

(
2α2

ij −
d+ 3

2
αij + d+ 1

)
θ−1
j (θi + θj)

2 + (d+ 2)(θi + θj),

(A10)

Eij = 2µ2
jiθ

−2
i (θi + θj)

2

(
2α2

ij −
d+ 3

2
αij + d+ 1

)
[(d+ 2)θi + (d+ 5)θj ]

−µji(θi + θj)
{
βijθ

−2
i [(d+ 2)θi + (d+ 5)θj ][(11 + d)αij − 5d− 7]

−θjθ−1
i [20 + d(15 − 7αij) + d2(1 − αij) − 28αij] − (d+ 2)2(1 − αij)

}

+3(d+ 3)β2
ijθ

−2
i [(d+ 2)θi + (d+ 5)θj ] + 2βijθ

−1
i [(d+ 2)2θi + (24 + 11d+ d2)θj ]

+(d+ 2)θjθ
−1
i [(d+ 8)θi + (d+ 3)θj ] − (d+ 2)(θi + θj)θ

−2
i θj [(d+ 2)θi + (d+ 3)θj ],

(A11)

Fij = 2µ2
jiθ

−2
j (θi + θj)

2

(
2α2

ij −
d+ 3

2
αij + d+ 1

)
[(d+ 5)θi + (d+ 2)θj ]

−µji(θi + θj)
{
βijθ

−2
j [(d+ 5)θi + (d+ 2)θj ][(11 + d)αij − 5d− 7]

+θiθ
−1
j [20 + d(15 − 7αij) + d2(1 − αij) − 28αij ] + (d+ 2)2(1 − αij)

}

+3(d+ 3)β2
ijθ

−2
j [(d+ 5)θi + (d+ 2)θj] − 2βijθ

−1
j [(24 + 11d+ d2)θi + (d+ 2)2θj ]

+(d+ 2)θiθ
−1
j [(d + 3)θi + (d+ 8)θj ] − (d+ 2)(θi + θj)θ

−1
j [(d+ 3)θi + (d+ 2)θj ],

(A12)

where βij ≡ µijθj − µjiθi.

It only remains to evaluate the collision frequencies ψij needed to get the first order contribution ζ(1,1) to the
cooling rate. These frequencies have not been previously determined in the Boltzmann limit. To compute them, we
use the property

∫
dv1h(v1)J

(0
ij [V1|Φi,Φj ] = χ

(0)
ij σ

d−1
ij

∫
dv1

∫
dv2Φi(v1)Φj(v2)

×
∫
dσ̂ Θ(σ̂ · g)(σ̂ · g)

[
h(V

′

1) − h(V1)
]
, (A13)

with

V′
1 = V1 − µji(1 + αij)(σ̂ · g)σ̂ . (A14)

To determine ψij , let us consider first the integral

Iψ =

∫
dv

(
miV

2

2Ti

)2

J
(0)
ij [f

(0)
i , fj,MFj ]. (A15)

Use of Eqs. (A13) and (A14) gives

Iψ = χ
(0)
ij σ

d−1
ij

m2
i

4T 2
i

∫
dv1

∫
dv2f

(0)
i (V1)fj,M (V2)Fj(V2)

∫
dσ̂ Θ(σ̂ · g)(σ̂ · g)

(
V ′4

1 − V 4
1

)
. (A16)
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The collision rule (A14) yields

V ′4
1 − V 4

1 = 2µ2
ji(1 + αij)

2(σ̂ · g)2

[
2(σ̂ ·V1)

2 + V 2
1 +

µ2
ji

2
(1 + αij)

2(σ̂ · g)2

]

−4µji(1 + αij)(σ̂ · g)(σ̂ · V1)
[
V 2

1 + µ2
ji(1 + αij)

2(σ̂ · g)2
]
. (A17)

The integration over the solid angle in (A16) leads to

∫
dσ̂ Θ(σ̂ · g)(σ̂ · g)

(
V ′4

1 − V 4
1

)
=

4B3

d+ 3
µ2
ji(1 + αij)

2g

[
3(V1 · g)2 +

d+ 5

2
g2V 2

1 + µ2
ji(1 + αij)

2g4

]

− 4B3

d+ 3
µji(1 + αij)g(V1 · g)

[
(d+ 3)V 2

1 + 4µ2
ji(1 + αij)

2g2
]
,

(A18)

where

Bk ≡
∫
dσ̂ Θ(σ̂ · g) (σ̂ · ĝ)k = π(d−1)/2 Γ

(
k+1
2

)

Γ
(
k+d
2

) . (A19)

Therefore, the integral (A16) can be written as

Iψ =
B3

d+ 3
χ

(0)
ij σ

d−1
ij ninj(θiθj)

d/2v0µji(1 + αij)θ
2
i∆jI

∗
ψ(θi, θj), (A20)

where we have taken the Maxwellian form for f
(0)
i and have introduced the dimensionless integral

I∗ψ(θi, θj) = π−d

∫
dc1

∫
dc2 e

−(θic
2
1+θjc

2
2)x

×
{

4µji(1 + αij)

[
3(c1 · x)2 +

d+ 5

2
g2c21 + µ2

ji(1 + αij)
2x4

]

−4(c1 · x)
[
(d+ 3)c21 + 4µ2

ji(1 + αij)
2x2
]}
, (A21)

and the operator

∆j ≡ θ2j
∂2

∂θ2j
+ (d+ 2)θj

∂

∂θj
+
d(d+ 2)

4
. (A22)

In addition, ci ≡ V1/v0 and x ≡ g/v0. The integral (A21) can be performed by the change of variables {c1, c2} →
{x,y} where y ≡ θic1 + θjc2 and the Jacobian is (θi + θj)

−d. With this change the integrations can be done quite
efficiently by using a computer package of symbolic calculations. A lengthy and careful algebra gives

I∗ψ(θi, θj) = (d+ 3)
Γ
(
d+3
2

)

Γ
(
d
2

) (θiθj)
−d/2

(θiθj)
−5/2(θi + θj)

−1/2

×
{
−2θ2j [(d+ 3)θj + (d+ 2)θi] + µji (1 + αij) θj (θi + θj)

×
[
(11 + d)θj +

d2 + 5d+ 6

d+ 3
θi

]

−8µ2
ji (1 + αij)

2
θj (θi + θj)

2
+ 2µ3

ji (1 + αij)
3
(θi + θj)

3
}
. (A23)

Use of (A20) in (A23) leads to the final expression for Iψ :

Iψ =
π(d−1)/2

4Γ
(
d
2

) ninjχ(0)
ij σ

d−1
ij v0µji (1 + αij) θ

3/2
i θ

−3/2
j (θi + θj)

−5/2

×{[(d− 1)θj + (d+ 2)θi] [2θj + 3µji (1 + αij) (θi + θj)]

−24µ2
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3 θ−1

j (θi + θj)
3
}
. (A24)
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Following similar mathematical steps as made before for Iψ, one obtains
∫
dv
miV

2

2Ti
J

(0)
ij [f

(0)
i , fj,MFj ] =

π(d−1)/2

4Γ
(
d
2

) ninjχ(0)
ij σ

d−1
ij v0µji (1 + αij) θ

3/2
i θ

−3/2
j (θi + θj)

−3/2

× [2θj + 3µji (1 + αij) (θi + θj)] . (A25)

Combining Eqs. (A24) and (A25), one gets the result
∫
dvFi(V )J

(0)
ij [f

(0)
i , fj,MFj ] =

π(d−1)/2

4Γ
(
d
2

) ninjχ(0)
ij σ

d−1
ij v0µji (1 + αij) θ

3/2
i θ

−3/2
j (θi + θj)

−5/2

×{[(d− 1)θj + (d+ 2)θi] [2θj + 3µji (1 + αij) (θi + θj)]

−24µ2
ji (1 + αij)

2 (θi + θj)
2 + 30µ3

ji (1 + αij)
3 θ−1

j (θi + θj)
3

−(d+ 2) (θi + θj) [2θj + 3µji (1 + αij) (θi + θj)]} . (A26)

The remaining integrals needed to determine the collision frequencies ψii and ψij can be also obtained by performing
identical mathematical steps. Their expressions are

∫
dvFi(V)J

(0)
ij [fi,MFi, f

(0)
j ] =

π(d−1)/2

4Γ
(
d
2

) ninjχ(0)
ij σ

d−1
ij v0µji (1 + αij) (θiθj)

−1/2(θi + θj)
−5/2

×
{
−2
[
(45 + 15d)θ3j + 3(38 + 13d)θiθ

2
j

+8(11 + 4d)θ2i θj + 8(2 + d)θ3i
]

+3µji (1 + αij) (θi + θj)
[
(55 + 5d)θ2j + 9(10 + d)θiθj + 4(8 + d)θ2i

]

−24µ2
ji (1 + αij)

2
(θi + θj)

2
(5θj + 4θi) + 30µ3

ji (1 + αij)
3
(θi + θj)

3

+(d+ 2)θj (θi + θj) [2(4θi + 3θj) − 3µji (1 + αij) (θi + θj)]} ,
(A27)

∫
dvFi(V)J

(0)
ii [f

(0)
i , fi,MFi] =

3
√

2

64

π(d−1)/2

Γ
(
d
2

) n2
iχ

(0)
ii σ

d−1
i (1 + αij) v0θ

−1/2
i

×
[
10α3

ii + 22α2
ii + 11αii − 3

]
, (A28)

∫
dvFi(V)J

(0)
ii [fi,MFi, f

(0)
i ] =

√
2

64

π(d−1)/2

Γ
(
d
2

) n2
iχ

(0)
ii σ

d−1
i (1 + αij) v0θ

−1/2
i

×
[
30α3

ii − 126α2
ii + 177αii + 16d(3αii − 7) − 137

]
.

(A29)

The expressions for the frequencies ψii and ψij can be easily obtained from Eqs. (A27)–(A30) when one takes into
account their definitions (2.17) and (2.18).

In the case of mechanically equivalent particles (χ
(0)
ij = χ(0), σi = σ, and αij = α), Eqs. (A28) and (A29) yield

∫
dvF (V)

(
J (0)[f (0), fMF (V)] + J (0)[fMF (V), f (0)]

)
=

π(d−1)/2

8Γ
(
d
2

) χ(0)σd−1ninj
1 + α

2

×
(
30α3 − 30α2 + 105α+ 24dα− 56d− 73

)
.

(A30)

This expression coincides with the one previously derived for a monodisperse granular gas [15].

APPENDIX B: COLLISION INTEGRALS

In this Appendix, we provide some of the mathematical steps to compute the different collision integrals involving
the operator Kij,γ [X ]. This operator is defined as

Kij,γ [Xj ] = σdijχ
(0)
ij

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)σ̂γ

×
[
α−2
ij f

(0)
i (V′′

1 )Xj(V
′′
2 ) + f

(0)
i (V1)Xj(V2)

]
. (B1)
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To simplify all these type of integrals, we use the property

∫
dv1h(V1)Kij,γ [Xj(V2)] = −χ(0)

ij σ
d
ij

∫
dv1

∫
dv2f

(0)
i (V1)Xj(V2)

×
∫
dσ̂ Θ(σ̂ · g)(σ̂ · g)σ̂γ [h(V′

1) − h(V1)] , (B2)

where V′
1 is defined by Eq. (A14).

Let us start with the collision integrals appearing in the evaluation of the mass flux. One of them is

ID ≡
∫

dv1miV1,γKij,γ [∇V2 · (V2f
(0)
j )]. (B3)

Use of the identity (B2) in (B3) gives

ID = B2σ
d
ijχ

(0)
ij miµji(1 + αij)

∫
dV1

∫
dV2f

(0)
i (V1)∇V2 ·

(
V2f

(0)
j (V2)

)
g2. (B4)

The integral (B4) can be exactly evaluated and the result is

ID = −2dB2ninjσ
d
ijχ

(0)
ij µij(1 + αij)Tj . (B5)

The remaining integrals corresponding to the mass flux can be computed by using similar mathematical steps as those
made before for ID. The results are

∫
dv1miV1,βKij,β [f (0)

j ] = dB2ninjσ
d
ijχ

(0)
ij miµji(1 + αij)

(
Ti
mi

+
Tj
mj

)
, (B6)

∫
dv1miV1,βKiℓ,β [nj∂nj

f
(0)
ℓ ] =

∫
dv1miV1,β

(
Kiℓ,β [δjℓf (0)

ℓ ] − 1

2
Kiℓ,β [∇V2 · (V2f

(0)
ℓ )]nj∂nj

ln γℓ

)

= dB2ninjσ
d
iℓχ

(0)
iℓ miµℓi(1 + αiℓ)

[
δjℓ

(
Ti
mi

+
Tℓ
mℓ

)

+
nℓTℓ
njmℓ

∂ ln γℓ
∂ lnnj

]
. (B7)

The collision integral involved in the evaluation of the pressure tensor is of the form

Iη ≡
∫

dv1miV1,γV1,βKij,γ [∂Vβ
f

(0)
j ]

= χ
(0)
ij σ

d
ijmi

∫
dv1

∫
dv2fi(V1)

(
∂V2,β

f
(0)
j (V2)

)

×
∫
dσ̂ Θ(σ̂ · g)(σ̂ · g)σ̂α

(
V ′

1,γV
′
1,β − V1,γV1,β

)
, (B8)

where the identity (B2) has been used. The scattering rule (A14) gives

V ′
1,γV

′
1,β − V1,γV1,β = −µji(1 + αij)(σ̂ · g) [Gij,γ σ̂β +Gij,β σ̂γ + µji(gγ σ̂β + gβ σ̂γ

−µji(1 + αij)(σ̂ · g)σ̂γ σ̂β ] , (B9)

where Gij = µijV1 + µjiV2. Substitution of Eq. (B9) into (B8) allows the angular integral to be performed with the
result

∫
dσ̂ Θ(σ̂ · g)(σ̂ · g)σ̂γ

(
V ′

1,γV
′
1,β − V1,γV1,β

)
= − B2

d+ 2
µji(1 + αij)

[
(d+ 3)g2Gij,β

+ µji(1 + d− 3αij)g
2gβ + 2(g · Gij)gβ

]
.

(B10)
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With this result the integral Iη becomes

Iη = − dB2

d+ 2
ninjχ

(0)
ij σ

d
ijmiµji(1 + αij)

∫
dv1

∫
dv2f

(0)
i (V1)f

(0)
j (V2)

×
[
(d+ 2)µji(3αij − 1)g2 − 4(d+ 2)(g ·Gij)

]

= −dB2ninjχ
(0)
ij σ

d
ijmiµji(1 + αij)mi

[
µji

(
Ti
mi

+
Tj
mj

)
(3αij − 1) − 4

Ti − Tj
mi +mj

]
.

(B11)

From Eq. (B11) it is easy to get the expression (3.34).
To evaluate the collision integrals appearing in the determination of the heat flux one needs the partial results

Si(V
′

1) − Si(V1) =
mi

2
(1 + αij)µji(σ̂ · g)

{[
(1 − α2

ij)µ
2
ji(σ̂ · g)2 −G2

ij − µ2
jig

2

−2µji(g ·Gij) + 2(1 + αij)µji(σ̂ · g)(σ̂ · Gij) + (d+ 2)
Ti
mi

]
σ̂

− [(1 − αij)µji(σ̂ · g) + 2(σ̂ ·Gij)] (Gij + µjig)} , (B12)

∫
dσ̂ Θ(σ̂ · g)(σ̂ · g) σ̂ ·

[
Si(V

′

1) − Si(V1)
]

= −3

2

B2

d+ 2
(1 + αij)µji

×
{

1

3
µ2
ji [(d+ 2) − 3αij(1 − αij)] g

4 +
d+ 4

3
g2G2

ij

+
1

3
µji(7 + 2d− 9αij)g

2(g · Gij) +
4

3
(g · Gij)

2 − (d+ 2)2

3

Ti
mi

g2

}
.

(B13)

The corresponding integrals associated with the heat flux can be explicitly evaluated by using Eqs. (B12) and (B13)
and the same mathematical steps as before. After a lengthy algebra, one gets the expressions (3.70), (3.71), and
(3.72).

Let us consider now the integral appearing in the evaluation of the cooling rate. To do that, we compute first the
collision integral

Iζ =

∫
dvV 4Kij,γ [∂Vγ

f
(0)
j ]. (B14)

In order to evaluate it we use Eq. (A17) and the angular integrations

∫
dσ̂ Θ(σ̂ · g)(σ̂ · g)σ̂β

(
V ′4

1 − V 4
1

)
=

3B2

(d+ 2)(d+ 4)
µji(1 + αij)

×
{
4µji(1 + αij)

[
2(V1 · g)2gβ + 2(V1 · g)g2V1,β

+
1

2
(d+ 6)g2V 2

1 gβ

]
+ 5µ3

ji(1 + αij)
3g4gβ

−4

3
(d+ 4)V 2

1

[
2(V1 · g)gβ + g2V1,β

]

−4µ2
ji(1 + αij)

2g2
[
4(V1 · g)gβ + g2V1,β

]}
. (B15)
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With these results, the integral Iζ becomes

Iζ = −3dB2ninjχ
(0)
ij σ

d
ijmiµji(1 + αij)

∫
dv1

∫
dv2f

(0)
i (V1)f

(0)
j (V2)

×
{
µji(1 + αij)

[
2(d+ 4)g2V 2

1 + 8(V1 · g)2 + 5µ2
ji(1 + αij)

2g4 − 16µji(1 + αij)g
2(V1 · g)

]

−8

3
(d+ 2)V 2

1 (V1 · g)

}

= −3dB2ninjχ
(0)
ij σ

d
ijµji(1 + αij)

{
T 2
i

m2
i

[µji(1 + αij) (16 + 2d− 16µji(1 + αij)

+5µ2
ji(1 + αij)

2
)
− 8

3
(d+ 2)

]
+ 5µ3

ji(1 + αij)
3
T 2
j

m2
j

+
2

d+ 2

TiTj
mimj

µji(1 + αij)
[
d(d+ 4) + 4 − 8(d+ 2)µji(1 + αij) + 5(d+ 2)µ2

ji(1 + αij)
2
]}

.

(B16)

The final expression (2.19) can be easily obtained from Eqs. (B11) and (B16).
Finally, note that the integrals CTij and CTipj defined by Eqs. (3.40) and (3.41), respectively, can be easily computed

by using the change of variables written below Eq. (A22). After some algebra and using the Maxwellian approach for

the distributions f
(0)
i one gets the results (3.42) and (3.43).

APPENDIX C: CHOICE OF χ
(0)
ij AND Iiℓj

This Appendix deals with the choice of the pair correlation function χ
(0)
ij and the functional derivative Iiℓj . A good

approximation for χ
(0)
ij in two dimensions (d = 2) is given by [72]

χ
(0)
ij =

1

1 − φ
+

10 − φ

16

β

(1 − φ)2
σiσj
σij

− 1

16

β2

φ(1 − φ)

(
σiσj
σij

)2

, (C1)

where φ =
∑s

i=1 φi is the total solid volume fraction, φi = niπσ
2
i /4 is the species volume fraction of component i and

β = π(
∑s

i=1 niσi)/4. In the case of hard-spheres (d = 3) we take the following approximation for χ
(0)
ij [71]

χ
(0)
ij =

1

1 − φ
+

3

2

β

(1 − φ)2
σiσj
σij

+
1

2

β2

(1 − φ)3

(
σiσj
σij

)2

, (C2)

where now φi = niπσ
3
i /6 and β = π(

∑s
i=1 niσ

2
i )/6.

The parameter Iiℓj is chosen to recover the results derived by López de Haro et al. [73] for ordinary polydisperse
mixtures in the context of the RET. To do that, for the sake of simplicity, we assume that the temperature, the
pressure and the flow velocity are homogeneous so that only the spatial gradients associated with the partial densities
will be considered. In this simple case, for elastic collisions (αij = 1), the first-order distribution function is given by

f
(1)
i =

∑s
j=1 B

j
i · ∇ lnnj where B

j
i (V) verifies the integral equation

(
LBj

)
i,γ

= −Vγnj∂nj
f

(0)
i −

s∑

ℓ=1

(
Kiℓ,γ [nj∂nj

f
(0)
ℓ ] +

1

2

(
nℓ∂nj

lnχ
(0)
iℓ + Iiℓj

)
Kiℓ,γ [f (0)

ℓ ]

)
. (C3)

In the elastic case, nj∂nj
f

(0)
ℓ = δjℓf

(0)
ℓ and the linear operator Kiℓ[f

(0)
ℓ ] can be explicitly written as

Kiℓ,γ [f (0)
ℓ ] = 2B2nℓχ

(0)
iℓ σ

d
iℓVγf

(0)
i (V). (C4)

With this result, Eq. (C3) becomes

−
(
LBj

)
i,γ

= Vγf
(0)
i δij + 2B2

s∑

ℓ=1

nℓχ
(0)
iℓ σ

d
iℓ

[
δjℓ +

1

2

(
nℓ∂nj

lnχ
(0)
iℓ + Iiℓj

)]
Vγf

(0)
i . (C5)
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Comparison with the results derived by López de Haro et al. [73] allow us to identify Iijℓ to be defined through the
relation

s∑

ℓ=1

nℓχ
(0)
iℓ σ

d
iℓ

(
nℓ∂nj

lnχ
(0)
iℓ + Iiℓj

)
=
nj
B2

[
1

T

(
∂µi
∂nj

)

T,nk 6=j

− 1

ni
δij − 2B2χ

(0)
ij σ

d
ij

]
, (C6)

where µi is the chemical potential of species i.
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[11] V. Garzó and J. W. Dufty, Phys. Fluids 14, 1476 (2002).
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The Enskog kinetic theory is used as a starting point to model a suspension of solid
particles in a viscous gas. Unlike previous efforts for similar suspensions, the gas-phase
contribution to the instantaneous particle acceleration appearing in the Enskog equation
is modeled using a Langevin equation, which can be applied to a wide parameter space
(high Reynolds number, etc.). Attention here is limited to low Reynolds number flow,
however, in order to assess the influence of the gas phase on the constitutive relations,
which was assumed negligible in a previous analytical treatment. The Chapman-Enskog
method is used to derive the constitutive relations needed for the conservation of mass,
momentum and granular energy. The results indicate that the Langevin model for instan-
taneous gas-solid force matches the form of the previous analytical treatment, indicating
the promise of this method for regions of the parameter space outside of those attainable
by analytical methods (higher Reynolds number, etc.). The results also indicate that the
effect of the gas phase on the constitutive relations for the solid-phase shear viscosity and
Dufour coefficient is non-negligible, particularly in relatively dilute systems. Moreover,
unlike their granular (no gas phase) counterparts, the shear viscosity in gas-solid systems
is found to be zero in the dilute limit and the Dufour coefficient is found to be non-zero
in the elastic limit.

1. Introduction

The kinetic-theory-based description of rapid granular flows (i.e., those in which the
role of the interstitial fluid is neglected) has been an active area of research for the past
several decades (Campbell 1990; Goldhirsch 2003; Brilliantov & Pöschel 2004). Sinclair
& Jackson (1989) first extended this analogy to rapid gas-solid flows in vertical tubes
to explain the ubiquitous “core-annulus” flow, in which the solids are observed to have
a higher concentration near the pipe wall (annulus), while the center of the pipe (core)
remains relatively dilute. This extension of the kinetic-theory analogy to gas-solid systems
is appropriate for relatively massive particles (i.e., high Stokes number) engaging in nearly
instantaneous collisions. Such systems occur in a wide range of engineering operations,
including the riser section of a circulating fluidized bed, pneumatic conveying systems,
bubbling fluidized beds, etc. Correspondingly, the further development and application
of kinetic-theory-based models to high-velocity, gas-solid systems have mushroomed over
the last twenty years (Gidaspow 1994; Jackson 2000; Koch & Hill 2001; Gidaspow &
Jiradilok 2009; Pannala et al. 2010). Important research thrusts have included, but are
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not limited to, the effects of gas-phase turbulence, clustering instabilities, polydispersity,
cohesion, non-spherical particles, and friction.
The aim of the current effort is on the fluid-solid interaction force, Ffluid, present in

high-velocity gas-solid flows. Particular emphasis is put on the incorporation of Ffluid

into the continuum description of the solid-phase (which can later be coupled with gas-
phase mass and momentum balances for a complete description of the gas-solid system).
Before describing related previous works, it is worthwhile to introduce the physical picture
associated with this interaction force. Mathematically, this fluid-solid force is the sum
of normal (Fn) and tangential (Ft) forces experienced by the particle at its surface. For
the case of fluid flow in z-direction around a stationary sphere, the z-component of this
interaction force is given as

Ffluid,z = Fn,z + Ft,z

=

∫ 2π

0

∫ π

0

(−p|r=R cos θ)R2 sin θdθdφ+

∫ 2π

0

∫ π

0

(τrθ|r=R sin θ)R2 sin θdθdφ,

(1.1)

where p is the fluid pressure, τ is the (Newtonian) fluid stress, and R is the particle
radius. Accordingly, Ffluid depends on both the pressure and velocity-gradient fields at
the particle surface. As an illustration of the former, the pressure field is given in figure
1b, which shows a single motionless particle suspended in mean (far-away) fluid flow (or,
equivalently, a sphere moving in the same direction as mean fluid flow). For this simple
case, the fluid-solid force on the particle is typically expressed as Ffluid = β(Ug − U),
where β is a drag coefficient that depends on the particle Reynolds number, Ug is the
mean gas velocity andU is the (mean) particle velocity. A slightly more complex situation
is depicted in Figure 1c, where the particle is now moving in a different direction than
the mean fluid flow, as indicated by the arrow, but still unaffected by neighbor particle
effects. The presence of such particle motion leads to a change in the pressure field (and
velocity-gradient field, not shown) at the particle surface, thereby causing a change in
Ffluid (Eq. (1.1)). An even more complex scenario is shown in figure 1d, where the presence
of surrounding, moving particles causes a continual change in the pressure (and velocity)
field around the particle of interest, resulting in a dynamic gas-solid interaction force.
Accordingly, the fluid-solid force experienced by a single particle can be decomposed into
the contributions arising from mean slip velocity between the solid and the gas-phase
(figure 1b), instantaneous particle velocity fluctuations with respect to mean velocity of
the solid–phase (figure 1c) and the contribution due to neighbor particle effects (figure
1d). It is worthwhile to note that this last system (figure 1d) best captures the interactions
occurring in the practical gas-solid systems mentioned above (fluidized beds, etc.).
Early efforts to incorporate the effects of Ffluid into the continuum description of gas-

solids flows took a relatively straightforward approach, while more recent studies have
continued to increase the level of rigor. In particular, the first gas–solid models described
the solid phase according to the mass, momentum, and granular energy balances devel-
oped for granular (no fluid) systems, with the only modification being the addition of a
(mean) drag force onto the momentum balance. This drag force was typically described
using empirical relations obtained via settling experiments (Richardson & Zaki 1954;
Wen & Yu 1966; Gidaspow 1994), in which the force is a function of the relative mean
velocity between the two phases and the solids volume fraction ϕ [i.e., Ffluid = β(Ug−U),
where β is a function of Ug −U and ϕ]. It is worthwhile to note that with this approach,
the granular energy balance does not contain any new terms arising from fluid-phase
effects, nor do any of the constitutive relations for the solid phase (stress, heat flux, or



Enskog kinetic theory for monodisperse gas-solid flows 3

Figure 1. (color online) Illustration of different contributions to the instantaneous gas-solid
force in a suspension with a mean fluid velocity Ug and a mean particle velocity U is shown
in top left panel (a). Pressure contours are shown for (b) a single particle far away from its
neighbors and moving with a velocity equal to the mean particle velocity (top right panel), (c)
a particle moving in a different direction than the mean fluid flow and far from its neighbors
(bottom left panel), and (d) a collection of particles moving in different directions (bottom right
panel). The pressure contours are obtained from particle–resolved direct numerical simulations
(PR–DNS) for a gas-solid suspension that corresponds to a solid volume fraction of 0.2 and
mean flow Reynolds number 0.01.

collisional cooling rate) incorporate fluid-phase effects. As an example, see the pioneering
gas-solid model proposed by Sinclair & Jackson (1989), who used the governing balances
of Anderson & Jackson (1967) and the granular theory of Lun & Savage (2003). A more
exact approach has since been adopted, in which fluid-phase effects are incorporated at
the starting point of the derivation for the solid-phase balances and their constitutive
equations, namely the kinetic equation (e.g., Boltzmann or Enskog kinetic equation):

∂tf + v · ∇f +
∂

∂v
·
[(

Ffluid

m

)
f

]
+ g · ∂f

∂v
= J [f, f ], (1.2)

where f is the one–particle velocity distribution function, v is the instantaneous particle
velocity, m is the particle mass, g is the gravity vector, and J [f, f ] is the collisional
operator. It is important to note here that Ffluid(r,v, t) is a function of the instantaneous
particle velocity and can vary in both time and space. Strictly speaking, then, Ffluid is an
instantaneous force rather than a mean force - where a mean force is one which depends
on the hydrodynamic, or mean, fields. Although not strictly correct, the treatment of
Ffluid as a mean force is considerably easier since it can be taken outside the differential
in Eq. (1.2). Along these lines and following from the earlier discussion surrounding
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Figure 1, different approximations for Ffluid have been made, leading to differences in
the balance equations appearing in the literature.
Consider first the simplest case, where Ffluid is approximated as a mean force , namely

Ffluid = β(Ug − U), where β is a function of hydrodynamic (mean) variables (Figure
1a). For this treatment, a mean drag force will appear in the solid-phase momentum
balance, consistent with the treatment described in the previous paragraph (Sinclair &
Jackson 1989), but no terms appear in the granular energy equation. Next, consider an
approximation which accounts for the fluctuation in the particle velocity (Figure 1b) in
the following manner: Ffluid = β(Ug − v) and thus is a function of the instantaneous
particle velocity v, though β remains a function of the hydrodynamic (mean) fields
only. In this case, an additional sink term (which is proportional to β) arises in the
granular energy balance due to viscous drag (for example, see Koch (1990)). In a third
and improved approximation, fluctuations in both phases are considered in the fluid-force
relation (Figure 1c), namely Ffluid = β(vg−v), where vg is the instantaneous gas velocity
and with β again typically treated as a function of mean variables. This treatment leads
to an additional source term in the granular energy balance arising from fluid-dynamic
interactions (for example, see Gidaspow (1994)). However, this approximation leads to a
single point fluid-particle velocity covariance that Xu & Subramaniam (2006) have shown
to be inconsistent for finite particle size.
In addition to the aforementioned impact of the Ffluid treatment on the balance equa-

tions, the form of Ffluid will also impact the constitutive relations for the solid-phase
quantities (shear stress, heat flux, and collisional cooling rate), as these are also derived
from the kinetic equation (1.2). The incorporation of such effects into the constitutive
relations has received less attention in the literature. Several groups (Ma & Ahmadi
1988; Balzer et al. 1995; Lun & Savage 2003) have derived the constitutive relations us-
ing a description of Ffluid which depends on the instantaneous fluid (vg) and solid (v)
velocities. With regard to vg, it is worth noting that these works have included veloc-
ity fluctuations arising from fluid-phase turbulence. Other groups (Zaichik et al. 2009;
Simonin et al. 2006; Février et al. 2005) have also incorporated the effect of turbulent
gas–phase velocity fluctuations on the one-particle velocity distribution function in the
regime of dilute, sub–Kolmogorov size particles. The type of fluctuations depicted in
Figure 1c, on the other hand, do not require the presence of turbulent instabilities. More
specifically, for the system of Figure 1c, the presence of numerous particles moving in
different directions will lead to continually-changing fluid–dynamic interactions between
particles (i.e., fluctuations in the fluid velocity and pressure fields) even at low Reynolds
number. Finally, and perhaps more importantly, a common assumption in works that
incorporate gas- and/or solid-phase fluctuations is that the basic form of the mean fluid
force [Ffluid = β(Ug − U)] also holds for its instantaneous counterpart by simply re-
placing the mean hydrodynamic fields with instantaneous ones [e.g., Ffluid = β(vg −v)].
Recent findings by Tenneti et al. (2010b), however, indicate that such treatments are not
appropriate. Figure 2 shows a plot of the streamwise component of fluctuations in parti-
cle acceleration A′′ versus the streamwise component of fluctuations in particle velocity
V. The fluctuations in the particle acceleration and velocity are defined with respect to
their corresponding mean values. The particle acceleration fluctuations are normalized
by the standard deviation in the particle acceleration distribution σA, while the fluctu-
ations in the particle velocity are normalized by the standard deviation in the particle
velocity distribution σV . Square symbols are the particle acceleration fluctuations ob-
tained from particle–resolved direct numerical simulation (PR–DNS) of a freely evolving
gas–solid suspension. Triangles are the fluctuations in the particle acceleration predicted
by using a model for the fluid–particle force of the form Ffluid = β (Ug − v). It is clear
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Figure 2. (color online) Scatter plot of streamwise component of particle acceleration fluctu-
ations A′′ (normalized by the standard deviation in the particle acceleration distribution σA)
versus the streamwise component of particle velocity fluctuations V (normalized by the standard
deviation in the particle acceleration distribution σv). Square symbols (�) denote the fluctua-
tions in the particle acceleration obtained from PR–DNS of a freely evolving gas–solid suspension
corresponding to a solid volume fraction of 0.2, mean flow Reynolds number of 1.0 and solid to
fluid density ratio of 1000. Upper triangles (△) denote the fluctuations in the particle accelera-
tion predicted by using a model for the fluid–particle force of the form Ffluid = β (Ug − v).

that the joint statistics of the particle acceleration and particle velocity that are cru-
cial for the accurate prediction of the evolution of granular temperature are not well
captured by this simplified class of instantaneous models for Ffluid. Although the model
Ffluid = β (Ug − v) results in a sink of granular temperature, it does not account for
the source in granular temperature that is responsible for points in quadrants I and III
of the fluctuating particle acceleration–velocity scatter plot (see Tenneti et al. (2010a)
for details). Moreover, the scatter observed in the particle acceleration fluctuations sug-
gests a stochastic contribution to the fluid–particle force that arises due to the effect of
the neighbor particles. For the limiting case of Stokes flow, Koch and co-workers (Koch
1990; Koch & Sangani 1999) were able to correctly describe the acceleration–velocity cor-
relation via analytical means (Koch 1990) and through the use of multipole expansions
(Koch & Sangani 1999). Extensions of analytical approaches beyond the Stokes limit
are difficult since the governing Navier-Stokes equations become nonlinear (Koch & Hill
2001). A further assumption of their analysis was that the influence of gas-phase effects
on constitutive relations for the solid phase are negligible at sufficiently large Stokes
number; such effects appeared in the balance equations only.
A long-term objective of this effort, then, is to develop a framework in which (i) an

accurate instantaneous model for Ffluid is developed over a wide range of conditions,
and (ii) the resulting Ffluid model is used to derive solid-phase balance equations and
constitutive relations which fully incorporate gas-phase effects. With regard to (i), the
instantaneous gas-solid force is modeled using a Langevin equation because the particle
velocity autocorrelation decays exponentially for a range of mean flow Reynolds numbers
(see Fig. 3). With regard to (ii), the Langevin model for Ffluid is then used in the kinetic
equation (1.2) to derive the balance equations and constitutive relations. As a first step
in this direction, this two-part process is carried out here for low Reynolds numbers. It
is important to note that the methodology itself is not restricted to this limit; instead,
the focus here is to demonstrate proof-of-concept by (i) comparing the Langevin model
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for Ffluid with previous results for the Stokes limit (Koch 1990; Koch & Sangani 1999),
and (ii) use this model to assess the influence of gas-phase effects on the constitutive
relations, which were neglected in the analytical treatment. For future extensions to
higher Reynolds numbers, the coefficients in the Langevin model can be obtained from
PR–DNS as described by Tenneti et al. (2010a) (see also Tenneti et al. (2011)).

2. Fluid–solid force (Ffluid) model

As mentioned above, to develop a closed kinetic equation for the one-particle velocity
distribution function f(v) (Eq. (1.2)), a description of the instantaneous particle force
Ffluid is needed. As the name implies, this instantaneous force is a function of the in-
stantaneous velocities of both the gas and solid phases (vg and v, respectively), rather
than solely the corresponding mean velocities (Ug and U). However, consideration of vg

and v for finite particle size would require consideration of two–point statistics (Sun-
daram & Collins 1999; Xu & Subramaniam 2006). Note that fluctuations in the particle
velocity may arise from particle interactions (collisional) and/or gas-solid interactions.
Although in the special case of Stokes flow the fluid–dynamic interaction arising from
neighbor particles can be treated analytically (Koch 1990) for the general case of finite
fluid inertia, this is not feasible.
Therefore, a generalized Langevin model is proposed for the instantaneous impulse as

follows

mdv = Ffluiddt = −β (U−Ug) dt− γ ·Vdt+mB · dW, (2.1)

where V = v − U is the particle fluctuation (or peculiar) velocity, the vector dW is a
Wiener process increment (stochastic term), and the scalar β and the tensors γ and B
are the model coefficients. The first term on the right-hand-side represents the portion
of the drag force arising from the mean motion of particle and solid phase; the second
term is traced to fluctuations in the particle velocity; the third term is a stochastic model
for the change in particle momentum due to shear stress and pressure contributions at
the particle surface that arise from the fluid velocity and pressure disturbances caused
by neighbor particles. This is one way to extend the analysis of Koch (1990) for point
particles in Stokes flow regime to gas-solid flows with finite fluid inertia and finite particle
size. Regarding this third term, note that the instantaneous velocity for the gas phase can
be determined rigorously by considering the distribution function for the fluid velocity
(in addition to that of the particle velocity, Eq. (1.2)), though such an approach would
involve two-point distributions (Sundaram & Collins 1999) which is outside of the current
scope and thus a stochastic model is adopted here. In the following section we outline
the assumptions made in this work and justify their validity for the range of physical
parameters considered here.

3. Assumptions and their range of validity

The assumptions that are used in this work are relevant to the range of dimension-
less physical parameters encountered in a circulating fluidized bed (CFB). The relevant
independent set of dimensionless parameters are the solid volume fraction ϕ, the mean
flow Reynolds number Rem, the Reynolds number associated with the particle velocity
fluctuations ReT, and the ratio of the densities of the solid and the gas ρs/ρg. The mean
flow Reynolds number is defined as

Rem =
(1− ϕ)ρgσ|∆U|

µg
, (3.1)
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where, ∆U = U − Ug, σ is the particle diameter and ρg, µg are the mass density and
dynamic viscosity of the gas, respectively. The Reynolds number associated with the
particle velocity fluctuations is defined as

ReT =
ρgσ

µg

√
T

m
, (3.2)

where T is the granular temperature (cf. Eq. (4.10)) and m is the mass of the particle.
It is worth noting that some previous works (Koch 1990) on gas-solid suspensions in the
Stokes flow regime cast their results in terms of a Stokes number St (rather than Rem
and/or ReT). Here, for a three-dimensional system, we define the two relevant Stokes
numbers as

Stm =
m|∆U|
6πµgR2

, (3.3)

StT =
m
√
T/m

6πµgR2
, (3.4)

where R = σ/2 is the radius of a particle. Thus, the relationship between the Stokes
numbers and corresponding Reynolds numbers are

Stm =
1

9(1− ϕ)

ρs
ρg

Rem, (3.5)

StT =
1

9

ρs
ρg

ReT, (3.6)

where ρs = 6m/(πσ3) is the mass density of a particle. Whereas Rem and ReT are
measures of the fluid inertia (related to mean and fluctuating components of particle
motion, respectively) to viscous effects, the Stokes numbers Stm and StT are measures
of particle inertia to fluid viscous effects. The results presented in this paper (cf. §8) will
give ranges for each of these parameters for purposes of greater physical understanding
(even though they are not independent quantities).
The most important assumption in this work is that the instantaneous impulse can be

modeled using a Langevin equation (cf. Eq. (2.1)). The assumption that is implicit in
using this model is that the change in particle momentum due to neighbor particle effects
occurs on time scales much smaller than those associated with drag due to the mean slip
and particle velocity fluctuations. The validity of the Langevin model can be justified by
examining the decay of particle velocity autocorrelation function that is computed from
PR–DNS (that accounts for all fluid–dynamic interactions exactly). The particle velocity
autocorrelation function ρ (s) is defined as

ρ (s) =
⟨Vi (t0)Vi (t0 + s)⟩
⟨Vk (t0)Vk (t0)⟩

, (3.7)

where V denotes fluctuation in the particle velocity (or peculiar velocity) around the
mean velocity computed from PR–DNS and s is the separation in time. The angular
brackets ⟨· · · ⟩ in Eq. (3.7) denote an average over all particle configurations and velocities.
The integral time scale for the autocorrelation function is

TL =

∫ ∞

0

ρ (s) ds. (3.8)

If a stochastic process obeys the Langevin equation with an integral time scale of TL,
then its autocorrelation function should decay exponentially (Gardiner 1985), i.e., ρ (s) =
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(a) (b)

Figure 3. (color online) Decay of the particle velocity autocorrelation function. Figure 3(a)
compares the particle velocity autocorrelation function computed from PR–DNS (symbols) of
freely evolving suspension (volume fraction of 0.2, mean flow Reynolds number 1.0 and solid to
fluid density ratio of 1000) with the exponential decay predicted by the Langevin model (solid
line). Figure 3(b) is the same as Fig. 3(a) for a suspension with a solid volume fraction of 0.35.

e−s/TL . The velocity autocorrelation function computed from PR–DNS of freely evolving
gas–solid suspensions and the exponential decay predicted by the Langevin model are
compared in Fig. 3. The good agreement of the decay of the velocity autocorrelation
function obtained from PR–DNS with the exponential decay indicates that the use of
Langevin model is appropriate.
Although the quantities γ and B in Eq. (2.1) are given as tensors in the most general

case, as a first approximation, we take γij = γδij and Bij = Bδij to obtain a distribution
function which is isotropic in velocity space for the homogeneous flow and additionally
provide analytical expressions for all the transport coefficients and the collisional cooling
rate. We verify this assumption of isotropy by computing the state of anisotropy of the
particle–phase Reynolds stress (RS), defined as the average ⟨ViVj⟩, from PR–DNS. The
invariants of the deviatoric part of the normalized particle–phase RS, ξRS and ηRS, are
plotted on the Lumley plane (Lumley & Newman 1977) to characterize the state of
anisotropy. In the three-dimensional case, the deviatoric part of the normalized particle–
phase RS is defined as

bij =
⟨ViVj⟩
⟨VkVk⟩

− 1

3
δij , (3.9)

and the invariants are defined following Lumley & Newman (1977) as 6η2RS = bijbij and
6ξ3RS = bijbjkbki. The state of anisotropy of the particle–phase RS is studied by plotting
ηRS versus ξRS. The origin of this plane denotes an isotropic state, while the point
(1/3, 1/3) denotes a one–component axisymmetric state of the particle–phase RS. The
evolution of the invariants obtained from PR–DNS for ϕ = 0.35, ρs/ρg = 1000 and two
different Reynolds numbers (Rem = 1.0 and Rem = 0.5) is plotted in Fig. 4. The results
show that the state of anisotropy in the solid–phase is small for the range of physical
parameters considered in this work and hence the assumption of isotropic coefficients
is justified. The results also indicate that the effect of collisions rapidly isotropizes the
anisotropy introduced by fluid–dynamic interactions in the particle–phase RS. It is also
worthwhile to note that this assumption is consistent for a homogeneous system, since
the homogeneous (zeroth order) solution to the kinetic equation (1.2) will be isotropic
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Figure 4. Evolution of the invariants of the deviatoric part of the normalized particle–phase RS
in time. Blue symbols denote earlier time and red symbols denote later time. These results are
obtained from PR–DNS of freely evolving suspensions corresponding to a solid volume fraction
of 0.35 and solid to fluid density ratio of 1000 for the following mean flow Reynolds numbers: (a)
1.0 and (b) 0.5.

as no spatial gradients exist for a homogenous system. The description for general forms
for γ and B is an interesting problem to be addressed in the future.
The final assumption made in this work is related to the Chapman–Enskog expansion

(see §5 for further details), which is essentially a perturbation method about a small
Knudsen number. The Knudsen number Kn is defined as the ratio of the mean free path
of the particles to a length scale that characterizes the distance over which gradients in
the hydrodynamic variables occur. The mean free path is a function of the solid volume
fraction only, while the length scale associated with the gradients depends on the specific
gas–solid flow system. Since the results in this work are applicable to any geometry and
flow situation, assessment of this low–Kn assumption is not possible a priori.

4. Kinetic equation for gas-solid flows

We consider a suspension of solid particles of mass m and diameter σ immersed in a
gas. Under rapid flow conditions, particles are usually modeled as a gas of inelastic hard
spheres. In the simplest model, the spheres are completely smooth so that the inelasticity
of collisions is characterized by a (constant) coefficient of normal restitution 0 < α 6 1.
As described in §2, the influence of gas phase on particles is accomplished by the inclusion
of three new quantities (see Eq. (2.1)) in the instantaneous particle force: β, γ and B.
Under the above conditions and in the presence of the gravitational force mg, the

Enskog kinetic equation (Brey et al. 1997; Brilliantov & Pöschel 2004) for the one-particle
velocity distribution function f(r,v, t) of grains reads

∂tf + v · ∇f − β

m
∆U · ∂f

∂V
− γ

m

∂

∂V
·Vf − 1

2
ξ

∂2

∂V 2
f + g · ∂f

∂V
= JE [r,v|f, f ] , (4.1)

where

JE [r,v1|f, f ] = σd−1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

×
[
α−2χ(r, r− σ)f(r,v′

1; t)f(r− σ,v′
2; t)

−χ(r, r+ σ)f(r,v1; t)f(r+ σ,v2; t)] (4.2)
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is the Enskog collision operator. Here, d is the dimensionality of the system (d = 2 for
disks and d = 3 for spheres), σ = σσ̂, σ̂ being a unit vector pointing in the direction
from the center of particle 1 to the center of particle 2, σ is the particle diameter, Θ is
the Heaviside step function, g12 = v1 − v2 and χ[r, r + σ|{n(t)] is the equilibrium pair
correlation function at contact as a functional of the nonequilibrium density field n(r, t)
defined by

n(r, t) =

∫
dvf(r,v, t). (4.3)

For the case of spheres (d = 3) considered in this work, the Carnahan-Starling approxi-
mation (Carnahan & Starling 1969) for χ is given by

χ(ϕ) =
1− 1

2ϕ

(1− ϕ)3
. (4.4)

The primes on the velocities in Eq. (4.2) denote the initial values {v′
1,v

′
2} that lead to

{v1,v2} following a binary collision:

v′
1 = v1 −

1

2

(
1 + α−1

)
(σ̂ · g12)σ̂, v′

2 = v2 +
1

2

(
1 + α−1

)
(σ̂ · g12)σ̂. (4.5)

Moreover, in Eq. (4.1), B2 ≡ ξ and

U(r, t) =
1

n

∫
dvvf(r,v, t) (4.6)

is the mean particle velocity. As said before, the scalar coefficients β, γ, and ξ appearing
in Eq. (4.1) are associated with the instantaneous gas-solid force. Recall that β appears
in the mean portion of this drag force (first term on right-hand-side of Eq. (2.1)), and the
terms γ and ξ are associated with the fluctuating solid velocity and particle momentum
change caused by neighbor particles, respectively (Abbas et al. 2009).
The macroscopic balance equations for the system are obtained when one multiplies

the Enskog equation (4.1) by {1,mV,mV 2} and integrates over velocity. After some
lengthy algebra one gets

Dtn+ n∇ ·U = 0 , (4.7)

DtU+ (mn)−1∇ · P = − β

m
∆U+ g , (4.8)

DtT +
2

dn
(∇ · q+ P : ∇U) = −2T

m
γ +mξ − ζ T . (4.9)

In the above equations, Dt = ∂t +U · ∇ is the material derivative and

T (r, t) =
1

dn

∫
dvmV 2f(r,v, t) (4.10)

is the granular temperature. This quantity is a measure of the mean square fluctuating
particle velocity. The collisional cooling rate ζ is proportional to 1 − α2 and is due to
dissipative collisions. The pressure tensor P(r, t) and the heat flux q(r, t) have both kinetic
and collisional transfer contributions, i.e., P = Pk + Pc and q = qk + qc. The kinetic,
or streaming, contributions stem from the particles carrying momentum and granular
energy with them as they travel from one part of the domain to another, while the
collisional contributions arise from a transfer of momentum and granular energy between
particles as they collide. The kinetic contributions Pk and qk are given, respectively, by

Pk(r, t) =

∫
dvmVVf(r,v, t), qk(r, t) =

∫
dv

m

2
V 2Vf(r,v, t), (4.11)
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and the collisional transfer contributions are (Brey et al. 1997; Garzó & Dufty 1999)

Pc(r, t) =
1 + α

4
mσd

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

2σ̂σ̂

×
∫ 1

0

dx f (2) [r− xσ, r+ (1− x)σ,v1,v2; t] , (4.12)

qc(r, t) =
1 + α

4
mσd

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

2(G12 · σ̂)σ̂

×
∫ 1

0

dx f (2) [r− xσ, r+ (1− x)σ,v1,v2; t] . (4.13)

Here, G12 = 1
2 (V1 +V2) is the velocity of center of mass and

f (2)(r1, r2,v1,v2, t) ≡ χ(r1, r2|n(t))f(r1,v1, t)f(r2,v2, t). (4.14)

Finally, the collisional cooling rate is given by

ζ(r, t) =

(
1− α2

)
4dnT

mσd−1

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

3f (2)(r, r+ σ,v1,v2; t).

(4.15)
For a statistically homogeneous suspension undergoing elastic collisions (α = 1), ζ = 0

and the granular energy equation (4.9) becomes

dT

dt
= −2T

m
γ +mξ. (4.16)

Comparing this equation with the granular energy equation given for spheres (d = 3) by
Koch & Sangani (1999)

3

2

dT

dt
= −Γvis + S, (4.17)

one sees that there is a one-to-one correspondence between the coefficients γ and ξ and
the dissipation Γvis and source S in Koch & Sangani (1999), respectively. Therefore,
for Stokes flow we can use the existing analytical closure from Koch (1990) for solid
volume fraction ϕ 6 0.1. For ϕ > 0.1, Koch & Sangani (1999) used simulations based
on multipole expansions to propose source and dissipation terms as a function of solid
volume fraction. It must be noted that the correlation used for the drag coefficient does
not include the effect of forces like buoyancy, shear lift, spin lift, etc. Accordingly, these
coefficients depend on constant parameters (particle mass and diameter, gas viscosity) as
well as the hydrodynamic (mean) variables (solids concentration, gas and solid velocities,
and granular temperature); explicit dependencies are given in §8.
The macroscopic balance equations (4.7)–(4.9) are not entirely expressed in terms

of the hydrodynamic fields due to the presence of the collisional cooling rate ζ, the
pressure tensor P and the heat flux q which are given as functionals of the distribution
function f(r,v, t). However, if this distribution function can be expressed as functionals
of the hydrodynamic fields, then the collisional cooling rate and the fluxes will also
become functional of the hydrodynamic fields through Eqs. (4.11)–(4.13) and (4.15). Such
expressions are called constitutive relations and are the link between the exact balance
equations and a closed set of equations for the fields n, U and T . This hydrodynamic
description can be derived by looking for a normal solution to the Enskog equation by
means of the Chapman-Enskog (CE) method (Chapman & Cowling 1970) adapted to
inelastic collisions, as detailed in §5.



12 V. Garzó, S. Tenneti, S. Subramaniam, and C. M. Hrenya

It is worthwhile to note that the macroscopic equations given in Eqs. (4.7)–(4.9) differ
from their granular (no gas phase) counterparts (Garzó & Dufty 1999) via the appearance
of three additional terms arising from the presence of the gas phase, and more specifically
the instantaneous drag force (Eq. (2.1)). The first of these contains β and appears in the
momentum balance (Eq. (4.8)); this term represents the mean drag force between the
two phases. The other two terms stemming from the gas phase appear in the granular
energy balance (Eq. (4.9)); the term containing γ represents the sink due to viscous drag
while the term containing ξ represents the source arising from the change in particle
momentum due to neighbor particles. Similar effects of the gas phase on the constitutive
expressions for the pressure tensor P, the heat flux q and the collisional cooling rate ζ
will be presented in §6 and §7.

5. Chapman-Enskog solution

The CE method assumes the existence of a normal solution such that all space and
time dependence of the distribution function occurs through the hydrodynamic fields

f(r,v, t) = f [v|n(r, t), T (r, t),U(r, t)] . (5.1)

The notation on the right hand side indicates a functional dependence on the density,
temperature and flow velocity. For small spatial variations (i.e., low Knudsen numbers),
this functional dependence can be made local in space through an expansion in gradients
of the hydrodynamic fields. To generate it, f is written as a series expansion in a formal
parameter ϵ measuring the nonuniformity of the system,

f = f (0) + ϵ f (1) + ϵ2 f (2) + · · · , (5.2)

where each factor of ϵ means an implicit gradient of a hydrodynamic field. The unifor-
mity parameter ϵ is related to the Knudsen number Kn defined as the ratio of the mean
free path of the particles to a length scale that characterizes the distance over which
gradients in the hydrodynamic variables occur. Note that while the strength of the gra-
dients can be controlled by the initial or the boundary conditions in the case of elastic
collisions, the problem is more complicated for granular fluids since in some cases (e.g.,
steady states such as the simple shear flow (Goldhirsch 2003; Santos et al. 2004)) there
is an intrinsic relation between dissipation and some hydrodynamic gradient. In these
situations the Navier-Stokes approximation (first order in the expansion) only applies
for nearly elastic systems (Goldhirsch 2003). Here, however we consider situations where
the spatial gradients are sufficiently small (low Knudsen number) (Hrenya et al. 2008).
Moreover, in ordering the different level of approximations in the kinetic equation, one
has to characterize the magnitude of the external forces relative to the gradients as well.
The scaling of the forces depends on the conditions of interest. Here, we assume that the
external forces (gravity and drag forces) do not induce any flux in the system and only
modify the form of the transport coefficients. As a consequence, g, β, γ and ξ are taken
to be of zeroth order in gradients.
According to the expansion (5.2) for the distribution function, the Enskog collision

operator and time derivative are also given in the representations

JE = J
(0)
E + ϵJ

(1)
E + · · · , ∂t = ∂

(0)
t + ϵ∂

(1)
t + · · · . (5.3)

The coefficients in the time derivative expansion are identified by a representation of
the fluxes and the collisional cooling rate in the macroscopic balance equations as a
similar series through their definitions as functionals of f . This is the usual CE method
(Chapman & Cowling 1970; Garzó & Santos 2003) for solving kinetic equations. The
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main difference here with respect to previous works (Garzó & Dufty 1999; Brey et al.
1998) is that the reference state f (0) has a time dependence associated with the fluid
phase terms γ and ξ apart from the one associated with the collisional cooling rate that is

not proportional to the gradients. As a consequence, terms from the time derivative ∂
(0)
t

are not zero as expected. In addition, given that collisional dissipation and gradients are
uncoupled, the different approximations f (k) are nonlinear functions of α, regardless of
the applicability of the corresponding hydrodynamic equations truncated at that order.

To summarize, the Chapman-Enskog expansion is carried out up to first order (Navier-
Stokes order), resulting in constitutive equations which are proportional to the first order
spatial derivatives in the hydrodynamic fields. This first order expansion is strictly valid
for small Knudsen number Kn. Because the length scale for variations of the hydrody-
namic fields depends on the local flow field, the assumption of small Kn (also known as
the “small gradient” assumption) may be valid for some flow geometries and invalid for
others. Since our results are presented below in a general form (prior to the application
for any specific flow geometry), assessment of this low Knudsen assumption is not pos-
sible a priori. Nonetheless, it is worth noting that for ordinary fluids, the Navier-Stokes
hydrodynamic equations work well beyond their range of validity expected from a strict
application of their assumptions. The same has also been found to be true for granular
fluids; namely, the range of applicability of the Navier-Stokes description, based on com-
parisons with experimental data, is often much wider than expected (Rericha et al. 2002;
Wildman et al. 2008).

6. Local homogeneous state. Zeroth-order solution

To zeroth-order in ϵ, the Enskog equation (4.1) becomes

∂
(0)
t f (0)− β

m
∆U · ∂f

(0)

∂V
− γ

m

∂

∂V
·Vf (0)− 1

2
ξ

∂2

∂V 2
f (0)+g · ∂f

(0)

∂V
= J

(0)
E [f (0), f (0)], (6.1)

where

J
(0)
E

[
f (0), f (0)

]
≡ χσd−1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

×
[
α−2f (0)(v′1)f

(0)(v′2)− f (0)(v1)f
(0)(v2)

]
. (6.2)

Here, χ ≡ χ[r, r + σ|n(t)]|n=n(t) is the pair functional evaluated with all density fields
at the local point r. The collision operator (6.2) can be recognized as the Boltzmann
operator for inelastic collisions multiplied by the factor χ. Note that in Eq. (6.1) all
spatial gradients are neglected at this lowest order. Moreover, as discussed before, upon
writing Eq. (6.1) it has been assumed that the gravity field and the external parameters
accounting for the effects of gas-phase are taken to be of zeroth-order in spatial gradients.
The macroscopic balance equations at this order are

∂
(0)
t n = 0, ∂

(0)
t U = − β

m
∆U+ g, (6.3)

∂
(0)
t T = −2T

m
γ +mξ − ζ(0)T, (6.4)
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where ζ(0) is determined by Eq. (4.15) to zeroth order, namely, by using the distribution
f (0). Since f (0) qualifies as a normal solution, then

∂
(0)
t f (0) =

∂f (0)

∂n
∂
(0)
t n+

∂f (0)

∂Ui
∂
(0)
t Ui +

∂f (0)

∂T
∂
(0)
t T

=

(
β

m
∆U− g

)
· ∂f

(0)

∂V
−
(
2γ

m
− m

T
ξ + ζ(0)

)
T
∂f (0)

∂T
, (6.5)

where in the last step we have taken into account that f (0) depends on U through its
dependence on V. Substitution of Eq. (6.5) into Eq. (6.1) yields

−
(

2

m
γ − m

T
ξ + ζ(0)

)
T
∂f (0)

∂T
− γ

m

∂

∂V
·Vf (0) − 1

2
ξ

∂2

∂V 2
f (0) = J

(0)
E [f (0), f (0)]. (6.6)

Since the solution to Eq. (6.6) is isotropic in V, dimensional analysis requires that f (0)

has the scaled form

f (0)(V) = nv−d
0 Ψ

(
V

v0

)
, (6.7)

where Ψ is an unknown function of V/v0, where v0 =
√
2T/m is the thermal speed.

Therefore, according to Eq. (6.7), the temperature dependence of f (0) can occur only
through v0 and the dimensionless velocity V/v0 so that

T
∂f (0)

∂T
= −1

2

∂

∂V
·Vf (0). (6.8)

Taking into account Eqs. (6.7) and (6.8), the Enskog equation (6.6) for the zeroth-order
distribution function becomes finally

1

2

(
ζ(0) − mξ

T

)
∂

∂V
·Vf (0) − 1

2
ξ

∂2

∂V 2
f (0) = J

(0)
E [f (0), f (0)]. (6.9)

Note that Eq. (6.9) is independent of the parameters β and γ. In fact, when ξ = 0,
one recovers the kinetic equation defining the homogeneous cooling state (HCS), whose
solution has been previously worked out by several authors (van Noije & Ernst 1998;
Montanero & Santos 2000; Pöschel & Brilliantov 2006; Santos & Montanero 2009).
In terms of the (scaled) distribution Ψ, Eq. (6.9) can be rewritten as

1

2
(ζ∗ − ξ∗)

∂

∂c
· cΨ− 1

4
ξ∗

∂2

∂c2
Ψ = J∗

E[Ψ,Ψ], (6.10)

where c = V/v0,

ζ∗ =
ℓζ(0)

v0
, ξ∗ =

mξℓ

Tv0
, J∗

E =
ℓ

n
vd−1
0 J

(0)
E , (6.11)

and ℓ = 1/(nσd−1) is the (local) mean free path for hard spheres. In the case of elastic
particles (α = 1), ζ∗ = 0 and the solution of Eq. (6.10) is a Maxwellian distribution Koch
(1990):

Ψ(c) = π−d/2e−c2 . (6.12)

However, if the particles collide inelastically (α < 1), the exact form of Ψ(c) is not
known, even in the dry granular case (ξ∗ = 0). However, a very good approximation
can be obtained from an expansion in Sonine polynomials (van Noije & Ernst 1998). In
particular, since the distribution function is isotropic the zeroth order pressure tensor
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and heat flux are found from Eqs. (4.11)–(4.13) to be

P
(0)
ij = p δij , q(0) = 0, (6.13)

where the hydrostatic pressure p is

p = nT
[
1 + 2d−2(1 + α)χϕ

]
, (6.14)

where

ϕ =
πd/2

2d−1dΓ
(
d
2

)nσd (6.15)

is the solid volume fraction. Note that the presence of the gas phase does not enter the
constitutive relation for pressure.
The deviation of Ψ(c) from its Maxwellian form is measured through the kurtosis or

fourth-cumulant (van Noije & Ernst 1998)

a2 =
4

d(d+ 2)
⟨c4⟩ − 1, (6.16)

where

⟨ck⟩ =
∫

dc ckΨ(c). (6.17)

In order to determine a2, we multiply both sides of Eq. (6.10) by c4 and integrate over
velocity. The result is

d(d+ 2)

2
[ζ∗(1 + a2)− ξ∗a2] = µ4, (6.18)

where

µk = −
∫

dc ck J∗
E[Ψ,Ψ]. (6.19)

Upon writing Eq. (6.18) use has been made of the partial result∫
dc cp

∂2Ψ

∂c2
= p(p+ d− 2)⟨cp−2⟩ (6.20)

with p = 4 and ⟨c2⟩ = d
2 .

Equation (6.18) is still exact. To get an approximate expression for the quantities
ζ∗ = (2/d)µ2 and µ4, we consider the first Sonine approximation for Ψ, then we insert
this expansion into Eq. (6.19) and neglects terms nonlinear in a2. The results are

µ2 → µ
(0)
2 + µ

(1)
2 a2, µ4 → µ

(0)
4 + µ

(1)
4 a2, (6.21)

where (van Noije & Ernst 1998)

µ
(0)
2 =

π(d−1)/2

√
2Γ

(
d
2

)χ(1− α2), µ
(1)
2 =

3

16
µ
(0)
2 , (6.22)

µ
(0)
4 =

(
d+

3

2
+ α2

)
µ
(0)
2 , (6.23)

µ
(1)
4 =

[
3

32
(10d+ 39 + 10α2) +

d− 1

1− α

]
µ
(0)
2 , (6.24)

and in Eq. (6.22), Γ refers to Gamma function. With the use of the approximations (6.21)
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and retaining only linear terms in a2, the solution to Eq. (6.18) is

a2 = − µ
(0)
4 − (d+ 2)µ

(0)
2

µ
(1)
4 − (d+ 2)

(
19
16µ

(0)
2 − d

2ξ
∗
) . (6.25)

In terms of a2, the zeroth-order expression ζ(0) for the collisional cooling rate can be
written as

ζ(0) =
2

d

π(d−1)/2

Γ
(
d
2

) (1− α2)χ

(
1 +

3

16
a2

)
nσd−1

√
T

m
. (6.26)

Note that the effects of the interstitial gas on the zeroth-order collisional cooling rate
ζ(0) is only through the dependence of the kurtosis a2 on ξ∗ (Eq. (6.25)).

7. First order solution. Navier-Stokes transport coefficients

The analysis to first order in the expansion parameter is similar to the one worked out
by Garzó & Dufty (1999) and Lutsko (2005) in the dry granular case. We only display
here the final expressions for the fluxes and the collisional cooling rate with some details
being given in the Appendices A and B. The form of the first-order velocity distribution
function f (1) is given by

f (1) = A (V) · ∇ lnT +B (V) · ∇ lnn

+Cij (V)
1

2

(
∂iUj + ∂jUi −

2

d
δij∇ ·U

)
+D (V)∇ ·U, (7.1)

where the quantities A (V), B (V), Cij (V) and D (V) are the solutions of the linear
integral equations (A 18)–(A 21), respectively. With the distribution function f (1) deter-
mined by Eq. (7.1), the pressure tensor, the heat flux and the collisional cooling rate
can be calculated to first order in the spatial gradients. It is worthwhile to note that the
spatial dependence of ξ with respect to |∆U| (see below Eq. (8.2)) has been neglected in
these calculations (unlike the spatial dependence with respect to the density n and the
granular temperature T ). This assumption traces to the applications which motivate this
work. Namely, in circulating fluidized beds (CFBs), the solids concentration and gran-
ular temperature vary considerably in space, whereas the relative velocity ∆U remains
relatively constant (∼ terminal velocity of single particle). Accordingly, ∆U is treated
as a constant here, which also has the benefit of greatly simplifying the calculations. It
is also important to remark that our results have been derived systematically from the
inelastic Enskog equation by the CE procedure and consequently, there is no a priori
any limitation on the degree of inelasticity. Thus, the results apply to a wide range of
values of the coefficient of restitution. Moreover, since the transport coefficients and the
collisional cooling rate are given in terms of the solutions of the coupled linear integral
equations (A 18)–(A 21), for practical purposes these integral equations have been solved
by truncated expansions in Sonine polynomials.

The forms of the collisional contributions to the momentum and heat fluxes are exactly
the same as the ones obtained in the absence of the gas phase (Garzó & Dufty 1999;
Lutsko 2005) except that a2 depends on ξ∗. Thus, we will focus here our attention in
the evaluation of the kinetic parts of the transport coefficients and the collisional cooling
rate. Some technical details of this calculation are provided in the Appendix B. Let us
consider each flux separately.
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7.1. Pressure tensor

To first order, the pressure tensor is given by

P
(1)
ij = −η

(
∂iUj + ∂jUi −

2

d
δij∇ ·U

)
− λδij∇ ·U, (7.2)

where η is the shear viscosity and λ is the bulk viscosity. While the shear viscosity has
kinetic and collisional contributions, the bulk viscosity has only a collisional contribution.
The shear viscosity is

η = ηk + ηc. (7.3)

The collisional contribution ηc to the shear viscosity η is given by (Garzó & Dufty 1999;
Lutsko 2005)

ηc =
2d−1

d+ 2
ϕχ(1 + α)ηk +

d

d+ 2
λ, (7.4)

and the bulk viscosity is

λ =
22d+1

π(d+ 2)
ϕ2χ(1 + α)

(
1− a2

16

)
η0. (7.5)

Here,

η0 =
d+ 2

8

Γ
(
d
2

)
π(d−1)/2

σ1−d
√
mT (7.6)

is the low density value of the shear viscosity in the elastic limit. The kinetic part ηk of
the shear viscosity is

ηk =
nT

νη − 1
2

(
ζ(0) − m

T ξ − 2
mγ

) [1− 2d−2

d+ 2
(1 + α)(1− 3α)ϕχ

]
, (7.7)

where the collision frequency νη is (Garzó et al. 2007c)

νη =
3ν0
4d

χ

(
1− α+

2

3
d

)
(1 + α)

(
1 +

7

16
a2

)
. (7.8)

Here, ν0 = nT/η0. The shear viscosity can be finally written as

η = ηk

[
1 +

2d−1

d+ 2
ϕχ(1 + α)

]
+

d

d+ 2
λ. (7.9)

Thus, in addition to the presence of a2 (which depends on ξ) in Eq. (7.5) for the bulk
viscosity, gas-phase effects appear explicitly on the kinetic part ηk of the shear viscosity
via the appearance of γ and ξ in Eq. (7.7) and implicitly via the appearance of νη, which
also depends on a2 (see Eq. (7.8)).

7.2. Heat Flux

The constitutive form for the heat flux in the Navier-Stokes approximation is

q(1) = −κ∇T − µ∇n, (7.10)

where κ is the thermal conductivity and µ is the Dufour coefficient, which is not present
in the granular case (no gas phase) when particles collide elastically (α = 1).
The thermal conductivity κ is given by

κ = κk + κc. (7.11)
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The collisional contribution κc to the thermal conductivity κ is (Garzó & Dufty 1999;
Lutsko 2005)

κc = 3
2d−2

d+ 2
ϕχ(1 + α)κk +

22d+1(d− 1)

(d+ 2)2π
ϕ2χ(1 + α)

(
1 +

7

16
a2

)
κ0, (7.12)

where

κ0 =
d(d+ 2)

2(d− 1)

η0
m

(7.13)

is the thermal conductivity coefficient of an elastic dilute gas. The expression of the
kinetic part κk is

κk =
d− 1

d
κ0ν0

(
νκ +

1

2

mξ

T
− 2ζ(0) − 2T

m
γT +mξT

)−1

×
{
1 + 2a2 + 3

2d−3

d+ 2
ϕχ(1 + α)2 [2α− 1 + a2(1 + α)]

}
, (7.14)

where

γT ≡ ∂γ

∂T
, ξT ≡ ∂ξ

∂T
, (7.15)

and the collision frequency νκ is given by (Garzó et al. 2007c)

νκ = ν0
1 + α

d
χ

[
d− 1

2
+

3

16
(d+ 8)(1− α) +

296 + 217d− 3(160 + 11d)α

256
a2

]
. (7.16)

The (combined) thermal conductivity κ can be finally written as

κ = κk

[
1 + 3

2d−2

d+ 2
ϕχ(1 + α)

]
+

22d+1(d− 1)

(d+ 2)2π
ϕ2χ(1 + α)

(
1 +

7

16
a2

)
κ0. (7.17)

The Dufour coefficient is given by

µ = µk + µc, (7.18)

where the expression for the collisional contribution µc is (Garzó & Dufty 1999; Lutsko
2005)

µc = 3
2d−2

d+ 2
ϕχ(1 + α)µk. (7.19)

The kinetic contribution µk is given by

µk =
κ0ν0T

n

[
νκ − 3

2

(
ζ(0) − mξ

T

)]−1 {
κk

κ0ν0

[
2n

m
γn − ρ

T
ξn + ζ(0) (1 + ϕ∂ϕ lnχ)

]
+
d− 1

d
a2 + 3

2d−2(d− 1)

d(d+ 2)
ϕχ(1 + α)

(
1 +

1

2
ϕ∂ϕ lnχ

)
×
[
α(α− 1) +

a2
6
(10 + 2d− 3α+ 3α2)

]}
, (7.20)

where

γn ≡ ∂γ

∂n
, ξn ≡ ∂ξ

∂n
. (7.21)

The (combined) Dufour coefficient µ can be written as

µ = µk

[
1 + 3

2d−2

d+ 2
ϕχ(1 + α)

]
. (7.22)
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In the granular case (no gas phase and so, β = γ = ξ = 0), the Dufour coefficient
vanishes for elastic collisions (α = 1). On the other hand, Eq. (7.22) shows that µ ̸= 0
when the gas phase is accounted for even for elastic collisions. In this case (α = 1), a2 = 0
and the Dufour coefficient µ is given by Eq. (7.22) with

µk =
κkT

n

(
νκ +

3

2

mξ

T

)−1 (
2n

m
γn − ρ

T
ξn

)
, (7.23)

where κk is given by Eq. (7.14) with α = 1, and a2 = ζ(0) = 0.
Again, similar to the pressure tensor, gas-phase effects appear implicitly in the ther-

mal conductivity and Dufour coefficients via the appearance of the cumulant a2 (which
depends on ξ) in Eqs. (7.14), (7.17), and (7.20). Furthermore, such effects are explicit
in the kinetic contributions to the thermal conductivity and the Dufour coefficient (see
Eqs. (7.14) and (7.20)) through the terms containing γ and ξ.

7.3. Collisional cooling rate

The collisional cooling rate ζ is given by

ζ = ζ(0) + ζU∇ ·U, (7.24)

where ζ(0) is defined in Eq. (6.26). At first order in gradients, the proportionality constant
ζU is a new transport coefficient for granular fluids. This coefficient is given by

ζU = ζ10 + ζ11, (7.25)

where

ζ10 = −3
2d−2

d
χϕ(1− α2), (7.26)

ζ11 =
27(d+ 2)2 2d−8

32d2
ϕχ2(1− α2)

(
1 + 3a2

128

) [
ω

2(d+2) − (1 + α)ν0
(
1
3 − α

)
a2

2

]
νγ − γ

m − 3mξ
2T + 3

2ζ
(0)

. (7.27)

In the above expression, the collision frequencies ω and νγ are given by (Garzó & Dufty
1999; Lutsko 2005)

ω = (1+α)ν0

{
(1− α2)(5α− 1)− a2

6

[
15α3 − 3α2 + 3(4d+ 15)α− (20d+ 1)

]}
, (7.28)

νγ = −1 + α

192
χν0

[
30α3 − 30α2 + (105 + 24d)α− 56d− 73

]
. (7.29)

The presence of the gas phase impacts ζ11 via the explicit appearance of γ and ξ (see
Eq. (7.27)) as well as an implicit dependency via the cumulant a2.

8. Results and Discussion

8.1. Drag model: Low mean flow Reynolds numbers

The expressions derived in §6 and §7 for the (reduced) transport coefficients and the
collisional cooling rate depend on the coefficient of restitution α, the solid volume fraction
ϕ along with the external parameters γ and ξ and their derivatives with respect to the
density n and the granular temperature T . Thus, to show the explicit forms of η, λ, κ, µ
and ζU , one has to provide relations for γ and ξ. As described in §4, these quantities are
derived from the Stokes flow closures for the source and dissipation of granular energy
given by Koch (1990) and Koch & Sangani (1999). Recall that attention here is limited
to low mean flow Reynolds numbers in order to compare with previous analytical results
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(Koch 1990; Koch & Sangani 1999) and to assess the impact of the gas phase on the
constitutive relations, the latter of which was neglected in the analytical treatment.
We consider here the physical case of hard spheres (d = 3). For the case of low mean

flow Reynolds numbers, the expressions of γ and ξ are given by

γ =
m

τ
Rdiss(ϕ), (8.1)

ξ =
1

6
√
π

σ|∆U|2

τ2
√

T
m

S∗(ϕ), (8.2)

where τ = m/(3πµgσ) is the characteristic time scale over which the velocity of a particle
of mass m and diameter σ relaxes due to viscous forces. Here, µg is the gas viscosity.
In the case of dilute suspensions (0 6 ϕ 6 0.1), the expressions for the functions

Rdiss(ϕ) and S∗(ϕ) are (Koch 1990)

Rdiss(ϕ) = 1 + 3

√
ϕ

2
, S∗(ϕ) = 1. (8.3)

For moderately dense suspensions (0.1 6 ϕ 6 0.4), the functions Rdiss(ϕ) and S∗(ϕ) can
be well approximated by (Sangani et al. 1996; Koch & Sangani 1999)

Rdiss(ϕ) = 1 + 3

√
ϕ

2
+

135

64
ϕ lnϕ

+11.26ϕ
(
1− 5.1ϕ+ 16.57ϕ2 − 21.77ϕ3

)
− ϕχ(ϕ) ln ϵm, (8.4)

S∗(ϕ) =
R2

drag

χ(ϕ)
(
1 + 3.5

√
ϕ+ 5.9ϕ

) , (8.5)

where the function Rdrag is given by

Rdrag(ϕ) =
1 + 3

√
ϕ
2 + 135

64 ϕ lnϕ+ 17.14ϕ

1 + 0.681ϕ− 8.48ϕ2 + 8.16ϕ3
. (8.6)

In Eq. (8.4), ϵmσ can be interpreted as a length scale characterizing the importance of
non-continuum effects on the lubrication force between two smooth particles at close
contact. Typical values of the factor ϵm are in the range 0.01–0.05. However, given that
this term only contributes to Rdiss(ϕ) through a weak logarithmic factor, its explicit
value does not play a significant role in the final results. Here, we take the typical value
ϵm = 0.01.
According to Eqs. (8.1) and (8.2), the derivatives of γ and ξ with respect to n and T

are given by

nγn = γϕ∂ϕ lnRdiss(ϕ), γT = 0, (8.7)

TξT = −1

2
ξ, nξn = ξϕ∂ϕ lnS

∗(ϕ). (8.8)

In particular, nξn = 0 for a dilute suspension since S∗(ϕ) = 1. To make a connection
with the ranges of dimensionless parameters which are of practical relevance for the
gas-solid flows, it is convenient to express the reduced parameters γ∗ ≡ (γℓ)/(mv0) and
ξ∗ ≡ (mξℓ)/(Tv0) in terms of the mean flow Reynolds number Rem and the Reynolds
number associated with particle velocity fluctuations ReT.
The expressions of γ∗ and ξ∗ as functions of Rem and ReT can be easily obtained when



Enskog kinetic theory for monodisperse gas-solid flows 21

0.0 0.2 0.4 0.6 0.8 1.0
-0.05

0.00

0.05

0.10

0.15

0.20
granular

Re
m
=0.5 (St

m
=93)

=0.1

s
/

g
=1500

Re
T
=2 (St

T
=330)a 2

Figure 5. (color online) Fourth cumulant a2 versus α for hard spheres with ϕ=0.1, ρs/ρg = 1500,
Rem = 0.5 (Stm = 93), and ReT = 2 (StT = 330). The dashed line corresponds to the results
obtained in the granular case (no gas phase).

one takes into account Eqs. (3.1), (3.2), (8.1), and (8.2). The result is

γ∗ =
3π√
2ϕ

ρg
ρs

Rdiss(ϕ)

ReT
, (8.9)

ξ∗ =
9

2

√
2π

(
ρg
ρs

)2
Re2m

ϕ(1− ϕ)2Re4T
S∗(ϕ). (8.10)

8.2. Impact of gas phase on the constitutive relations

To assess the influence of the gas phase on the constitutive relations derived in §5 and §6
for the continuum equations given by Eqs. (4.7)–(4.9), the zeroth and first-order contri-
bution to these relations (ζ(0), ζU , η, λ, κ, and µ) have been examined for spheres (d=3)
over a wide dimensionless parameter space: {ϕ, α, ρs/ρg,Rem,ReT}. Here, we consider a
range of dimensionless parameters relevant to operate in a CFB: ϕ = 0−0.5, α = 0.5−1,
ρs/ρg = 800− 2500, Rem = 0.1− 1 (Stokes flow), and ReT = 0.5− 5.
It is worthwhile to note that the results presented below are not specific to any one

flow system (e.g., simple shear flow), but instead are applicable generally. In other words,
all the transport coefficients are displayed as a function of the full set of dimensionless
parameters, which depend on both material properties (particle mass, radius, . . . ) and
hydrodynamic variables (granular temperature, mean relative velocity between gas and
solids, . . . ) alike. Finally, since a primary contribution of this paper is to assess the effect
of the gas phase on transport properties, the transport coefficients plotted below are non-
dimensionalized with respect to their “dry” values (those obtained when the interstitial
fluid is neglected).
Recall that the gas-phase effects appear in the collisional cooling rate and transport

coefficients explicitly via the appearance of γ and ξ and/or implicitly via the appearance
of the kurtosis a2, which depends on ξ via Eq. (6.25). Hence, it is worthwhile to first
consider the effect of the gas phase on a2, as is displayed in figure 5 for the representative
case of ϕ = 0.1, Rem = 0.5, ReT = 2, and ρs/ρg = 1500. It is observed that the gas phase
plays a negligible role on the kurtosis a2 since both curves (granular case and gas-solid
suspension) are practically indistinguishable. Accordingly, it follows that the quantities
that only have an implicit dependence on the gas phase through the appearance of a2
also display a negligible role of the gas phase. These quantities include the zeroth-order
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Figure 6. Plot of the ratio η/ηdry versus the volume fraction ϕ for a dilute (panel (a)) and a
moderately dense (panel (b)) suspension for ρs/ρg = 1000, Rem = 0.1, ReT = 0.5 (StT = 56)
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Figure 7. Plot of the ratio η/ηdry for ϕ = 0.1 and three different values of the coefficient of
restitution α: From the bottom to the top, α=0.5, 0.7 and 0.9. In the panel (a) η/ηdry is plotted
versus ρs/ρg for Rem = 0.1 and ReT = 0.5, in the panel (b) η/ηdry is plotted versus Rem for
ρs/ρg = 1000 and ReT = 0.5 (StT = 56) and in the panel (c) η/ηdry is plotted versus ReT for
ρs/ρg = 1000 and Rem = 0.1 (Stm = 12).

collisional cooling rate ζ(0) (Eq. (6.26)) and the bulk viscosity (Eq. (7.5)), which are
not shown for the sake of brevity. It is also worthwhile to note that although the first-
order contribution to the collisional cooling rate ζU (Eqs. (7.25)–(7.27)) and the thermal
conductivity κ (Eqs. (7.14) and (7.17)) also contain an explicit dependency on γ and ξ,



Enskog kinetic theory for monodisperse gas-solid flows 23

0.00 0.02 0.04 0.06 0.08 0.10
1.0

1.5

2.0

(a)

Re
m
=0.1

s
/

g
=1000

Re
T
=0.5 (St

T
=56)

/
dr

y

0.1 0.2 0.3 0.4 0.5
1.0

1.2

1.4

1.6

1.8

2.0

(b)

Re
m
=0.1

s
/

g
=1000

Re
T
=0.5 (St

T
=56)

/
dr

y

Figure 8. Plot of the ratio µ/µdry versus the volume fraction ϕ for a dilute (panel (a)) and a
moderately dense (panel (b)) suspension for ρs/ρg = 1000, Rem = 0.1, ReT = 0.5 (StT = 56)
and three different values of the coefficient of restitution α: From the bottom to the top, α=0.5,
0.7 and 0.9.

the gas phase shows a similarly negligible impact (< 0.1%) over the range of parameters
examined. Again, these plots are not shown for the sake of brevity.
Thus, of the six constitutive quantities derived, the two for which the gas phase does

exert a considerable influence are the shear viscosity η and the Dufour coefficient µ.
Henceforth, the subscript dry refers to the value of the corresponding quantity in the
absence of gas phase (i.e., when β = γ = ξ = 0). The shear viscosity is displayed in
figures 6 and 7. Here, the shear viscosity is shown as a function of the solid fraction ϕ
for both the dilute and dense expressions (figures 6a and 6b, respectively), the density
ratio ρs/ρg (figure 7a), the mean Reynolds number Rem (figure 7b), and the Reynolds
number based on particle velocity fluctuations ReT (figure 7c). For each figure, only the
quantity displayed along the abscissa is varied while all others are kept constant. Note
also from figure 6 that the dilute- and dense-phase expressions for η/ηdry are roughly
similar in value at the boundary of ϕ = 0.1 used between the two sets of expressions.
Regarding the dependency of shear viscosity on concentration (figures 6a and 6b), it

is observed that the dampening influence of the gas phase increases (η/ηdry decreases
further below unity) as the system becomes more dilute (ϕ decreases), with this effect
being stronger at stronger dissipation levels (lower α). The physical explanation for this
behavior traces to the increased mean free path of the particles in dilute systems, over
which the gas phase serves to buffer the kinetic transport of particles. From a mathe-
matical perspective, recall that the collisional contributions to the transport coefficients
were only modified by the presence of the gas phase via the appearance of a2, which is
negligibly changed by the inclusion of a gas phase (see figure 5). On the other hand, the
kinetic contribution to the shear viscosity, which dominates at more dilute conditions,
has an additional dependence on the gas phase via the explicit appearance of γ and ξ
(see Eq. (7.7)). It is also worthwhile to point out that the shear viscosity η → 0 in the
dilute limit, as previously reported by Tsao & Koch (1995) and Sangani et al. (1996).
The same is not true for the granular counterpart ηdry, which is well-known to take on
a finite value in the dilute limit. Again, this behavior can be traced to the buffering ef-
fect (viscous forces) of the interstitial gas which serves to continually reduce the random
component of particle motion in the dilute limit (gas-phase sink of granular temperature
much larger than gas-phase source).
Regarding the dependency of the shear viscosity on the other system parameters,

figure 7a demonstrates an increased influence of the gas phase on shear viscosity as ρs/ρg
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Figure 9. Plot of the ratio µ/µdry for ϕ = 0.2 and three different values of the coefficient of
restitution α: From the bottom to the top, α=0.5, 0.7 and 0.9. In the panel (a) µ/µdry is plotted
versus ρs/ρg for Rem = 0.1 and ReT = 0.5, in the panel (b) η/ηdry is plotted versus Rem for
ρs/ρg = 1000 and ReT = 0.5 (StT = 56) and in the panel (c) µ/µdry is plotted versus ReT for
ρs/ρg = 1000 and Rem = 0.1 (Stm = 14).

decreases, which can be explained by the decreased role of particle inertia relative to gas-
phase viscous forces. As displayed in figure 7b, however, the shear viscosity is essentially
independent of Rem over the small range of (low) Rem investigated here. However, as
illustrated in figure 7c, the gas phase displays a larger impact on the shear viscosity for
lower ReT due to the decreased role of random particle motion. At the other extreme
of higher ReT, the granular limit (η/ηdry → 1) is approached, as expected. Finally, for
all of these system parameters (figures 7a–7c), the gas-phase effect on shear viscosity is
again more pronounced for higher dissipation levels (lower α).
As discussed previously, the Reynolds numbers Rem and ReT can be converted to

Stokes numbers Stm and StT via Eqs. (3.5) and (3.6), respectively. In figures 7, the rele-
vant Stokes numbers both cover the range of O(10)-O(100), though results are observed
to be more sensitive to the value of StT than Stm (i.e., figure 7c compared to figure 7b). In
figure 7c, the x-axis corresponds to the value of StT ∼ 80−500. At the higher StT (higher
ReT of figure 7c), the shear viscosity results approach those of the dry granular limit,
as expected (fluid phase becomes negligible). However, the differences are non-negligible
for StT of O(10) (lower ReT in figure 7c). This observation is particularly true for more
dilute systems, as illustrated in figure 6a. In this figure, the Stokes number is constant
at StT ∼ 60, yet the shear viscosity η varies greatly from its dry counterpart ηdry. For
example, η is about 40% of ηdry at the volume fraction ϕ = 0.01. Since the core of a
CFB riser is often characterized by solid volume fractions on the order of a few percent,
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Figure 11. Plot of the ratios η/ηdry (panel (a)) and κ/κdry (panel (b)) as a function of the
solid fraction ϕ for Rem = 0.1, ReT = 0.5 (StT = 56) and different values of the coefficient of
restitution α. The solid lines are the results derived here while the dashed lines are based on
the model used by Agrawal et al. (2001).

gas-phase modifications to the shear viscosity are not negligible for practical systems,
even at finite St.
Now switching to the Dufour coefficient µ, the influence of the gas phase is presented

in figures 8 and 9 over the similar ranges of system parameters. However, it is important
to recall that µ = 0 in the granular case when α = 1. When α ̸= 1, µdry ̸= 0 but
its magnitude is small for weak dissipation (for instance, µdry ≃ 0.207 for α = 0.9 and
ϕ = 0.2). In stark contrast to the shear viscosity (figures 6 and 7), the gas phase serves to
increase the Dufour coefficient relative to its dry counterpart (i.e., µ/µdry > 1), and these
effects are more noticeable at lower dissipation levels (higher α). Nonetheless, similar to
the shear viscosity, the influence of the gas phase is greater at more dilute conditions
since the kinetic contributions dominate over their collisional counterparts (figures 8a
and 8b). Also similar is the increased role of the gas phase for lower density ratios due
to the decreased role of particle inertia (figure 9a). Finally, the impact of ReT and Rem
on the Dufour coefficient is analogous to that of the shear viscosity, where the influence
of the gas phase is relatively independent of Rem (see figure 9b) over the range of low
Rem considered, but does depend on ReT (see figure 9c).
The behavior of the Dufour coefficient in the elastic limit (α = 1) is further explored in
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figure 10. Recall for the dry granular case (no gas phase), µ = 0 at α = 1, so the discovery
of a non-zero value for the gas-solid suspension may appear surprising. However, the
appearance of a non-zero Dufour coefficient is also observed in granular mixtures (i.e.,
more than one solid species) at the elastic limit (see, for example, (Garzó et al. 2007a,b)),
so the gas phase plays an analogous role to an additional solid species in this regard. As
illustrated in figure 10, µ increases with solid fraction but decreases with ReT; note
that this trend cannot be compared with that of figure 8 directly since the latter is
non-dimensionalized with the dry case and figure 10 is not to avoid division by zero.
Although the previous analytical works of Koch and co-workers in the Stokes flow limit

(Koch 1990; Sangani et al. 1996; Koch & Sangani 1999) ignore the impact of the gas phase
on the solid-phase constitutive relations, other groups have included such effects (Ma &
Ahmadi 1988; Balzer et al. 1995; Lun & Savage 2003). Expressions including such effects
for the shear viscosity and thermal conductivity are given by Agrawal et al. (2001), and
are compared with those derived here in figures 11a and 11b, respectively. For the shear
viscosity (figure 11a), the qualitative nature of the gas-phase influence is similar in that
it is more apparent at dilute conditions, though the expression derived here shows a
stronger gas-phase influence. On the other hand, for the case of the thermal conductivity
(figure 11b), the expression derived here displays essentially no impact from the gas phase,
whereas previous expressions show a dampening of the thermal conductivity relative to
the (dry) granular case. It is worth noting, however, that this comparison is not apples-
to-apples due to two key differences between the previous treatments and the current
one. Namely, as described in §1, the previous treatments have incorporated the effects of
gas-phase turbulence and have used a form of the instantaneous drag force that mimics
the form of the mean force, neither of which is implemented in our expressions.
Finally, our predictions for the shear viscosity and the steady granular temperature are

compared in figures 12 and 13, respectively, with the numerical simulations performed
by Sangani et al. (1996). The shear viscosity and the (steady) granular temperature were
obtained from simulations in the simple shear flow state, and thus Rem = 0. Consistent
with this work (Sangani et al. 1996), the results here are plotted against a Stokes number
Stshear based on the shear rate γ̇ ≡ ∂Ux/∂y. This Stokes number is defined as (Sangani
et al. 1996)

Stshear =
mγ̇

3πσµg
. (8.11)

The reduced shear viscosity µs is defined as

µs =
4η

ρsϕγ̇σ2
, (8.12)

while the (steady) granular temperature θ is

θ =
4T

mσ2γ̇2
. (8.13)

In the simple shear flow state, the granular temperature T is determined by applying the
steady state condition to the balance equation of the temperature. The shear viscosity
µs and the square root of temperature

√
θ are plotted in figures 12 and 13, respectively,

as functions of Stshear/Rdiss for hard spheres with α = 1 (Note that the reduced shear
viscosity µs is also defined differently than shown in Sangani et al. (1996); the results
presented here correct the error contained in the original publication (Koch 2012)). It
is apparent that our theoretical predictions slightly overestimate the shear viscosity and
granular temperature for dilute conditions (ϕ = 0.01 in figures 12a and 13a) while exhibit-
ing close agreement at more moderate volume fractions (ϕ = 0.1 in figures 12b 13b). This
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fraction: ϕ = 0.01 (panel (a)) and ϕ = 0.1 (panel (b)). The solid lines are the theoretical results
and the circles are the simulation results obtained by Sangani et al. (1996).

observation can be explained via the assumption of low Knudsen number Kn used in our
derivation. In particular, previous work in granular systems (no fluid phase) has shown
that the simple shear flow state contains higher-order effects (beyond Navier-Stokes or-
der; see Santos et al. (2004)) and that such effects become more important in dilute flows
(Hrenya et al. 2008). Nonetheless, the agreement here is encouraging and bodes well for
the extension of the PR–DNS-based acceleration model used here to higher Rem, and its
subsequent incorporation into Navier-Stokes-order hydrodynamics, especially consider-
ing the complexities associated with deriving higher-order hydrodynamics and associated
boundary conditions.

9. Summary

In this work, a rigorous incorporation of the gas phase into the starting kinetic (En-
skog) equation has been demonstrated via an instantaneous model for the drag force. A
unique aspect of this work is the use of a Langevin model for the instantaneous gas-phase
force on a particle. The coefficients of the Langevin model are related to the dissipation
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Figure 14. Plots showing the verification of the Langevin model. Figure 14(a) compares the
particle velocity autocorrelation function extracted from PR–DNS of freely evolving suspension
(volume fraction of 0.2, mean flow Reynolds number 20 and solid to fluid density ratio of
100) with the exponential decay predicted by the Langevin model. Figure 14(b) is the same as
Fig. 14(a) for a suspension with solid to fluid density of 10.

and source of granular energy and can be obtained from analytical expressions (for Stokes
flow and ϕ < 0.1 (Koch 1990)) or from simulations (multipole expansions for Stokes flow
and ϕ > 0.1 (Koch & Sangani 1999)) or from PR–DNS (for higher Reynolds numbers).
For proof-of-concept purposes, attention here is limited to low Reynolds number in order
to allow for direct comparisons with previous analytical treatments. It is found that the
additional terms appearing in the balance equations due to the presence of the gas phase
are the same regardless of treatment. Furthermore, the Chapman-Enskog method is used
to derive Navier-Stokes order constitutive relations for balance equations. The results
indicate a non-negligible influence of the gas phase on the shear viscosity and the Dufour
coefficient, whereas such effects had been ignored in previous analytical treatments for
Stokes flow. Specifically, the presence of the gas phase lowers the shear viscosity and
increases the Dufour coefficient relative to the granular (no gas phase) case, with the
degree of influence larger in more dilute systems. This non-negligible influence persists
even for finite Stokes number of O(10). Moreover, the shear viscosity in gas-solid suspen-
sions is found to approach to zero in the dilute limit (consistent with previous findings of
Tsao & Koch (1995) and Sangani et al. (1996) for simple shear flow), unlike its granular
counterpart which takes on a finite value in the same limit. Also, the Dufour coefficient
in gas-solid systems is found to be non-zero in the elastic limit, which is not the case for
(dry) granular systems but is the case for granular mixtures (i.e., more than one solid
species).
The Langevin model for the instantaneous gas-solid force is applicable to a much

wider parameter space than that explored here, including higher Reynolds numbers,
polydisperse systems, etc. For instance figure 14 shows that the decay of the particle
velocity autocorrelation function ρ (s) (cf. Eq. 3.7) computed from PR–DNS of freely
evolving gas–solid suspension at a mean flow Reynolds number of 20 matches with the
exponential decay predicted by the Langevin equation. Therefore, fluid–solid force models
of the form given by equation 2.1 can be extended seamlessly to gas–solid systems at
higher Reynolds numbers. The model coefficients for such systems are attainable via PR–
DNS, which are not limited to a narrow parameter space as is their analytical counterpart.
Such work is expected to be important for a wide range of practical applications and
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physical phenomenon, such as systems in which the interstitial gas has been shown to
have an impact on the stability of the homogeneous state (Koch 1990; Garzó 2005) or
on species segregation (Möbius et al. 2001; Yan et al. 2003; Naylor et al. 2003; Sánchez
et al. 2004; Möbius et al. 2005; Wylie et al. 2008; Zeilstra et al. 2008; Idler et al. 2009;
Clement et al. 2010).
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Appendix A. Chapman-Enskog method

The velocity distribution function f (1) obeys the kinetic equation(
∂
(0)
t + L

)
f (1) −

(
β

m
∆U− g

)
· ∂f

(1)

∂V
− γ

m

∂

∂V
·Vf (1) − 1

2
ξ

∂2

∂V 2
f (1)

= −
(
∂
(1)
t + v · ∇

)
f (0) − J

(1)
E [f ]. (A 1)

Here, J
(1)
E [f ] means the first order contribution to the expansion of the Enskog collision

operator and L is the linear operator

Lf (1) = −
(
J
(0)
E [f (0), f (1)] + J

(0)
E [f (1), f (0)]

)
. (A 2)

The macroscopic balance equations to first order in the gradients are

D
(1)
t n = −n∇ ·U, D

(1)
t Ui = −(mn)−1∇ip, D

(1)
t T = − 2p

dn
∇ ·U− ζ(1)T, (A 3)

where D
(1)
t ≡ ∂

(1)
t +U · ∇. Use of Eqs. (A 3) in (A 1) and taking into account the form

of J
(1)
E [f ] obtained by Garzó & Dufty (1999) for a dry granular gas, one gets(

∂
(0)
t + L

)
f (1) −

(
β

m
∆U− g

)
· ∂f

(1)

∂V
− γ

m

∂

∂V
·Vf (1) − 1

2
ξ

∂2

∂V 2
f (1)

= A · ∇ lnT +B · ∇ lnn+ Cij
1

2

(
∂iUj + ∂jUi −

2

d
δij∇ ·U

)
+D∇ ·U, (A 4)

where the expressions of A, B, Cij , and D are the same as those obtained by Garzó &
Dufty (1999). They are given by

Ai (V) =
1

2
Vi∇V ·Vf (0) − p

ρ

∂

∂Vi
f (0) +

1

2
Ki

[
∇V ·

(
Vf (0)

)]
, (A 5)

Bi (V) = −Vif
(0) − p

ρ

(
1 + ϕ

∂

∂ϕ
ln p∗

)
∂

∂Vi
f (0))−

(
1 +

1

2
ϕ

∂

∂ϕ
lnχ

)
Ki

[
f (0)

]
, (A 6)

Cij (V) = Vi
∂

∂Vj
f (0) +Ki

[
∂

∂Vj
f (0)

]
, (A 7)

D =
1

d
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(
V · f (0)

)
− 1

2

(
ζU +

2

d
p∗
)
∇V ·

(
Vf (0)

)
+

1

d
Ki

[
∂Vif

(0)
]
. (A 8)
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Here, ∇V ≡ ∂/∂V,

p∗ ≡ p

nT
= 1 + 2d−2(1 + α)χϕ, (A 9)

ϕ is defined by Eq. (6.15), ζU is defined by Eqs. (7.24) and (7.25) and Ki is the operator

Ki[X] = σdχ

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)σ̂i

[
α−2f (0)(v′′

1 )X(v′′
2 ) + f (0)(v1)X(v2)

]
,

(A 10)
where v′′

1 = v1 − 1
2 (1 + α−1)(σ̂ · g12)σ̂ and v′′

2 = v2 +
1
2 (1 + α−1)(σ̂ · g12)σ̂.

The solution to Eq. (A 4) can be written in the form (7.1). The unknown functions of
the peculiar velocity, A, B, Cij , and D appearing in f (1) are determined by solving Eq.
(A 4). By dimensional analysis, A (V) = v−d

0 ℓ1−dA∗ (V∗), B (V) = v−d
0 ℓ1−dB∗ (V∗),

Cij (V) = v
−(d+1)
0 ℓ1−dC∗

ij (V
∗), and D (V) = v

−(d+1)
0 ℓ1−dD∗ (V∗), where ℓ = 1/nσd−1 is

the mean free path for hard spheres and A∗ (V∗), B∗ (V∗), C∗
ij (V

∗), and D∗
i (V

∗) are

dimensionless functions of the reduced velocity V∗ = V/v0, v0 =
√
2T/m being the

thermal speed. Consequently,

∂
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, (A 11)

∂
(0)
t B (V) = (∂

(0)
t T )∂TB (V) = − 1
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∇V · (VB (V)) (∂

(0)
t T )

= − 1

2T
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(
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, (A 12)

∂
(0)
t Cij (V) = (∂

(0)
t T )∂TCij (V) = − 1
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= − 1
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, (A 13)
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)
. (A 14)

In addition,

∂
(0)
t ∇ lnT = ∇∂

(0)
t lnT = ∇

(
mξ

T
− 2

m
γ − ζ(0)

)
= −
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where

γn ≡ ∂γ

∂n
, γT ≡ ∂γ

∂T
, (A 16)

ξn ≡ ∂ξ

∂n
, ξT ≡ ∂ξ

∂T
. (A 17)
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Upon deriving Eqs. (A 14), use has been made of the explicit form of ζ(0). Since the
gradients of the fields are all independent, Eq. (A 4) can be separated into independent
equations for each coefficient. This leads to the following set of linear, inhomogeneous
integral equations:

1
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Equations (A 18)–(A 21) reduce to the ones previously obtained for dry granular fluids
(no gas phase) (Garzó & Dufty 1999; Lutsko 2005) when β = γ = ξ = 0.

Appendix B. Kinetic contributions and collisional cooling rate

In this Appendix we give some details on the evaluation of the kinetic contributions to
the transport coefficients η, κ and µ and the first-order contribution ζU to the collisional
cooling rate.
Let us start with the shear viscosity η. Its kinetic part ηk is given by

ηk = − 1

(d− 1)(d+ 2)

∫
dvDijCij(V), (B 1)

where Dij = m(ViVj − 1
dV

2δij). To obtain it, we multiply (A 19) by Dij and integrate
over velocity to get
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dVDij(V)Ki

[
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∂Vj
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]
,

(B 2)
where

νη =

∫
dvDij(V)LCij(V)∫
dvDij(V)Cij(V)

, (B 3)
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and use has been made of the results∫
dVDij

∂

∂Vℓ
Cij = 0,

∫
dVDij

∂

∂Vℓ
VℓCij = 2(d− 1)(d+ 2)ηk, (B 4)

∫
dVDij

∂2

∂V 2
Cij = 0. (B 5)

The first identity in Eq. (B 4) and Eq. (B 5) follow from the solubility conditions of the
Chapman-Enskog method:∫

dv{1,v, v2}f (1)(V) = {0,0, 0}. (B 6)

The collision integral of the right hand side of Eq. (B 2) has been evaluated in previous
works (Garzó & Dufty 1999; Lutsko 2005). Thus, the kinetic part ηk is given by

ηk =
nT

νη − 1
2

(
ζ(0) − m

T ξ − 2
mγ

) [1− 2d−2

d+ 2
(1 + α)(1− 3α)ϕχ

]
. (B 7)

In order to get an explicit expression for ηk, one has to consider the leading terms in
a Sonine polynomial expansion of the distribution function. Here, we have considered a
recent modified version of the standard method (Garzó et al. 2007c, 2009) that yields
good agreement with computer simulations even for quite strong values of dissipation
(Montanero et al. 2007). The final form of ηk is given by Eq. (7.7).
The kinetic parts κk and µk of the transport coefficients characterizing the heat flux

are defined, respectively, as

κk = − 1

dT

∫
dvS(V) ·A(V), (B 8)

µk = − 1

dn

∫
dvS(V) ·B(V), (B 9)

where

S(V) =
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m

2
V 2 − d+ 2

2
T

)
V. (B 10)

We obtain first the kinetic part κk. It is obtained by multiplying Eq. (A 18) by S(V) and
integrating over V. The result is
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where

νκ =

∫
dvS(V) · LA(V)∫
dvS(V)A(V)
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and use has been made of the results∫
dVSi

∂

∂Vℓ
Ai = 0,

∫
dVSi

∂

∂Vℓ
VℓAi = 3dTκk, (B 13)

∫
dVSi

∂2

∂V 2
Ai = 0. (B 14)

The right hand side of Eq. (B 11) has been already evaluated for dry granular fluids
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(Garzó & Dufty 1999; Lutsko 2005) so that the final form of κk can be easily obtained from
Eq. (B 11). It is given by Eq. (7.17). The evaluation of µk follows similar mathematical
steps as those made in the calculation of κk. Its explicit form can be written as

µk =
κ0ν0T

n

[
νµ − 3

2
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)]−1 {
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, (B 15)

where

νµ =

∫
dvS(V) · LB(V)∫
dvS(V)B(V)

. (B 16)

As in the case of the shear viscosity, to get the explicit forms of νκ and νµ one has
consider the leading terms in the (modified) Sonine polynomial expansion (Garzó et al.
2007c, 2009). To leading order the results yield νκ = νµ where µκ is given by Eq. (7.22).
We consider finally the first-order contribution ζU to the collisional cooling rate. It is

given by Eq. (7.25) where ζ11 is defined as

ζ11 =
1
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3
12f
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where the unknown functions D(V) are the solutions to the linear integral equation
(A 21). An approximate solution to this integral equation (A 21) can be obtained by
taking the leading Sonine approximation

D(V) → eDfM (V)F (V), (B 18)

where

F (V) =
( m
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V 4 − d+ 2
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4
. (B 19)

The coefficient eD is given by

eD =
2

d(d+ 2)

1

n

∫
dV D(V)F (V). (B 20)

Substitution of Eq. (B 19) into Eq. (B 17) gives

ζ11 =
3(d+ 2)

32d
χ(1− α2)
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3

128
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)
ν0eD. (B 21)

The coefficient eD is determined by substituting Eq. (B 22) into the integral equation
(A 21), multiplying by F (V) and integrating over V. The result is
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2
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∫
dVF (V)D(V), (B 22)

where the term ζ11a2 has been been neglected in accord with the present approximation.
Moreover, the terms proportional to a2 coming from νγ and ζ(0) must be also neglected
by consistency. In Eq. (B 22), we have introduced the collision frequency

νγ =

∫
dVF (V)L[fM (V )F (V)]∫
dVfM (V )F (V)F (V)

. (B 23)

As before, the right hand side of Eq. (B 22) has been previously evaluated for dense
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dry granular fluids (Garzó & Dufty 1999; Lutsko 2005). Taking into these results, the
expression for eD can be written as

eD =

(
νγ − γ

m
− 3mξ

2T
+

3

2
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)−1
9(d+ 2)2d−8

d2
ϕχ

[
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(
1

3
− α

)
a2
2

]
,

(B 24)
where ω∗ and νγ are given by Eqs. (7.28) and (7.29), respectively. With this result one
gets the expression (7.27) for ζ11.

Appendix C. Another theory for suspensions

In this Appendix we display the explicit expressions for η and κ used by Agrawal et al.
(2001). They can be written as η = η0η

∗ and κ = κ0κ
∗ where the (reduced) coefficients

η∗ and κ∗ are given by

η∗ = 1.2

{
µ0

χδ(2− δ)

(
1 +

8

5
ϕδχ

)[
1 +

8

5
δ(3δ − 2)ϕχ

]
+

768

25π
δϕ2χ

}
, (C 1)

κ∗ =
λ0

χ

{(
1 +

12

5
ϕδχ

)[
1 +

12

5
δ2(4δ − 3)ϕχ

]
+

64

25π
(41− 33δ)δ2ϕ2χ2

}
. (C 2)

Here, we have introduced the quantities

µ0 = (1 + 2β∗)
−1

, β∗ =
5
√
π

128

CDF (ϕ)

ϕχ

ρg
ρs

Rem
ReT

, (C 3)

λ0 =
8

δ(41− 33δ) + 36β∗ , (C 4)

δ =
1 + α

2
, F (ϕ) = (1− ϕ)2.65, (C 5)

CD = (24/Rem)(1 + 0.15Re0.687m ), Rem < 1000, CD = 0.44, Rem > 1000. (C 6)
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Garzó, V. & Santos, A. 2003 Kinetic Theory of Gases in Shear Flows. Nonlinear Transport .
Kluwer Academic Publishers.
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Appendix C: Theory (Iowa State – Task 2.1)  
A Lagrangian-Eulerian (LE) description is employed to describe the multiphase flow. 

The starting point for the LE description is the one-particle distribution function or the droplet 
distribution function (used in spray terminology). The evolution equation of the ddf is rigorously 
derived by Subramaniam (2001). 

Consider a particle-laden flow where for simplicity we consider spherical particles. At 
time t , the n th particle is characterized by its position vector ( ) ( )n tX , its velocity vector ( ) ( )n tV . 
It is assumed that the size and shape of the particles do not change and hence the particle 
property vector is a 7-dimensional random vector whose components are the location X , 
velocity V  and particle size characterized by the radius r . The governing equations of motion 
for the particle are:  

 ( )
( )=n
n

d
dt
X

V  (C1) 

  ( )
( )= ,n
n

d
dt
V

A  (C2) 

 where, ( )nA  is the acceleration experienced by the thn  particle. This acceleration can depend on 
the particle velocity, size and fluid flow statistics. 

The evolution equation for the one-particle distribution function );,,( trf vx  can be 
derived (Subramaniam 2001): 

 ( ) ( ) coll| , , ; = ,i i
i i

f v f A r t f f
t x v

∂ ∂ ∂
+ +

∂ ∂ ∂
x v   (C3) 

 where, collf  is the collisional term that depends on higher order statistics. 
The evolution equation of the one-particle distribution function is written in a simpler form as:  

 ( ) ( )| , , ; = 0 .i i
i i

f v f A r t f
t x v

∂ ∂ ∂
+ +

∂ ∂ ∂
x v  (C4) 

This simpler form is useful when analyzing static particle assemblies. The mean mass, 
momentum and the second moment equations for a monodisperse suspension can be derived 
from equation (4). 

The mean momentum conservation equation is  

( ) ( ) ( )3 3 3 3 ,j j k j j k
k k

n r v n r v v n r A n r v v
t x x

ρ ρ ρ ρ∂ ∂ ∂ ′′ ′′+ = −
∂ ∂ ∂

 (C5) 

where ρ is the thermodynamic density of the particles. In Eq. (5), we note that the second term 
on the right hand side of is the particle Reynolds stress arising from fluctuations in the particle 
velocity. The particle velocity fluctuations are defined about the mean velocity as follows: 

  (C7) 
The evolution equation for the second moment of velocity that appears in the particle Reynolds 
stress is:  

  
  (C8) 
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Introduction

Analysis of large scale gas-particle flows, which are
widely encountered in the chemical process industry, is com-
monly done using averaged equations of motion where the
individual particle phase(s) and the fluid are treated as inter-
penetrating continua.1–3 These equations contain several
terms—the fluid-particle drag force, the particle and fluid-
phase effective stresses, etc.—which require constitutive
relations. Among these, the fluid-particle drag plays a domi-
nant role in gas–solid fluidized beds in balancing the gravita-
tional force acting on the particles.2–8 A number of constitu-
tive relations for the fluid-particle drag in monodisperse sus-
pensions (i.e., particles of the same size/density) can be
found in the literature.1–3,9–14 Polydispersity (differences in
particle size and/or density) is common in most industrial
scale devices; addition of fines is known to affect the quality
of fluidization,15 and segregation is an important considera-
tion in polydisperse fluidized beds.16–18 Indeed, a substantial
amount of recent research has been devoted to the formula-
tion of fluid-particle drag relations for polydisperse fixed
beds and suspensions (for example see following references,
and the references cited therein).7,8,12,19 Beetstra et al.19 pro-
vide expressions for fluid-particle drag in polydisperse fixed

beds over a range of Reynolds numbers, while Yin and Sun-
daresan7,8 limit themselves to Stokes flow conditions, but
allow for relative motion (in the local average sense)
between the various types of particles.

This study builds on the earlier studies by Yin and Sun-
daresan7,8 and considers the effect of moderate inertia on the
fluid-particle drag in polydisperse systems, allowing for rela-
tive motion between the different types of particles. Towards
this end, we have carried out lattice-Boltzmann simulations
of fluid flow through assemblies of polydisperse particles in
periodic domains, and extracted the fluid-particle drag force
under conditions where fluid inertia has a non-negligible
effect. We find that the results can be captured reasonably
well by a new drag force model for polydisperse suspensions
that combines the expressions proposed by Yin and Sundare-
san7,8 for Stokes flow of suspensions and the inertial correc-
tion developed by Beetstra et al.19 for monodisperse fixed
beds. We restrict our attention to large Stokes number and
moderate Reynolds numbers based on the local-average slip
velocity between the fluid and the different types of par-
ticles; these conditions are indeed satisfied by most gas-fluid-
ized beds. Strictly speaking, the fluid-particle drag force will
also depend on the Reynolds number based on the fluctuat-
ing velocities of the particles20; however, in fluidized sus-
pensions, the fluctuating velocities of the particles tend to be
considerably smaller than the local-average fluid-particle slip
velocity, and so their effect on the drag force in only
weak.20 With this in mind, we have not engaged in a
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systematic study of the effect of particle velocity fluctuations
on the fluid particle drag in polydisperse systems.

This article is organized as follows: we first present the
fluid-particle drag relations proposed by Beetstra et al.19 for
polydisperse fixed beds and Yin and Sundaresan7,8 for poly-
disperse suspensions under Stokes flow conditions, and pro-
pose an extension of the Yin and Sundaresan7,8 expressions
to account for the effect of moderate fluid inertia. We then
outline the lattice-Boltzmann simulation procedure and pres-
ent the results for polydisperse suspensions with relative
motion between the different particle types at moderate fluid
inertia. These simulation results are then used to validate the
proposed drag force model. The article then concludes with
a summary of the main results.

Fluid-Particle Interaction Force in Polydisperse
Systems

Fixed beds

The total fluid-particle interaction force per unit volume
of a polydisperse fixed bed acting on particle of type i,
fDi-fixed, is usually expressed as

f i-fixed ¼ �/irPþ fDi-fixed; fDi-fixed ¼ �biDU (1)

where P is the local-average fluid pressure, /i is the volume
fraction of particles of type i, fDi-fixed is the fluid-particle drag
force per unit volume of the bed, bi is the volume-specific
friction coefficient for particles of type i, and DU is the
difference between the local average velocities of the particle
and fluid phases. It is convenient to express the fixed-bed
friction coefficient bi as

7,8,12,19

bi ¼
18/i 1� /ð Þl

d2i
F�
Di-fixed (2)

where / is the total particle phase volume fraction, di is the
diameter of the ith particle species, l is the fluid viscosity;
F�
Di�fixed is a dimensionless fluid-particle drag on a particle of

type i in a polydisperse fixed bed (F�
Di�fixed is nondimensio-

nalized by the Stokes drag, namely 3pldi (1 � /) DU). Yin
and Sundaresan8 recently proposed the following expression
for F�

Di�fixed for Stokes flow through polydisperse fixed beds
(particle diameter ratios up to 4:1):

F�
Di-fixed ¼

1

1�/

� �
þ F�

D-fixed �
1

1�/

� �
ayi þ 1� að Þy2i
� �

(3)

where yi ¼ di/hdi; hdi is the Sauter mean diameter

dh i ¼
X
i

nid
3
i

.X
i

nid
2
i ; (4)

F*
D-fixed is the dimensionless fluid particle drag force in a

monodisperse fixed bed12

F�
D-fixed ¼

10/

1� /ð Þ2 þ 1� /ð Þ2 1þ 1:5
ffiffiffiffi
/

p� �
(5)

and a is a cubic polynomial of volume fraction:

a ¼ 1� 2:66/þ 9:096/2 � 11:338/3: (6)

To account for the effects of moderate fluid inertia on the
monodisperse fixed bed drag force, Beetstra et al.19 modified
Eq. 5 as

F�
D-fixed ¼

10/

1� /ð Þ2 þ 1� /ð Þ2 1þ 1:5
ffiffiffiffi
/

p� � !
1þ vBVKð Þ:

(7)

where vBVK represents the inertial correction:

vBVK ¼ 0:413Re

240/þ 24ð1� /Þ4ð1þ 1:5
ffiffiffiffi
/

p Þ

� ð1� /Þ�1 þ 3/ð1� /Þ þ 8:4Re�0:343

1þ 103/Re
�ð1þ4/Þ

2

: ð8Þ

Here, Re is the Reynolds number, defined as follows

Re ¼ DUj j 1� /ð Þd
m

(9)

where m is the fluid kinematic viscosity.

Polydisperse suspensions with particle–particle
relative motion

Stokes Flow Regime. For high Stokes number, low Reyn-
olds number suspensions with particle–particle relative
motion, Yin and Sundaresan7,8 proposed the following drag
force model:

fi ¼ �/irPþ fDi; fDi ¼ �biDUi �
X
i 6¼j

bij DUj � DUi

� �
(10)

For one-dimensional flow, the drag force expression can be
written as

f �Di ¼ �b�i Rei �
X
j 6¼i

b�ij sgn DUj � DUi

� �
Reji; (11)

where, f�Di is the dimensionless fluid-particle drag force per
unit volume suspension experienced by particles of type i;
b�i ¼ qfhdi3

l2 bi is the dimensionless fixed bed friction
coefficient for particles of type i (with qf denoting the
fluid density and the dimensional friction coefficient bi
being given by Eqs. 2–6); b�ij ¼ qfhdi3

l2 bij is the (dimension-
less) fluid-mediated particle–particle drag friction coeffi-
cient; sgn (DUj � DUi) is the signum function of DUj �
DUi; Rei and Reji are given as

Rei ¼ dh i DUij j
m

; Reji ¼
dh i DUj � DUi

�� ��
m

: (12)

Note that the signum function is used in Eq. 11 to account
for the change in sign of the fluid mediated particle–particle
drag when the velocities of different particle types relative to
one another change sign, while still retaining a positive
definite form of Reji. For b�ij, Yin and Sundaresan8 proposed:
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b�ij ¼ �2aij
/i/j

/i

b�i
þ /j

b�j

(13)

where aij is a parameter that depends on the ratio of the
lubrication cutoff distance k (discussed later in this article) to
the smaller particle diameter of i and j species:

aij ¼ 1:313 log10
min di; dj

� �
k

� �
� 1:249: (14)

Modification to Account for the Effect of Moderate Fluid
Inertia. This study is concerned with extending the model
proposed by Yin and Sundaresan8 for Stokes flow regime to
account for moderate inertia. It will be demonstrated in this
article that a simple modification, which includes the inertial
correction for fixed beds proposed by Beetstra et al.,19,21 pre-
sented later, is able to capture drag force results extracted
from our lattice-Boltzmann simulations. Specifically, the
modified model consists of Eqs. 2–4, 6, 10, 12–14, and the
following:

F�
D-fixed ¼

10/

1� /ð Þ2 þ 1� /ð Þ2 1þ 1:5
ffiffiffiffi
/

p� � !
1þ v�BVK
� �

(15)

where v�BVK is given by:

v�BVK ¼ 0:413Remix

240/þ 24ð1� /Þ4ð1þ 1:5
ffiffiffiffi
/

p Þ

� ð1� /Þ�1 þ 3/ð1� /Þ þ 8:4Re�0:343
mix

1þ 103/Re
�ð1þ4/Þ

2

mix

: ð16Þ

These two equations differ from Eqs. 7 and 8 slightly, with Re
being replaced by Remix:

Remix ¼ DUmixj j 1� /ð Þ dh i
m

; DUmix ¼
P
i

/iDUiP
i

/i

� (17)

Effect of Particle Velocity Fluctuations. Strictly speak-
ing, whenever fluid inertia plays a non-negligible role, the
fluid-particle drag force is not independent of fluctuating par-
ticle motions.20 For monodisperse suspensions, Wylie et al.20

have modeled the effect of particle velocity fluctuations on
the fluid-particle drag in a large-Stokes-number, moderate-
Reynolds-number monodisperse suspension; toward this end,
they define a Reynolds number based on particle velocity
fluctuations as ReT ¼ dT0.5/m where the granular temperature
T ¼ (1/3)(h(DU)2i � hDUi2) and the angle brackets indicate
ensemble averages. They found that the effect of particle ve-
locity fluctuations on the fluid-particle drag is very small
provided ReT is much smaller than the Reynolds number
based on mean flow velocity and particle diameter (Rem).
Figure 1 illustrates the variation of the fluid-particle drag
with particle velocity fluctuations scaled by the fluid-particle
drag in the absence of particle velocity fluctuations plotted
with ReT/Rem for Rem ¼ 20 and two different values of par-
ticle volume fractions, as given by the theory of Wylie

et al.20 It is clear that when ReT/Rem is small the effect of
particle velocity fluctuations on the fluid-particle drag is
small. In Figure 2, we present results on the Rem/ReT ratio
obtained from a lattice-Boltzmann simulation of a collection
of bidisperse particles in a periodic domain, sedimenting
freely under the action of gravity. (Details of the lattice-
Boltzmann simulation methodology are discussed later.) The
two curves correspond to the two types of particles in the
mixture. It is clear that Rem/ReT is much larger than unity
for both particle types. The results from the study by Wylie
et al. for monodisperse systems (presented in Figure 1) then
suggest that in polydisperse systems such as those occurring
in gas-fluidized beds, the effect of particle velocity fluctua-
tions on the fluid-particle drag is quite small. With this in
mind, we have not explored the ReT-dependence of fluid-par-
ticle drag in the present study.

Lattice-Boltzmann Simulations

To generate the computational data needed to develop and
verify the fluid-particle drag force model, we simulated fluid
flow through assemblies of particles using the lattice-Boltz-
mann scheme developed by Ladd,22–24 which has been used
in a number of earlier studies.7,8,12,19,20,25,26 Ladd’s code has
been used by a number of investigators to study particle-
laden flows, and we have used the same code. As details
about the method are readily available in the literature, we

Figure 1. The effect of particle velocity fluctuations on
the fluid-particle drag force in a suspension
of uniformly sized spherical particles.

The Reynolds number associated with the mean slip velocity,
Rem ¼ 20. ReT refers to the Reynolds number associated with
the particle velocity fluctuations. The ordinate shows the
fluid-particle drag force in the presence of particle velocity
fluctuations scaled with respect to that obtained in the ab-
sence of velocity fluctuations (i.e., a random fixed bed). The
results are obtained using the model proposed by Wylie
et al.20 The two curves correspond to two different particle
volume fractions. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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provide only a brief outline of the computational procedure.
The 3-D lattice-Boltzmann method used in this study
employs at 19-point quadrature in velocity space, the so-
called D3Q19 model, with fluid density qf ¼ 36 (lattice units
[l.u.]). To access a range of Rem values, various fluid viscos-
ity values (lf ¼ 0.03 and 0.36 [l.u.]) were used, while still
maintaining low fluid velocities (\0.02 in [l.u.]) to ensure
numerical stability. The particle sizes used in this study var-
ied with the smallest particle diameter being �10 lattice
units. The effect of lattice resolution has been addressed by
comparing and extrapolating simulation results obtained
using different lattice resolutions.

When the separation between particles becomes smaller
than the lattice spacing, the hydrodynamic (lubrication) inter-
action between the particles cannot be resolved in the simu-
lations and are added explicitly.27 For perfectly spherical,
approaching particle pairs, the lubrication force would
diverge near contact; in reality, such a divergence is
removed by particle surface roughness, or non-continuum
effects. To model this effect, it is implemented in the simu-
lations that the lubrication force saturates at a value corre-
sponding to a user specified separation known as the lubrica-
tion cut-off distance (k). Yin and Sundaresan8 found that the

off-diagonal friction coefficient depended systematically on
the value of k (see Eqs. 13 and 14). In our simulations, we
used a value of k ¼ 0.01 (l.u.) for our lattice-Boltzmann
simulations performed at a fluid viscosity of lf ¼ 0.36 (l.u.).
In our simulations performed at a fluid viscosity of lf ¼
0.03 (l.u.), we assigned a value of k so that every lattice re-
solution had an identical k/min(di,dj) ratio equal to 0.001.

Our simulations began by placing a binary mixture of
spheres in a cubic periodic simulation domain whose sides
are 10–15 times larger than the diameter of the smaller parti-
cle. A large number of Monte Carlo movements of these
particles were then executed to ensure that the particle
microstructure obeyed that of a binary hard sphere configura-
tion.8 Subsequently, each particle type was assigned its
desired (local average) velocity (DU1 and DU2); this induced
fluid flow in the interstices of the particle assembly, whose
evolution was followed via lattice-Boltzmann method. To
ensure that the average fluid velocity approached zero, a
pressure gradient was imposed on the fluid phase. This pro-
vides a means of specifying DU1 and DU2 before the simula-
tion instead of extracting the values after the simulation by
subtracting the resulting fluid velocity. Once a steady state
was reached, the total fluid-particle interaction force Fi (en-
semble averaged fluid-particle interaction force per particle)
was obtained by integrating the traction due to the fluid over
the surfaces of all the like particles. The fluid-particle drag
was then isolated by removing the contribution due to the
imposed pressure gradient (see Eq. 10). The number of par-
ticles used in each simulation varied depending on the total
particle volume fraction, fluid viscosity, and volume fraction
ratios of each species; see Tables 1–3 for lists of performed
simulations. Typically 8–12 independent realizations of each
flow situation were performed to obtain good statistical aver-
ages of the fluid-particle drag on each particle type in the
mixture for chosen Re1 and Re2 values.

Strictly speaking, the linear and angular velocities and
positions of all the particles will change as the fluid flow
evolves, and they should be updated by invoking Newton’s
laws. It is then not possible to maintain a specified relative
velocity (in a local average sense) between the two particle
types, as it will also evolve in time. This consideration led
us to the so-called frozen particle simulations, where the par-
ticles were given specified velocities, and the positions and
velocities were not updated in time. Such an approach is jus-
tifiable in Stokes flow,8 but is only an approximation when
fluid inertia is significant. Frozen particle simulations are
attractive for several reasons:

(a) Freely evolving sedimentation of high-Stokes-number
suspensions are inherently unstable and form inhomogeneous
microstructure.6,28,29 Figure 3 illustrates the formation of in-
homogeneous, time-dependent microstructure in a freely
evolving ternary suspension simulation. The areas of dark
shading indicate areas high in volume fraction while lighter
shading indicates regions of lower volume fraction. (We
observed such inhomogeneous structures in simulations
involving sedimentation of monodisperse and bidisperse sus-
pensions as well. Thus, the origin of these structures is not
polydispersity, although polydispersity can certainly be
expected to affect the details.)

(b) In some freely evolving simulations where the relative
velocity between the different particle phases is large, the

Figure 2. The evolution of Rem/Ret as a function of s 5
tm/hdi2 in a freely evolving, bidisperse, sedi-
menting, suspension, where t is time in lattice
units, m is the fluid kinematic viscosity, and hdi
is the Sauter mean diameter of the mixture.

The diameters of the two particles indicated in the figure
are multiples of the lattice spacing. The Rem values indi-
cated in the figure are the statistical average values in the
plateau region. The volume fraction of each particle type is
the same. The collisions between the particles are elastic.
The simulation was carried out in a cubic periodic box of
dimension L ¼ 110 lattice spacing, containing 144 Type 1
and 29 Type 2 particles. The particle density to fluid density
ratio is 1000. d1 ¼ 9.6 and d2 ¼ 16.4, giving a total particle
volume fraction of / ¼ 0.1. A gravitational force ghdi3/m2
¼ 0.897 is applied in the x-direction, and balanced by a
pressure gradient equal to the weight of the suspension per
unit volume. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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different types of particles tend to segregate. Extracting data
on drag force from simulations with such inhomogeneities is
very difficult, as the local average volume fractions and local
relative velocities in any selected region within the periodic
domain are all changing with time.

Frozen particle simulations suppress such inhomogeneities
and allow us to compute fluid-particle drag in homogeneous
mixtures.

To test the adequacy of frozen particle simulation tech-
nique for moderate-Reynolds-number suspensions, we

Table 1. List of Bidisperse Suspension Simulations Performed at a Total Volume Fraction of / 5 0.2

N1 N2
d2
d1

/1 /2 Re1 Re21 d f�D1 f�D2
763 763 1.00 0.10 0.10 1.16 0.50 �1 7.96 3.12
763 763 1.00 0.10 0.10 2.31 1.00 �1 15.98 6.28
763 763 1.00 0.10 0.10 5.78 2.50 �1 40.76 16.21
763 763 1.00 0.10 0.10 11.55 5.00 �1 94.94 43.86
763 763 1.00 0.10 0.10 1.00 2.00 �1 9.66 �9.65
763 763 1.00 0.10 0.10 2.00 4.00 �1 19.35 �19.32
763 763 1.00 0.10 0.10 5.00 10.00 �1 49.12 �49.11
763 763 1.00 0.10 0.10 10.00 20.00 �1 101.23 �101.08
175 175 1.00 0.10 0.10 26.62 13.33 �1 269.96 68.97
175 175 1.00 0.10 0.10 22.79 5.67 �1 206.12 120.83
175 175 1.00 0.10 0.10 56.97 14.16 �1 824.59 565.40
95 36 2.00 0.05 0.15 35.34 13.74 1 290.24 689.42
191 24 2.00 0.10 0.10 2.45 1.87 1 22.30 22.13
191 24 2.00 0.10 0.10 28.86 12.42 1 358.72 295.77
191 24 2.00 0.10 0.10 13.34 5.32 1 135.11 98.66
186 36 2.50 0.05 0.15 5.12 3.70 1 33.36 72.89
382 24 2.50 0.10 0.10 4.38 3.32 1 43.08 37.48
382 24 2.50 0.10 0.10 14.99 19.21 1 7.96 3.12

Ni, dj/di, /i, Rei, Reji, d ¼ sgn(DUj � DUi), and f�Di represent the particle number, diameter ratio, volume fraction, Reynolds number of particles of type i, Reyn-
olds number based on the magnitude of the relative velocity between particles of type j and i, the sign of the relative velocity between particles of type j and i,
and the dimensionless fluid-particle drag force experienced by a particle of type i, respectively, in the simulation domain. The fluctuation velocities were zero in
all the simulations.

Table 2. List of Bidisperse Suspension Simulations Performed at a Total Volume Fraction of / 5 0.3

N1 N2
d2
d1

/1 /2 Re1 Re21 d f�D1 f�D2
1144 1144 1.00 0.15 0.15 1.26 0.50 �1 20.07 8.18
1144 1144 1.00 0.15 0.15 2.52 1.00 �1 40.23 16.43
1144 1144 1.00 0.15 0.15 6.30 2.50 �1 102.05 42.07
1144 1144 1.00 0.15 0.15 12.61 5.00 �1 211.85 89.09
1144 1144 1.00 0.15 0.15 1.09 0.67 �1 22.52 �13.09
1144 1144 1.00 0.15 0.15 2.17 1.35 �1 45.08 �26.18
1144 1144 1.00 0.15 0.15 5.43 3.37 �1 113.51 �65.52
1144 1144 1.00 0.15 0.15 1.00 2.00 �1 23.75 �23.72
1144 1144 1.00 0.15 0.15 2.00 4.00 �1 47.54 �47.50
1144 1144 1.00 0.15 0.15 5.00 10.00 �1 119.71 �119.58
1144 1144 1.00 0.15 0.15 10.00 20.00 �1 244.87 �244.54
1144 1144 1.00 0.08 0.23 0.96 0.41 �1 12.11 �16.82
1144 1144 1.00 0.08 0.23 1.91 0.83 �1 24.24 �33.65
1144 1144 1.00 0.08 0.23 4.78 2.07 �1 60.93 �84.38
1144 1144 1.00 0.08 0.23 9.57 4.13 �1 123.89 �170.51
1144 1144 1.00 0.08 0.23 0.83 0.35 1 13.02 �31.84
1144 1144 1.00 0.08 0.23 1.65 0.69 1 26.05 �63.81
1144 1144 1.00 0.08 0.23 4.13 1.74 1 65.42 �161.51
1144 1144 1.00 0.08 0.23 8.26 3.47 1 132.66 �334.59
1144 1144 1.00 0.08 0.23 1.22 0.50 �1 10.31 13.22
1144 1144 1.00 0.08 0.23 2.43 1.00 �1 20.65 26.50
1144 1144 1.00 0.08 0.23 6.09 2.50 �1 52.17 67.25
1144 1144 1.00 0.08 0.23 12.17 5.00 �1 107.34 139.68
261 261 1.00 0.15 0.15 13.32 6.69 �1 238.35 58.69
261 261 1.00 0.15 0.15 11.40 2.83 �1 187.06 106.56
261 261 1.00 0.15 0.15 22.80 5.67 �1 424.40 249.74
261 261 1.00 0.15 0.15 45.60 2.75 �1 1124.20 980.51
261 261 1.00 0.15 0.15 26.63 13.37 �1 545.12 143.36
287 36 2.00 0.07 0.23 31.41 10.57 1 452.82 1131.90
287 36 2.00 0.15 0.15 15.05 9.41 �1 357.20 18.60
287 36 2.00 0.15 0.15 22.46 13.00 1 522.72 495.49
287 36 2.00 0.15 0.15 4.29 4.00 1 73.97 100.50
287 54 2.50 0.08 0.23 6.03 3.68 1 69.56 182.89
574 36 2.50 0.15 0.15 17.91 19.20 1 307.35 602.51
574 36 2.50 0.15 0.15 5.08 3.32 1 81.40 106.01

See Table 1 for definition of symbols.
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compared the fluid-particle drag results obtained from frozen
simulations where the particle positions were not updated in
time with those obtained from simulations where the par-
ticles were allowed to move but treated as elastic granular
gas (as in Wylie et al.20), (i.e., the particles do not respond
to fluid-particle drag, but execute elastic collisions). In these
test simulations, all the particles were of the same size and
computations were done at various grid resolutions. Both
types of simulations had the same Rem, ReT, and particle
volume fraction. The hydraulic radius of the interstitial
region is given by,

rh ¼ dh i 1� /ð Þ
6/

: (18)

As resolution increases, the particle diameter-to-lattice spacing
ratio, d, and the hydraulic radius-to-lattice spacing ratio, rh,
increase. In Figure 4, we have plotted the fluid-particle drag
obtained from both granular gas and frozen simulations as a
function of r�2

h for two different combinations of Rem and ReT.
It is clear that the two approaches yield different estimates for
the fluid-particle drag force at any finite grid resolution; this
difference decreases as the value of r�2

h decreases (which is
equivalent to increasing resolution). It is also clear that the
fluid-particle drag varies linearly with r�2

h as already noted by
van der Hoef et al.12 and Beetstra et al.19; when the fluid-
particle drag results are extrapolated to infinite resolution, the
difference between frozen and granular gas simulations
becomes small. Therefore, in our work we have performed
frozen particle simulations at a minimum of two different

Table 3. List of Bidisperse Suspension Simulations Performed at a Total Volume Fraction of / 5 0.4

N1 N2
d2
d1

/1 /2 Re1 Re21 d f�D1 f�D2
1526 1526 1.00 0.20 0.20 1.39 0.50 �1 45.54 19.21
1526 1526 1.00 0.20 0.20 6.97 2.50 �1 230.66 98.07
1526 1526 1.00 0.20 0.20 13.94 5.00 �1 475.01 205.31
1526 1526 1.00 0.20 0.20 1.13 0.76 �1 50.24 �28.64
1526 1526 1.00 0.20 0.20 2.26 1.53 �1 100.55 �57.29
1526 1526 1.00 0.20 0.20 5.66 3.81 �1 252.63 �143.35
1526 1526 1.00 0.20 0.20 11.31 7.63 �1 513.37 �287.58
1526 1526 1.00 0.20 0.20 1.00 2.00 �1 52.59 �52.57
1526 1526 1.00 0.20 0.20 2.00 4.00 �1 105.27 �105.21
1526 1526 1.00 0.20 0.20 5.00 10.00 �1 264.49 �264.35
1526 1526 1.00 0.20 0.20 10.00 20.00 �1 537.42 �537.16
1526 1526 1.00 0.20 0.20 56.98 14.16 �1 2958.50 1500.60
1526 1526 1.00 0.20 0.20 26.62 13.33 �1 1095.60 188.30
1526 1526 1.00 0.10 0.30 0.93 0.37 �1 26.33 �37.05
1526 1526 1.00 0.10 0.30 1.87 0.74 �1 52.68 �74.14
1526 1526 1.00 0.10 0.30 4.67 1.84 �1 132.11 �185.82
1526 1526 1.00 0.10 0.30 9.34 3.68 �1 266.95 �374.74
1526 1526 1.00 0.10 0.30 0.74 0.53 �1 27.89 �70.98
1526 1526 1.00 0.10 0.30 1.47 1.05 �1 55.82 �142.17
1526 1526 1.00 0.10 0.30 3.68 2.63 �1 139.98 �358.78
1526 1526 1.00 0.10 0.30 7.37 5.26 �1 282.54 �737.08
1526 1526 1.00 0.10 0.30 1.33 0.50 �1 23.20 30.75
1526 1526 1.00 0.10 0.30 2.66 1.00 �1 46.46 61.61
1526 1526 1.00 0.10 0.30 6.64 2.50 �1 117.08 155.72
1526 1526 1.00 0.10 0.30 13.29 5.00 �1 239.34 320.85
191 72 2.00 0.10 0.30 33.50 9.61 1 822.50 2227.80
382 48 2.00 0.20 0.20 11.39 6.48 1 357.27 483.58
382 48 2.00 0.20 0.20 33.39 18.68 1 1327.50 1750.80
382 48 2.00 0.20 0.20 6.68 3.74 1 209.30 275.27
382 72 2.50 0.10 0.30 7.27 3.68 1 156.08 436.63
764 48 2.50 0.20 0.20 5.95 3.32 1 198.29 231.38
764 48 2.50 0.20 0.20 21.44 19.21 1 771.13 1285.10

See Table 1 for definition of symbols.

Figure 3. Space-time plot of volume fraction in a freely
evolving ternary suspension.

The vertical axis is time, and the horizontal axis is the posi-
tion in the simulation domain. The variations in the gray
scale indicate variations in volume fraction with the darker
regions corresponding to regions of higher volume fraction.
This simulation was performed in a 200 � 70 � 70 periodic
box. The particle diameters used in this simulation were d1 ¼
7.6, d2 ¼ 9.6, and d3 ¼ 11.6, with respective particle numbers
of N1 ¼ 56, N2 ¼ 120, and N3 ¼ 24, giving a total particle
volume fraction of / ¼ 0.1. A gravitational force ghdi3/m2 ¼
1.11 � 10�2 is applied in the x-direction, and balanced by a
pressure gradient equal to the weight of the suspension per
unit volume. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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resolutions and extrapolated the fluid-particle drag to the
infinite resolution case using a linear fit as illustrated in Figure
4. At higher fluid viscosities like lf ¼ 0.36, we have found that
extrapolation of the fluid-particle drag results is unnecessary.
It can be seen in Figure 4c that while the fluid-particle drag at
any finite resolution differs between frozen and moving
simulations, the fluid-particle drag results indeed approach one
another in the limit of infinite resolution. Furthermore, if one
focuses on the dependence of the fluid-particle drag from the
frozen simulation case in Figure 4c (for a higher lattice
viscosity) as a function of r�2

h it can be seen that the fluid-
particle drag changes by about 1.6% from the lowest
resolution case to the extrapolated fluid-particle drag. Because

of the decreased dependence of the fluid-particle drag on grid
resolution at higher fluid viscosities, the drag results given at
lf ¼ 0.36 were not extrapolated in an attempt to decrease the
computational demand of the study.

Frozen Particle Simulation Results

Tables 1–3 give a list of the simulations performed at
each volume fraction in this work. The fluctuation velocities
of the particles were set to zero. The total force acting on
the two types of particles and the pressure gradient required
to maintain the average fluid velocity at zero were extracted
from the simulations. The fluid-particle drag force on the

Figure 4. Dimensionless fluid-particle drag force as a function of grid resolution.

Shown are results obtained from frozen particle simulations and those obtained from simulations where the particles were allowed to
move as granular gas. All the particles were of the same size. Both types of simulations had the same Rem, ReT, and particle volume frac-
tion. (a) Rem ¼ 7, ReT ¼ 0.6; lf ¼ 0.03 (lattice units), (b) Rem ¼ 20, ReT ¼ 1.2; lf ¼ 0.03 (lattice units), and (c) Rem ¼ 7, ReT ¼ 0.6; lf¼ 0.36 (lattice units).
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two particle types was then found using Eq. 10a and made
dimensionless using the following relationship: f�Di ¼ qfhdi3 fDi/
l2f . These drag results were then compared with values found
from the drag force model given by Eqs. 2–4, 6, and 11–17.
Figures 5a–c show parity plots comparing the model with simu-
lation data; the proposed model fits the data reasonably well
with an average deviation between model and simulation being
about 5%, while the maximum deviations were about 25%.

To demonstrate that our proposed fluid-particle drag rela-
tion can be generalized to polydisperse mixtures of spheres
with nonzero particle–particle relative motions, we per-
formed two ternary suspension simulations at / ¼ 0.21 and
/ ¼ 0.3. Table 4 gives the ternary fluid-particle drag results
obtained from lattice-Boltzmann simulations with the pre-
dicted fluid-particle drag obtained from Eqs. 2–4, 6, and 11–
17. It can be seen that the proposed model captures the

Figure 5. Parity plots showing the simulated fluid-particle drag force and that predicted by the proposed drag
force model for bidisperse systems with different particle sizes, volume fraction ratios and Reynolds
numbers summarized in Tables 1–3.

Results are shown for three different total volume fractions: (a) / ¼ 0.2, (b) / ¼ 0.3, (c) / ¼ 0.4.
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fluid-particle drag results of the ternary suspension simula-
tions with an average deviation of 12.5%.

Figure 6 illustrates that the fluid-mediated (hydrodynamic)
particle–particle drag (namely, the second term on the right
hand side of Eq. 11) accounts for 0–30% of the fluid-particle
drag force in a bidisperse suspension depending on the mag-
nitude of the relative velocity between particle species. From
Figure 6, it can be seen that the importance of the fluid-
mediated particle–particle drag increases as particle diameter
ratio is increased, leading to the conclusion that increases in
particle diameter ratio for a fixed Remix and Re12 increases
the contribution of the fluid-mediated particle–particle drag
to the total fluid-particle drag experienced by a particle of a
given type.

The fluid-mediated particle–particle drag force can be
compared with the particle–particle drag that results from
direct collisions between particles of different types, for
which Syamlal30 proposed the following:

f �i�j ¼ �6/i/jg0Re
2
ijsgn DUi � DUj

� � qi
qf

� �
qj
qf

� �
qi
qf
þ qj

qf

0
@

1
A (19)

where g0 is the radial distribution function (for the ij pair) at
contact for a polydisperse hard sphere mixture. This leads to:

f �D�i�j

f �i�j

¼
6a 1� /ð Þ F�

Di-fixedF
�
Dj-fixed

� �
g0Reij F�

Di-fixed þ F�
Dj-fixed

� � qi
qf

� �
þ qj

qf

� �
qi
qf

� �
qj
qf

� �
0
@

1
A: (20)

Since
F�
Di�fixedF

�
Dj�fixed

F�
Di�fixed

þF�
Dj�fixed

is only weakly dependent on Reynolds

number, the most significant dependence on Reynolds number
comes through Reij, and therefore as the difference between
the Reynolds numbers of different particle species increases,
the collisional particle–particle drag dominates the fluid-
mediated particle drag term. The quantitative analysis of Yin
and Sundaresan7 about the relative importance of the fluid-
mediated particle–particle drag and that due to collisions in the
Stokes flow regime remains largely unchanged even in the
presence of moderate inertia.

Summary

In this study, we combine the fluid-particle drag relation
described by Yin and Sundaresan7,8 for low Reynolds num-
ber flows and that for fixed beds under moderate fluid inertia
given by Beetstra et al.19 and construct a drag force model
that applies to polydisperse, high-Stokes-number, and moder-

ate-Reynolds-number suspensions of spherical particles,
where the local average velocities of particles of different
types are not the same. The proposed fluid-particle drag
force model is summarized by Eqs. 2–4, 6, 11–17.

To test this model, a number of lattice-Boltzmann simula-
tions of fluid flow in polydisperse assemblies of particles
were carried out from which computational data on fluid-par-
ticle drag were gathered. The particle mixture Reynolds
number was varied from 0 � Remix � 40, over a particle
volume fraction range of 0.2 � / � 0.4, with volume frac-
tion ratios of 1 � /i//j � 3, and particle diameter ratios
varying from 1 � di/dj � 2.5. Within this parameter range,
the proposed fluid-particle drag relation predicts the fluid-
particle drag in bidisperse and ternary systems with an aver-
age deviation of 5% and 12.5%, respectively.

Table 4. List of Ternary Suspension Results at / 5 0.21 and
/ 5 0.3

/ ¼ 0.21 / ¼ 0.3

/1//2/3 0.07/0.07/0.07 0.10/0.10/0.10
d1/d2/d3 14.0/17.5/35.0 14.0/17.5/35.0
N1/N2/N3 261/134/17 373/191/24
hdi 19/1 19.1
Re1/Re2Re3 6.8/9.1/28.3 8.3/10.6/29.9
f�D1/f

�
D2/f

�
D3 (simulation) 30.2/48.4/128.1 81.9/105.7/269.3

f�D1/f
�
D2/f

�
D3 (proposed model) 31.5/41.9/130.2 60.5/83.7/294.4

See Table 1 caption for definition of symbols.

Figure 6. The fluid-mediated particle-particle drag
force (normalized with the total fluid-particle
drag force) as a function of Re12 for the pro-
posed fluid-particle drag relation at two
different diameter ratios: (a) d1:d2 5 1, (b)
d1:d2 5 2.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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 Appendix E: Theory 
 

 A Lagrangian-Eulerian (LE) description is employed to describe the multiphase flow. 
The starting point for the LE description is the one-particle distribution function which evolves 
as: 

 ( ) ( ) coll| , , ; = ,i i
i i

f v f A r t f f
t x v

∂ ∂ ∂
+ +

∂ ∂ ∂
x v   (E.1) 

 where, collf  is the collisional term that depends on higher order statistics.  The one-particle 
distribution function );,,( trf vx  can be expressed in terms of a number density and a joint 
probability density function of velocity and radius i.e.,  

 .);|,(),(=);,,( trftntrf c
R xvxvx V   

 The joint pdf can be further expressed as  

 C
R

c
R

c
R ftrftrf ),;|(=);|,( | xvxv VV  (A.2) 

and hence 

.);,|(),,(=);,,( | trftrntrf c
R xvxvx V  

 where ),,( trn x  characterizes the number density conditional on the particle size in the 
suspension and ),;|(| trf c

R xvV  describes the distribution of velocities in a particular size class. In 

a poly-disperse suspension with a continuous size distribution, c
Rf  is specified and a size class in 

MFIX can be thought of as the integral of c
Rf over the interval ( ),r r r+ ∆ . If the particle size 

distribution is represented by discrete size classes, i.e., ( )( | ; ) =c
R i ii

f r t p r rδ −∑x , then,  

( ) ( ) ( ), ; = ,i in r t n t r rδ −x x  

( ) ( ) ( ), = , ; = ,i
i

n t n r t dr n t∑∫x x x . 

Appendix F: Governing equations for freely evolving poly-disperse suspensions 
 Here we briefly show the relevant governing equations of motion in the accelerating 
frame of reference. The average velocity of the fluid phase denoted ( )fu evolves according to 
the equation: 

 ( )

1

1 1 M
f

D f
f f f

d
dt V α

αρ ρ −
=

= − − −∑u g F A . (F.1) 

The above equation simply states that the average fluid velocity evolves because of the 
contribution of three forces acting because of: (i) the mean pressure gradient g ; (ii) the total 
drag force acting on the particles and (iii) the pseudo force acting due to the frame acceleration. 
The procedure to derive the above equation from the governing Navier-Stokes equations can be 
found in Tenneti et al. (2010).  
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 The governing equations of motion for the solid particles in the accelerating frame of 
reference can be derived similarly. For a poly-disperse suspension represented by M size classes, 
we can define a mean solid velocity for each size class as: 

 ( , )

1

1 N
n

n
r R

N

α
α

α
α =

= = ∑v V  

where, Nα is the total number of particles belonging to size classα and ( , )n αV is the velocity of the 
nth particle belonging to the size classα . The average solid velocity for each size class evolves 
because of the force exerted by the mean pressure gradient, the fluid-particle drag force, contact 
force due to collisions with particles belonging to other size classes and the pseudo force due to 
the frame acceleration. Mathematically this can be written as: 

  
1

1 1 M
C

D f
d r R
dt Vα α α β

βα α α
β α

ρ ρ φ − −
=
≠

 
 = = − + + − 
  

∑v g F F A . (F.2) 

In the above equation D α−F is the drag force acting on the size classα and C
α β−F is the contact 

force acting on the size classα due to collisions with particles belonging to the the size class β . 
We can define a mass weighted mixture mean velocity whose evolution is not governed by the 
collision forces (similar to a mono-disperse suspension) as follows: 
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Using the above definition for the mixture mean solids velocity, its evolution equation can be 
derived from Eq. .2 as: 
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In this work we assume that the density of all the size classes is same and equal to pρ and this 
assumption simplifies the form of the above equation. Next, the evolution equation for the mean 
slip velocity can be derived by subtracting (F..1) from (F..3): 

 
( ) 1

1 1 1 1 1
1

M
D

f p p f

d
dt V ααρ ρ φρ φ ρ −=

   
= − − −      −   

∑W g F . (F.4) 

It is clear that a balance between the mean pressure gradient and fluid-particle drag force 
alone determines the mean slip velocity, i.e., the slip velocity is independent of the frame 
acceleration. From Eq. .3 we can see that for ploy-disperse suspensions the frame acceleration 
can be chosen such that the rate of change of mixture mean solids velocity is zero. Thus the 
reference frame moves with the mixture mean solids velocity. 
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In this study, we constructed from lattice-Boltzmann simulations a drag correlation for bidisperse gas-solid
suspensions containing equally sized particles that are moving with different velocities relative to the interstitial
fluid. Our analysis is limited to flows at low Reynolds numbers and high Stokes numbers, and the microstructure
of the suspension is identical to that of a hard-sphere fluid. The Stokes drag forces acting on the two particle
species are related to the fluid-particle relative velocities by a friction coefficient matrix, the off-diagonal
components of which represent the particle-particle drag due to hydrodynamic interactions and were found
to give important contributions to the net drag force. The off-diagonals exhibit a logarithmic dependence on
the lubrication cutoff distance, a length scale on which the lubrication force between approaching particles
begins to level off. In our simulations, the total particle volume fraction φ ranges from 0.1 to 0.4, and the
volume fraction ratio φ1/φ2 ranges from 1:1 to 1:7. The results from these simulations are captured in explicit
constitutive models, which can be readily generalized to multicomponent mixtures.

I. Introduction

Gas-solid suspensions are involved in many chemical
engineering processes such as fluidizations and pneumatic
conveying. In order to optimize design of these processes and
reduce time and cost involved in experimentation, it has become
increasingly popular to use computer simulations to study the
dynamics of gas-solid flows. As it is impractical to solve the
Navier-Stokes equations for the fluid and the Newton’s
equations of motion for large number of particles, most of the
computational models for particulate flows in industrial scale
devices treat a suspension as a mixture of two or more
interpenetrating continua (the Euler-Euler approach). For
suspensions with very much fewer particles, one can also choose
to model the fluid phase as the only continuum and track the
motions of particles explicitly (the Euler-Lagrange approach).
In either approach, the model equations rely on constitutive
relations to account for the various fluid-particle and particle-
particle interactions. Of all the constitutive relations, the one
for fluid-particle drag is particularly important; in many
processes, fluid-particle drag is the primary force to overcome
gravity, keep the particles suspended, and transport the particles
to desired locations. It has a significant influence on the stability
and heat/mass transfer characteristics of the flow. As a recent
studybyBokkerset al.1 exemplifies, theaccuracyoffluid-particle
drag correlations is critically important for an accurate prediction
of the behavior of a gas fluidized bed. To date, the most accurate
fluid-particle drag correlations are established from either
carefully controlled experiments, or through direct numerical
simulations of suspensions that contain hundreds to a few
thousands of particles. In direct numerical simulations, one
solves the full Navier-Stokes equations with the no-slip
boundary condition applied between the fluid and the particles
as the only interaction between the two phases. For fixed beds
containing uniformly sized spheres (monodisperse), Hill et al.2,3

conducted direct numerical simulations using the lattice-
Boltzmann method, characterized the drag force as a function
of volume fraction φ and particle Reynolds number, and
computationally generated drag laws are now available in a

variety of forms.2–6 For fixed beds containing spheres of two
different sizes (bidisperse), van der Hoef et al.5 and Beetstra et
al.7 conducted lattice-Boltzmann simulations and proposed drag
correlations based on their numerical results. Even though these
drag formulas have been directly applied or adapted in ad hoc
ways to study the dynamics of gas-solid flows, in particular
fluidizations, it should be emphasized that a flowing suspension
is different from a fixed bed in that the particles move constantly,
and an accurate drag law for flowing suspensions should include
the effect of particle velocity fluctuations when Reynolds
number is not small,8 and the effect of polydispersity when the
suspension of interest contains particles of different sizes and/
or different velocities. Among these challenges, the effect of
polydispersity is particularly important, because it is a common
practice to vary the amount of “fines” in reaction vessels to
control the flow characteristics, yet polydisperse suspensions
have not been studied systematically using direct numerical
simulations.

In this study, we focus on gas-solid suspensions where the
Reynolds number of the particles Re ) FgUd/µ is small, yet
the Stokes number St ) (2Fp/9Fg)Re is large such that the
relaxation time of a particle is longer than the average time
between successive collisions. Here Fg and Fp are densities of
the fluid and the particles, respectively, U is a characteristic
velocity describing particle-fluid relative motion, d is particle
diameter, and µ is the viscosity of the fluid. This dual limit is
realistic for many gas-particle systems of practical interest, e.g.
50-100 µm particles suspended in air; it is also attractive in
that it allows for efficient characterization of the drag forces.
First, Re being small implies that the flow through particle
assemblies is quasi-steady. Therefore, the drag forces can be
characterized through static simulations as functions of particle
positions and velocities. In addition, in Stokes suspensions
the drag forces are linear functions of average particle velocities,
and are independent of the velocity fluctuations.8 One can thus
assume that particles of the same type have identical velocities,
which is very convenient for setting up the simulations. It is
valid to compute the forces as functions of particle positions
and velocities for gas-solid suspensions with high Stokes
numbers, because in such suspensions the fluid forces usually
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do not balance particle weights due to the long relaxation time
of the particles; the velocities of particles are controlled by
collisions and obey Gaussian distributions.9,10 In contrast, when
particle Stokes number is low, which is less common for
gas-solid suspensions but a reality for many liquid-solid
colloidal suspensions, as the relaxation time is very short, a
particle would adjust its velocity very quickly such that the
fluid-particle force balances its own weight. In this limit, it is
more appropriate to use particle positions and weights as input
parameters.

Our objective is to establish a drag law for low-Reynolds-
number polydisperse suspensions containing equally sized
spheres that are moving with different velocities relative to the
fluid. Such polydisperse suspensions are not as common in
practice as those with unequally sized spheres, but the study of
these simpler suspensions can give us insights and would pave
way to future studies that include size differences. Due to the
velocity difference between particle species, momentum will
be transferred from one species to others through direct
particle-particle collisions and indirect hydrodynamic interac-
tions, yielding the so-called particle-particle drag. The mo-
mentum transferred through collisions can be estimated from
kinetic theories of granular materials;9 the momentum transferred
through hydrodynamic interactions, on the other hand, is a part
of the fluid-particle drag force that is often neglected in many
ad hoc drag laws. Valiveti et al.10 conducted a preliminary
numerical study on this hydrodynamic particle–particle drag and
showed that there is distinctive between difference high Stokes
number gas–solid suspension and low Stokes number liquid-
–solid suspension. In this study, we have carried out more
comprehensive lattice-Boltzmann simulations of bidisperse
suspensions and examined the fluid-particle drag in detail. We
conducted simulations in the volume fraction range 0.1 < φ <
0.4 and varied volume fraction ratio φ1/φ2 from 1:1 to 1:7. As
will be exemplified in later sections of this paper, the
particle-particle drag transmitted through the fluid is always
an important part of the fluid-particle drag and should not be
neglected; the Stokes drag forces, which depend on the volume
fractions of particles and a lubrication cutoff distance that sets
an upper limit on the lubrication forces, can be very well fit by
a simple explicit drag law that can easily be generalized to
polydisperse suspensions.

This paper is organized in the following order. In section II,
we introduce the fluid-particle drag in the context of averaged
continua equations for gas-solid flows, discuss common drag
correlations used in past studies, and propose a new drag force
expression for low-Re, high-St gas-solid suspensions of spheres
with a binary velocity distribution. In section III, we present
the lattice-Boltzmann method, the setup of the simulations, and
test runs to validate the characteristics of our bidisperse
gas-solid suspensions. In section IV, we characterize the
dependence of the drag forces on the volume fractions of
particles, velocities, and lubrication interactions and bring forth
a simple drag correlation that can be easily generalized to
polydisperse suspensions containing equally sized particles that
are moving with three or more velocities relative to the fluid.
In section V, we summarize and conclude the paper.

II. Fluid-Particle Drag in Polydisperse Suspensions

A. Drag in the Context of Averaged Equations. The
Euler-Euler approach for monodisperse gas-solid suspensions
treat the particles and the interstitial gas as two interpenetrating
continua. The averaged equations governing the dynamics of
these continua are discussed in many publications, for example,

see the work of Jackson.11 When a suspension contains more
than one type of particles, the two-fluid model equations can
be easily generalized to multifluid model equations (for ex-
amples see the works of Syamlal et al.12 and Owoyemi et al.13).
Assuming that the suspension of interest contains two different
types of particles and there is neither aggregation nor breakup
of particles, we can write down the continuity equation for the
gas phase

∂[(1-∑
i)1

2

φi)Fg]
∂t

+ ∇ ·[(1-∑
i)1

2

φi)FgUg] ) 0 (1)

and that for the particle phases (i ) 1 and 2)

∂(φiFi)

∂t
+ ∇ ·(φiFiUi)) 0 (2)

In eqs 1 and 2, Fg and Ug are the density and averaged velocity
of the gas, φi, Fi, and Ui are the volume fraction, density, and
average velocity of the ith particle phase. The averaged
momentum equation for the gas is

[(1-∑
i)1

2

φi)FgUg]
∂t

+ ∇ ·[(1-∑
i)1

2

φi)FgUgUg] ) ∇ ·Sg -

∑
i)1

2

fg-i + (1-∑
i)1

2

φi)Fgg(3)

The momentum equations for the particle phases are

∂(φiFiUi)

∂t
+ ∇ ·(φiFiUiUi)) ∇ ·Si +∑

i)1

2

fg-i +∑
j)1

2

fj-i + φiFig

(4)

In eqs 3 and 4, Sg and Si are the stress tensors for the gas and
the particle phases; fg-i represent the interactive forces per unit
volume of suspension between the gas and the ith particle phase;
fj-i represents the interactive forces per unit volume of suspen-
sion between particles phase j and particles phase i due to
collisions and/or enduring contacts; finally, g is the gravity. Sg

is usually expressed as -PI + τg with P being the pressure in
the gas phase and τg as the viscous stress. In order to solve eqs
1–4, one needs to supply constitutive models for τg, fg-i, Si,
and fj-i.

Closures for Si and fj-i for high Stokes number systems are
often sought through kinetic theories. Alternate simulation
methods, such as the Euler-Lagrange approach (e.g., the work
of Feng et al.14) or the multiphase particle-in-cell (MP-PIC)
method,15 circumvent the need to integrate eqs 2 and 4; instead,
they track the motions of particles using Newton’s equations
of motion. Nevertheless, they still need constitutive models for
the fluid-particle interaction force fg-i. In general, a complete
description of fg-i should include contributions from a variety
of sources: the drag force resulted from the relative velocity
between the fluid and the particles fDg-i, the added mass force
associated with the current relative acceleration, the history
effect associated with the past history of relative acceleration,
the generalized buoyancy, and the lift force, etc. In our
simulations, we consider steady, low-Re flows with no bulk
velocity gradient and focus on fDg-i. The generalized buoyancy
force is written as φi∇ ·Sg, which in the absence of bulk velocity
gradients (hence τg ) 0), simplifies to -φi∇ P. Then, we write

fg-i )-φi ∇ P+ fDg-i (5)
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Drag defined this way is consistent with the majority of chemical
engineering literature. An exception is the work by Hill et al.,2,3

where they considered the entire fg-i as the drag and did not
subtract the bulk pressure gradient -φi∇ P from fg-i.

B. Drag Correlations for Polydisperse Gas-Solid
Suspensions. Owing to the growing interest in flows involving
polydisperse suspensions, there have been a number of computa-
tional studies in the past few years on the mixing and segregation
in fluidized polydisperse gas-solid suspensions.1,13,14,16–21 In these
studies, the closure for the fluid-particle drag fDg-i is usually a
simple modification of the drag law for monodisperse suspensions
with a general form

fDg-i ) �i(Ug -Ui) (6)

In this equation, the friction coefficient �i depends on the
volume fraction φi, the total volume fraction φ, and the
relative velocity Ug - Ui. A common drag law of this type,
which is used in refs 17, 18, 19, 1, 20, and 21, is a
modification of the Gidaspow model,22 which itself is a
combination of the Ergun equation23 at high volume fractions
and the Wen-Yu drag law24 at low volume fractions

�i ) { 150
φiφµ

(1- φ)di
2
+ 1.75

Fgφi

di
|Ug -U|, φg 0.2

0.75
Fgφi(1- φ)-1.65

di
CDi|Ug -U|, φ < 0.2

(7)

with CDi given by

CDi ) { 24
Rei

(1+ 0.15Rei
0.687), Rei < 1000

0.43, Reig 1000
(8)

and Rei ) (1 - φ) Fg|Ug-Ui|di/µ. The drag models used in the
works of van Wachem et al.,16 Feng et al.,14 and Owoyemi et
al.13 are different from eqs 7 and 8, but they still conform with
eq 6. These drag laws imply the drag acting on species i is
independent of the velocities of other particle species Ug - Uj

(j * i), which is not physically sound because the presence of
other particle species affects the drag not only by changing the
total solid fraction but also through direct and indirect
particle-particle momentum transfers (as discussed in the first
section of the paper) that are proportional to the relative
velocities between different particle species. In many Euler-Euler
type studies, the momentum equations for particles contain a
particle-particle drag term, the closure of which is originated
from kinetic theories of dense granular materials.25,26 While this
particle-particle drag term can account for the interaction
between different particle species due to direct collisions, the
indirect particle-particle momentum transfer mediated by the
interstitial fluid, which is an integrated part of the drag force,
has not been considered and modeled in previous studies.

In order to assess the importance of the particle-particle drag
due to hydrodynamic interactions, we propose to write the
fluid-particle drag forces into a form that includes not only
the velocity of species i but also the velocities of other species.
For a bidisperse suspension where the relative velocities ∆U1

) U1 - Ug and ∆U2 ) U2 - Ug are aligned in the same
direction, we can consider a drag law in the following form

{ FD1 ) -B11∆U1 -B12∆U2

FD2 ) -B21∆U1 -B22∆U2
(9)

where FDi is the average drag force per particle of type i, and
Bij is the particle-specific friction coefficient which is a 2 × 2
matrix. Negative signs are placed before Bij to reflect the fact

that the drag forces are usually opposite to the direction of
relative motion. In eq 9, the influence on the drag force on
particles of type i due to the motion of particles of type j is
reflected through the off-diagonal components of Bij.

Because in two- and multifluid models fluid-particle drag
forces are often averaged over a volume, it is useful to consider
the drag forces per unit volume of suspension

{ fD1 ) -�11∆U1 - �12∆U2

fD2 ) -�21∆U1 - �22∆U2
(10)

Here fDi ) niFDi, ni is the number density of the ith species in
the suspension, and �ij ) niBij is the Volume-specific friction
coefficient. We will present our simulation results in both
particle-specific and volume-specific forms. Equation 9 can be
nondimensionalized using FDi

/ ) FgFDi/µ2 and Bij
/ ) Bij/µd

{ FD1
/ ) -B11

/ ∆Re1 -B12∆Re2

FD2
/ ) -B21

/ ∆Re1 -B22∆Re2

(11)

Equation 10 can be nondimensionalized using fDi
/ ) Fgd

3fDi/µ2

and �ij
/ ) d2�ij/µ

{ fD1
/ ) -�11

/ ∆Re1 - �12
/ ∆Re2

fD2
/ ) -�21

/ ∆Re1 - �22
/ ∆Re2

(12)

In the above two equations, the Reynolds numbers are defined
as ∆Rei ) Fg∆Uidi/µ.

C. Drag Law for Polydisperse Liquid-Solid Suspen-
sions in the Low-Reynolds-Number Limit. In the following
discussion, we review the development of drag laws for
polydisperse liquid-solid suspensions. A primary distinction
between gas-solid suspensions and liquid-solid suspensions
is that the Stokes number, a measure of the viscous relaxation
time of particles, is usually on a similar order of magnitude as
the Reynolds number in liquid-solid suspensions, whereas in
gas-solid suspensions Re is usually smaller than St by several
orders of magnitude. As a result, in low-Re liquid-solid
suspensions, Stokes numbers are usually low as well, and
particles would change their velocities very quickly such that
the fluid-particle force acting on a particle balances its weight.
For this reason, the drag laws for liquid-solid suspensions are
usually written with the velocities on the left-hand side. The
weights of particles, on the other hand, are placed on the right-
hand side as input parameters. For example, the correlations
for the hindered settling velocities in bidisperse liquid-solid
suspensions are usually expressed as

Ui )Ui
0Hi(φ1, φ2, F1, F2, Ff, d1, d2, µ, g) (13)

Here, Ui and Ui
0 are the average sedimentation velocity and

terminal velocity of type-i particles, respectively, Ff is the density
of the fluid, and Hi is the hindered settling function. For
monodisperse suspensions, it is well-known that H can be well
fitted by H ) (1 - φ)n with n as a function of the terminal
Reynolds number (based on Ui

0)sthe Richardson-Zaki for-
mula.27 Starting from the Richardson-Zaki formula, several
authors proposed different modifications for polydisperse
liquid-solid suspensions, for example, see the work of Mirza
and Richardson,28 Masliyah,29 Selim et al.,30 and Patwardhan
and Tien.31

A particularly important result on the hindered settling
functions for bidisperse liquid-solid suspensions was obtained
by Batchelor32 and Batchelor and Wen.33 In the limit Re f 0
and Stf 0, Batchelor developed a rigorous theory32 to account
for the hydrodynamic interactions in a dilute bidisperse suspen-
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sion of spheres and found the leading order corrections to the
hindered settling velocities

{ U1 ) U1
0(1+ S11φ1 + S12φ2)

U2 ) U2
0(1+ S21φ1 + S22φ2)

(14)

where the coefficients Sij are complex functions of the particle
size ratio d1/d2, the reduced density ratio γ ) (F1 - Ff)/(F2 -
Ff), the Péclet number based on the ratio between particle relative
motion and Brownian diffusion, and interparticle forces. Nu-
merical data for Sij were given in Batchelor and Wen,33 and
they are in good agreement with experiments conducted in dilute
polydisperse colloidal and noncolloidal suspensions.34,36 In the
limit of high Péclet number and with interparticle forces absent,
for a suspension of same-size spheres, Batchelor’s theory gives

S) [ -2.65 -2.52- 0.13γ-1

-2.52- 0.13γ -2.65 ] (15)

Substituting eq 15 and Ui
0 ) gd2(Fi - Ff)/18µ into eq 14 yields

an explicit relation between the sedimentation velocities of the
particles and the forces Fi ) 3πµdUi

0

{ 3πµdU1 ) (1- 2.65φ1 - 2.52φ2)F1 - 0.13φ2F2

3πµdU2 ) -0.13φ1F1 + (1- 2.52φ1 - 2.65φ2)F2
(16)

in which the coefficients relating Ui and Fi are known as the
mobility matrix.

In order to extend Batchelor’s results to concentrated suspen-
sions, Davis and Gecol37 combined the Richardson-Zaki
formula27 with Batchelor’s results and proposed an ad hoc drag
law that agrees reasonably well with data obtained from
bidisperse sedimentation experiments conducted in concentrated
suspensions. More accurate numerical data for the mobility
matrix are available in Revay and Higdon,38 where the authors
conducted a comprehensive numerical study in suspensions
containing equally sized particles of two different densities for
a wide range of volume fractions (0.025 < φ < 0.50). Revay
and Higdon’s results can be summarized as

3πµdUi )M0Fi + (M̄-M0)(φ1

φ
F1 +

φ2

φ
F2) (17)

where M0 and Mj only depend on the total volume fraction φ

and can be fit by the following expressions

{ M0 ) 1- 1.83φ+ 0.4084φ
2 - 0.2108φ

3

M̄ ) (1- φ)6.55(1+ 3.458φ
2 + 8.990φ

3)
(18)

In view of the fact that, in a sedimenting bidisperse suspension
U1φ1 + U2φ2 + Ug(1 - φ) ) 0 and -∇ P ) n1F1 + n2F2, it is
easy to obtain a relation between the sedimentation velocities
Ui and the relative velocities ∆Ui

{ ∆U1 )
1- φ2

1- φ
U1 +

φ2

1- φ
U2

∆U2 )
φ1

1- φ
U1 +

1- φ1

1- φ
U2

(19)

and a relation between the fluid-particle forces Fi and the drag
forces FDi

{ FD1 ) (1- φ1)F1 - φ2F2

FD2 ) -φ1F1 + (1- φ2)F2
(20)

Thus, in low-Re bidisperse liquid-solid suspensions, the
mobility matrix is all that is needed to fully describe the relation
between fluid-particle relative velocities and the drag forces.

As one compares the drag law for bidisperse liquid-solid
suspensions of equally sized spheres eqs 17 and 18 to the drag
law that we hope to establish for bidisperse gas-solid suspen-
sions eq 9, it is natural to ask the question: how different is the
friction coefficient matrix Bij from the inverse of the mobility
matrix when the necessary transformations eqs 19 and 20 are
taken into consideration? The mobility matrix formulation is
established for the limit where both fluid and particle inertia
are negligibly small. Particles thus have very short relaxation
times and are always at a force balance, and direct collisions
seldom occur due to the strong lubrication forces. The friction
matrix formulation, on the other hand, is for gas-solid
suspensions with zero fluid inertia but high particle inertia.
Because of the large relaxation times, the particles are generally
not at a force balance, and the stresses in the gas usually cannot
prevent direct collisions. As a result, we will see that the drag
forces acting on the particles, which include the particle-particle
drag transmitted through the fluid, are strong functions of local
lubrication interactions.

III. Simulation Method and Validations

We characterized the drag forces in bidisperse suspensions
using a lattice-Boltzmann method developed by Ladd39,40 for
suspensions of spherical particles. It has been modified and
improved over the years, and a complete review of the current
version is available in Ladd and Verberg.41 The lattice-
Boltzmann method is different from conventional finite differ-
ence, finite volume, or finite element methods in that it does
not solve the Navier-Stokes equations directly. Rather, it
simulates the evolution of a simplified fluid molecular velocity
distribution on a rectangular, space-filling lattice. The propaga-
tion and relaxation of this molecular velocity distribution are
designed such that fluid density, momentum, and stresses, being
the zeroth-, first-, and second-order moments of the velocity
distribution, obey the Navier-Stokes equations on large length
and time scales. Our lattice-Boltzmann method employs a 19-
velocity model (commonly referred to as D3Q19 model to
denote that the simulations are in three dimensions and that the
continuous distribution of the fluid molecular velocity is
discretized as a sum of 19 discrete velocity quadratures) in which
the density of the fluid Fg ) 36. The viscosity of the fluid was
set to µ ) 6.0 which is a good choice for Stokes flows.

Since the drag forces contain particle-particle drag
transmitted through the fluid due to the relative motion
between particle species, we expect that they would be
influenced by the lubrication forces between particles, and
an accurate solution of the lubrication forces is needed. As
capturing the lubrication forces from simulations requires a
very fine lattice in the gaps between particles, in our lattice-
Boltzmann method the lubrication interactions between
spheres are solved analytically and imposed to the lattice
solutions in an explicit manner. The detail of the implemen-
tation of the lubrication forces is supplied in the paper by
Nguyen and Ladd.42 They find that when the particles are
separated by more than one lattice spacing, the lattice-
Boltzmann method can fully resolve the hydrodynamic
interaction between the particles; when the distance between
particles is less than one lattice spacing, the lubrication forces
obtained from the lattice-Boltzmann no longer increase with
decreasing separation, and corrections must be applied to the
forces so that they agree with the analytical solutions.43 In
our lattice-Boltzmann code, such corrections are applied to
both normal and tangential motions.
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The lubrication forces between two spheres with different
velocities diverge as the separation between the spheres ap-
proaches zero. In reality, this divergence may be removed by
surface roughness, finite weight of particles, or noncontinuum
effects. All of these effects may be approximated in our
simulation by specifying a cutoff distance λ: when the separation
between particles becomes less than λ, the lubrication forces
no longer increase but remain as constants. In our simulations,
we found that the particle-particle drag through hydrodynamic
interactions increases with decreasing λ following a logarithmic
scale. The breakdown of the lubrication force at λ thus plays
an important role in limiting the magnitude of the particle-particle
drag.

We began our simulations by first randomly distributing
spherical particles in cubic, periodic domains. Then, we
employed Monte-Carlo steps to ensure that the spatial distribu-
tion of particles satisfies the equilibrium hard-sphere distribution,
as demonstrated in Figure 1. After that, the particles were
randomly designated as being type-1 or type-2 such that the
two types of particles are well mixed, and they were assigned
velocities U1 and U2, respectively. These velocities generate a
fluid flow within the particle assembly, the detail of which is
solved by the lattice-Boltzmann method. Meanwhile, a pressure
gradient was applied to the fluid to ensure that the net flow rate
of the fluid through the particle assembly is zero. The velocities
assigned to the particles U1 and U2 thus became equivalent to
the relative velocities ∆U1 and ∆U2. Once the flow reached the
steady state, the forces F1 and F2 acting on the particles were
obtained by integrating the hydrodynamic stresses over particle
surfaces and averaging over all particles of the same species.
The drag forces FD1 and FD2 were then calculated from

FDi )Fi +
πd3

6
∇ P (21)

where ∇ P is the bulk pressure gradient acting on the fluid that
balances the total forces

- ∇ P) n1F1 + n2F2 (22)

The accuracy of the lattice-Boltzmann simulation, as in any
other type of fluid dynamic simulations, is affected by the choice
of lattice resolution and system size L. To assess the influence
of lattice resolution and system size, test simulations were
conducted. As shown in Table 1, the results with d ) 9.6 and
d ) 12.48 generally agree within 90% uncertainty levels. Here
d denotes the number of lattice nodes across the diameter of

the particle. Thus, d ) 9.6 implies that the lattice spacing is
1/9.6 times the particle diameter. At the resolution of d ) 9.6,
the results obtained from L/d ) 15.6 and L/d ) 20.8 systems
also agree within 90% uncertainty levels. (As L/d increases,
the number of particles inside the simulation domain increases.)
Therefore, we chose to use d ) 9.6 and L/d ) 15.6 for the
majority of our simulations.

We first studied pressure driven flows through fixed beds with
monodisperse spheres to check the accuracy of the method. This
test is the same as those conducted by Hill et al.2 and by van
der Hoef et al.5 As Figure 2 shows, our simulated drag forces
were in excellent agreement with Koch and Sangani’s formula4

FD-fixed
/ )

FD-fixed

3πdµUs
)

{ (1- φ)(1+ 3

√2
φ

1/2 + 135
64

φ ln φ+ 17.14φ)
1+ 0.681φ- 8.48φ

2 + 8.16φ
3

,
φ < 0.4

10φ

(1- φ)2
, φ > 0.4

(23)

and van der Hoef et al.’s formula5

FD-fixed
/ )

FD-fixed

3πdµUs
) 10φ

(1- φ)2
+ (1- φ)2(1+ 1.5√φ) (24)

for fixed beds containing randomly distributed monodisperse
spheres under the Stokes flow condition. In eqs 23 and 24, Us

is the superficial gas velocity through the fixed bed and Us )
(1 - φ)∆U. Note that in eqs 23 and 24, the drag forces were
nondimensionalized using the Stokes drag on isolated particles,
which is a common choice for fixed bed simulations as there is
only one velocity scale for fixed beds. In this study, as we are
interested in polydisperse suspensions with multiple velocities,
it is more convenient to use FDi

/ ) FgFDi/µ2 to nondimensionalize
the drag forces.

We then validated the linear dependence of the drag forces
on the relative velocities. In this test, we set φ1 ) φ2 ) 0.05,
L/d ) 15.6, ∆Re2 ) 0, and examined FDi

/ as functions of ∆Re1.
As shown in Figure 3, the drag forces can be fit very well by
straight lines starting from the origin, proving that FDi

/ are linear
functions of ∆Re1. Due to this linearity, in our suspensions the
friction coefficients Bij

/ and �ij
/ are independent of relative

velocities and can be determined using two sets of simulations.
In the first set of simulations, we let ∆Re1 be 0.01 and ∆Re2 be
zero to determine B11

/ and B21
/ ; in the second set, we let ∆Re1

be zero and ∆Re2 be 0.01 to determine B12
/ and B22

/ .
Finally, we confirmed that, in our suspensions, the velocity

fluctuations of particles do not affect the drag. We conducted
two sets of simulations: one with φ1 ) φ2 ) 0.10 and another
with φ1 ) φ2 ) 0.15. The average velocities of the two particle
species satisfy 〈∆Re1〉 ) 0 and 〈∆Re2〉 ) 0.01; the fluctuating
velocities obey Gaussian distributions with standard deviations
Reσ1 ) Reσ2 ) 0.005. As shown in Table 2, the drag forces
found in suspensions with velocity fluctuations are nearly
identical to those obtained from simulations without velocity
fluctuations, which is consistent with the work of Wylie and
Koch.8Because of this feature, in our simulations, we can assign
same velocity to all particles of the same type and neglect the
effect of velocity fluctuations.

Even though we can exploit the various features discussed
above to make our computations efficient, a full characterization
of Bij

/ and �ij
/ is still a nontrivial task that requires intensive

computations. In order to study the dependence of Bij
/ and �ij

/

on the volume fractions, we varied the total volume fraction

Figure 1. Radial distribution of particles in our initial configurations. φ1 +
φ2 ) 0.34. The triangles represent the radial distribution averaged from 18
configurations, each of which contains 1268 particles. The solid line
represents the radial distribution in a hard-sphere fluid of the same volume
fraction obtained from the work of Barker and Henderson.49
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from 0.1 to 0.4, and the volume fraction ratios of the particles
from 1:1 to as high as 1:7. The number of particles in our
systems ranges from 728 (φ ) 0.1) to 2914 (φ ) 0.4). For each
combination of φ1 and φ2, we conducted 10-15 simulations
with different particle configurations to obtain good statistics.
In order to characterize the dependence of Bij and �ij on the
lubrication cutoff distance λ, we subsequently varied λ/d from
0.001 to 0.01.

IV. Result and Discussion

In Tables 3–6, we list the numerical values of Bij
/ and �ij

/ found
from simulations. The four tables correspond to λ/d ) 0.001,
0.002, 0.005, and 0.01, respectively. It is clear that the off-
diagonal components in Bij

/ and �ij
/, which represent the

particle-particle drag due to hydrodynamic interactions, are very
important contributions to the net fluid-particle drag. In a
relatively dilute suspension with φ1 ) φ2 ) 0.05, the size of
the off-diagonals is more than 10% of the diagonals; when φ1

+ φ2 ) 0.40, the off-diagonals components are 20-30% of the
diagonals. The importance of the off-diagonals thus grows
rapidly with increasing volume fraction.

When we seek appropriate functions to fit the large amount
of data presented in Tables 3–6, it is important to realize that
the four entries in Bij

/ and �ij
/ are not totally independent of each

other. In fact, they must satisfy two constraints and there is
only one free parameter in Bij

/ and �ij
/ for us to fit.10 The first

constraint comes from the principle of action and reaction
between the two types of particles that requires the volume-
specific friction coefficient �ij

/ to be strictly symmetric. In the

raw data listed in the tables, it can be observed that �ij
/ are indeed

approximately symmetric. The condition �12
/ ) �21

/ leads to

φ1B12
/ ) φ2B21

/ (25)

In Figure 4 where we plotted the values of B12/B21 as a function
of φ2/φ1, the presence of this symmetry is evident. The second
constraint comes from the fact that if we let the two particle
species have identical velocities, our bidisperse suspension
would become a monodisperse fixed bed. Thus, if ∆Re1 ) ∆Re2,
the drag forces FD1

/ and FD2
/ should both equal the drag force in

a monodisperse fixed bed of the same volume fraction. This
constraint requires

B11
/ +B12

/ )B21
/ +B22

/ )B/ (26)

where B/ is the friction coefficient in a fixed bed. B/ satisfies
FgFD-fixed/µ2 ) B/∆Re and is related to FD-fixed

/ in eqs 23 and
24 by

Table 1. Test Simulations Showing the Effect of Lattice Resolution and System Size on the Fluid-Particle Drag Forcesa

suspension size fluid-particle drag force d ) 5:84 d ) 9:6 d ) 12:46

small FD1
/ 0.0123 ( 0.0053 0.0200 ( 0.0025 0.0164 ( 0.0022

L ) d ) 10:3 FD2
/ -0.2156 ( 0.0033 -0.2266 ( 0.0030 -0.2276 ( 0.0022

(M ) 8) (M ) 8) (M ) 6)
intermediate FD1

/ 0.0274 ( 0.0017 0.0304 ( 0.0027
L ) d ) 15:6 FD2

/ -0.2352 ( 0.0016 -0.2380 ( 0.0028
(M ) 50) (M ) 12)

large FD1
/ 0.0258 ( 0.0025 0.02370 ( 0.0024

L ) d ) 20:8 FD2
/ -0.2226 ( 0.0020 -0.2304 ( 0.0024

(M ) 7) (M ) 5)

a For the simulations listed in this table, φ1 ) φ2 ) 0.05, ∆Re1 ) 0, ∆Re2 ) 0.01, and λ/d ) 0.001. The numbers before the ( are the dimensionless
drag forces FDi

/ ) FgFDi/µ2; the numbers after the ( are the 90% uncertainty from M configurations.

Figure 2. Normalized fluid-particle drag in a monodisperse fixed bed. The
squares were obtained from our simulations. They agree very well with the
drag law by Koch and Sangani4 [eq 23, dashed line] and the drag law by
van der Hoef et al.5 [eq 24, solid line].

Figure 3. Linear dependence of FDi
/ (open symbols) and FD2

/ (filled symbols)
on ∆Re1 in a bidisperse suspension with φ1 ) φ2 ) 0.05. The size of the
computational domain L/d ) 15.6; the lubrication cutoff λ/d ) 0.001; the
velocity of the second particle phase ∆Re2 ) 0. The dashed lines are the
best linear fits with R2 being the coefficient of regression.

Table 2. Effect of Particle Velocity Fluctuations on the
Fluid-Particle Draga

Reσi ) 0 Reσi ) 0.005

FD1
/ 0.0769 ( 0.0040 0.0733 ( 0.0059

φ1 ) φ2 ) 0.10 FD2
/ -0.3914 ( 0.0036 -0.3927 ( 0.0065

FD1
/ 0.2120 ( 0.0099 0.1908 ( 0.0091

φ1 ) φ2 ) 0.15 FD2
/ -0.6478 ( 0.0099 -0.6483 ( 0.0083

a The average velocities are 〈∆Re1〉 ) 0 and 〈∆Re2〉 ) 0.01. Reσi is
the Reynolds number based on the standard deviation of particle
velocity distribution, which assumes the shape of a Gaussian. The
lubrication cutoff λ/d ) 0.001. The numbers after the ( are the 90%
uncertainties from 10-14 simulations with different configurations.
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B/) 3π(1- φ)FD-fixed
/ (27)

In Figure 5, we show that B11
/ + B12

/ and B21
/ + B22

/ (with λ/d )
0.001), when plotted as functions of φ, agree very well with B/

for monodisperse fixed beds. In view of eqs 25 and 26, it is
convenient to define a free parameter R to represent the off-
diagonals

R)-B12
/ /B/φ2 (28)

and the entire Bij
/ can then be expressed as a function of R

[B11
/ B12

/

B21
/ B22

/ ] ) 3π(1- φ)FD-fixed
/ [1+ φ2R -φ2R

-φ1R 1+ φ1R ] (29)

Here, we replaced B/ with 3π(1 - φ)FD-fixed
/ to emphasize eq.

29’s connection to the drag in monodisperse fixed beds. From
eq 29, it is easy to obtain an expression for the volume-specific
friction coefficient �ij

/

[�11
/ �12

/

�21
/ �22

/ ] ) 18(1- φ)FD-fixed
/ [(1+Rφ2)φ1 -Rφ1φ2

-Rφ1φ2 (1+Rφ1)φ2 ]
(30)

The dimensionless drag forces per unit volume of suspension
thus are

{ fD1
/ ) -18(1- φ)φ1FD-fixed

/ [∆Re1 +Rφ2(∆Re1 -∆Re2)]

fD2
/ ) -18(1- φ)φ2FD-fixed

/ [∆Re2 +Rφ1(∆Re2 -∆Re1)]

(31)

The first term on the right-hand-side of eq 31, -18(1 -
φ)φiFD-fixed

/ ∆Rei, represents the drag acting on the ith species
when all the particles have the same velocity ∆Rei relative to
the fluid; the second term on the right-hand-side of eq 31
represents the particle-particle drag transmitted through the
fluid due to the velocity difference between particle species i

Table 3. Friction Coefficient Matrix Bij
/ and the Volume Specific Friction Coefficient Matrix �ij

/ Obtained from Simulations with λ/d ) 0.001a

φ1 φ2 B11
/ B12

/ B21
/ B22

/ �11
/ �12

/ �21
/ �22

/

0.05 0.05 23.5 (0.2) -2.7 (0.2) -2.7 (0.2) 23.5 (0.2) 2.24 -0.26 -0.26 2.24
0.05 0.10 32.6 (0.4) -7.4(0.8) -3.5 (0.2) 29.5 (0.4) 3.11 -0.71 -0.67 5.63
0.05 0.15 43.6 (0.8) -11.7 (1.1) -4.0 (0.3) 35.3 (0.4) 4.2 -1.1 -1.2 10.1
0.10 0.10 39.1 (0.4) -7.7 (0.4) -7.7(0.4) 39.1 (0.4) 7.5 -1.5 -1.5 7.5
0.05 0.20 56.8 (1.0) -18.7 (1.0) -4.9 (0.3) 42.5 (0.3) 5.4 -1.8 -1.9 16.2
0.10 0.15 52.7 (0.9) -14.0(0.9) -10.0 (0.6) 47.4 (0.5) 10.1 -2.7 -2.9 13.6
0.05 0.25 79.1 (0.9) -35.2 (1.7) -7.1 (0.2) 51.0 (0.4) 7.6 -3.4 -3.4 24.4
0.10 0.20 70.4 (0.6) -25.3 (1.1) -13.2(0.3) 56.8 (0.6) 13.4 -4.8 -5.0 21.7
0.15 0.15 64.8 (1.0) -21.2 (1.0) -21.2 (1.0) 64.8 (1.0) 18.6 -6.1 -6.1 18.6
0.05 0.30 101.3 (1.1) -45.9(1.1) -8.0 (0.2) 60.6 (0.2) 9.7 -4.4 -4.6 34.7
0.10 0.25 93.9 (1.6) -40.2 (1.2) -16.1 (0.6) 69.2 (0.5) 17.9 -7.7 -7.7 33.0
0.15 0.20 83.5 (1.4) -31.6 (1.1) -22.8(1.0) 76.8 (0.9) 23.9 -9.0 -8.7 29.3
0.05 0.35 127.1 (2.9) -64.3 (3.9) -9.2 (0.4) 73.0 (0.6) 12.1 -6.1 -6.2 48.4
0.10 0.30 119.3 (1.5) -56.5(1.6) -18.5 (0.5) 82.6 (0.5) 22.8 -10.8 -10.6 47.3
0.15 0.25 111.6 (1.8) -49.6 (1.9) -28.9 (1.2) 93.3 (1.1) 32.0 -14.2 -13.8 44.6
0.20 0.20 102.5 (1.6) -38.8 (1.6) -38.8(1.6) 102.5 (1.6) 39.2 -14.8 -14.8 39.2

a In the columns for Bij
/, the numbers in parentheses are the 90% uncertainties. The uncertainties for �ij

/ are not shown for brevity.

Table 4. Friction Coefficient Matrix Bij
/ and the Volume Specific Friction Coefficient Matrix �ij

/ Obtained from Simulations with λ/d ) 0.002a

φ1 φ2 B11
/ B12

/ B21
/ B22

/ �11
/ �12

/ �21
/ �22

/

0.05 0.10 31.5 (0.4) -6.4 (0.7) -2.9 (0.2) 29.1 (0.3) 3.01 -0.61 -0.55 5.55
0.10 0.10 37.8 (0.3) -6.6(0.4) -6.6 (0.4) 37.8 (0.3) 7.21 -1.26 -1.26 7.21
0.10 0.15 50.4 (0.7) -11.6 (0.6) -8.5 (0.4) 45.4 (0.4) 9.6 -2.2 -2.4 13.0
0.15 0.15 62.0 (1.0) -18.5 (1.0) -18.5(1.0) 62.0 (1.0) 17.8 -5.3 -5.3 17.8
0.10 0.25 86.7 (1.1) -34.7 (1.2) -13.2 (0.5) 67.1 (0.5) 16.6 -6.6 -6.3 32.1
0.20 0.20 95.7 (1.0) -31.9(1.1) -31.9 (1.1) 95.7 (1.0) 36.6 -12.2 -12.2 36.6

a The numbers in parentheses are the 90% uncertainties as in Table 3.

Table 5. Friction Coefficient Matrix Bij
/ and the Volume Specific Friction Coefficient Matrix �ij

/ Obtained from Simulations with λ/d ) 0.005a

φ1 φ2 B11
/ B12

/ B21
/ B22

/ �11
/ �12

/ �21
/ �22

/

0.05 0.10 30.3 (0.3) -4.8 (0.4) -2.3 (0.2) 28.1 (0.2) 2.90 -0.46 -0.44 5.37
0.10 0.10 36.4 (0.3) -4.9(0.2) -4.9 (0.2) 36.4 (0.2) 6.95 -0.94 -0.94 6.95
0.10 0.15 47.5 (0.4) -8.9 (0.3) -6.5 (0.2) 43.6 (0.2) 9.1 -1.7 -1.9 12.5
0.15 0.15 58.3 (0.8) -14.8 (0.8) -14.8(0.8) 58.3 (0.8) 16.7 -4.2 -4.2 16.7
0.10 0.25 79.2 (0.8) -26.9 (0.8) -10.2 (0.3) 64.0 (0.3) 15.1 -5.1 -4.9 30.6
0.20 0.20 88.0 (0.5) -24.3(0.6) -24.3 (0.6) 88.0 (0.5) 33.6 -9.3 -9.3 33.6
0.05 0.35 103.6 (1.2) -40.3 (1.6) -5.8 (0.2) 69.5 (0.3) 9.9 -3.8 -3.8 46.5

a The numbers in parentheses are the 90% uncertainties as in Table 3.

Table 6. Friction Coefficient Matrix Bij
/ and the Volume Specific Friction Coefficient Matrix �ij

/ Obtained from Simulations with λ/d ) 0.01a

φ1 φ2 B11
/ B12

/ B21
/ B22

/ �11
/ �12

/ �21
/ �22

/

0.05 0.10 29.4 (0.2) -3.7 (0.4) -1.8 (0.2) 27.7 (0.1) 2.80 -0.35 -0.35 5.29
0.10 0.10 35.2 (0.2) -3.7(0.2) -3.7 (0.2) 35.2 (0.2) 6.72 -0.71 -0.71 6.72
0.10 0.15 45.2 (0.2) -6.8 (0.3) -5.0 (0.2) 42.3 (0.1) 8.6 -1.3 -1.4 12.1
0.15 0.15 55.2 (0.7) -11.7 (0.7) -11.7(0.7) 55.2 (0.7) 15.8 -3.3 -3.3 15.8
0.10 0.25 73.6 (0.6) -21.1 (0.6) -8.0 (0.2) 61.7 (0.3) 14.1 -4.0 -3.8 29.4
0.20 0.20 82.6 (0.4) -18.8(0.5) -18.8 (0.5) 82.6 (0.4) 31.6 -7.2 -7.2 31.6

a The numbers in parentheses are the 90% uncertainties as in Table 3.
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and j. Clearly, existing ad hoc drag laws for bidisperse
suspensions in the form of eq 6 only consider the first term;
the second term that is proportional to R and represents the
hydrodynamic particle-particle drag is neglected.

We will now characterize the dependence of R on the volume
fractions φi and the lubrication cutoff λ/d. Because our bidisperse
suspensions contain equally sized spheres, R must be symmetric
about φ1 and φ2. As all symmetric combinations of φ1 and φ2

can be expressed as functions of two variables: the total volume
fraction φ1 + φ2 and the product φ1φ2, we plotted R as a function
of φ1φ2 in Figure 6 and as a function of φ1 + φ2 in Figure 7.
Interestingly, R does not seem to have any systematic depen-
dence on φ1 + φ2 and φ1φ2. Therefore, we propose to fit R as
a single-variable function of λ/d as the first approximation. In
Figure 8, we plotted the averages of R over φ1 and φ2 as a
function of λ/d. It appears that the dependence of R on λ/d can
be very well fitted by a logarithmic function of (λ/d)-1

R) 1.313 log10(d/λ)- 1.249 (32)

which implies that, in the limit of λ f 0, the particle-particle
drag terms in eq 31 would diverge to infinity. Therefore, λ/d is
a very important parameter for bidisperse gas-solid suspensions,
and a finite λ/d is necessary to keep the particle-particle drag
due to hydrodynamic interactions finite.

The divergence of the particle-particle drag in the limit of λf
0 is a consequence of the assumption that the motion of the particles
are not affected by the stresses in the gas. In a bidisperse suspension
of equally sized spheres where the two types of particles are
randomly mixed, there is a nonzero probability for two particles
of different species to become very close. As these two particles
have different velocities, there will be strong lubrication forces
acting on the particles, and the net fluid-particle interactive forces
would be very high. According to Kim and Karrila,43 the squeezing
motion of two spheres in the normal direction generates a
lubrication force that is proportional to d/2h where h is the distance
between surfaces; the tangential motion of two spheres, on the other
hand, produces a weaker lubrication force proportional to ln(d/
2h). It is easy to show that integrating the normal lubrication forces
over all possible particle orientations and over 0 < h < h0 yields
a divergent integral proportional to ∫0

h0 (d/2h) dh. Here h0 is the
distance where the near-field solution in Kim and Karrila43 starts
to break down and is small compared to d. Clearly, in order to
keep the net lubrication force finite, it is necessary to introduce a

length scale λswhen h < λ, the lubrication force between the two
particles saturate. The net lubrication force would then become a
logarithmic function of d/λ, in excellent agreement with our
numerical results in eq 32. Therefore, the normal lubrication forces
are the leading order contributions to the net lubrication force; the
tangential lubrication forces, on the other hand, are much weaker
and are not as important as those in the normal direction.

In a real suspension, the lubrication forces between particles
of different types can not diverge to infinity, either. The upper
bound on the lubrication forces may be imposed by surface
roughness of the particles, noncontinuum effects due to the mean
free path of gas molecules, or finite Stokes number of the
particles that stops the particles from approaching each other
once the distance between the particles becomes small enough
to produce a sufficiently large lubrication force. Therefore, the
lubrication cutoff λ that is required to produce a finite net
lubrication force does have a physical meaning.

Figure 9 shows the forces acting on the particles in a
bidisperse suspension with φ1 ) φ2 ) 0.10 and ∆Re1 ) 0, ∆Re2

) 0.01. It may be observed that the forces acting on certain
particles are much higher, and for every positive “spike” in F1

/,
there is always a negative one in F2

/ having the same magnitude.
When these force spikes are taken into the averages, they give
rise to the logarithmic dependence of R on λ/d.

Our findings that the fluid-particle drag in a bidisperse
gas-solid suspension has a logarithmic dependence on the lubrica-
tion cutoff is not unique. In the study of simple shear flows of
gas-solid suspensions, Sangani et al.44 made a similar discovery
that the total energy dissipation due to particle-fluid friction is a
logarithmic function of the lubrication cutoff, and a finite lubrication
cutoff is needed to keep the net dissipation finite. In their
simulations, they assumed that the particles have very high Stokes
numbers and undergo hard-sphere molecular motions that are
independent of the stresses in the fluid and solved the fluid
equations using a multipole expansion method.45,46 The relative
velocities between pairs of particles in their study were produced
by the random molecular motions of particles and the bulk shear,
whereas in our study they are produced by the velocity difference
related to the bidispersity of the suspension.

One can immediately extend eqs 29 and 30 to polydisperse
suspensions of equally sized spheres. For example, for a ternary
system one can write down the following expression for the
volume-specific friction coefficient

Figure 4. Symmetry in the off-diagonal components of Bij due to �12
/ )

�21
/ . The simulation data (symbols) shown in this figure are from Table 3.

They fall unanimously on the solid line y ) x, indicating that φ1B12
/ )

φ2B21
/ . The error bars represent 90% uncertainties.

Figure 5. Recovery of B/ for monodisperse fixed beds from the friction
coefficient Bij

/ under condition ∆Re1 ) ∆Re2. The symbols represent B11
/ +

B12
/ and B21

/ + B22
/ based on simulation data in Table 3. The dashed and

solid lines were computed from eqs 24 and 25, respectively. The error bars
represent 90% uncertainties.
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[�11
/ �12

/ �13

�21
/ �22

/ �23
/

�31
/ �32

/ �33
/ ] ) 18(1- φ)FD-fixed

/

[(1+Rφ2 +Rφ3)φ1 -Rφ1φ2 -Rφ1φ3

-Rφ1φ2 (1+Rφ1 +Rφ3)φ2 -Rφ2φ3

-Rφ1φ3 -Rφ2φ3 (1+Rφ1 +Rφ2)φ3
]

(33)

To verify eq 33, we simulated the flow in a ternary suspension
with φ1 ) φ2 ) φ3 ) 0.10 and ∆Re1 ) 0.01, ∆Re2 ) 0.02,
∆Re3 ) 0.03. The lubrication forces were assumed to be
constant for distances less than λ/d ) 0.001. For this suspension,
eq 33 predicts the drag forces per unit volume of suspension
acting on the three types of particles to be -0.017, -0.177,
and -0.337. These numbers agree very well with the actual fDi

/

obtained from the simulations: -0.013, -0.177, and -0.330.
The validity of the generalized form eq 33 is thus proved. For
polydisperse suspensions of equally sized particles that are
moving with M different velocities relative to the fluid, it is
easy to show that the volume-specific fluid-particle drag acting
on the ith species is

fDi
/ )-18(1- φ)φiFD-fixed

/ [∆Rei +Rφ(∆Rei -∆Re)] (34)

where ∆Re is the average velocity of all particle species relative
to the fluid

∆Re) 1
φ∑

k)1

M

φk∆Rek (35)

Adding up all fDi
/ together, one sees that the total fluid-particle

drag

∑
k)1

M

fDi
/ )-18φ(1- φ)FD-fixed

/ ∆Re (36)

only depends on the average relative velocity of particles. It is
independent of the higher-order moments of the velocity
distribution and is not affected by R which is a measure of the
internal interactions within a polydisperse suspension.

We now present a quantitative comparison between the new
drag law [eq 34] and the modified Gidaspow drag law that is
frequently used in previous studies of bidisperse suspensions
[eqs 7 and 8] in Figure 10. In the Stokes limit ∆Rei f 0, eqs
7 and 8 are reduced to

(�i
/)G ) { 150φiφ/(1- φ), φg 0.2

18φi(1- φ)-2.65, φ < 0.2
(37)

The dimensionless fluid-particle drag force per unit volume
of suspension according to eq 37 is thus

(fDi
/ )G ) {-150φiφ/(1- φ)∆Rei, φg 0.2

-18φi(1- φ)-2.65∆Rei, φ < 0.2
(38)

In Figure 10, (fDi
/ )G obtained from eq 38 are represented by left-

pointing (for type-1 particles) and right-pointing (for type-2
particles) triangles, and fDi

/ obtained from eq 34 are represented
by upward (for type-1 particles) and downward (for type-2
particles) triangles. In Figure 10a-c, we specified the velocities

Figure 6. R(φ1, φ2, λ/d) ) B12
/ /B/φ2 as functions of φ1φ2. Parts a-d correspond to λ/d values of 0.001, 0.002, 0.005, and 0.01, respectively. The error bars

represent 90% uncertainties. The dashed lines at y ) 2.67, 2.27, 1.74, and 1.36 correspond to the averages of R(φ1, φ2, λ/d) over φ1 and φ2.
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of the particles ∆Re1 ) 0.05 and ∆Re2 ) 0.1 and set the volume
fraction ratio φ1/φ2 to 4:1 (a), 1:1 (b), and 1:4 (c). The drag
forces per volume fDi

/ were then plotted as functions of total
volume fraction φ. It is clear from the first three graphs that the
predictions from the new drag model differ substantially from
those from the modified Gidaspow model, especially for the
drag acting on the faster species fD2

/ . This comparison suggests

that our new drag model, if applied to continuum simulations,
would predict a higher drag on the faster (i.e., heavier) particle
species, which would result in better mixing and less segregation
in a fluidized polydisperse suspension. In Figure 10d, we show
an interesting difference between the two drag models that for
certain combination of parameters (φ1/φ2 ) 1/4, ∆Re1 ) 0.02,

Figure 7. R(φ1, φ2, λ/d) ) B12
/ /B/φ2 as functions of φ1 + φ2. Parts a-d correspond to λ/d values of 0.001, 0.002, 0.005, and 0.01, respectively. The error bars

represent 90% uncertainties. The dashed lines at y ) 2.67, 2.27, 1.74, and 1.36 correspond to the averages of R(φ1, φ2, λ/d) over φ1 and φ2.

Figure 8. R(λ/d) as a function of log10(d/λ). The error bars represent the
standard deviations (approximately 0.2) in averaging R(φ1, φ2, λ/d) over
φ1 and φ2. The dashed line is the best linear fit with R2 being the coefficient
of regression.

Figure 9. Demonstration of the force spikes in a bidisperse suspension with
φ1 ) φ2 ) 0.10, ∆Re1 ) 0, ∆Re2 ) 0.01, and λ/d ) 0.001. The size of the
computational domain L/d ) 15.6, and the total number of particles in this
simulation is 1456.
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∆Re2 ) 0.1 in this case) eq 34 could predict a negative fD1
/ ,

which implies that the strong interaction between two particle
species makes the slower species move faster than it would by
itself, i.e. in a suspension that contains exclusively the slower
type particles. This phenomenon shows the importance of the
particle-particlehydrodynamicdragterm.Incontrast,fluid-particle
drag models in the form of eq 6 must be used in conjunction
with particle-particle collisional drag models to capture this
behavior.

In Figure 11, we compare the drag forces calculated from
the new drag model [eq 34supward and downward triangles]
to those obtained from the mobility matrix formulation by Revay
and Higdon38 [eqs 17 and 18sleft- and right-pointing triangles]
that assumes instantaneous force balance on all particles. The
comparison, again, reveals that there are significant differences
between the two drag models. The drag forces acting on the
faster species, in particular, appear to be very different: the new
model always predicts a much higher drag than that obtained
from Revay and Higdon’s formulas. When we compare Figure
11 to Figure 10, it may be observed that the predictions of Revay
and Higdon’s formulas [eqs 17 and 18] are not very different
from those from the modified Gidaspow model, especially for
the slower particles where the two drag models give almost
identical predictions. This similarity is probably because the
Wen-Yu model24 upon which the modified Gidaspow model
was built was derived from liquid-solid fluidization and

sedimentation experiments where the Stokes number of the
particles are relatively low.

In Figure 12, we present the sensitivity of the drag forces
-fDi
/ on R. We include three values of R for comparison: R )

2.67 (λ/d ) 0.001: upward and downward triangles), R ) 1.36
(λ/d ) 0.01: diamonds and squares), and R ) 0 (left- and right-
pointing triangles). The limit of R ) 0, in particular, corresponds
to the situation where we completely ignore the particle-particle
hydrodynamic drag and only consider an ad hoc modification
of the drag correlations for a monodisperse fixed bed [eq 23 or
eq 24]. Figure 12 indicates that the drag acting on the slower
species (-fD1

/ ) decreases with increasing R, whereas the drag
acting on the faster species (-fD2

/ ) increases with increasing R.
Therefore, the hydrodynamic particle-particle drag helps mixing
and reduces segregation in a polydisperse suspension.

Finally, we would like to compare the particle-particle drag
transmitted through the fluid [c.f. eq 31]

(f1-2
/ )fluid )-18(1- φ)RFD-fixed

/
φ1φ2(∆Re1 -∆Re2) (39)

to the particle-particle drag due to collisions and frictions f1-2
/ .

For the illustrative example discussed below, we consider a
model presented by Syamlal.25 Under conditions that the
collisions are perfectly elastic, frictions are negligible, and
particles are of the same size, Syamlal’s expression for f1-2

/ is

Figure 10. Comparison between the fluid-particle drag forces per unit volume of suspension calculated from the modified Gidaspow drag model in the
low-Re limit [eq 38] and those calculated from the new drag model [eq 34] assuming λ/d ) 0.001. In parts a-c, ∆Re1 ) 0.05 and ∆Re2 ) 0.1; in part d,
∆Re1 ) 0.02 and ∆Re2 ) 0.1: (upward triangle) -fD1

/ based on the new drag model; (left-pointing triangle) -fD1
/ based on the modified Gidaspow drag

model; (downward triangle) -fD2
/ based on the new drag model; (left-pointing triangle) -fD2

/ based on the modified Gidaspow drag model.
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f1-2
/ )-6φ1φ2g0|∆Re1 -∆Re2|(∆Re1 -∆Re2)

(F1/Fg)(F2/Fg)

F1/Fg +F2/Fg

(40)

where g0 is the radial distribution of particles at contact. For a
suspension of equally sized hard spheres, according to Lebow-
itz47

g0 )
1+ φ

2

(1- φ)2
(41)

Toestimate therelativeimportanceof thesetwoparticle-particle
drag terms, let us define δ to be the ratio of collisional
particle-particle drag to hydrodynamic particle-particle drag

δ)
f1-2
/

(f1-2
/ )fluid

)
g0|∆Re1 -∆Re2|

3(1- φ)RFD-fixed
/

(F1/Fg)(F2/Fg)

F1/Fg +F2/Fg
(42)

We will now substitute some realistic numbers into this
equation and calculate typical values of δ. As the density of
fluidized particles is usually close to 1 g/cm3, it is fair to
assume F1 ) 0.8 g/cm3 and F2 ) 1.2 g/cm3. Under
atmospheric conditions, the density and viscosity of air are
Fg ) 0.0012 g/cm3 and µ ) 1.81 × 10-4 g/cm · s. For d )
50 µm particles suspended in air, with gravity g ) 981 cm/
s2, the terminal velocities of the particles are 6.0 and 9.0

cm/s, respectively. The corresponding Reynolds numbers are
0.20 and 0.30, and the Stokes numbers are 30 and 44. The
dual limit of low Reynolds number and high Stokes number
is thus satisfied. In very dilute suspensions, with φ ≈ 0, |∆Re1

- ∆Re2| ) 0.1, and R ) 1.36 (λ ) 0.5 µm), δ ) 9.8,
indicating that in the limit of φ f 0 the collisional
particle-particle drag is more important than the hydrody-
namic particle-particle drag. Nevertheless, the importance
of the hydrodynamic particle-particle drag increases rapidly
with increasing φ. When φ ) 0.4, if we allow the particles
to settle freely, the average relative velocity between particle
species will likely be much smaller than the relative velocity
in a dilute suspension because of the hindrance in concen-
trated suspensions. As the Richardson-Zaki formula27 for a
monodisperse Stokes particle suspension, U/Ut ) (1 - φ)4.65,
predicts a 90% decrease in the settling velocity at φ ) 0.4,
we may take |∆Re1 - ∆Re2| ≈ 0.01 as an estimate for the
relative velocity in our concentrated binary suspension.
Substituting these numbers and R ) 1.36 into eq 42, one
obtains δ ≈ 0.45. In a gas-fluidized bed operating at high
pressure, δ becomes even smaller. It is thus clear that in more
concentrated suspensions the particle-particle drag transmit-
ted through the fluid is just as important as that transmitted
by direct collisions.

Figure 11. Comparison between the fluid-particle drag forces per unit volume of suspension calculated from Revay and Higdon38 for bidisperse liquid-solid
suspensions with low Reynolds numbers and low Stokes numbers [eqs 17 and 18] and those calculated from the new drag model [eq 34] for gas-solid
suspensions with low Reynolds number but high Stokes numbers assuming λ/d ) 0.001. In parts a-c, ∆Re1 ) 0.05 and ∆Re2 ) 0.1; in part d, ∆Re1 ) 0.02
and ∆Re2 ) 0.1: (upward triangle) -fD1

/ based on the new drag model; (left-pointing triangle) -fD1
/ based on the work of Revay and Higdon; (downward

triangle) -fD2
/ based on the new drag model; (right-pointing triangle) -fD2

/ based on the work of Revay and Higdon.
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V. Summary

In thisnumerical study,wehavecharacterized thefluid-particle
drag in low-Reynolds-number gas-solid suspensions containing
two species of particles that are of the same size but are moving
with different velocities relative to the fluid. This velocity
difference may be resulted from a density difference, or from
forces that are selectively applied to certain particles. These
particles are spherical in shape, and they have high Stokes
numbers such that their motions are not affected by the
hydrodynamic forces between successive collisions. We found
that the drag forces acting on the two particle species are linear
functions of their relative velocities. The proportionality con-
stants between the forces and the velocities, known as the
friction coefficients, can be arranged into a matrix form, the
off-diagonals of which are indicative of a particle-particle drag
transmitted through the fluid. These off-diagonals have not been
carefully studied in the past, and existing fluid-particle drag
models for polydisperse gas-solid suspensions usually neglect
them completely. Our numerical data, on the other hand, suggest
that these off-diagonals produce sizable contributions to the drag
forces and thus should not be neglected.

We have observed that the friction coefficients, once properly
normalized, have relatively simple dependencies on the particle
volume fractions and on the lubrication cutoff distance. The
logarithmic dependence of the off-diagonals on the lubrication
cutoff, in particular, indicates that the particle-particle hydro-
dynamic drag in a bidisperse suspension of spherical particles

of infinite Stokes numbers would diverge to infinity due to the
strong lubrication interaction between close pairs of particles.
To suppress this nonphysical divergence, an extra length scale
λ is needed to cut off the growth of the lubrication forcessit
reflects the reality that the growth of the lubrication force
between two approaching particles would be limited by surface
roughness, noncontinuum effects, or finite weights of the
particles.

On the basis of simulation data, we have proposed a new
drag model for bidisperse gas-solid suspensions containing
equally sized spheres. This drag model can easily be generalized
to polydisperse suspensions of equally sized particles that
possess three or more distinctive velocities. Compared with
existing drag models for polydisperse gas-solid suspensions,
our new drag model predicts higher drag on the particle species
having a larger velocity relative to the fluid. Therefore, when
applied to the continuum modeling of fluidizations of polydis-
perse gas-solid suspensions, this drag model is expected to
predict better mixing and less segregation than existing drag
models. Compared with collisional particle-particle drag forces,
hydrodynamic particle-particle drag forces are generally of a
similar magnitude and hence are equally important. Therefore,
the averaged momentum equations in Euler-Euler models
should include both terms.

This study assumes that particles of different species are
intimately mixed, their spatial distributions are identical to that
of a hard-sphere fluid, and the particle velocities are not

Figure 12. Comparison between the fluid-particle drag forces per unit volume of suspension calculated from eq 34 using R ) 0 and those calculated using
R ) 2.67 (λ/d ) 0.001). In parts a-c, ∆Re1 ) 0.05 and ∆Re2 ) 0.1; in part d, ∆Re1 ) 0.02 and ∆Re2 ) 0.1. Upward and downward triangles represent
-fD1
/ and -fD2

/ for R ) 2.67; diamonds and squares represent –fD1
/ and –fD2

/ for R ) 1.36; left- and right-pointing triangles represent -fD1
/ and -fD2

/ for
R ) 0.
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correlated to their local configurations. These assumptions
are satisfied in the limit of very large Stokes numbers. As
the Stokes number decreases, these assumptions become poor.
However, for most gas-fluidized beds, the Stokes numbers
are on the order of 100 or larger and hence our assumptions
are expected to be good approximations. It is also noted that
bidisperse gas-solid suspensions are known to be inherently
unstable, and particles species will segregate in the direction
perpendicular to the mean flow direction and form columns.48

However, as the instability is usually manifested on large
length scales, we expect that our drag law will apply on
sufficiently small differential volumes where segregation and
nonrandom distribution of particles are not critically impor-
tant and that this segregation should naturally emerge as an
instability mode of the Euler-Euler models.
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Natural and industrial granular flows often consist of several particle sizes, approximately 

forming a continuous particle size distribution (PSD). Continuous PSDs are ubiquitous, though 
existing kinetic-theory-based models for rapid granular flows are limited to a discrete number of 
species. The objective of this work is twofold: (i) to determine the number of discrete species 
required to accurately approximate a continuous PSD, and (ii) to validate these results via a 
comparison with molecular dynamics (MD) simulations of continuous PSDs. With regard to the 
former, several analytic (Gaussian and lognormal) and experimental (coal and lunar soil 
simulants) distributions are investigated. Transport coefficients (pressure, shear viscosity, etc.) of 
the granular mixture given by the polydisperse theory of Garzó, Hrenya and Dufty [1, 2] are 
compared using an increasing number of species s to approximate the given PSD. These discrete 
approximations are determined by matching the first 2s moments of the approximation and the 
given continuous distribution. Relatively few species are required to approximate moderately 
wide distributions (Gaussian, lognormal), whereas even wider distributions (coal and lunar soil 
simulants) require a larger number of species.  Regarding the second objective, a comparison 
between MD simulations and kinetic-theory predictions for a simple shear flow of both Gaussian 
and lognormal PSDs reveal essentially no loss of accuracy stemming from the polydisperse 
theory itself (as compared to theories for monodisperse systems) or from the discrete 
approximations of continuous PSDs used in the polydisperse theory. 

 
I.  INTRODUCTION 

 
Granular materials are often comprised of particles of different sizes and/or material 

properties. Such polydispersity not only impacts the local flow patterns associated with changes 
in stresses of the solid phase, but also gives rise to a phenomenon with no monodisperse 
counterpart, namely species segregation or the de-mixing of unlike particles [3-6]. The vast 
majority of previous work on polydispersity has been limited to binary mixtures of particles. 
However, it is quite common that the distribution of particle sizes within a granular mixture is 
essentially continuous. Such continuous particle size distributions (PSDs) are prevalent in both 
nature (e.g., planetary rings, avalanches) and industry (e.g., pharmaceutical processing, coal 
gasification), though not well understood. 
 The focus of this work is on rapid granular flows of particles with a continuous 
distribution of sizes. Rapid flows are those in which particles engage in binary, instantaneous 
collisions.  Such flows can be described mathematically via a kinetic-theory analogy, which 
shares the same assumptions. Although numerous kinetic-theory-based models for polydisperse 
systems exist which differ in assumptions related to the partition of energies (equipartition vs. 
non-equipartition), velocity distributions (Maxwellian vs. non-Maxwellian), solids concentration 
(dilute v. dense), etc. [see Ref. 6 for a recent review], a common feature of current models is 
their restriction to a discrete number, s, of particle species. This restriction stems from the 



starting kinetic equations, which are cast as a single-particle velocity distribution function for a 
given particle species, where each species has a unique set of physical properties (i.e., size and/or 
material density and/or restitution coefficient). Consequently, current kinetic-theory-based 
models cannot be directly applied to a continuous PSD. Instead, the continuous PSD must first 
be approximated as a discrete distribution of s particle diameters and associated relative solids 
volume fractions (i.e., composition). 

Collectively, this work introduces a universal methodology for representing a continuous 
PSD in models based on the kinetic theory analogy, which can be carried out prior to CFD 
simulation of a particular geometry.  In particular, the mathematical technique developed and 
validated here uses as its foundation the explicit dependency of transport coefficients on the 
continuous PSD and its discrete approximation.  From a physical standpoint, such information is 
critical for the prediction of practical flows, particularly since recent experiments exhibit 
qualitative differences between binary mixtures and continuous PSDs [7, 8]. 
 Though several kinetic-theory-based models for rapid granular flows of s-component 
mixtures are available [1, 2, 9-11], studies involving the flow of mixtures containing 3 or more 
particle species are scarce, especially compared to their binary counterparts. Iddir, Arastoopour, 
and Hrenya [12] analyzed the kinetic-theory-based predictions of Iddir and Arastoopour [11] for 
both binary and ternary mixtures. Predictions of rheological behavior for binary mixtures were 
compared to both molecular dynamics (MD) and experimental data, but similar comparisons for 
the ternary system were not possible due to the lack of such data. With regard to continuous 
distributions, Remy, Khinast, and Glasser [13] investigated how the degree of polydispersity of a 
granular mixture within a bladed mixer affects flow and segregation. MD simulations were 
carried out for 4 different systems: binary, ternary, 5 particles, and 11 particles. Because this 
flow is not considered a rapid granular flow, a kinetic-theory-based model could not be included 
in the comparison. Dahl et al. [14-16] used MD simulations of simple shear flow and bounded 
conduction to analyze the behavior of rapid granular flows comprised of continuous PSDs, 
though to date no kinetic-theory predictions of this data have been performed.  
 To build on previous studies, the aim of the current work is to determine the suitability of 
polydisperse, kinetic-theory-based models to predict the flow behavior of a continuous size 
distribution of solids. In particular, the objective of this effort is twofold: (i) to determine the 
number of discrete species required to accurately approximate a continuous PSD, and (ii) to 
validate these results via a comparison with molecular dynamics (MD) simulations of continuous 
PSDs. The kinetic-theory-based model used in this study was proposed by Garzó, Hrenya, and 
Dufty [1, 2] and is applicable to any number of finite species (s). A review of existing kinetic-
theory-based models of polydisperse flows is given in Ref. [6]. Hereafter, this model will be 
referred to as GHD theory.  

With regard to the first objective, transport coefficients given by GHD theory are 
evaluated over a range of restitution coefficients and volume fractions (dilute to moderately 
dense). A discrete approximation for the continuous PSD (as is needed for use in the kinetic-
theory-based model) is accomplished via the matching of moments of the given continuous 
distribution and its discrete approximation. As the number of species used to approximate a 
continuous PSD increases, the number of moments matched increases as well. To determine the 
appropriate number of species (smin) needed for the discrete approximation, both the desired 
accuracy and corresponding computational costs are considered. Specifically, transport 
coefficients of GHD theory are evaluated for increasing values of s until the desired accuracy is 
reached. The resulting smin value is determined for a variety of Gaussian and lognormal PSDs of 



various widths, as well as for two experimentally-obtained continuous PSDs, namely coal 
particles used for gasification and simulants of lunar regolith (i.e., lunar soil). Results of this 
effort indicate that wider continuous PSDs require a larger number of particle species for an 
accurate discrete approximation, though the appropriate number of species can be fairly low 
overall (smin = 5) for the widest lognormal PSD analyzed). With regard to the accuracy of GHD 
theory applied to continuous PSDs (objective 2), a comparison between previous MD 
simulations of continuous PSDs engaged in simple shear [14] and GHD predictions of granular 
pressure and shear viscosity is conducted. The results not only confirm the earlier determination 
of smin for various Gaussian and lognormal PSDs, but also provide validation of the GHD theory 
as well as the use of a moment-based discrete approximation for continuous PSDs. 

	  
	  

II. METHODS 
 

As previously mentioned, a continuous PSD must be approximated as a discrete number 
of particle sizes (and associated volume fractions) in order to utilize existing kinetic-theory-
based models. In the paragraphs below, the continuous PSDs examined in this work (Section A), 
the method used to obtain discrete approximation to continuous PSDs (Section B), as well as the 
technique used to evaluate the accuracy of the discrete approximations (Section C) are discussed. 

 
A. Continuous PSDs investigated 

 
In this work, four types of continuous size distributions are investigated: (i) Gaussian 

distributions, (ii) lognormal distributions, (iii) a bidisperse PSD of coal particles used for 
gasification provided by the Department of Energy National Energy Technology Laboratory 
(DOE NETL), and (iv) a simulant of lunar soil provided by National Aeronautics and Space 
Administration Kennedy Space Center (NASA KSC). Figure 1 shows the number-based 
frequency distribution, fn, for each of these size distributions. For the Gaussian and lognormal 
distributions, a range of distribution widths,	  σ/dave, where σ denotes the standard deviation of the 
PSD and	  dave	  denotes its arithmetic mean, are examined. Accordingly, σ/dave = 0 corresponds to 
the monodisperse limit. For Gaussian distributions, the maximum distribution width is	  σ/dave	  = 
30%	  since a further increase would result in negative (unphysical) particle diameters [15]. Due to 
the extended right tail of lognormal distributions, a similar limit does not exist, and here 
lognormal distributions with	  σ/dave	  = 0-90% are considered. Figures 1a and 1b show lognormal 
and Gaussian distributions, respectively, in which the average diameter (dave  = 72.6 microns) is 
held constant, whereas Figures 1c and 1d show distributions with a constant root-mean-cube 
diameter (drmc = 72.6 microns). The former distributions were used in analyzing the discrete 
approximation of continuous PSDs (Sections III.A), and the latter were used for direct 
comparison with the MD simulations of Dahl et al. [14; see Section III.D]. The PSD of coal 
particles provided by DOE NETL was obtained via sieving and thus was provided in a mass-
based form in Figure 1e. Note that the bidisperse nature of this distribution is no longer apparent 
when it is converted to a number-based distribution (Figure 1f), which is used to obtain a discrete 
approximation (see Section III.B). Lastly, the PSD of a simulant of lunar soil known as OB-1 
and measured by NASA is shown, with the measured mass-based distribution in Figure 1g, and 
the associated number-based distribution in Figure 1h. For purposes of direct comparison, the 
bidisperse coal PSD (DOE NETL) and a lognormal distribution with the same average diameter 



as the OB-1 and a distribution width of σ/dave	  = 90% are also shown on these log-log plots. 
Relative distribution widths are revealed in Figures 1g and 1h. The lognormal distribution 
exhibits a high frequency of particles with diameters near the average diameter (dave = 0.57); 
however, the frequency quickly approaches zero as the particle diameter is increased. On the 
other hand, the lunar soil simulant distribution (OB-1) and coal PSD exhibit moderate 
frequencies for a larger range of particle diameters. Thus, the experimental distributions contain 
a larger “width” of particle diameters. Because the OB-1 distribution and the coal PSD have 
different average diameters, the relative width of these distributions is not so obvious. However, 
by approximating each experimental PSD with a lognormal distribution of appropriate width, it 
was determined that the lunar soil simulant distributions are much wider than the coal PSD. For 
the sake of brevity, the OB-1 lunar soil simulant [17] is the only shown lunar PSD. It is worth 
noting that distributions of several other lunar soil simulants (OB-1, JSC-1a, LHT-2M, BP-1) 
and a sample of lunar soil were investigated; the resulting trends are similar to those of OB-1 and 
thus only the representative results of OB-1 are included below for the sake of brevity. 

	  
	  
	  
	  
	  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



 

 
FIG. 1: Number-based frequency (fn) for (a) lognormal PSD with constant dave, (b) Gaussian 
PSD with constant dave, (c) lognormal PSD with constant drmc, and (d) Gaussian PSD with 
constant drmc. Frequency distributions of coal particles in terms of a (e) mass and (f) number 
basis. Frequency distributions of lunar soil simulant (OB-1) in terms of a (g) mass and (h) 
number basis. 
 

B. Discrete, moment-based approximation of continuous PSDs 
 

Though continuous PSDs can be discretized using a variety of methods, a logical choice 
involves the matching of moments between the continuous PSD and its discrete approximation. 
The method of matching moments has been previously utilized by Fan and Fox [18] for 
application to fluidized beds. Specifically, the ith moment of a continuous PSD	  (µi)	  is defined by: 	  
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where fn denotes the number-based frequency distribution of particle diameter (d). The first 
several moments are familiar quantities: the zeroth moment (µ0) is equal to unity, the first 
moment (µ1) is equal to the number-based average diameter, and the second and third moments 
are the variance and skewness, respectively. 

For Gaussian and lognormal distributions, analytic expressions for the moments are 
available and take the following forms, respectively [18]: 
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In these equations r = 0,2,… for even values of i and r = 1,3,…for odd values of i.  

Unlike Gaussian and lognormal distributions, analytic forms of the moments for the 
experimentally obtained distributions are not available. Accordingly, numerical means are 



instead used to determine the moments of these continuous distributions, as given by Eq. (1). In 
other words, continuous PSDs can be divided into “bins” of width	  Δd, where smaller widths 
results in higher accuracy:	  	  
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where k is the number of bins and db is the diameter of particles associated with bin b.

	  
	  

Once the moments of a given continuous PSD have been obtained either analytically or 
numerically (via Eq. (3) or (4), respectively), a corresponding discrete approximation can be 
determined by matching the desired number of moments between the two distributions. The 
number of size species, s, contained in this discrete approximation is chosen independently, and 
with an increase in the number of species comes an increase in the number of moments matched.  
More specifically, for a discrete approximation with s species, the first 2s moments are matched 
between the distributions, where the moments of the discrete approximation are obtained via:  
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where dj are the particle sizes and wj are the corresponding number-based fractions or “weights” 
of particles with size dj. Accordingly, the first 2s moments result a system of 2s equations, with s 
unknown diameters and s unknown weights. Furthermore, in order to relate the particle size and 
associated weight (number fraction) to the volume fraction of species j, the following 
relationship is used:  
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where the species volume fraction is denoted by	  φj	  and the overall volume fraction is denoted by	  
φ.	   For example, for a discrete approximation using s = 2, the first four moments of the 
distribution are matched to that of the continuous distribution. Calculating the first four moments 
of the discrete approximation will allow for the determination of the two particle species 
diameters (d1, d2) and associated volume fraction ratios (φ1/φ,	  φ2/φ).	   	  Generally speaking, the 
resulting set of 2s nonlinear equations is quite stiff; therefore, a method known as the product-
difference algorithm is used to solve for the s particle diameters and associated species weights 
[18, 19]. 	  

It is important to note that a tradeoff exists between the number of species s chosen for 
the discrete approximation and the computational power required to solve the resulting kinetic-
theory-based equations (described below and presented in Table 1). Matching a greater number 
of moments (i.e., larger s) results in a more accurate approximation. Figure 2 shows an example 
of a continuous PSD (dave = 894 µm) that has been discretized using both two and four discrete 
species. Note that the discretization using s = 4 more accurately mimics the shape of the actual 
distribution than does the discretization using s = 2. However, because s + 2 governing 



differential equations need to be solved for a mixture with s species (1 momentum, 1 granular 
energy, and s mass balances), choosing a larger number of species will increase the complexity 
of the resulting expressions given in Table 1 as well as the computational power required. 
 
 

 
 
 
 
 
 
 
 
 

 
 
FIG. 2: Discrete approximation of lognormal distribution (dave = 894 microns, σ/dave = 50%) 
using two particle species (s = 2) and four particle species (s = 4), corresponding to the red and 
blue lines, respectively. The left hand y-axis corresponds to the number-based frequency of the 
lognormal distribution, whereas the right hand y-axis corresponds to the number-based fractions 
of the discrete approximations. The fourth particle species has such a low number-based fraction 
that the line is not visible at the given scale and its location is circled instead.  
 

C.  Evaluation of the discrete approximation to a continuous PSD 
 

To determine the impact of the choice of s on the accuracy of the discrete approximations 
to continuous PSDs, such approximations are obtained for various values of s (Section B) for 
each of the PSDs considered here (Section A). Then, kinetic-theory predictions of transport 
coefficients are evaluated for each of the discrete approximations.  By comparing predictions for 
discrete distributions at various values of s, the minimum number of species (smin) needed to 
achieve the desired accuracy can be determined. Using these values, kinetic-theory predictions of 
discrete distributions are then compared to MD simulations of simple shear flows with 
continuous size distributions.  

For purposes of this work, the kinetic-theory-based model considered here is that 
proposed by Garzó, Hrenya, and Dufty [1, 2]. This theory, referred to as GHD hereafter, is used 
since it contains the fewest assumptions of existing polydisperse theories; it accounts for non-
equipartition and non-Maxwellian effects and is applicable up to moderately dense flows and 
over a wide range of restitution coefficients [see Ref. 6 for a review of various polydisperse, 
kinetic-theory-based models]. The mass, momentum, and granular energy balances for the GHD 
theory are cast in terms of the species number density (ni), mass-based mixture velocity (U), and 
number-based mixture granular temperature (T), as shown in Table 1. Each balance equation is 
expressed in terms of these hydrodynamic variables (ni , U, T) along with the following 
constitutive quantities: cooling rate (ζ), mass flux of species i (joi), heat flux (q), and pressure 
tensor (P). Constitutive expressions for these quantities are also given in Table 1 in terms of the 
transport coefficients ζ (0) (zeroth-order cooling rate), ζu (transport coefficient associated with 
first-order cooling rate), Dij (mutual diffusivity), Di

T (thermal diffusivity), Dij
F (mass mobility), λ 



(conductivity), Dq,i (Dufour coefficient), Lij (thermal mobility), p (pressure), η (shear viscosity), 
and κ (bulk viscosity). These transport coefficients depend on the particle properties (species 
diameters, species masses, species restitution coefficients) as well as the hydrodynamic 
variables, thereby resulting in a closed set of equations. 

 
Table 1: Governing equations and constitutive relations of GHD theory. See Section V for 
nomenclature, and see Garzó, Hrenya, and Dufty [1, 2] for definitions of the following 
quantities: αij	  (coefficient of restitution between species i and j), χij	  	  (pair correlation function 
relating species i and j), dij	  (average diameter of species i and j), Dij	  (mutual (ordinary) diffusion 
coefficient relating species i and j, DijF (mass mobility coefficient relating species i and j), DiT	  
(thermal diffusion coefficient of species i), Dq,i	   (dufour coefficient of species i), ei,D	   (quantity 
associated with the first-order contribution to the cooling rate), Fi	   (external force acting on 
species i, η	   (shear viscosity), ηc	   (collisional contribution to shear viscosity), ηjk	   (kinetic 
contribution of species j to shear viscosity), joi	   (mass flux of species i), κ	   (bulk viscosity), λ	  
(conductivity), Lij	   (thermal mobility coefficient relating species i and	   j), m	   (average mass 
amongst particle species), mi	   (mass of species i), µij	  	  (mi/(mi + mj)), n	  (number density of overall 
system), ni	  (number-based density of species i), p	  (granular pressure), P	  (pressure tensor), q	  (heat 
flux), θi	  (miT/(mTi)), ρ	   (material density), T	   (number-based mixture granular temperature), Ti 
(granular temperature of species i), τij	  (quantity associated with the shear viscosity of species i 
and j), U (mass-based mixture velocity), ζ	  (overall cooling rate), ζ(0)	  (zeroth-order cooling rate), 
ζu	   (first-order cooling rate), ζ(1,1)	   ((1,1) contribution to first-order cooling rate), ζ(1,0)	   ((1,0) 
contribution to first-order cooling rate). It is important to note that GHD theory refers to 
restitution coefficient as αij, whereas this work refers to restitution coefficient as e. 
	  
	  
	  
	  
 
 
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
 
	  



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



To determine the number of species needed for the discrete approximation to accurately 
capture the given continuous PSD, the transport coefficients from the GHD theory are evaluated 
using the moment-based discrete approximation for increasing number of particle species (s). 
Namely, once the continuous PSD has been discretized for a given s (as described in Section 
II.B), the particle sizes and associated volume fractions (φi = niπdi

3/6) can be used in the GHD 
expressions of transport coefficients. More specifically, the transport coefficients ζ(0), ζu, p, η,  
and κ given by GHD theory are compared for s = 1, s = 2, etc. over a range of restitution 
coefficients and overall solids fractions to determine at what value of s the predictions essentially 
collapse on one another (as detailed below). Results of this study provide a basis for using the 
least computational power (i.e., lowest value of s) while achieving an accurate approximation. 

It is worthwhile to note that some transport coefficients (i.e., ζ(0),	  ζu	  ,	  p,	  η,	  κ,  λ; see Table 
1) are calculated as summations over each species, but exist as a single-valued quantity 
regardless of the number of species chosen. Because the remaining transport coefficients (i.e., 
Dij, Di

T, Dij
F, Dq,i, Lij) are calculated for each species (e.g., Di

T ) or for a species pairing (e.g., Dij), 
a one-to-one comparison between approximations with different s is not possible. For instance, 
the prediction of D1

T using an s = 1 approximation cannot be compared to the prediction of D1
T 

for the s = 2 approximation since species 1 has a different size for each approximation. Though 
conductivity (λ) does not fall under this category, its summation includes Di

T, a term that has 
been found to be discontinuous under certain conditions. Therefore, analyses of conductivity are 
omitted from this study. 

The specific range of input parameters (solids fraction, restitution coefficient, etc.) used 
for each of the distributions considered here is given in Table 2. When three consecutive 
predictions of a transport coefficient, using increasing values of s (i.e., smin, smin+1, smin+2), lie 
within 2% of one another for the parameter space considered here (Table 2), the minimum 
number of discrete species is considered to be reached. An example of this methodology is 
displayed in Figure 3, which shows the dimensionless zeroth-order cooling rate as a function of 
restitution coefficient (e) for increasing values of s from 1-10. The zeroth-order cooling rate (ζ(0)) 
is non-dimensionalized by the average diameter of the distribution (dave), material density (ρ), 
and granular temperature (T). It is quite evident that the curves collapse when two or more 
discrete species are used in the approximation, which is a relatively small number.  It is 
worthwhile to note that the minimum number of discrete species (smin) deemed necessary may be 
different depending on the specific transport coefficient analyzed. 

As further verification of the smin needed for the discrete approximation and for validation 
of the GHD theory itself, predictions from the theory for discrete approximations are also 
compared to molecular dynamics (MD) data of continuous size distributions undergoing simple 
shear flow [14]. The distributions examined in this MD-theory comparison are also contained in 
Table 2, along with the corresponding range of input parameters. 
 
 
 
 
 
 
 
 



Table 2: Parameter space used to assess the number of discrete species needed to accurately 
represent a continuous PSD. 
	  

Type of 
Comparison 

Continuous 
Distribution 

Coefficient of 
Restitution 

Volume 
Fraction 

Distribution Width	  
(σ /µ)	  

Lognormal 0.50-0.99 10-8-0.50 0, 0.1, 0.3, 0.5, 0.7, 0.9 

Gaussian 0.50-0.99 10-8-0.50 0, 0.05, 0.1, 0.2, 0.3 

Coal Particles 0.50-0.99 10-8-0.50  
N/A 

Kinetic-theory 
(GHD) 
predictions of 
ζ(0), ζu, p, η,  and 
κ for increasing 
values of s in the 
discrete 
approximation 

Lunar Soil 
Simulant, OB-1 

0.50-0.99 
 

0.1 
 

               
               N/A 

Lognormal 0.85, 0.95 0.1, 0.3, 0.5 0, 0.1, 0.3, 0.5, 0.7 MD vs. kinetic-
theory (GHD) 

predictions  Gaussian 0.85, 0.95 0.1, 0.3, 0.5 0, 0.05, 0.1, 0.2, 0.3 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
FIG. 3: GHD predictions of the dimensionless zeroth-order cooling rate as a function of 
restitution coefficient for various values of s. The discrete distributions shown here are 
approximations of a lognormal PSD with a distribution width	   σ/dave	   = 50% and an overall 
volume fraction	  φ	  = 0.3.	  	  
 

 
III. RESULTS AND DISCUSSION 

 
To determine the appropriateness of a (discrete) kinetic-theory-based prediction of a 

continuous PSD, the number of discrete species needed for the “collapse” of various transport 
coefficients (ζ(0), ζu, p, η,  and κ) over a range of parameters is first pursued for Gaussian and 
lognormal PSDs of different widths (Section III.A), as well as each experimentally-obtained PSD 
(Section III.B). A summary of the results is given in the following section (Section III.C). 



Second, predictions of pressure and shear viscosity in a simple shear flow system obtained from 
(discrete) GHD theory is compared with MD simulations of continuous PSDs (Section III.D).  
 

A. Discrete approximation of Gaussian and lognormal PSDs 
 

To determine the number of species needed in kinetic-theory-based models to 
appropriately mimic continuous PSDs, the following transport coefficients were evaluated using 
GHD theory, the following transport coefficients are examined: zeroth-order cooling rate (ζ(0)), 
first-order cooling rate (ζu), pressure (p), shear viscosity (η), and bulk viscosity (κ). In particular, 
these quantities were evaluated for each continuous PSD using an increasing number of discrete 
species (s) to approximate the given PSD (as described in Section II.C). These evaluations were 
carried out over a range of restitution coefficients (e) and overall volume fractions (φ). 
Representative plots of the dimensionless pressure and shear viscosity are included in Figures 4-
9; the remaining results are summarized in Table 3 for the sake of brevity. Both pressure and 
shear viscosity have been non-dimensionalized, where m is the particle mass associated with the 
average diameter of the distribution (dave).  
 Similar to Figure 3 for the dimensionless zeroth-order cooling rate, Figures 4 and 5 show 
how the pressure and shear viscosity vs. restitution coefficient, respectively, change with the 
number of species for lognormal distributions with φ = 0.3 and distribution widths of σ/dave	  = 
10% (Figures 4a and 5a) and	  σ/dave	  = 70% (Figures 4b and 5b). Expectedly, as the number of 
discrete species s used to approximate the continuous distribution increases, the curves begin to 
collapse on one another. As described in Section II.C, once a 2% or less error is established 
among three consecutive approximations (e.g., s = 2, 3, 4) of a transport coefficient over the 
entire range of restitution coefficients shown, the minimum number of species for desired 
accuracy (smin) has been determined. For instance, Figure 4a indicates that predictions of pressure 
using s = 2, 3, or 4 are extremely close to one another (< 2% change). Therefore, only 2 species 
are deemed necessary to approximate the pressure of a lognormal PSD with σ/dave	  = 10% and	  φ 
= 0.3. Comparing Figure 4a to Figure 4b, it is evident that the number of species used in the 
discrete approximation of a lognormal PSD has a larger effect for wider distributions. 
Specifically, Figure 4a shows that the monodisperse prediction of pressure agrees qualitatively 
and quantitatively well with the polydisperse predictions (s = 1-10) for a narrow lognormal 
distribution	  (σ/dave	  =	  10%). However, for the wider continuous lognormal PSD (σ/dave	  = 70%) of 
Figure 4b, the pressure predictions for s > 1 are quite different quantitatively than the 
monodisperse counterpart (s = 1). Moreover, Figure 4b shows that pressure predicted using s = 
2-10 is slightly non-monotonic, whereas the monodisperse prediction increases monotonically 
with restitution coefficient. Nevertheless, both discretizations require 2 particles species for the 
established criterion to be met for granular pressure (i.e., smin = 2), regardless of vast differences 
in distribution width.  Finally, as seen when comparing the shear viscosity of different 
distribution widths in Figures 5a and 5b, the trends are similar to those of pressure (Figures 4a 
and 4b), though smin = 3 for σ/dave = 70%.	  	  
	  
	  	  
 
 
 
 



 

 
FIG. 4: Predictions of granular pressure as a function of coefficient of restitution for lognormal 
distributions with σ/dave of (a) 10% and (b) 70% using GHD theory. The overall volume fraction 
of the system is φ	  = 0.3. See Tables A.3 and A.4 for discrete approximations. 
 

 
FIG. 5: Predictions of shear stress as a function of coefficient of restitution for lognormal 
distributions with σ/dave of (a) 10% and (b) 70% using GHD theory. The overall volume fraction 
of the system is φ	  = 0.3. See Tables A.3 and A.4 for discrete approximations. 
 
 Analogous to Figures 4 and 5, Figures 6 and 7 show predictions of dimensionless 
pressure and shear viscosity for Gaussian distributions of σ/dave	  = 10% (Figures 6a and 7a) and	  
σ/dave	  = 30% (Figures 6b and 7b). Lognormal and Gaussian distributions behave quite similarly 
for	  σ/dave	  = 10-30%, as the asymmetries of lognormal distributions are not prominent for such 
small distribution widths (see Figures 1a and 1c). Therefore, it is not surprising that Figures 4a 
and 6a for pressure and Figures 5a and 7a for shear viscosity are similar for the different 
distributions. Since Gaussian distributions are limited to a maximum	  σ/dave	  of 30% (otherwise 
unphysical negative diameters result), however, Figures 6b and 7b	   (σ/dave	   = 30%) do differ 
slightly from Figures 6a and 7a, respectively, though not nearly as much when comparing 
lognormal distributions over a wider range of distributions widths (e.g., comparing Figures 4a 
and 4b). It is also important to note that for pressure and shear viscosity, the widest Gaussian 



distribution (σ/dave	  = 30%) requires only smin = 2 and the widest lognormal distribution requires 
smin = 3. In sum, very few particle species can be used to describe fairly wide continuous 
distributions.  

FIG. 6: Predictions of granular pressure as a function of coefficient of restitution for Gaussian 
distributions with σ/dave	  of (a) 10% and (b) 30% using GHD theory. The overall volume fraction 
of the system is φ	  = 0.3. See Tables A.1 and A.2 for discrete approximations. 

 
FIG. 7: Predictions of shear stress as a function of coefficient of restitution for Gaussian 
distributions with σ/dave of (a) 10% and (b) 30% using GHD theory. The overall volume fraction 
of the system is φ	  = 0.3. See Tables A.1 and A.2 for discrete approximations. 
 

B.  Discrete approximation of experimental PSDs 
 
 Results of dimensionless pressure and shear viscosity are also given for the bidisperse 
NETL distribution of coal particles (Figure 8). When the bidisperse mass-based distribution is 
converted to a number-based PSD, the resulting distribution is extremely right-skewed (Figure 
1f), similar to a very wide lognormal distribution. Figure 8a shows that the monodisperse 
approximation (s = 1) of pressure is both qualitatively and quantitatively different than the 
polydisperse (s > 2) approximations. More notable is the discrepancy among discrete 
approximations for the shear viscosity (Figure 8b). The predictions using s = 3 and s = 4 are 



almost indistinguishable; however, adding a fifth particle species causes a significant change in 
the prediction of shear viscosity. Predictions of this NETL distribution are obtained to s = 10 to 
ensure this pattern does not continue. Accordingly, the number of species required to accurately 
capture the pressure and shear viscosity of the NETL distribution is smin = 6 for both quantities. 
The need for a larger number of species to accurately approximate the NETL distribution comes 
about from the width of the PSD. Specifically, Figures 1g and 1h show the large width of the 
NETL distribution relative to a lognormal distribution with σ/dave	   = 90%. Because the 
frequencies associated with the NETL distribution remains moderate over a larger range of 
particle diameters than those in the lognormal distribution, the coal PSD contains a larger width 
of particle diameters. Therefore, it is reasonable that the values of smin for the NETL distribution 
are greater than or equal to the values of smin for the Gaussian and lognormal distributions 
investigated here. 
 

FIG. 8: Predictions of (a) granular pressure and (b) shear stress as a function of coefficient of 
restitution for NETL distribution of coal feedstock for gasification. The overall volume fraction 
of the system is φ	  = 0.3. See Table A.5 for discrete approximations. 

 
Referring back to Figures 1g and 1h, the width of the NASA lunar soil simulant OB-1 is 

compared to that of a lognormal distribution with a similar arithmetic mean and a distribution 
width of σ/dave	   = 90%, showing that OB-1 distribution is much wider than the lognormal 
distributions examined. Mimicking the lunar PSD with an extremely wide lognormal 
distribution, it was determined that the corresponding lognormal PSD has a width of about σ/dave	  
= 250%. For this lunar PSD, matching more than 9 moments does not change the discrete 
approximation; therefore, only predictions for s = 1 – 9 are shown in Figure 9. Due to the large 
width of lunar PSDs, a large number of species is required to accurately predict each of the 
transport coefficients compared to the other PSDs investigated here. The pressure predicted 
using only one particle species to approximate the lunar simulant OB-1 is orders of magnitude 
larger than the predictions for s = 2 – 9. Including the s = 1 prediction of dimensionless pressure 
in Figure 9a would cause the s = 2 – 9 predictions to be nearly indistinguishable, so it is omitted 
from the plot. Though only predictions up to s = 9 are reported, collapse of curves occurs at smin 
= 7 for pressure (Figure 9a) and begins at smin = 8 for shear viscosity (Figure 9b). Each transport 
coefficient examined here, with the exception of pressure, requires at least eight particle species 
to obtain an accurate prediction (smin = 8), as is the case for the lunar soil itself and other lunar 
soil simulants (figures not shown).  



	  FIG. 9: Predictions of (a) granular pressure and (b) shear stress as a function of coefficient of 
restitution for the OB-1 lunar PSD. The overall volume fraction of the system is φ	  = 0.1. The s = 
9 approximation is given by the solid red line, for color versions. See Table A.6 for discrete 
approximations. 
 

C.  Summary of discrete approximations 
 

For the sake of brevity, only figures for pressure and shear viscosity were shown above 
for each of the continuous PSDs investigated. The results obtained for the remaining transport 
coefficients (ζ(0), ζu, and κ) behave in a similar fashion. A summary of these results over the 
parameter space evaluated is given in Table 3. Each value in Table 3 corresponds to the 
minimum number of species (smin), as determined by the 2% criterion established in Section II.B. 
It is important to note that the number of species required to accurately represent a continuous 
PSD with σ/dave	   = 0-90% is generally quite low (smin = 1 – 5). However, the much wider 
distributions (i.e., lunar soil simulant) may require as many as 8 particle species (smin = 8). 
 
Table 3: Summary of minimum number of species (smin) required to accurately approximate 
Gaussian, lognormal, bidisperse coal (NETL), and lunar soil (OB-1) size distributions with a 
discrete number of species. 
 
 

 
 
 
 
 
 



Another notable trend that is revealed in Table 3 is that distribution width generally has a 
larger effect on the number of species required for an accurate discretization (smin) of a given 
continuous PSD than does the volume fraction. More specifically, the values in Table 3 increase 
more within rows (varying σ/dave) than within columns (varying φ). To better illustrate this trend, 
Figure 10 displays the dependency of number of discrete species required on both distribution 
width (Fig. 10a) and overall volume fraction (Fig. 10b). A sufficient increase in distribution 
width (σ/dave	  = 0-90%) always shows an increase to the number of species required, whereas the 
increases volume fraction may decrease (η) or not affect (ζ(0), ζu , p, κ) the number of species 
needed. For instance, Figure 10b shows that predictions for shear stress require fewer species at 
higher volume fractions, whereas the remaining transport coefficients require the same number 
of species regardless of the volume fraction (φ = 10-8 - 0.5). In sum, for	  all but one coefficient 
(η), s is independent of φ, though the same is not true for σ/dave. 
 
 

FIG. 10: Minimum number of species required (smin) for a (a) lognormal distribution with a 
volume fraction of φ = 0.3 and varying σ/dave	  and (b) a lognormal distribution with	  σ/dave	  = 50% 
and varying φ. 
	  

Finally, Table 3 can be used as a guide for determining how many species are needed for 
a specific flow system. For instance, if a specific flow geometry is dominated by the granular 
pressure and contains a Gaussian PSD with σ/dave	  = 30% and the overall volume fraction is 
predominantly φ = 0.05, only two particle species are necessary for the level of accuracy 
described here (2%). However, if a different flow geometry with the same PSD and overall φ is 
dominated by the zeroth-order cooling rate, three particle species are necessary for a similarly 
accurate approximation. Thus, in order to use these results in a practical application, some 
information must be known about the dominating effects of a system a priori. Alternatively, the 
maximum value of smin among all transport coefficients examined may be used as a guide. 
Further discussion on the pros and cons of the use of Table 3 (or a similar analysis for other 
distributions) as a guide for determining the appropriate number of discrete species for a given 
application is included in Concluding Remarks (Section IV).  

	  
	  
	  
	  

 



D.  Comparison with molecular dynamics (MD) simulations 
 

Molecular dynamics (MD) simulations of lognormal and Gaussian distributions 
undergoing simple shear flow (SSF) have been performed by Dahl, Clelland, and Hrenya [14]. In 
the current work, the simulation data is used not only to confirm for the minimum number of 
species (smin) required for an accurate discrete approximation (as reported in previous section), 
but also to test the accuracy of the GHD theory. The parameters used as inputs for the MD 
simulations are included in Table 2; the outputs include both pressure and viscosity. This MD 
data is displayed in Figures 11 and 12 for lognormal and Gaussian distributions of various 
widths, respectively. Also shown in Figures 11 and 12 are the predictions obtained from GHD 
theory for several discrete approximations (various s) of the given continuous PSDs. Note that 
these predictions were obtained by first solving the energy equation (the only nontrivial equation 
for SSF) for granular temperature (T) using the appropriate discrete approximation, and then 
using this value of T to evaluate the pressure and shear viscosity.  The DOE-based code MFIX 
(Multiphase Flow with Interphase Exchanges, www.mfix.netl.doe.gov), which contains the GHD 
theory, was used for these purposes. 

The results displayed in Figures 11 and 12 demonstrate that the number of species 
required for an accurate approximation of pressure and shear viscosity is correctly predicted by 
the approach described in the previous section. More specifically, a value of s = 3 is sufficient in 
each case, as consistent with the values given in Table 3 (whereas smaller values of s do not 
achieve the desired accuracy). Figures 11 and 12 clearly show drastic differences between the 
monodisperse approximation and the ternary approximation (s = 3), where the ternary prediction 
using GHD theory is far more accurate. However, increasing the number of species to s = 5 in 
the discrete approximation shows little to no change at all, which further supports the predictions 
summarized in Table 3. 

Though the monodisperse approximation of pressure and shear viscosity using GHD 
theory is appropriate in the monodispesre limit (i.e.,	  σ/dave	   = 0), a larger number of particle 
species is required as the width of the PSD increases. Recall that for the MD data, the root mean 
cube of the continuous distribution was held constant (drmc = 72.6 microns). However, the 
dimensionless pressure and shear viscosity are plotted with respect to	  σ/dave. In order to maintain 
a constant drmc while increasing σ/dave, dave decreases accordingly, and thus the monodisperse 
approximations (i.e., s = 1) do not remain constant along the x-axis in Figures 11 and 12.  

Regarding the validity of the GHD theory to predict properties of a continuous PSD, it is 
clear from Figures 11 and 12 that the GHD predictions using s = 3 and MD data are in close 
qualitative, as well as quantitative, agreement. From a qualitative perspective, the MD data 
displayed in Figures 11 and 12 indicate that the quantities behave non-monotonically with 
respect to the distribution width. This qualitative trend is captured by the polydisperse (s = 3, 5) 
GHD predictions, but not the monodisperse counterparts (s=1). Perhaps more importantly is the 
quantitative agreement between GHD predictions and MD data. For instance, Figure 12b shows 
a maximum percent difference between the s = 3 prediction and the MD data of 4%. For the 
widest distributions, GHD predictions have similar accuracy when compared to MD data as in 
the monodisperse limit (σ/dave = 0). Therefore, no loss of accuracy arises from the polydisperse 
theory itself (relative to monodisperse), nor due to the discrete approximations of continuous 
PSDs. 	  

 
 



FIG. 11: Dimensionless (a) pressure and (b) shear stress as a function of σ/dave	  for lognormal 
distributions. Comparison of MD simulation data to GHD theory predictions using an increasing 
number of particle species. Overall volume fraction: φ = 0.3, restitution coefficient: α = 0.85.   
 

 
FIG. 12: Dimensionless (a) pressure and (b) shear stress as a function of σ/dave	   for Gaussian 
distributions. Comparison of MD simulation data to GHD theory predictions using an increasing 
number of particle species. Overall volume fraction: φ = 0.3, restitution coefficient: α = 0.85. See 
Figure 11a for legend.  
	  
	  

IV.	  	  CONCLUDING	  REMARKS	  
	  
	   The overall aim of this work is to assess the ability of polydisperse, kinetic-theory-based 
models to describe continuous size distributions.	   In particular, the objective of this effort is 
twofold: (i) to determine the number of discrete species (s) required to accurately approximate a 
continuous PSD, and (ii) to validate the theoretical predictions via a comparison with molecular 
dynamics (MD) simulations of continuous PSDs. With regards to the first objective, the 
moments of the discrete approximation are first matched with moments of the given continuous 
PSD. Next, five transport coefficients	  (ζ(0), ζu , p, η, κ) given by GHD theory [1, 2] are evaluated 
for the discrete approximations with various s, and the minimum number of species (smin) 
required to accurately capture the continuous PSD is identified via the “collapse” of these 
transport coefficients at higher values of s. It is worthwhile to note that this approach, unlike 



previous works [20-23], does not involve the computational fluid dynamics (CFD) simulations of 
specific systems thereby making it more universal and computationally efficient than previous 
works. With regard to the second objective, a comparison between MD data [14] and theoretical 
predictions at s = smin is presented to determine the validity of GHD predictions of pressure and 
shear viscosity.  

Regarding the number of species required to accurately represent a continuous PSD, the 
transport coefficients ζ(0), ζu , p, η, and κ given by GHD theory are examined over a range of 
coefficient of restitution (e), overall volume fraction (φ), and distribution width (σ/dave). Both 
ideal (Gaussian and lognormal) and experimental (bidisperse coal particles and lunar soil 
simulants) continuous PSDs are considered. The number of species required for an accurate 
approximation depends on the transport coefficient of interest. For the Gaussian distributions 
analyzed, the maximum number of species required is typically 2 regardless of transport 
coefficient. However, the wider lognormal distributions require more species for the same 
accuracy level. For example, smin = 5 for the shear and bulk viscosities of lognormal distributions 
with a width of σ/dave = 90%. Because the number-based frequency distribution of the NETL 
distribution is wider than the lognormal distributions analyzed, it is found that a greater number 
of species is needed for an accurate approximation (smin = 6). Even wider than the NETL 
distribution are the distributions of the lunar soil simulants. An examination of the lunar PSD 
known as OB-1 shows that at least 8 particle species need to be considered in the discrete 
approximation for accurate predictions. 

The aforementioned results indicate that an increase in distribution width leads to a 
corresponding increase in the number of species required to accurately approximate the PSD. 
However, the same is not true for volume fraction of the granular mixture. Increasing overall 
volume fraction may lead to a decrease or no change to the number of required species.  
 The second portion of this work focuses on the comparison of GHD predictions of 
pressure and shear viscosity with those given by previous MD simulations [14] for continuous 
PSDs. GHD predictions utilize a discrete approximation to the Gaussian and lognormal PSDs 
present in the MD simulations. Results indicate that the polydisperse prediction (s = 3) is 
qualitatively and quantitatively more accurate than the s = 1 counterpart, which is in agreement 
with the results of the former analysis on the discretization of continuous PSDs.  The comparison 
also reveals that the level of accuracy (~5%) between MD and GHD predictions in distributions 
of increasing widths is similar to that of monodisperse systems.  Accordingly, the results provide 
validation for both the moment-based approximation to continuous PSDs and the polydisperse 
theory itself.  Furthermore, because the GHD theory uses the Enskog equation as its starting 
point, the good match obtained between MD and GHD theory displayed here provides support 
for the applicability of the Enskog equation to moderately dense flows. 

Finally, a benefit of the current effort is that the analysis of some transport coefficients  
(ζ(0), ζu, p, η, κ) is system-independent - i.e., it does not depend on the flow geometry under 
consideration since the most general form of the transport coefficients is utilized. Nonetheless, it 
is worthwhile to note that the analysis here is restricted to the transport coefficients that are not 
indexed to specific species or species pairs (ie., ζ(0), ζu , p, η, κ). Because some transport 
coefficients are indexed to specific species or species pairs (ie., Dij, Di

T, Dij
F, Dq,i, Lij), a one-to-

one comparison of these quantities for successive values of s is not possible. For example, the s = 
2 prediction of D12 cannot be compared to the s = 3 approximation of D12 because species 1 and 
2 have different sizes for each approximation.  Accordingly, the results of this work may be used 
differently depending on the system under analysis. If the system is dominated by one or more of 



the transport coefficients investigated here, then this analysis provides a method for determining 
the number of species needed for the discrete approximation. An example of such a system is 
simple shear flow, in which the only constitutive quantities that are included in the governing 
equations are ζ(0), p, and η. Otherwise, results of this effort should be used as a guide until 
further work is done to determine the effects of the remaining transport coefficients. An example 
of such a system is one which segregates, since the governing equations of a segregating system 
would include Dij. Nonetheless, because the discrepancy between the number of species required 
amongst the transport coefficients considered here is relatively small, it is possible that the same 
may be true for the transport coefficients not examined here (ie., Dij, Di

T, Dij
F, Dq,i, Lij). However, 

this matter remains to be tested and will be the focus of future work. 
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APPENDIX A:  DISCRETE APPROXIMATIONS 

Table A.1: Discrete approximations for a Gaussian distribution of σ/dave = 10% for s = 1-10. 
Values contained in the table correspond to the dimensionless diameters (d/dave).  

 
 
Table A.2: Discrete approximations for a Gaussian distribution of σ/dave = 30% for s = 1-10. 
Values contained in the table correspond to the dimensionless diameters (d/dave).  



 
Table A.3: Discrete approximations for a lognormal distribution of σ/dave = 10% for s = 1-10. 
Values contained in the table correspond to the dimensionless diameters (d/dave).  
 

 
Table A.4: Discrete approximations for a lognormal distribution of σ/dave = 70% for s = 1-10. 
Values contained in the table correspond to the dimensionless diameters (d/dave).  

 
Table A.5: Discrete approximations for the coal gasifier distribution (NETL) for s = 1-9. Values 
contained in the table correspond to the dimensionless diameters (d/dave).  

 
 
 
 
 
 
 
 



Table A.6: Discrete approximations for the lunar soil simulant (OB-1) for s = 1-9. Values 
contained in the table correspond to the dimensionless diameters (d/dave).  
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APPENDIX I 
Table 14. Key features and modeling techniques of the CFD model BFB1. 

 
 
Model Name: 

 
BFB1 MONO 

 
BFB1 BI 

 
BFB1 PB 

 
BFB1 PB (R) 

 
BFB1 DEM 
 

 
Model features 

Euerian-
Eulerian 

Euerian-Eulerian Eulerian-Eulerian + 
Population Balance 
 

Eulerian-Eulerian + 
Population Balance 

Euler-Lagrangian 

No. of computational 
cells 

198,000 198,000 198000 198000 237,000 

Typical wall-clock time 
for fully developed 
conditions 

15 hrs on eight 
processors 

15 hrs on eight 
processors 

18 hours on 8 
processors 

18 hours on 8 
processors 

24 hrs in a 4 
processor machine 

Time interval for time-
averaged results 

15 seconds 15 seconds 9 seconds 
 

80 seconds 
 

15s 

Sub-models used 
 - Wall boundary 
conditions 

No-Slip for gas and solids Reflect BC with a 
ew of 0.5 

 - Drag Fluid/Solid only Gibilaro with c1=0.2-0.25 Wen-Yu 
 - Granular temperature Algebraic, Syamlal NA 
 - Collisional models Kinetic Theory based, Granular Viscosity - Gidaspow, Solids pressure - Lun DEM based 
 
Treatment of the particle 
phase 

Monodispersed 
spherical 
particles, 
particle 
diameter of 80 
microns 
 

Two particulate 
phases, 80 
microns and 30 
microns 
 

Particle Size 
Distribution with 
Population Balance, 
Multi-velocity 
Discrete Method 
with 11 classes 
distributed over 2 
phases.  
 

Particle Size 
Distribution with 
Population Balance, 
Multi-velocity 
Discrete Method 
with 11 classes 
distributed over 2 
phases.  
Granular Kinetic 
Theory based 
breakage and 
aggregation kernels 
 

A PSD was used to 
represent each 
parcel in the 
Lagrangian model 
for the particulate 
phase.  The particle 
diameters, for 
particles in a parcel 
where determined 
using the Rosin-
Rammler fit for the 
given PSD 
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Table 15. Key features and modeling techniques of CFD models BFB2 and BFB3. 
 
 
Model Name: 

 
BFB2 

 
BFB2 (R) 

 
BFB3, BFB3 (R) 
Same features except that solids close-
pack volume fraction was 0.52 in BFB3 
and 0.625 in BFB3 (R) 

Model features Euerian-Eulerian MP-PIC Eulerian-Lagrangian in the 
CPFD methodology 

No. of computational 
cells 

Case1 (7000), Case2 
(7000),  
 
Case3 (8400), Case4 ( - ) 

Case1 (27000), Case2 
(27000),  
 
Case3 (428400), Case4 
(42840) 

 
187000 
 

Typical wall-clock time 
for fully developed 
conditions 

NA 1 day 

Time interval for time-
averaged results 

30s - 40s 
 

30 – 90 s Last 10 seconds from each case 

Sub-models used 
- Wall boundary 
conditions 

Non-slip for air phase and Johnson-Jackson for granular 
phase (Restitution coefficient = 0.2) 

LES turbulence. Large eddies resolved. 
Unresolved turbulence modeled by 
Smagarinsky model. Turbulent wall 
function at solid structures 

- Drag Syamlal-Obrien Wen and Yu 
- Granular temperature Differential equation form  
- Collisional models Syamlal et al. (Restitution coefficient = 0.9)  
Treatment of the particle 
phase 

Single spherical particle, diameter calculated as Sauter 
mean diameter based on particle sized distribution 
 

Over 1 million computational particles, 
with full particle size distribution 
matching that provided by PSRI. 

 
 



Fluid-Particle Drag in Low-Reynolds-Number
Polydisperse Gas–Solid Suspensions

Xiaolong Yin and Sankaran Sundaresan
Chemical Engineering Dept., Princeton University, Princeton, NJ 08543

DOI 10.1002/aic.11800
Published online May 6, 2009 in Wiley InterScience (www.interscience.wiley.com).

Lattice-Boltzmann simulations of low-Reynolds-number fluid flow in bidisperse fixed
beds and suspensions with particle–particle relative motions have been performed. The
particles are spherical and are intimately mixed. The total volume fraction of the sus-
pension was varied between 0.1 and 0.4, the volume fraction ratio /1//2 from 1:1 to
1:6, and the particle size ratio d1/d2 from 1:1.5 to 1:4. A drag law with improved
accuracy has been established for bidisperse fixed beds. For suspensions with particle–
particle relative motions, the hydrodynamic particle–particle drag representing the
momentum transfer between particle species through hydrodynamic interaction is found
to be an important contribution to the net fluid-particle drag. It has a logarithmic
dependence on the lubrication cutoff distance and can be fit as the harmonic mean of
the drag forces in bidisperse fixed beds. The proposed drag laws for bidisperse fixed
beds and suspensions are generalized to polydisperse suspensions with three or more
particle species. VVC 2009 American Institute of Chemical Engineers AIChE J, 55: 1352–1368, 2009

Keywords: fluid-particle drag, gas-solid suspensions, low reynolds number, polydisperse,
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Introduction

Gas–solid suspensions are involved in many chemical en-
gineering operations. When simulating gas–solid suspension
flows in large containers, as it is impossible to solve the
Navier-Stokes equations for the fluid and the equations of
motion for all the particles, the particles and the fluid are
usually modeled as two or more inter-penetrating continua,
the dynamics of which are governed by locally averaged
equations (Euler-Euler approach). For suspensions with
much fewer particles, one can also track the positions and
velocities of all particles in an explicit manner and model
the fluid phase as the only continuum (Euler-Lagrangian
approach). In either approach, the model equations rely on
various constitutive relations to account for the many
unknown terms emerging from averaging—fluid-particle
drag, added-mass, lift, history force, and particle and fluid
phase stresses. Among all these terms, the fluid-particle drag
is particularly important for gas–solid suspensions: it is usu-

ally the primary force to suspend and transport the particles;
it has a significant influence on the bed expansion and stabil-
ity of the suspension. In the past, closures for fluid-particle
drag were generally based on experimental measurements,
and were largely empirical in nature; in recent years, how-
ever, drag laws generated from direct numerical simulations
have become available, and it was shown in several case
studies that the drag law has a significant influence over the
qualitative and quantitative nature of the flow,1,2 and compu-
tationally generated drag laws in many occasions can indeed
improve the accuracy of the continuum simulation.3,4 To
date, most of the computationally generated drag laws were
derived from flows past fixed, random assemblies of spheres
of the same size5–7 or two different sizes.8–10 Even though
these drag formulas have been adapted in ad hoc ways to
study the dynamics of mono- and polydisperse gas–solid sus-
pensions, it should be emphasized that freely evolving sus-
pensions are different from fixed beds in that the particles
move constantly, and an accurate drag law should consider
the effect of particle velocity fluctuation when the Reynolds
number of the particles is not small,11 and the effect of parti-
cle–particle relative motion when the suspension of interest
contains particles of different densities and/or sizes. Among
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these challenges, the effect of polydispersity is particularly
interesting, because suspensions with particle size distribu-
tions are very common, and one can vary the amount of
‘‘fines’’ to control the flow characteristics of a gas-fluidized
bed.12–17 In a previous study, we characterized by direct nu-
merical simulations the fluid-particle drag in a special type
of polydisperse suspension containing equally sized spheres
with particle–particle relative motion.18 It was found that
particle–particle relative motion gave rise to a hydrodynamic
particle–particle drag term that forms an important part of
the total fluid-particle drag; in this study, we consider more
general polydisperse fixed beds and suspensions containing
spheres of different sizes. Our parameter space encompasses
a total volume fraction range of 0.1 \ / \ 0.4, in which
the volume fraction ratio /1//2 was varied from 1:1 to 1:6,
and the particle size ratio d1/d2 from 1:1.5 to 1:4. We first
revisit bidisperse fixed beds and propose a more accurate
drag formula. Then, assisted by the new formula developed
for fixed beds, we develop a fitting function for the hydro-
dynamic particle–particle drag and propose a drag law for
low-Reynolds-number polydisperse suspensions with particle–
particle relative motion.

In this study, we focus on suspensions with low Reynolds
numbers Re ¼ qgUd=l and large Stokes numbers
St ¼ ð2qp=9qgÞRe. Here qg and qp are densities of the fluid
and the particles, respectively, U is a characteristic velocity
describing particle-fluid relative motion, d is a length scale
for particle size, and l is the viscosity of the fluid. Such a
dual limit is realistic for many gas-particle systems of practi-
cal interest, e.g. 50–100 lm particles suspended in air; it is
also attractive in that it allows for efficient characterization
of the drag forces. First, low-Reynolds-number flows are
quasi-steady, allowing us to characterize the drag forces as a
function of particle positions and velocities. In addition, the
drag forces are linear functions of average particle velocities
and are independent of the velocity fluctuations.11,18 One can
thus assume that particles of the same type have identical
velocities and simplify the setup of simulations. It is valid to
compute the forces as functions of particle positions and
velocities for gas–solid suspensions with high Stokes num-
bers, because in such suspensions the fluid-particle force on a
particle usually does not balance the weight of the particle
due to the long relaxation time; the velocities of particles are
more readily changed by collisions and obey Gaussian distri-
butions.19,20 In contrast, when particle Stokes number is low,
which is less common for gas–solid suspensions but a reality
for many liquid–solid colloidal suspensions, as the relaxation
time is very short, a particle would adjust its velocity very
quickly such that the fluid-particle force always balances its
own weight. In this limit, it is more appropriate to use the
fluid-particle forces as input parameters, and use mobility
matrices or hindered settling functions to relate the velocities
of particles to the forces. For discussions on mobility matri-
ces or hindered settling functions, see Batchelor,21 Batchelor
and Wen,22 Davis and Gecol,23 and Revay and Higdon.24

This article is arranged in the following order. We will
first define the fluid-particle drag in the context of averaged
continua equations for gas–solid suspensions, and discuss
existing computationally generated drag formulas for mono-
and polydisperse suspensions. We will then introduce the
lattice-Boltzmann method and the setup of the simulations.

After that, we present the drag forces in bidisperse fixed
beds and propose a drag formula with improved accuracy. It
is then followed by a study on suspensions with particle–par-
ticle relative motions. Assisted by the fixed-bed drag formula
developed in this study, we were able to condense the vol-
ume fraction and particle size dependence of the drag forces
obtained from simulations with particle–particle relative
motion into a simple explicit drag formula that can easily be
generalized to suspensions containing three or more particle
species.

Fluid-Particle Drag in Mono- and Polydisperse
Gas–Solid Suspensions

Drag in the context of averaged equations

The Euler-Euler approach for monodisperse gas–solid sus-
pensions treat the particles and the interstitial gas as two
interpenetrating continua. The averaged equations governing
the dynamics of the suspension are discussed in many publi-
cations, e.g., Jackson,25 and they can be easily generalized
to multifluid model equations to describe polydisperse gas–
solid suspensions.26,27 Assuming that our suspension of
interest contains two different types of particles and there is
neither aggregation nor breakup of particles, we can write
down the continuity equation for the gas phase

@ 1� /ð Þqg
� �

@t
þr � ð1� /ÞqgUg

� �
¼ 0; (1)

and those for the particle phases (i ¼ 1 and 2)

@ð/iqiÞ
@t

þr � ð/iqiUiÞ ¼ 0: (2)

In Eqs. 1 and 2, qg and Ug are the density and average
velocity of the gas phase, /i, qi, and Ui are the volume
fraction, density, and average velocity of the i-th particle
species. / ¼P2

i¼1 /i. The averaged momentum equation for
the gas phase is

ð1� /ÞqgUg

� �
@t

þr � ð1� /ÞqgUgUg

� �

¼ r � Sg �
X2
i¼1

fg�i þ ð1� /Þqgg: ð3Þ

The momentum equations for the particle phases are

@ /iqiUið Þ
@t

þr � /iqiUiUið Þ ¼ r � Si þ fg�i

þ
X2

j¼1;j 6¼i

f j�i þ /iqig: ð4Þ

In Eqs. 3 and 4, Sg and Si are the stress tensors for the
gas and the particle phases; fg�i represent the interactive
forces per unit volume of suspension between the gas and
the i-th particle phase; fj�i represent the interactive forces
per unit volume of suspension between particles of phase j
and particles of phase i due to collisions and/or enduring
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contacts; finally, g is the gravity. Sg is usually expressed as
�PIþ sg with P the pressure in the gas phase and sg the
deviatoric stress. To solve Eqs. 1 through 4, one needs to
supply constitutive models for sg, fg�i, Si, and fj�i.

Closures for Si and fj�i for high Stokes number systems
are often sought through kinetic theories. Alternative simu-
lation methods, such as the Euler-Lagrange approach
(e.g. Feng et al.28 and Beetstra et al.4) or the Multi-Phase Par-
ticle-in-Cell (MP-PIC) method (e.g. Snider,29 Leboreiro
et al.2), circumvent the need to solve the particle phase aver-
aged equations by tracking the motions of particles or
‘‘clouds’’ of particles using Newton’s equations of motion.
Nevertheless, they still need constitutive models to account
for the fluid-particle interaction fg�i. In general, a complete
description of fg�i includes contributions from a variety of
sources: the drag force fDg�i resulting from the relative veloc-
ity between the fluid and the particles, the added mass force
associated with the current relative acceleration, the history
effect associated with the past history of relative acceleration,
the generalized buoyancy, and the lift force, etc. As our simu-
lations feature steady, low-Re flows with no bulk velocity
gradient, the total fluid-particle force fg�i only contains the
drag fDg�i and the generalized buoyancy force �/irP

fg�i ¼ �/irPþ fDg�i: (5)

Drag defined this way is consistent with the majority of
chemical engineering literature. It should be noted, however,
that the work by Hill et al.5,6 considered the entire fg�i as the
drag and did not subtract the bulk pressure gradient �/irP.
The readers should be aware of this difference when
comparing expressions for drag forces from different sources.

Computationally generated drag laws for
low-Re fixed beds

For monodisperse suspensions, the constitutive relations
for the fluid-particle drag fDg�i are usually expressed as

fD�fixed ¼ �bDU; (6)

where DU ¼ ðU� UgÞ is the average slip velocity between
particles and the fluid, and b is the volume-specific friction
coefficient. In Eq. 6, we replaced the subscript Dg�i with
D � fixed to emphasize that it is for fixed beds with only one
particle species. In addition, we placed a negative sign before
bi to reflect the fact that the drag force is in the opposite
direction of DU and to make b positive. There exists several
formulas for b that are based on direct numerical simulations
of flow past fixed assemblies of spheres, e.g., Hill et al.5,6

Koch and Hill,30 Benyahia et al.7 van der Hoef et al.8,9 and
Beetstra et al.10 As the focus of this study is low-Re flows,
here we pick among others the formula

F�
D�fixed ¼ � FD�fixed

3pdlð1� /ÞDU
¼ 10/

1� /ð Þ2 þ 1� /ð Þ2 1þ 1:5
ffiffiffiffi
/

p� � (7)

developed by van der Hoef et al.8 for low-Re monodisperse
fixed beds to compute F�

D�fixed, the dimensionless average drag

force per particle. It is easy to show that b is proportional to
F�
D�fixed by

b ¼ 18/ð1� /Þl
d2

F�
D�fixed: (8)

For bidisperse fixed beds, each particle species would
have its own drag correlation

fDi�fixed ¼ �biDU: (9)

Because of the added complexity due to particle size ratio
d1/d2 and volume fraction ratio /1//2, developing a closure
for bi in bidisperse fixed beds is very difficult, and it is only
recently that van der Hoef et al.8,9 were able to establish the
first computationally based closure for bi. In their study, it
was recognized that the average drag per particle for phase i,
FDi�fixed, once properly normalized, can be expressed as a
simple function of F�

D�fixed, the drag in a monodisperse fixed
bed of the same total volume fraction. The normalization
procedure for FDi�fixed is as follow. First, a dimensionless
drag force for phase i is defined

F�
Di�fixed ¼ � FDi�fixed

3pdilð1� /ÞDU : (10)

Then, by using the Sauter mean diameter

hdi ¼ n1d
3
1 þ n2d

3
2

n1d21 þ n2d22
(11)

where ni is the number density of phase i particles, a
dimensionless particle size yi ¼ di=hdi is introduced. The
numerical data by van der Hoef et al.8,9 indicate that the ratio
F�
Di�fixed=F

�
D�fixed can be well approximated by simple

functions of the total volume fraction / and the dimensionless
size yi. Van der Hoef et al.8,9 proposed to use

F�
Di�fixed ¼ yiF

�
D�fixed (12)

as the first-order approximation of their numerical data. Note
that Eq. 12 is different from the original expression in van der
Hoef et al.8 because of a later published erratum.9 As in
polydisperse fixed beds fDi�fixed ¼ niFDi�fixed, it is easy to
show that bi is related to F�

Di�fixed by

bi ¼
18/ið1� /Þl

d2i
F�
Di�fixed: (13)

We will see later that even though Eq. 12 is not very
accurate for bidisperse fixed beds with large particle size
ratios, the idea that F�

Di�fixed=F
�
D�fixed may be fit by simple

functions of / and yi provides an excellent foundation for
the construction of more accurate formulas. It is worth point-
ing out that for fixed beds with large particle size ratios, van
der Hoef et al.8 suggested to modify Eq. 12 with Oðy3i Þ cor-
rections to improve the quality of fitting

F�
D1�fixed=F

�
D�fixed ¼ y1 þ 0:064y31 1�/1 �/2

d2
d1

� �
F�
D2�fixed=F

�
D�fixed ¼ y2 þ 0:064y32 1�/1

d1
d2
�/2

� �
8<
: : (14)

1354 DOI 10.1002/aic Published on behalf of the AIChE June 2009 Vol. 55, No. 6 AIChE Journal



The right-hand-side of Eq. 14, unlike Eq. 12, is no longer a
simple function of yi and /.

Drag correlations for low-Re polydisperse
gas–solid suspensions

Owing to the growing interest in the dynamics of polydis-
perse gas–solid suspensions, in particular, segregation and
mixing, there have been a number of computational studies
on polydisperse gas–solid suspensions in the past few
years.2–4,27,28,31–36 These studies employed ad hoc modifica-
tions of existing drag formulas with a general form

fDi ¼ �biDUi: (15)

In this equation, DUi ¼ ðUi � UgÞ is the average velocity
of particle phase i relative to the fluid. Equation 15 implies
that the drag acting on species i is independent of the veloc-
ities of other particle species, which is not physically sound
for polydisperse suspensions with particle–particle relative
motion because the presence of one particle species affects
the motion of other species not only by changing the total
solid fraction, but also through collisional and hydrodynami-
cal particle–particle momentum transfer. In many Euler–
Euler models, the particle phase momentum equations con-
tain particle–particle drag terms to account for direct parti-
cle–particle collisions, e.g. Syamlal37 and Huilin et al.38 The
indirect particle–particle momentum transfer mediated by the
interstitial fluid, or the hydrodynamic particle–particle drag,
being an integrated part of the net fluid-particle drag, is not
included in such drag models.

In order to assess the importance of the hydrodynamic
particle–particle drag, we would like to develop a drag law
that includes not only the velocity of species i but also the
velocities of other species. For bidisperse suspensions with
relative velocities DU1 and DU2 aligned in the same direc-
tion, we can use a scalar drag law of the following form

FD1 ¼ �B11DU1 � B12DU2

FD2 ¼ �B21DU1 � B22DU2

�
; (16)

where FDi is the average drag force per particle of type i, and
Bij is the particle-specific friction coefficient of a bidisperse
suspension. The influence on the drag of particle phase i due to
the motion of particle phase j is reflected in the off-diagonal
components of the matrix. Multiplying Eq. 16 by the number
densities of particles, one can obtain the drag forces per unit
volume of suspension

fD1 ¼ �b11DU1 � b12DU2

fD2 ¼ �b21DU1 � b22DU2

�
: (17)

Here fDi ¼ niFDi, and bij ¼ niBij is the volume-specific friction
coefficient of a bidisperse suspension.

In the aforementioned drag laws for fixed beds, the drag
forces are nondimensionalized using the Stokes drag of an
isolated particle (c.f. Eq. 10); in polydisperse suspensions, as
there are more than one velocity scales available, it is best
to nondimensionalize Eq. 16 using F�

Di ¼ qgFDi=l2 and
B�
ij ¼ Bij=lhdi

F�
D1 ¼ �B�

11DRe1 � B�
12DRe2

F�
D2 ¼ �B�

21DRe1 � B�
22DRe2

�
; (18)

Equation 17 can be nondimensionalized using
f �Di ¼ qghdi3fDi=l2 and b�ij ¼ hdi2bij=l

f �D1 ¼ �b�11DRe1 � b�12DRe2
f �D2 ¼ �b�21DRe1 � b�22DRe2

�
: (19)

In the above two equations, the Reynolds numbers are defined
as DRei ¼ qgDUihdi=l. In our previous study,18 we char-
acterized the friction coefficients B�

ij and b�ij for bidisperse
suspensions of equally sized spheres with particle–particle
relative motion, i.e., d1 ¼ d2 and DU1 6¼ DU2. It was found
that the off-diagonal components of the friction coefficient
matrix are always important, and the size of the off-diagonals
is influenced by the intensity of the lubrication interaction
between particles. In this study, we use numerical simulations
to characterize B�

ij and b�ij for bidisperse suspensions of
unequally sized spheres, and develop formulas to fit them.

Simulation Method and Setup

The numerical method used in this work is the Susp3D
lattice-Boltzmann program developed by Ladd39,40 for sus-
pensions of spherical particles. It has been modified and
improved over the years, and a complete review is available
in Ladd and Verberg.41 This program has been used to study
many particle-laden flow problems, including the aforemen-
tioned studies on fluid-particle drag by Hill et al.5,6 van der
Hoef et al.8 Beetstra et al.10 and Yin and Sundaresan.18

Because detailed information of this method are well avail-
able in the literature, here we will only provide a brief
description.

The lattice-Boltzmann method is different from conven-
tional finite difference, finite volume, or finite element meth-
ods in that it does not solve the Navier-Stokes equations
directly. Rather, it simulates the evolution of a simplified
fluid molecular velocity distribution on a rectangular, space-
filling lattice. The propagation and relaxation of this molecu-
lar velocity distribution are designed such that fluid density,
momentum, and stresses, being the zeroth, first and second
order moments of the velocity distribution, obey the Navier-
Stokes equations on large length and time scales. Our
lattice-Boltzmann method employs a 19-velocity model
(commonly referred to as D3Q19 model to denote that the
simulations are in three dimensions and that the continuous
distribution of the fluid molecular velocity is discretized as a
sum of 19 discrete velocity quadratures) in which the density
of the fluid qg ¼ 36. The viscosity of the fluid, which con-
trols the relaxation rate of the non-equilibrium molecular
velocity distribution, was set to l ¼ 6.0, a good choice for
low-Reynolds-number flows. The size of the smaller spheres
was chosen to be 9.6 Dx where Dx is the lattice spacing. In
our previous study,18 we conducted grid resolution tests and
found that the there is no significant difference between
results obtained with d ¼ 9.6 Dx and those with d ¼ 12.5 Dx.
Therefore, 9.6 Dx was used to resolve the smaller spheres
throughout this study.

In bidisperse gas–solid suspensions, because of the relative
motion between particle species, lubrication interactions
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between particles are very important. In our lattice-Boltz-
mann method, the lubrication interactions between spheres
are solved analytically and imposed to the lattice solutions
in an explicit manner. The detail of the implementation can
be found in the paper by Nguyen and Ladd.42 It was shown
that when the particles are separated by more than one lat-
tice spacing, the lattice-Boltzmann method can fully resolve
the hydrodynamic interaction between the particles; when
the distance between particles is less than one lattice spac-
ing, the lubrication forces obtained from the lattice-Boltz-
mann no longer increase with decreasing separation, and
corrections are applied to normal and tangential forces and
torques so that they agree with the analytical solutions.43

The lubrication forces between two spheres with different
velocities diverge as the separation between the spheres
approaches zero. In reality, this divergence may be removed
by surface roughness, finite weight of particles, or noncon-
tinuum effects. All of these effects may be approximated in
our simulations by specifying a cutoff distance k: when the
separation between particles becomes less than k, the lubri-
cation forces no longer increase but remain as constants. Our
previous study18 revealed that the particle–particle drag
transmitted through the fluid increases with decreasing k fol-
lowing a logarithmic scale, indicating that the lubrication
forces in the normal direction is the primary contribution to
the hydrodynamic particle–particle drag. In this study, we
will also vary the values of k to study the dependence of the
drag forces on the lubrication cutoff distance.

We began our simulations by first randomly distributing
spherical particles of different sizes in cubic, periodic
domains, the size of which is typically 12–20 times the di-
ameter of the smaller particles. Then, we employed Monte-
Carlo steps to move the spheres in a random manner such
that that all of our simulations began with the well-known
microstructure of a binary hard-sphere fluid. This step is im-
portant because the drag forces would vary with the micro-
structure of the suspension. As there is no general knowl-
edge on the microstructure of bidisperse gas–solid suspen-
sion, assuming all particles are intimately mixed and using a
microstructure identical to that of a binary hard-sphere fluid
provide a reasonable starting point. In Figure 1, we com-
pared the structure factors of our initial particle configura-
tions with the analytical solutions for a binary hard sphere
fluid of the same composition.44 The structure factors S11ðkÞ,
S22ðkÞ, and S12ðkÞ are measures of the microstructure of a
bidisperse suspension, and are defined as the sums of particle
relative positions in the Fourier space:

S11ðkÞ ¼ 1

N1

� X
1�1pairs

e�ik�rij
�

S22ðkÞ ¼ 1

N2

� X
2�2pairs

e�ik�rij
�

S12ðkÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
� X

1�2pairs

e�ik�rij
�
:

(20)

In Eq. 20, k is the wave number vector, and rij is the sep-
aration vector between a pair of particles. Unlike in previous
discussions where i and j were used to index particle species,
here i and j are indices to individual particles. S11 and S22

were calculated by summing rij over pairs consisting of iden-
tical particles, i.e., 1-1 pairs and 2-2 pairs; S12, on the other
hand, was calculated by summing rij over 1-2 pairs. These
structure factors are functions of particle sizes, volume frac-
tions, and the magnitude of the wave number vector k ¼ |k|
due to the isotropy of our suspensions. In Figure 1, the par-
ticle size ratio d1:d2 was 1:1.11, the volume fractions were
/1 ¼ 0.139 and /2 ¼ 0.285. It may be observed that the
structure factors calculated from ensemble averages of 260
configurations (750 particles in each configuration) agree
very well with the analytical solutions provided by Ashcroft
and Langreth.44

After obtaining initial particle configurations, we assigned
a uniform velocity U to all particles if the configurations
were for fixed-bed simulations, or velocities U1 and U2 to dif-
ferent particle species if they were for bidisperse suspension
simulations with particle–particle relative motion. In both
cases, the assigned velocities would generate a fluid flow
within the particle assembly; meanwhile, a pressure gradient
was applied to the fluid to ensure that the average fluid veloc-
ity Ug is zero. The velocities assigned to the particles thus
became equivalent to the relative velocities to the fluid. Once
the flow reached the steady state, the net fluid-particle inter-
active forces F1 and F2 acting on the particles were obtained
by integrating the hydrodynamic stresses over particle surfa-
ces and averaging over all particles of the same species. The
drag forces FD1 and FD2 were then calculated from

FDi ¼ Fi þ pd3i
6

dP

dx
; (21)

where dP=dx is the bulk pressure gradient acting on the fluid
that balances the total forces

� dP

dx
¼ n1F1 þ n2F2: (22)

Figure 1. Structure factors S11(k) (upper triangles),
S22(k) (downward triangles), and S12(k) (dia-
monds) calculated from 260 random configu-
rations.

The particle sizes are: d1 ¼ 9:6Dx, d2 ¼ 10.66 Dx; there are
301 particles of type 1 and 449 particles of type 2; the vol-
ume fractions are: /1 ¼ 0.139, /2 ¼ 0.285. The solid lines
are based on the analytical solutions for S11, S22, and S12 in
Ashcroft and Langreth.44
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Note that all particles were frozen on the lattice, i.e., the
positions of particles were not updated based on their veloc-
ities. This procedure is valid because of the quasi-steadiness
of low-Re flows, and it ensures that the microstructure of the
suspension remains unchanged in the course of a simulation.

We also exploited the linear characteristics of low-Re
flows to characterize the friction coefficients for fixed beds
and suspensions. For fixed beds, the friction coefficients bi
were obtained as fDi�fixed=DU; for suspensions, we first let
U2 ¼ 0 and U1 be a non-zero value and solve for the 11 and
21 components of B�

ij and b�ij, then we ran another set of
simulations with U1 ¼ 0 and non-zero U2 to characterize the
12 and 22 components.

Drag in Polydisperse Fixed Beds

We now revisit the fluid-particle drag in bidisperse fixed
beds. Because this problem has already been studied by van
der Hoef et al.8,9 it is an excellent opportunity for compari-
son and validation. In addition, an accurate drag law for
bidisperse fixed beds is critically important for the develop-
ment of a general drag law for bidisperse suspensions with
particle–particle relative motion, because the general drag
law must be able to recover the drag law for fixed beds
when particle–particle relative motion is absent.

In order to characterize fluid-particle drag forces in bidis-
perse fixed beds, we conducted 361 simulations for 35 dif-
ferent combinations of ð/1;/2; d1=d2Þ, listed in Table 1. The
drag formula Eq. 12 developed by van der Hoef et al.8,9 is
good for bidisperse fixed beds with moderately different par-
ticle sizes (within a relatively narrow range of yi in the
vicinity of yi ¼ 1), and the agreement between Eq. 12 and
the numerical data with large particle size ratios (1:4 in par-
ticular) was rather poor. For this reason, in our simulations
we emphasized more on fixed beds with large particle size
ratios and extended the range of yi considerably. In Figure 2
where we plotted F�

Di�fixed=F
�
D�fixed(F

�
D�fixed given by Eq. 7)

as a function of yi, an excellent agreement between our data
and those by van der Hoef et al.8,9 is observed over the
range of yi where the two data sets overlap. The extended
range of yi in our data sets confirmed that the simple linear
relation F�

Di�fixed=F
�
D�fixed ¼ yi is only accurate in the vicin-

ity of yi ¼ 1 and becomes rather poor when yi becomes
much larger than unity. Besides, Eq. 12 predicts
F�
Di�fixed ¼ 0 when yi ! 0, which does not agree with the

general trend of the data in the low yi limit. Even though
the formula with Oðy3i Þ terms [Eq. 14] improved the quality
of fitting for large yi, the discrepancy in the low yi limit
is not addressed. Moreover, the additional dependence of
F�
Di�fixed=F

�
D�fixed on the particle size ratio, in view of Figure 2,

Table 1. List of Bidisperse Fixed-Bed Simulations Conducted

Size Ratio N1/N2 /1//2/M F�
D1�fixed F�

D2�fixed

d1:d2 ¼ 1:1.5 345/409 0.02/0.08/10 2.09 � 0.01 2.64 � 0.01
863/256 0.05/0.05/10 2.34 � 0.01 3.08 � 0.04
1382/102 0.08/0.02/10 2.23 � 0.01 2.90 � 0.03
863/512 0.05/0.10/10 2.77 � 0.01 3.69 � 0.03
1209/409 0.07/0.08/10 2.86 � 0.01 3.83 � 0.02
1382/358 0.08/0.07/10 2.91 � 0.01 3.94 � 0.02
1727/256 0.10/0.05/10 3.01 � 0.01 4.11 � 0.02
863/768 0.05/0.15/10 3.43 � 0.01 4.71 � 0.03
728/216 0.10/0.10/9 3.68 � 0.01 5.20 � 0.03
863/1023 0.05/0.20/10 4.21 � 0.01 6.02 � 0.03
1093/216 0.15/0.10/10 4.82 � 0.02 7.02 � 0.07
728/432 0.10/0.20/10 5.56 � 0.02 8.23 � 0.06
1457/216 0.20/0.10/10 6.24 � 0.03 9.45 � 0.06
364/648 0.05/0.30/12 6.53 � 0.05 9.83 � 0.05
728/648 0.10/0.30/10 8.70 � 0.04 13.60 � 0.09
1457/432 0.20/0.20/10 9.55 � 0.02 15.23 � 0.10
2186/216 0.30/0.10/10 10.45 � 0.03 17.02 � 0.14

d1:d2 ¼ 1:2.5 728/47 0.10/0.10/4 3.31 � 0.01 7.57 � 0.56
728/93 0.10/0.20/4 4.61 � 0.09 11.29 � 0.42
1457/47 0.20/0.10/5 5.82 � 0.02 15.75 � 0.38
728/140 0.10/0.30/5 6.71 � 0.03 17.78 � 0.70
1457/93 0.20/0.20/4 8.18 � 0.03 23.70 � 0.45
2186/47 0.30/0.10/5 9.84 � 0.06 31.17 � 1.55

d1:d2 ¼ 1:4 863/27 0.05/0.10/14 2.26 � 0.01 6.64 � 0.24
863/40 0.05/0.15/20 2.57 � 0.01 7.63 � 0.20
1727/27 0.10/0.10/15 3.14 � 0.01 11.41 � 0.37
863/54 0.05/0.20/20 2.98 � 0.01 9.76 � 0.26
2590/27 0.15/0.10/16 4.19 � 0.01 18.18 � 0.45
1727/54 0.10/0.20/14 4.15 � 0.02 16.45 � 0.38
3454/27 0.20/0.10/15 5.51 � 0.01 27.67 �1.42
863/81 0.05/0.30/9 4.04 � 0.03 14.66 � 0.62
4317/27 0.25/0.10/8 7.20 � 0.01 41.19 � 1.74
1727/81 0.10/0.30/13 5.72 � 0.02 25.34 � 0.83
3454/54 0.20/0.20/9 7.52 � 0.02 40.38 � 2.04
5180/27 0.30/0.10/10 9.42 � 0.01 59.34 � 3.12

The first column contains the numbers of particles in fixed beds; the second column contains the volume fractions and the number of configurations; the last
two columns contain the normalized drag forces as defined in Eq. 10.
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does not appear to be very necessary. Hence, we will assume
that F�

Di�fixed=F
�
D�fixed can still be fit by a simple function of /

and yi, and, in order to account for the nonlinear dependence
of F�

Di�fixed=F
�
D�fixed on yi, we will develop a quadratic func-

tion to fit the numerical data.
In view of the limitations of Eqs. 12 and 14 and the limit-

ing behaviors of F�
Di�fixed, we propose three conditions that

F�
Di�fixed must satisfy to guide the design of the quadratic

fitting function, and these conditions are listed below.
• F�

Di�fixed=F
�
D�fixed ¼ 1 when yi ¼ 1. This condition is

needed such that the new drag law can reproduce the drag of
a monodisperse fixed suspension when all di equal. While
Eq. 12 satisfies this condition, Eq. 14 does not.
• F�

Di�fixed ! 1 when / ! 0. This condition is needed
because in the dilute limit every particle will be subjected to
its respective Stokes drag, and it agrees with the trend
observed in Figure 2. Neither Eq. 12 nor Eq. 14 satisfies this
condition.
• F�

Di�fixed ! 1=ð1� /Þ when yi ! 0. In a bidisperse sus-
pension, the scaled particle size y1 would approach zero
when d1 \\ d2 and /1 \\ /2. In this limit, because the
average distance between smaller particles and larger par-
ticles and that between smaller particles themselves are

much larger than d1, the smaller particles can be treated as
point particles and the fluid-particle drag force acting on a
smaller particle is simply the Stokes drag based on the local
fluid velocity. The average drag force FD1�fixed is therefore
the Stokes drag based on the average fluid velocity relative to
the particle assembly 3pld1DU, and F�

D1�fixed ¼ 1=ð1� /Þ.
The simplest quadratic fitting function that satisfies the

above conditions is

F�
Di�fixed ¼

1

1� /
þ F�

D�fixed �
1

1� /

� �
ayi þ ð1� aÞy2i
	 


;

(23)

where a can be obtained from linear regression

F�
Di�fixed � 1

1�/

F�
D�fixed � 1

1�/

� y2i ¼ aðyi � y2i Þ: (24)

Figure 3 shows that ðF�
Di�fixed � 1

1�/Þ=ðF�
D�fixed � 1

1�/Þ � y2i
can be very well approximated by linear functions of
yi � y2i . As indicated by Figure 4, the values of a generally
decrease with increasing volume fraction, and can be fit by a
third-order polynomial

Figure 2. The vertical axis is the dimensionless drag in bidisperse fixed beds normalized by the dimensionless
drag in monodisperse fixed beds of the same volume fraction F�

Di�fixed=F
�
D�fixed; the horizontal axis is the

dimensionless particle size ratio yi ¼ di=hdi. F*
D2fixed was calculated based on Eq. 7.

This figure shows that (1) our simulation data, represented by the squares (d1:d2 ¼ 1:1.5), diamonds (d1:d2 ¼ 1:2.5), and circles (d1:d2 ¼
1:4), are in very good agreement with the data by van der Hoef et al.,8,9 (solid triangles), and (2) F�

Di�fixed=F
�
D�fixed is only a function of /

and yi. The dashed lines are based on van der Hoef et al.’s drag law Eq. 128,9; the solid lines are based on our new drag law for bidisperse
fixed beds Eqs. 23 and 25.
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að/Þ ¼ 1� 2:660/þ 9:096/2 � 11:338/3: (25)

In Figure 2, the predictions based on Eqs. 23 and 25 were
included as solid lines. Compared with the predictions based
on Eq. 12 (dotted lines), the solid lines are clearly better in
the volume fraction range of 0.1 \ / \ 0.5. The average
deviation of this new drag law from the simulation data,
defined as the square root of the mean square percentage
deviations, is only 3.9%; the maximum deviation is 9.4%.

Equations 23 and 25 can be readily applied to polydis-
perse fixed beds with three or more sizes of particles. For
general polydisperse suspensions and fixed beds, the Sauter
mean hdi is defined as

hdi ¼
P

i nid
3
i

� �
P

i nid
2
i

� � (26)

We simulated a low-Re flow through a ternary fixed bed
with d1 ¼ 9.6 Dx, d2 ¼ 12 Dx, and d3 ¼ 14.4 Dx. The volume
fractions are /1 ¼ /2 ¼ /3 ¼ 0:07. The size of the cubic
computational domain is 15.6 times the size of the smallest
particles (150 Dx). On the basis of these parameters, it is easy

Figure 3. This figure shows the linear relation between ðF�
Di�fixed � 1

1�/
Þ=ðF�

D�fixed � 1
1�/

Þ � yi
2, the vertical axis, and

yi � yi
2, the horizontal axis.

According to Eq. 24, the slopes of the best linear fits yield the values of a(/), the fitting function in the new drag law for bidisperse fixed
beds Eq. 23. In graphs (a) through (h), the symbols are the simulation data and the dashed lines are the best linear fits. The slopes of the
lines and the R2 values are included in the figure. The meanings of the symbols are identical to those in Figure (2).

Figure 4. The slopes obtained in Fig. 3 are plotted here
as a function of /.

These data points can be fit by a third-order polynomial,
which is Eq. 25. The error bars represent 95% confidence
intervals of the linear fitting.
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to obtain y1 ¼ 0.822, y2 ¼ 1.028, and y3 ¼ 1.233. Substituting
yi and /i into Eqs. 23 and 25, we obtained F�

D1�fixed ¼ 3:94,
F�
D2�fixed ¼ 4:64, and F�

D3�fixed ¼ 5:45; F�
Di�fixed found from

simulations (averaged over 10 runs with different particle con-
figurations) are 3.74, 4.53, and 5.39 respectively for the three
particle species, in good agreement with the predictions.

Even though Eq. 23 was developed to facilitate the devel-
opment of a drag law for suspensions with particle–particle
relative motions, an accurate drag law for polydisperse fixed
beds has its own merits and can be useful for many practical
applications. In addition, dense polydisperse fixed beds can
be regarded as porous media with grain size distributions,
and an expression for the overall permeability would be very
informative for researchers and engineers interested in
porous media flows. With this in mind, we invoke Eq. 13
and rewrite Eq. 23 into

bi¼
18/ið1�/Þl

d2i

1

1�/
þðF�

D�fixed�
1

1�/
Þ ayiþð1�aÞy2i
	 
 �

;

(27)

The total drag force per unit volume is therefore

X
i

fDi�fixed¼�18ð1�/ÞlDU
X
i

/i

d2i

� 1

1�/
þðF�

D�fixed�
1

1�/
Þ ayiþð1�aÞy2i
	 
 �

¼�18/ð1�/ÞlDU
hdi2

� F�
D�fixedþ

hdi2
2/2ð1�/Þ

X
i

X
j

/i/j

1

di
� 1

dj

� �2
" #

(28)

It is interesting to note that a(/) disappeared in the sum-
mation. Since the total drag force is related to the pressure
gradient by

X
i

fDi�fixed ¼ ð1� /Þ dP
dx

; (29)

one can obtain the relation between dP=dx and the superficial
velocity Us ¼ ð1� /ÞDU of the fluid through the porous
medium

dP

dx
¼� 18/lUs

ð1�/Þhdi2

� F�
D�fixedþ

hdi2
2/2ð1�/Þ

X
i

X
j

/i/j

1

di
� 1

dj

� �2
" #

: ð30Þ

Compared with the corresponding relation for a porous
medium formed by monodisperse spheres

dP

dx
¼ � 18/lUs

ð1� /Þd2 F
�
D�fixed; (31)

Equation 30 clearly indicates that the permeability of a
porous medium with grain size distribution is always lower
than the permeability of a porous medium consisting of mono-

disperse spheres of the same volume fraction under the condi-
tion d ¼ hdi. For dense bidisperse fixed beds, it is straightfor-
ward to show that the change in the permeability due to bidis-
persity is usually small, and it is safe to neglect the /1 /2 term
in Eq. 30. However, at low volume fractions the difference
becomes much more significant. As our fixed-bed drag law
also serves as a stepping-stone for the subsequent development
of the general drag law for fluidized bidisperse gas–solid sus-
pensions with particle–particle relative motions, the accuracy
in the dilute regime is also of critical importance to us.

Note that van der Hoef et al.8,9 provided a seemingly
opposite statement that the total drag force of a polydisperse
fixed bed is lower than a monodisperse fixed bed of the
same volume fraction, giving rise to a higher permeability.
To understand this difference, it is important to realize that
the comparison in van der Hoef et al.8,9 is different and is
between a polydisperse fixed bed and a monodisperse fixed
bed with particle size �d rather than hdi. �d, being the number
average of all particle sizes in the polydisperse fixed bed, is
always smaller than the Sauter mean hdi. Our drag law
Eq. 30 is consistent with van der Hoef et al.8,9 if we neglect
the /i/j terms and compare to a monodisperse fixed bed
containing particles of size �d rather than hdi.

To develop a formula capable of handling a continuous
size distribution, let ri ¼ ni=

P
i ni

� �
be the fraction of the

ith particle species and it is easy to obtain

/i ¼
prid3i
6

X
i

ni

 !
: (32)

Because the sum of all /i yields /, the total solid fraction of a
porous medium, a relation between

P
i ni

� �
, the total number

of particles per unit volume, and / can be established

/ ¼ p
6

X
i

rid
3
i

 ! X
i

ni

 !
: (33)

By substituting Eq. 33 into Eq. 32, we can write /i in
terms of / and ri

/i ¼ /
rid3iP
i rid

3
i

: (34)

Substituting Eq. 34 into Eq. 30, and using
hdi ¼ P

i rid
3
i

� �
=
P

i rid
2
i

� �
, we obtain

dP

dx
¼ � 18/lUs

ð1� /Þhdi2 F�
D�fixed þ

P
i

P
j rirjdidjðdi � djÞ2

2ð1� /Þ Pi rid
2
i

� �2
" #

:

(35)

Equation 35 can be further simplified to

dP

dx
¼ � 18/lUs

ð1� /Þhdi2

� F�
D�fixed þ

1

1� /

P
i ridi

� � P
i rid

3
i

� �
P

i rid
2
i

� �2 � 1

" #" #
: ð36Þ
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Now, assume that the porous medium of interest is formed
by grains whose size is described by a continuous size distri-
bution r(d), let rI, rII, and rIII denote the first, second, and
third order moments of r(d), Eq. 36 indicates that the rela-
tion between the pressure gradient and superficial velocity of
the fluid flowing through this porous medium is simply

dP

dx
¼ � 18/lUs

ð1� /Þhdi2 F�
D�fixed þ

1

1� /
rIrIII
rIIrII

� 1

� � �
: (37)

Let us substitute two common particle size distributions—
Gaussian and log-normal distributions—into Eq. 37 and
examine the influence of the size distribution on the overall
drag. If the size distribution is Gaussian

rðdÞ ¼ 1

d
ffiffiffiffiffiffi
2p

p exp �ðd � �dÞ2
2d2

 !
; (38)

then rI ¼ �d, rII ¼ �d2 þ d2, and rIII ¼ �d3 þ 3d2 �d. It is easy to
show that Eq. 37 becomes

dP

dx
¼� 18/lUs

ð1�/Þhdi2 F�
D�fixed þ

1

1�/
ð�d=dÞ2 � 1

ð�d=dÞ4 þ 2ð�d=dÞ2 þ 1

" #
:

(39)

On the other hand, if the size distribution is log-normal

rðdÞ ¼ 1

dd�
ffiffiffiffiffiffi
2p

p exp �ðln d � ln �dÞ2
2d�2

 !
; (40)

then rI ¼ �ded
�2=2, rII ¼ �d2e2d

�2
, rIII ¼ �d3e9d

�2=2, and Eq. 37
becomes

dP

dx
¼ � 18/lUs

ð1� /Þhdi2 F�
D�fixed þ

1

1� /
ðed�2 � 1Þ

 �
: (41)

Note that d in Eq. 38 and d* in Eq. 40 have different
meanings and units. In Eq. 38, d represents the standard
deviation of the distribution and has the unit of length; in
Eq. 40, d* yields the shape of the distribution and is dimen-
sionless and typically less than unity. When d* becomes less
than about 0.25, the shape of the log-normal distribution
becomes approximately Gaussian.

With these equations, we can now answer a practical
question: how good the approximation would be if we
neglect the second correction term on the right hand side of
Eq. 37 and assume that the drag of a polydisperse fixed bed
(or a porous medium with grain size distribution) equals the
drag of a monodisperse fixed bed with d ¼ hdi? In Figure 5,
we plotted rIrIII=r2II � 1 as a function of �d=d for Gaussian
distributions and as a function of d* for log-normal distribu-
tions. For Gaussian distributions, the value of rIrIII=r2II � 1
for all practical �d=d never exceeds 0.13. Compared with the
values of F�

D�fixedð1� /Þ which are typically 1–10 when /
\ 0.5, rIrIII=r2II � 1 is indeed a small correction and can be
neglected under most occasions. For log-normal distribu-
tions, however, rIrIII=r2II � 1 can become comparable to
F�
D�fixedð1� /Þ when d* becomes close to unity. When this

happens, neglecting rIrIII=r2II � 1 term would introduce
rather significant errors and should not be practiced.

Drag in Polydisperse Gas–Solid Suspensions with
Particle–Particle Relative Motion

We now consider the fluid-particle drag in suspensions
where the two particle species have different velocities rela-
tive to the fluid, i.e. DU1 6¼ DU2. In this case, the fluid-particle
drag will contain a particle–particle drag term that represents
the momentum transfer between particle species due to hydro-
dynamic interactions. In a preceding numerical study, Yin and
Sundaresan18 characterized the special case where the two par-
ticle species are of the same size, i.e., d1 ¼ d2. In this study,
we are interested in the more general situation of d1 = d2. We
will show that the particle–particle drag due to hydrodynamic

Figure 5. rIrIII=r
2
II � 1 as a function of �d=d for Gaussian particle size distributions (a), and as a function of d* for

log-normal particle size distributions (b).

The lines were calculated base on Eq. 39 and Eq. 41. The small insert in (b) shows the log-normal size distribution rðdÞ�d as a function of
d=�d for three values of d*: 0.25 (solid line), 0.5 (dashed line), and 1.0 (dash-dot line).
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interaction is always an important part of the total fluid-parti-
cle drag, and present a drag formula for polydisperse gas–solid
suspensions with particle–particle relative motion.

As discussed previously, the dimensionless fluid-particle
drag forces per particle and per volume in bidisperse gas–solid
suspensions can be expressed as linear functions of fluid-parti-
cle relative velocities [c.f. Eqs. 18 and 19]. From now on, we
will focus on the volume specific drag law Eq. 19 and report
the values of the volume specific friction coefficient b*ij for

different combinations of volume fractions, particle size ratios,
and lubrication cutoff distances. The values for B*ij can be
easily computed by invoking niB*ij hdi3¼ b*ij .

In Table 2 through Table 5, we have listed all simulations
conducted in this study with DU1 6¼ DU2, including 504 sim-
ulations for the smallest lubrication cutoff k/d1 ¼ 0.01, and
173 simulations for each of the higher lubrication cutoff val-
ues: k/d1 ¼ 0.02, 0.05, and 0.10. Also listed in these tables
are the friction coefficients b�ij and the ratios �b�12=b

�
11 and

Table 2. List of Polydisperse Suspension Simulations with Particle–Particle Relative Motions

Size Ratio /1//2/M b�11 b�12 �b�12=b
�
11 b�21 b�22 �b�21=b

�
22

d1:d2 ¼ 1:1.5 0.05/0.05/15 2.89 � 0.04 �0.26 � 0.04 0.09 �0.28 � 0.04 1.77 � 0.04 0.16
0.05/0.10/15 4.25 � 0.05 �0.73 � 0.06 0.17 �0.75 � 0.05 4.89 � 0.09 0.15
0.10/0.05/15 6.30 � 0.04 �0.58 � 0.05 0.09 �0.51 � 0.04 2.35 � 0.05 0.22
0.05/0.15/12 5.61 � 0.07 �1.33 � 0.09 0.24 �1.23 � 0.07 9.40 � 0.10 0.13
0.10/0.10/14 9.11 � 0.15 �1.47 � 0.13 0.16 �1.42 � 0.13 6.25 � 0.14 0.23
0.05/0.20/12 7.50 � 0.14 �2.09 � 0.07 0.28 �2.18 � 0.13 15.53 � 0.07 0.14
0.15/0.10/15 15.49 � 0.16 �2.42 � 0.15 0.16 �2.50 � 0.14 8.04 � 0.15 0.31
0.10/0.20/12 16.08 � 0.11 �4.18 � 0.19 0.26 �4.48 � 0.11 19.57 � 0.18 0.23
0.20/0.10/15 23.81 � 0.21 �3.66 � 0.24 0.15 �3.90 � 0.23 10.40 � 0.23 0.38
0.05/0.30/12 12.09 � 0.18 �4.75 � 0.29 0.39 �4.57 � 0.19 34.90 � 0.31 0.13
0.10/0.30/12 28.44 � 0.56 �10.90 � 0.59 0.38 �11.86 � 0.56 45.74 � 0.58 0.26
0.20/0.20/12 42.80 � 0.43 �12.83 � 0.56 0.30 �13.10 � 0.48 33.89 � 0.52 0.38
0.30/0.10/12 48.93 � 0.31 �9.10 � 0.31 0.18 �8.53 � 0.32 18.86 � 0.32 0.45

d1:d2 ¼ 1:2.5 0.10/0.10/13 11.31 � 0.21 �1.53 � 0.22 0.14 �1.54 � 0.22 5.03 � 0.22 0.31
0.10/0.20/12 20.06 � 0.43 �4.61 � 0.41 0.23 �3.91 � 0.47 17.02 � 0.42 0.23
0.20/0.10/15 26.04 � 0.27 �3.37 � 0.22 0.13 �3.21 � 0.24 8.50 � 0.21 0.38
0.10/0.30/10 37.27 � 0.83 �12.30 � 0.87 0.33 �13.39 � 0.82 43.12 � 0.89 0.31
0.20/0.20/12 48.94 � 0.37 �13.19 � 0.23 0.27 �12.87 � 0.41 29.95 � 0.29 0.43
0.30/0.10/15 51.78 � 0.45 �7.69 � 0.44 0.15 �7.74 � 0.44 15.16 � 0.43 0.51

d1:d2 ¼ 1:4 0.05/0.10/22 7.68 � 0.09 �0.61 � 0.06 0.08 �0.72 � 0.09 3.16 � 0.06 0.23
0.05/0.15/20 11.15 � 0.15 �1.78 � 0.16 0.16 �1.57 � 0.17 7.06 � 0.14 0.22
0.10/0.10/20 12.65 � 0.12 �1.12 � 0.08 0.09 �1.03 � 0.08 3.75 � 0.07 0.27
0.05/0.20/20 15.18 � 0.26 �2.65 � 0.31 0.17 �2.61 � 0.28 12.79 � 0.31 0.20
0.15/0.10/25 19.07 � 0.10 �1.71 � 0.12 0.09 �1.74 � 0.10 4.84 � 0.12 0.36
0.10/0.20/14 25.66 � 0.27 �4.16 � 0.21 0.16 �4.73 � 0.35 14.54 � 0.23 0.32
0.20/0.10/23 27.37 � 0.14 �2.58 � 0.12 0.09 �2.66 � 0.14 6.46 � 0.13 0.41
0.05/0.30/12 25.03 � 0.65 �6.14 � 0.69 0.24 �6.49 � 0.66 31.56 � 0.76 0.20
0.25/0.10/24 37.96 � 0.16 �3.99 � 0.12 0.10 �3.84 � 0.16 8.87 � 0.14 0.43
0.10/0.30/14 43.77 � 0.73 �11.62 � 0.88 0.26 �11.54 � 0.70 38.50 � 0.88 0.30
0.20/0.20/19 52.40 � 0.35 �11.04 � 0.63 0.21 �10.70 � 0.34 25.16 � 0.67 0.42
0.30/0.10/21 52.36 � 0.19 �6.60 � 0.19 0.13 �6.26 � 0.18 12.79 � 0.20 0.49

The first column contains the volume fractions and the number of configurations; the second, third, fifth, and sixth columns contain the dimensionless volume-
specific friction coefficient b�ij . The ratio of the off-diagonals to the diagonals in the fourth and last columns indicate the importance of the hydrodynamic par-
ticle–particle drag. In all simulations k=d1 ¼ 0:01.

Table 3. List of Polydisperse Suspension Simulations with Particle–Particle Relative Motions

Size Ratio /1//2/M b�11 b�12 �b�12=b
�
11 b�21 b�22 �b�21=b

�
22

d1:d2 ¼ 1:1.5 0.10/0.10/14 8.88 � 0.11 �1.21 � 0.09 0.14 �1.20 � 0.10 5.99 � 0.10 0.20
0.10/0.20/12 15.39 � 0.20 �3.95 � 0.16 0.26 �3.67 � 0.23 19.23 � 0.18 0.19
0.20/0.10/15 23.24 � 0.16 �3.09 � 0.18 0.13 �3.33 � 0.18 9.83 � 0.18 0.34
0.10/0.30/12 26.91 � 0.44 �9.55 � 0.53 0.35 �10.33 � 0.43 44.40 � 0.54 0.24

d1:d2 ¼ 1:2.5 0.10/0.10/12 11.12 � 0.18 �1.26 � 0.20 0.11 �1.36 � 0.19 4.77 � 0.20 0.28
0.10/0.20/12 19.65 � 0.27 �4.04 � 0.26 0.20 �3.50 � 0.31 16.45 � 0.28 0.21
0.20/0.10/15 25.75 � 0.20 �2.96 � 0.16 0.11 �2.91 � 0.18 8.10 � 0.15 0.36s
0.10/0.30/10 35.66 � 0.55 10.34 � 0.55 0.29 �11.54 � 0.57 41.17 � 0.56 0.28

d1:d2 ¼ 1:4 0.10/0.10/20 12.52 � 0.07 �0.94 � 0.04 0.08 �0.90 � 0.07 3.57 � 0.05 0.25
0.10/0.20/14 24.88 � 0.22 �3.73 � 0.18 0.15 �3.95 � 0.24 14.11 � 0.19 0.28
0.20/0.10/24 27.02 � 0.10 �2.26 � 0.08 0.08 �2.30 � 0.09 6.14 � 0.10 0.37
0.10/0.30/14 42.41 � 0.55 �10.54 � 0.76 0.25 �10.18 � 0.52 37.38 � 0.78 0.27

The first column contains the volume fractions and the number of configurations; the second, third, fifth, and sixth columns contain the dimensionless volume-
specific friction coefficient b�ij . The ratio of the off-diagonals to the diagonals in the fourth and last columns indicate the importance of the hydrodynamic par-
ticle–particle drag. In all simulations k=d1 ¼ 0:02.
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�b�21=b
�
22 representing the weight of the off-diagonals rela-

tive to the diagonals. It can be observed that the off-diago-
nals in the friction coefficient matrix are fairly significant
compared to the diagonals, and they produce particle–parti-
cle drag forces that should not be neglected from the total
fluid-particle drag force.

It may be observed from the data that the ratio �b�12=b
�
11

decreases with increasing particle size difference, and the ra-
tio �b�21=b

�
22 increases with increasing particle size differ-

ence. These opposing trends, which are most obvious
between the data obtained with d1:d2 ¼ 1:1.5 and those with
d1:d2 ¼ 1:4 , can be explained as smaller particles would
have fewer larger particle neighbors if the size difference
between species increases, whereas the larger particles on
average would find more smaller particles neighbors under
the same situation. In addition, similar to what was reported
in Yin and Sundaresan,18 the off-diagonals decrease with
increasing lubrication cutoff distance, indicating that the
lubrication interaction between particles provides important
contributions to the hydrodynamic particle–particle drag.

When we look for functions to fit b�ij, it is useful to recog-
nize that the four components in b�ij are not independent of
each other. Based on the principle of action and reaction
between particle species, b�ij should always be symmetric,
i.e., b�12 ¼ b�21. In addition, in order to reproduce the friction

coefficients of bidisperse fixed beds when DU1 ¼ DU2, b�ij
must satisfy two constraints

b�11 þ b�12 ¼ b�1
b�21 þ b�22 ¼ b�2;

(42)

where b�i ¼ bihdi2=l is the dimensionless form of bi that is
related to F�

Di�fixed by Eq. 13. Our simulation data listed in
Table 2 through Table 5 indicate that b�ij are indeed roughly
symmetric. As shown in the left panel of Figure 6, b�12=b

�
21 as a

function of / were always close to unity. In the right panel of
Figure 6, we show that the values of ðb�11 þ b�12Þ=b�1 and
ðb�21 þ b�22Þ=b�2, where b�1 and b�2 were obtained from our
fixed-bed simulations [c.f. Table 1], were also close to unity.
Because of these constraints, the friction coefficient matrix can
be written into the following form where b�12 is the only free
parameter

b�11 b�12
b�21 b�22

 �
¼ b�1 � b�12 b�12

b�12 b�2 � b�12

 �
: (43)

Since we have already developed accurate fitting functions for
b�1 and b�2 [Eqs. 23 and 25], it is our next task to look for
appropriate functions to account for the dependence of b�12 on
/i, di, and k.

Table 5. List of Polydisperse Suspension Simulations with Particle–Particle Relative Motions

Size Ratio /1//2/M b�11 b�12 �b�12=b
�
11 b�21 b�22 �b�21=b

�
22

d1:d2 ¼ 1:1.5 0.10/0.10/14 8.40 � 0.07 �0.71 � 0.04 0.08 �0.71 � 0.06 5.50 � 0.04 0.13
0.10/0.20/12 13.88 � 0.11 �2.34 � 0.09 0.17 �2.17 � 0.13 17.62 � 0.10 0.12
0.20/0.10/15 21.91 � 0.06 �1.87 � 0.08 0.08 �2.00 � 0.07 8.62 � 0.08 0.23
0.10/0.30/12 23.37 � 0.09 �5.95 � 0.37 0.25 �6.74 � 0.36 40.80 � 0.40 0.16

d1:d2 ¼ 1:2.5 0.10/0.10/13 10.71 � 0.12 �0.94 � 0.13 0.09 �0.94 � 0.12 4.45 � 0.12 0.21
0.10/0.20/12 18.49 � 0.08 �2.65 � 0.13 0.14 �2.34 � 0.14 15.07 � 0.14 0.16
0.20/0.10/15 24.72 � 0.12 �1.83 � 0.07 0.07 �1.87 � 0.09 6.97 � 0.07 0.27
0.10/0.30/10 31.43 � 0.34 �6.74 � 0.35 0.21 �7.55 � 0.35 37.56 � 0.36 0.20

d1:d2 ¼ 1:4 0.10/0.10/20 12.24 � 0.03 �0.59 � 0.04 0.05 �0.62 � 0.03 3.23 � 0.03 0.19
0.10/0.20/14 23.40 � 0.14 �2.54 � 0.12 0.11 �2.47 � 0.16 12.92 � 0.16 0.19
0.20/0.10/24 26.26 � 0.05 �1.55 � 0.05 0.06 �1.54 � 0.05 5.40 � 0.08 0.28
0.10/0.30/14 39.26 � 0.40 �7.11 � 0.56 0.18 �7.08 � 0.38 34.01 � 0.61 0.21

The first column contains the volume fractions and the number of configurations; the second, third, fifth, and sixth columns contain the dimensionless volume-
specific friction coefficient b�ij . The ratio of the off-diagonals to the diagonals in the fourth and last columns indicate the importance of the hydrodynamic par-
ticle–particle drag. In all simulations k=d1 ¼ 0:1.

Table 4. List of Polydisperse Suspension Simulations with Particle–Particle Relative Motions

Size Ratio /1//2/M b�11 b�12 �b�12=b
�
11 b�21 b�22 �b�21=b

�
22

d1:d2 ¼ 1:1.5 0.10/0.10/14 8.61 � 0.08 �0.94 � 0.06 0.11 �0.93 � 0.08 5.72 � 0.07 0.16
0.10/0.20/12 14.55 � 0.15 �3.01 � 0.11 0.21 �2.83 � 0.18 18.29 � 0.12 0.15
0.20/0.10/15 22.46 � 0.09 �2.41 � 0.12 0.11 �2.53 � 0.10 9.15 � 0.12 0.28
0.10/0.30/12 24.87 � 0.39 �7.49 � 0.43 0.30 �8.29 � 0.36 42.3 � 0.46 0.20

d1:d2 ¼ 1:2.5 0.10/0.10/13 10.87 � 0.13 �1.11 � 0.15 0.10 �1.11 � 0.14 4.62 � 0.14 0.24
0.10/0.20/12 18.99 � 0.15 �3.29 � 0.17 0.17 �2.84 � 0.19 15.71 � 0.18 0.18
0.20/0.10/15 25.18 � 0.14 �2.31 � 0.10 0.09 �2.34 � 0.12 7.44 � 0.09 0.31
0.10/0.30/10 33.14 � 0.44 �8.28 � 0.39 0.25 �9.25 � 0.46 39.11 � 0.40 0.24

d1:d2 ¼ 1:4 0.10/0.10/20 12.36 � 0.04 �0.74 � 0.04 0.06 �0.74 � 0.04 3.37 � 0.03 0.22
0.10/0.20/14 24.01 � 0.18 �3.12 � 0.15 0.13 �3.09 � 0.19 13.50 � 0.18 0.23
0.20/0.10/24 26.56 � 0.06 �1.85 � 0.05 0.07 1.85 � 0.06 5.71 � 0.08 0.32
0.10/0.30/14 40.69 � 0.45 �8.62 � 0.64 0.21 �8.46 � 0.41 35.51 � 0.68 0.24

The first column contains the volume fractions and the number of configurations; the second, third, fifth, and sixth columns contain the dimensionless volume-
specific friction coefficient b�ij . The ratio of the off-diagonals to the diagonals in the fourth and last columns indicate the importance of the hydrodynamic par-
ticle–particle drag. In all simulations k=d1 ¼ 0:05.
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In the process of seeking fitting functions for b�12, we
were assisted by the insight gained from our previous study
on polydisperse suspensions containing equally sized
spheres.18 In that study, it was found that for the special
case of d1 ¼ d2 ¼ d, the friction coefficient matrix is simply

b�11 b�12
b�21 b�22

 �
¼ 18ð1�/ÞF�

D�fixed

ð1þ a/2Þ/1 �a/1/2

�a/1/2 ð1þ a/1Þ/2

 �
;

(44)

where a is a logarithmic function of the distance on which the
lubrication force between particles begins to saturate

a ¼ 1:313 log10ðd=kÞ � 1:249; (45)

and F�
D�fixed is the dimensionless drag of a monodisperse fixed

bed of the same volume fraction [c.f. Eq. 7]. Comparing Eq. 44
with Eq. 43, one can see that for the case of d1 ¼ d2 ¼ d, b�12 is
proportional to b�1 and b�2

b�12
/1/2

¼ �a
b�1
/1

¼ �a
b�2
/2

: (46)

Motivated by Eq. 46, we sought functions to relate �b�12=/1/2

to b�1=/1 and b�2=/2. Such functions should only contain
symmetric combinations of b�1=/1 and b�2=/2, e.g.,
b�1=/1 þ b�2=/2 or b�1b

�
2=/1/2, because a drag law should

not depend on the way in which the particle species are
indexed. After experimenting several different ways of
combining b�1=/1 and b�2=/2, we found that �b�12=/1/2 can
be approximated by a linear function of the harmonic mean of
b�1=/1 and b�2=/2

b�12
/1/2

¼ �a
2

/1=b
�
1 þ /2=b

�
2

; (47)

where a is given by

a ¼ 1:313 log10ðd1=kÞ � 1:249: (48)

In Eq. 48, we used d1, the size of the smaller particle spe-
cies, to normalize k. Eqs. 47 and 48 are reduced to Eqs. 46
and 45 for the special case of d1 ¼ d2 and b�1=/1 ¼ b�2=/2.

As Figure 7 shows, the expressions Eqs. 47 and 48 (the
solid lines) provide good fittings for all b�12 characterized
from our numerical simulations (the symbols) regardless of
volume fractions and particle size ratios. The average per-
centage deviation from Eqs. 47 and 48 with b�1 and b�2 deter-
mined from Eq. 27 to the numerical data is 13%; the maxi-
mum deviation is 31%. It may be observed from Figure 7
that most of the data points fall into the range of �13%
from the predictions of Eqs. 47 and 48 between the dashed
lines sandwiching the center solid lines.

The fact that �b�12=/1/2 can be approximated by the
product of a logarithmic function of k=d1 and the harmonic
mean of b�1=/1 and b�2=/2, again, shows the importance of
the local lubrication interactions between particles in the
overall hydrodynamic particle–particle drag. In a random
bidisperse suspension, the probability of finding a particle of
species 2 right next to a particle of species 1—the probabil-
ity of mutual contact—is known to be proportional to the
harmonic mean of the two particle sizes.45 As the overall
lubrication force between particle species is proportional to
the probability of mutual contact, it is not surprising that
�b�12=/1/2 appeared to be proportional to the harmonic
mean of b�1=/1 and b�2=/2. In fact, it was the above chain of
thoughts that led us to Eq. 47, which turned out to be a sim-
ple yet excellent fitting function for our simulation data at
all volume fractions and particle size ratios.

Equations 47 and 48 can easily be generalized to suspen-
sions containing three or more species moving with different
velocities relative to the fluid

b�ij ¼ � 2aij/i/j

/i=b
�
i þ /j=b

�
j

: (49)

In the above equation, aij is a logarithmic function of the ratio
between the lubrication cutoff k and the size of the smaller
particle species of the two

Figure 6. The left panel shows b�12=b
�
21 as a function of total volume fraction / ¼ /1 þ /2; the right panel shows the

values of ðb�11 þ b�12Þ=b�1 and ðb�21 þ b�22Þ=b�2 as a function of /.

The squares, diamonds, and circles represent simulation data with d1:d2 ¼ 1:1:5, 1:2.5, and 1:4, respectively. The lubrication cutoff k/d1 ¼
0.001. This figure indicates that (1) the volume-specific friction coefficient matrix b�ij is nearly symmetric, and (2) the row summation of
b�ij recovers the friction coefficients in bidisperse fixed beds of the particle composition. The error bars represent 90% confidence intervals
due to variations in particle configurations.
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aij ¼ 1:313 log10ðminðdi; djÞ=kÞ � 1:249: (50)

The net fluid-particle drag force per volume of suspension
acting on species i is therefore

f �Di ¼ �b�i DRei �
X
j 6¼i

b�ij DRej � DRei
� �

¼ �b�i DRei �
X
j 6¼i

2aij/i/j

/i=b
�
i þ /j=b

�
j

DRei � DRej
� �

:
(51)

One can substitute

b�i ¼
18/ið1� /Þ

y2i
F�
Di�fixed (52)

and

F�
Di ¼

py3i
6/i

f �Di (53)

into Eq. 51 to obtain the expression for the average fluid-
particle drag per particle

F�
Di ¼ �3pð1� /Þ

� yiDReiF
�
Di�fixed þ

X
j 6¼i

2aij/jy
3
i DRei � DRej
� �

y2i =F
�
Di�fixed þ y2j =F

�
Dj�fixed

" #
: ð54Þ

We constructed two ternary suspensions to test the applic-
ability of Eq. 51 to general polydisperse gas–solid suspen-
sions. Table 6 lists the volume fractions, sizes, and velocities
of different particle species. It can be observed that the
dimensionless drag forces calculated from Eq. 51 are very
close to the actual drag forces obtained from simulations.
Table 6 also shows that neglecting particle–particle hydro-
dynamic drag terms by setting aij to zero in Eq. 51 increases
the differences between the calculated drag forces and the
simulation data, proving that drag laws including hydro-
dynamic particle–particle drag terms are more accurate than
the drag laws without such terms.

Figure 7. This figure shows the approximate linear dependence of �b�12=/1/2 on the harmonic mean of b�1=/1 and
b�2=/2 for four different values of the lubrication cutoff: (a) k=d1 ¼ 0:001, (b) k=d1 ¼ 0:002, (c) k=d1 ¼ 0:005,
(d) k=d1 ¼ 0:01.

The squares, diamonds, and circles represent, respectively, simulation data with d1:d2 ¼ 1:1:5, 1:2.5, and 1:4. The upward triangles corre-
spond to data from Yin and Sundaresan18 where d1 ¼ d2. The solid lines are based on the proposed fitting function Eq. 47 with a given
by Eq. 48; the dashed lines represent the �13% range of average deviations. The error bars represent 90% confidence intervals due to var-
iations in particle configurations.
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Summary

Using the lattice-Boltzmann method, we characterized the
fluid-particle drag forces in low-Reynolds-number bidisperse
fixed beds and gas–solid suspensions with particle–particle
relative motions. These particles are spherical in shape, and
they are intimately mixed (the microstructure of our bidis-
perse suspensions is identical to that of a binary hard sphere
fluid) and are assumed to have moderate-to-high Stokes
numbers such that their fluctuating motions are not much
affected by the hydrodynamic forces between successive col-
lisions. This low-Re, high-St dual limit is realistic for many
gas–solid suspensions containing 50–100 lm size particles
under typical pressure conditions, and it allows for efficient
characterization of the drag forces and the friction coeffi-
cients due to the linearity of the system.

For bidisperse fixed beds, our numerical data in the vol-
ume fraction range of 0.1 \ / \ 0.4 agree very well with
the existing data by van der Hoef et al.8,9 Our data showed
that the previously developed drag law by van der Hoef
et al.,8,9 for fixed beds is only accurate when the size differ-
ence between particles is moderate; in fixed beds with large
size differences (1:4), our data confirmed that there is a sys-
tematic difference. By analyzing the general trend of existing
data (both ours and those in van der Hoef et al.8,9) and the
limiting behaviors of the drag forces, we developed a modi-
fied drag formula for polydisperse fixed beds

F�
Di�fixed ¼

1

1� /
þ F�

D�fixed �
1

1� /

� �
ayi þ ð1� aÞy2i
	 


;

where a is a cubic polynomial of the total volume fraction of
the suspension

að/Þ ¼ 1� 2:660/þ 9:096/2 � 11:338/3;

F�
Di�fixed is the dimensionless drag force per particle of type i

in a polydisperse fixed bed [c.f. Eq. 10], F�
D�fixed is the

dimensionless drag force in a monodisperse fixed bed [c.f. Eq.
7], and yi is the dimensionless particle size ratio di=hdi with
hdi the Sauter mean of the suspension [c.f. Eq. 26]. In the
volume fraction range 0.1 \ / \ 0.5, this new drag law fits
the existing numerical data with an average percentage error of
3.9% and a maximum error of 9.4%; thus, it is a significant
improvement over the existing drag formulas. On the basis of
this drag formula, a relation between the overall pressure drop

dP/dx for a porous medium with a continuous grain size
distribution r(d) and the superficial fluid velocity Us through
the medium is developed

dP

dx
¼ � 18/lUs

ð1� /Þhdi2 F�
D�fixed þ

1

1� /
rIrIII
rIIrII

� 1

� � �
;

where rI, rII, and rIII are the first, second, and third order
moments of r(d), and hdi ¼ rIII/rII.

For bidisperse gas–solid suspensions with particle–particle
relative motions, our objective is to characterize and develop
fitting functions for the hydrodynamic particle–particle drag,
a term that is not very well understood to date and is usually
neglected in the existing drag formulas. Because of the line-
arity of low-Re flows, the drag forces acting on the two par-
ticle species in a bidisperse suspension with particle–particle
relative motion may be expressed as linear functions of their
respective velocities relative to the fluid. The proportionality
constants between the forces and the velocities, known as
the friction coefficients, is a matrix the off-diagonals of
which are indicative of the size of the hydrodynamic parti-
cle–particle drag. Our numerical data for the friction coeffi-
cient matrix indicate that the off-diagonals produce sizeable
contributions to the drag forces, and they are in fact linear
functions of the harmonic means of the drags in bidisperse
fixed beds [c.f. Eq. 49]. The net dimensionless fluid-particle
drag force per volume of suspension acting on particles of
type i in a polydisperse suspension where different particle
types have different velocities relative to the fluid is

f �Di ¼ �b�i DRei �
X
j 6¼i

2aij/i/j

/i=b
�
i þ /j=b

�
j

DRei � DRej
� �

:

In the above equation, f �Di and DRei are defined in Eq. 19, b�i is
the volume-specific friction coefficient for type i particles in a
polydisperse fixed bed of the same composition and is related
to F�

Di�fixed by Eq. 52, and aij is a logarithmic function of the
ratio between the lubrication cutoff k and the size of the
smaller particle species of the two

aij ¼ 1:313 log10ðminðdi; djÞ=kÞ � 1:249:

This drag formula fits our numerical data with an average
percentage deviation of 13%, and a maximum deviation of

Table 6. Verification of the Drag Law Eq. 51 for Two Ternary Suspensions

Suspension #1 Suspension #2

/1,2,3 0.07 / 0.07 / 0.07 0.02 / 0.085 / 0.03
d1,2,3(Dx) 9.60 / 12.0 / 14.4 7.60 / 9.60 / 11.6
N1,2,3 510 / 261 / 151 84 / 180 / 36
M 20 19
hdi(Dx) 11.7 9.60
DRe1,2,3 0.0346 / 0.0485 / 0.0653 0.0252 / 0.0372 / 0.0466
f�D1;2;3 (simulation) �0.085 � 0.001 / �0.104 � 0.001 / �0.133 � 0.001 �0.0143 � 0.0004 / �0.0686 � 0.0004 / �0.0311 � 0.0004
f�D1;2;3 (Eq. 50) �0.083 / �0.103 / �0.127 �0.0132 / �0.0721 / �0.0315
f�D1;2;3 (aij ¼ 0) �0.095 / �0.103 / �0.115 �0.0155 / �0.0728 / �0.0285

Rows 1–4 contain the volume fractions, particle sizes in terms of lattice spacing Dx, numbers of particles in each simulation, and number of configurations. The
fifth row contains the Sauter mean of the two suspensions, from which the Reynolds numbers in the sixth row were calculated. The last three rows compare the
dimensionless drag forces obtained from simulations (the numbers after � sign represent the 90% uncertainty levels) to those based on Eq. 51 using
k ¼ 0:01Dx, and those based on Eq. 51 assuming zero hydrodynamic particle–particle drag (aij ¼ 0).

1366 DOI 10.1002/aic Published on behalf of the AIChE June 2009 Vol. 55, No. 6 AIChE Journal



31%. The logarithmic dependence of the off-diagonals on the
lubrication cutoff indicates that the hydrodynamic particle–
particle drag in polydisperse suspensions of spherical particles
of infinite Stokes numbers would diverge to infinity due to the
strong lubrication interaction between close pairs of dissimilar
particles. To suppress this nonphysical divergence, a length
scale k on which the lubrication force becomes saturated is
needed—it reflects the reality that the growth of the
lubrication force between two approaching particles would
eventually be limited by surface roughness, non-continuum
effects, or finite weights of the particles.

The difference between a freely evolving bidisperse sus-
pension and a frozen bidisperse suspension is that the freely
evolving suspension can develop instabilities, and the parti-
cle–particle momentum transfer will include an extra term
due to direct collision and friction [c.f. Eq. 4]. In this study,
we used frozen suspensions the microstructure of which is
identical to that of a binary hard sphere suspension to isolate
the particle–particle hydrodynamic momentum transfer under
an idealized condition. Another study is underway to study
the instability / microstructure and particle–particle colli-
sional momentum transfer in high-St freely evolving binary
suspensions. Allowing the particles to move also opens up
possibilities to extend the formulas presented in this study to
finite Reynolds number regime. Despite that binary gas–solid
suspensions are usually unstable (e.g. see Valiveti and
Koch46), as the instability is usually manifested on large
length scales, we expect that our drag law will apply on suf-
ficiently small differential volumes where segregation and
nonrandom distribution of particles are not critically impor-
tant and that this segregation should naturally emerge as an
instability mode of the Euler-Euler model.
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Flow characteristics of bidisperse mixtures of particles fluidized by a gas predicted by the mixture based

kinetic theory of Garzó et al. (2007a,b) and the species based kinetic theory model of Iddir and

Arastoopour (2005) are compared. Simulations were carried out in two- and three-dimensional

periodic domains. Direct comparison of the meso-scale gas-particle flow structures, and the domain-

averaged slip velocities and meso-scale stresses reveals that both mixture and species based kinetic

theory models manifest similar predictions for all the size ratios examined in this study. A detailed

analysis is presented in which we demonstrate when the species based theory of Iddir and Arastoopour

(2005) will reduce to a mathematical form similar to the mixture framework of Garzó et al. (2007a,b).

We also find that the flow characteristics obtained for bidisperse mixtures are very similar to those

obtained for monodisperse systems having the same Sauter mean diameter for the cases examined;

however, the domain-averaged properties of monodisperse and bidisperse gas-particle flows do

demonstrate quantitative differences. The use of filtered two-fluid models that average over meso-

scale flow structures has already been described in the literature; it is clear from the present study that

such filtered models are needed for coarse-grid simulations of polydisperse systems as well.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Polydisperse (e.g. particles differing in size and/or density)
gas-particle flows arise throughout the petrochemical, pharma-
ceutical, and energy conversion industries in fluidized beds, risers
and pneumatic conveying devices. Despite the ubiquity of flui-
dized bed units in the chemical process industry the effect of
polydispersity on the hydrodynamic behavior of fluidized beds
remains poorly understood. The addition of a small amount of fine
particles to an otherwise monodisperse fluidized bed is known to
promote uniform fluidization (Squires et al., 1985; Yates and
Newton, 1986). However, increasing the concentration of fine
particles is known to result in macroscopic segregation between
particles of different sizes when the superficial gas velocity is
between the minimum fluidization velocity of the largest and
smallest particle species (Rowe and Nienow, 1976; Geldart et al.,
1981; Peeler and Huang, 1989; Hoffman et al., 1993; Joseph et al.,
2007). There also exists a substantial amount of controversy on
the role of bubbles in the mixing/segregation of different particle
species in fluidized beds. Some argue that bubbles act as mixing
agents in fluidized beds (Wu and Baeyens, 1998), while others
ll rights reserved.

x: þ1 609 258 0211.

esan).
argue that the bubbles tend to exacerbate the segregation of large
particles (Rowe et al., 1972). Recent experimental work has
demonstrated that segregation is correlated with the static height
of the fluidized bed, but not the bubble parameters (Chew and
Hrenya, in press).

Hydrodynamic (or continuum) model frameworks allow one
to interrogate the physical mechanisms at play in the mixing/
segregation phenomena in polydisperse gas-particle flows. These
continuum model frameworks treat particle and fluid phases as
interpenetrating continua (Gidaspow, 1994; Fan and Zhu, 1998;
Jackson, 2000). Using the assumption of that particles in fluidized
beds and risers interact predominantly through binary collisions,
several researchers have developed kinetic theory based consti-
tutive models for the stress in the particle phase and applied
these models to the analysis of gas-particle flows (Lun et al.,
1984; Sinclair and Jackson, 1989; Ding and Gidaspow, 1990;
Koch and Sangani, 1999). There has been a considerable effort
over the past 20 years devoted towards the extension of these
monodisperse kinetic theories to account for polydispersity (for
recent review, see Hrenya, 2011). Jenkins and Mancini (1989)
constructed a model for binary particle mixtures assuming
equipartition of granular energy. However, it was later shown
via theory, experiments, and simulations that the assumption of
equipartition of granular energy was invalid due to the fact that
granular systems exhibit collisional dissipation of pseudothermal

www.elsevier.com/locate/ces
dx.doi.org/10.1016/j.ces.2011.05.037
mailto:sundar@princeton.edu
dx.doi.org/10.1016/j.ces.2011.05.037


W. Holloway et al. / Chemical Engineering Science 66 (2011) 4403–44204404
energy unlike molecular systems (Garzó and Dufty, 1999; Wildman
and Parker, 2002; Clelland and Hrenya, 2002). Several polydisperse
kinetic theory models have since been derived without the con-
straint of equipartition of granular energy. Broadly speaking, these
models adopt either a species or mixture based framework.

In the species based framework, evolution equations for species

mass, momentum, and granular energy are formulated for each
phase. Kinetic theories using this model framework have been
derived for both binary (Huilin et al., 2001) and general poly-
disperse systems with many different components (Iddir and
Arastoopour, 2005). Benyahia (2008) compared several species

based polydisperse kinetic theories against molecular dynamics
simulation results of Galvin et al. (2005) for simple shear flows
and found the theory derived by Iddir and Arastoopour (2005) to
match most closely the data.

In contrast, the mixture kinetic theory model framework only
requires the solution of mixture momentum and fluctuating
energy balance equations along with separate evolution equa-
tions for the individual species concentrations. The individual
species velocities and granular temperatures are updated through
algebraic constraints relating mixture properties to the constitu-
ent particle species. Kinetic theory models of this form are begin
to appear in the literature (Garzó et al., 2007a,b; van Sint
Annaland et al., 2009a,b). The number of differential balance
equations in the mixture treatment is lower than that in the
species treatment, and this difference in the number of equations
increases with the number of species. It is reasonable to suspect
that this difference would lead to lower CPU times for the mixture

framework, which will be tested as a part of this study.
While there has been some work devoted to the simulation of

segregation and bubbling phenomena of bidisperse gas-particle
flows using the mixture and species based kinetic theory frame-
works (Huilin et al., 2003; Owoyemi et al., 2007; Fan and Fox,
2008; van Sint Annaland et al., 2009b), there exists relatively few
studies attempting to directly compare the predictions of the
species and mixture based polydisperse kinetic theory model
frameworks for a set of test cases.

The first objective of this work is to perform a direct compar-
ison of the mixture based kinetic theory of Garzó et al. (2007a,b)
(GHD theory) with the species based kinetic theory model of Iddir
and Arastoopour (2005) (IA theory) for two different binary
particle size distributions (PSDs). The PSDs used in this study
are intended to span a wide range of particle size and particle
volume fraction ratios. A direct comparison of the meso-scale gas-
particle flow structures along with domain-averaged slip velo-
cities and meso-scale stresses predicted by each kinetic theory
framework will be presented. Furthermore, we follow an analysis
similar to Goldman and Sirovich (1967) to establish a criteria
where we expect the species based IA kinetic theory framework to
have a similar mathematical form to the mixture based GHD
kinetic theory model.

The second objective of this work is to compare the domain-
averaged quantities obtained from bidisperse gas-particle flow
simulations with those obtained for equivalent monodisperse
systems having the same Sauter mean diameter. It will be shown
that both monodisperse and bidisperse gas-particle flows man-
ifest qualitatively similar flow structures.

The final objective of this study is to demonstrate the need for
the development of sub-grid models to enable accurate coarse-
grid simulation of continuum models for bidisperse gas-particle
flows. It is known that filtered two-fluid model equations are
necessary to perform coarse-grid simulations of monodisperse
gas-particle flows without neglecting the consequences of
the fine scale structures that occur on a sub-grid scale (Agrawal
et al., 2001; Andrews et al., 2005; Igci et al., 2008). We present
filtered statistics on the fluid-particle drag force in a bidisperse
gas-particle flow, and illustrate that filtered models similar to
what are required for the accurate simulation of monodisperse
gas-particle flows on coarse numerical grids are indeed necessary
for polydisperse systems as well.
2. Continuum model equations

In this work we seek to compare the predictions of species and
mixture based polydisperse kinetic theories for two different
polydisperse mixtures of particles. The two polydisperse kinetic
theory models, the polydisperse fluid-particle drag model, and
the numerical implementation used to solve the mono- and
bi-disperse gas-particle flow problems are presented in this
section.

2.1. Iddir–Arastoopour (IA) kinetic theory model

The Iddir–Arastoopour kinetic theory model consists of the
following set of balance equations for particle species concentra-
tion, momentum, and fluctuating energy (Iddir and Arastoopour,
2005):
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Here, rsi
, fi, ni, mi, vi, and Ti refer to the density, volume fraction,

number density, mass, velocity and granular temperature of the
ith particle species, respectively. The fluid density, velocity, and
volume fraction are denoted by rf , vf , and Ef , respectively. In
Eq. (3), ssi

represents the stress tensor of the ith particle species,
Fi represents the sum of external forces experienced by particles
of type i, and s is the number of particle species in the poly-
disperse mixture. In Eq. (4), fDi

is the fluid-particle drag force per

unit volume suspension experienced by a particle of type i, sf

represents the gas phase stress tensor, and g is the gravitational
acceleration. In all gas-particle flow simulations performed here,
the Newtonian constitutive equation is assumed for the gas phase
stress. The particle–particle collisional momentum exchange
between types Iim defined in Eqs. (3) and (5) is given by

Iim ¼ gim
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In Eq. (8) m0 ¼miþmm, eim is coefficient of restitution for
collisions between particles of type i and m, and gim is the radial
distribution function at contact for a bidisperse mixture of
particles of types i and m. The terms R0, R2, R3, R4, and R10 in
Eqs. (7), (9)–(11) are given as
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In Eq. (5), qi represents the granular energy flux term of a particle
of type i, and Nip is the collisional dissipation of granular energy
due to inelastic collisions. In Eq. (6), Vi is the volume of the ith
particle type and FDi

is the fluid-particle drag force per particle

experienced by a particle of type i. Constitutive relations for ssi
,

qi, and Nip can be found in Iddir and Arastoopour (2005) and
Galvin (2007).

2.2. Garzó, Hrenya and Dufty (GHD) kinetic theory model

Mixture based kinetic theory models require the solution of
individual species mass balance equations, and the balance
equations for the mixture velocity and granular energy. Individual
species velocities and temperatures are obtained from the mix-
ture quantities and local composition using constitutive relations,
which take the form of a set of non-linear algebraic equations.
This allows one to simulate a polydisperse gas-particle flow with
many different constituent particle species without having to
solve an evolution equation for the momentum and fluctuating
energy of each particle type. One such mixture framework was
recently developed by Garzó et al. (2007a,b) for polydisperse
granular flows with arbitrary levels of particle inelasticity. The
GHD kinetic theory model has the following form:
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where rs is the mixture density (given as rs ¼
Ps

i ¼ 1 rsi
fi), v is

the mixture velocity (given as v¼
Ps

i ¼ 1 rifivi=ð
Ps

i ¼ 1 rifiÞ), ss is
the solid phase stress of the mixture, n is the mixture number
density (defined as n¼

Ps
i ¼ 1 ni), T is the mixture granular

temperature (defined as T ¼
Ps

i ¼ 1 niTi=
Ps

i ¼ 1 niÞ, q is the mixture
granular energy flux, z is the cooling rate of the mixture, Fi is the
sum of external forces given by Eq. (6), and joi

is the flux of a
particle of type i relative to the mixture. In Eq. (21), the second
term on the right-hand side represents the rate of production of
pseudothermal energy due to shear, while the third term is the
rate of dissipation of granular energy by inelastic collisions. The
fourth and fifth terms in Eq. (21) represent the production of
mixture granular energy due to gradients in the mass flux and
products of external forces and mass fluxes of a particle of type i.
Individual species velocities are obtained via algebraic constraints
for the mass flux of a particle of type i which are given as follows:

joi
¼miniðvi�vÞ ¼�

Xs

j ¼ 1

mimj

rs

Dijrnj�rsD
T
i rlnðTÞ�

Xs
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DF
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where Dij is the ordinary diffusivity of particles of type i in
particles of type j, DT

i is the thermal diffusivity of a particle of
type i, and DF

ij is the mass mobility of particles of type i in particles
of type j. The cooling rate z is can be represented as follows:

z¼ z0
þzUr � v ð23Þ

where z0 is the zeroth order cooling rate and zu is the cooling rate
transport coefficient. Individual species granular temperatures
can be obtained by demanding equality of zeroth order cooling
rates for each particle species (i.e. z0

1 ¼ z0
2 ¼ � � � ¼ z0

s ). Constitutive
relations for Dij, DT

i , DF
ij, q, ss, z

0 and zU can be found in Murray
et al. (in press).

2.3. Range of validity of the kinetic theory approach

Strictly speaking, kinetic theory models, be it mixture or species

based, rely on the assumption that the particle phase Mach
number is less than unity (Fox, 2008). This assumption arises
due to the restrictions that are imposed when performing the
Chapman–Enskog expansion that are used to derive kinetic
theory based models of gas-particle flows (Garzó et al., 2007a).
For monodisperse systems the condition of small particle phase

Mach number is given as Ma¼ v=
ffiffiffiffiffiffiffiffiffiffi
T=m

p
o1 (here particle mass

appears because both GHD and IA kinetic theories include particle
mass in the definition of granular temperature). For bidisperse
systems there is an additional constraint on the validity of the
Chapman–Enskog expansion, namely that the Mach number
based on particle velocity differences between each species

(Ma12 ¼ jv1�v2j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1=m1þT2=m2

p
) is less than unity (Valiveti and

Koch, 1999). From our simulations (to be presented later) we find
that the particle phase Mach number can be greater than unity in
our periodic domain simulations; however, these regions tend to
have vanishingly small particle concentration. Moreover, we find
that if we construct particle phase averages considering only
regions where the particle phase Mach number is much smaller
than unity (i.e. Ma12r0:3). There are only small (� 2%) quanti-
tative changes in our results for domain-averaged quantities.
Therefore, we find that the effect of finite Mach number in our
simulations is rather small for the domain-averaged particle
volume fractions presented in this work. This can be rationalized
by the fact that the clustered regions dictate the dynamics
of the gas-particle flow, and in these regions the particle
phase Mach number is less than unity. We suspect that as the
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domain-averaged volume fraction decreases the violation of the
finite Mach number condition will have a larger impact on the
dynamics of the gas–solid flow.
2.4. Fluid-particle drag force model

In most gas-particle flows the fluid-particle drag force is the
dominant term that balances the weight of the particles, and
terms involving the divergence of the particle phase stress play a
secondary role (Jackson, 2000; Ten Cate and Sundaresan, 2006). In
fact recent studies reveal that drag models derived from direct
numerical simulations predicted very different segregation pro-
files and bubble dynamics than models based on ad-hoc exten-
sions of monodisperse drag models (Beetstra et al., 2006;
Leboreiro et al., 2008). Beetstra et al. (2006) found that drag
models derived from direct numerical simulations provided the
best agreement with experimental observations of segregation in
polydisperse fluidized bed simulations. With this in mind, a
polydisperse fluid-particle drag model derived from direct
numerical simulations has been used in all simulations presented
here. The form of the polydisperse drag model is given as follows
(Holloway et al., 2010; Yin and Sundaresan 2009a,b):

fDi
¼ biDvi�

Xs

ja i

bijðDvj�DviÞ ð24Þ

where Dvi is the slip velocity between solid and fluid phases
(defined as Dvi ¼ vf�vi), bi is the fixed bed friction coefficient for
a particle of type i, and bij is the fluid-mediated particle–particle
friction coefficient. The fixed bed friction coefficient can be
written as follows (van der Hoef et al., 2005):
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where f is the total particle volume fraction, mf is the dynamic
viscosity of the fluid phase, di is the diameter of the ith particle
species, and Fn

Di�fixed is the dimensionless fixed bed fluid-particle
drag force experienced by a particle of type i in a polydisperse
assemblage of particles (here Fn

Di�fixed is normalized by the Stokes
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In Eq. (27), /dS is the Sauter mean diameter of the particle
assembly. The parameter a in Eq. (26) is given as

a¼ 1�2:66fþ9:096f2
�11:338f3

ð28Þ

Eq. (26) effectively relates the fluid-particle drag force of a
particle of type i in a polydisperse fixed bed Fn

Di�fixed to the fluid-
particle drag force in a monodisperse fixed bed Fn

D�fixed at the same
volume fraction. In order to account for the effect of finite fluid
inertia on the fluid-particle drag force in polydisperse suspen-
sions Holloway et al. (2010) proposed:
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Here Remix is the mixture Reynolds number defined as
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The fluid-mediated particle–particle friction coefficient bij can be
written in terms of the fixed bed friction coefficient of particles of
type i and j as

bij ¼�2aij

fifj

fi

bi
þ

fj

bj

ð32Þ

where aij is written as

aij ¼ 1:313log10

minðdi,djÞ

l

� �
�1:249 ð33Þ

In Eq. (33), l represents the lubrication cutoff distance. This
distance corresponds to the point at which lubrication forces
saturate between two approaching spheres as a result of either
asparities on the particle surface or non-continuum effects.
In all simulations performed in this work the default value of
l¼ 1� 10�6 m was used.

2.5. Numerical implementation

The polydisperse kinetic theory model frameworks and the
fluid-particle drag model outlined in the previous subsections were
simulated using the Multiphase Flow with Interface eXchanges
(MFIX) computational software (Syamlal, 1998). The MFIX software
utilizes a variable time step, staggered grid, finite volume method
for the solution of the continuum models for gas-particle flows.
The numerical procedure in MFIX is based on the semi-implicit
method with pressure-linked equations (SIMPLE) algorithm for the
iterative solution of the continuum model equations. The partial
elimination algorithm is used to effectively decouple the solution
of the gas and solid phase momentum balances (Spalding, 1980).
In order to minimize numerical diffusion in our simulations, we
employ a second-order-accurate Superbee discretization of convec-
tive terms. Similar numerical approaches have been employed in
the literature for the simulation of polydisperse gas-particle flows
(Fan et al., 2004; Fan and Fox, 2008). In both kinetic theory models
discussed above we added a frictional particle phase stress con-
tribution given by Srivastava and Sundaresan (2003) to prevent the
systems under investigation from over-packing.

The two- and three-dimensional simulations presented in sub-
sequent sections were performed using doubly and triply periodic
domains, respectively, to eliminate the effect of boundary condi-
tions from consideration in the comparison of the mixture and
species based kinetic theory approaches. In order to fluidize the
systems under investigation, a vertical pressure gradient was
imposed on the system to balance the weight of the suspension.
3. Results and discussion

Two different binary PSDs are used in the comparison of GHD
and IA kinetic theory models. A detailed list of particle properties
can be found in Table 1. The PSDs used in this study were chosen
to mimic those used in the experiments of Chew et al. (submitted
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for publication), and they span a wide range of particle size and
volume fraction ratios.

3.1. Grid resolution studies

It is well known that continuum model simulations of mono-
disperse gas-particle flows manifest grid size dependent results
Fig. 1. Snapshots of the particle volume fraction obtained from two-dimensional simul

structures emerge as grid resolution is increased. Domain size: 16 cm �64 cm. (a) 8

dependent structures were also found in simulations with the IA polydisperse kinetic

Table 1
List of simulation cases. In all simulations presented here, a single coefficient of

restitution was used to characterize collisions between particles of the same and

different species.

Monodisperse cases Case A Case B

d 2.70�10�4 m 1.90�10�4 m

rs 2.50�103 kg/m3 2.50�103 kg/m3

rf 1.30 kg/m3 1.30 kg/m3

mf 1.80�10�5 kg/(m s) 1.80�10�5 kg/(m s)

e 0.99 0.99

f 0.15 0.15

vt 5.51 m/s 2.71 m/s

Bidisperse cases Case C Case D

d1 6.50�10�4 m 2.13�10�4 m

d2 1.70�10�4 m 1.28�10�4 m

/dS 2.70�10�4 m 1.90�10�4 m

rs1
2.50�103 kg/m3 2.50�103 kg/m3

rs2
2.50�103 kg/m3 2.50�103 kg/m3

rf 1.30 kg/m3 1.30 kg/m3

mf 1.80�10�5 kg/(m s) 1.80�10�5 kg/(m s)

e 0.99 0.99

f1 0.075 0.122

f2 0.075 0.028

f 0.15 0.15

vt1
22.53 m/s 2.79 m/s

vt2
1.83 m/s 1.06 m/s

vt 5.48 m/s 2.71 m/s
until the grid size is on the order of 10 particle diameters
(Agrawal et al., 2001). Therefore, grid resolution studies of both
GHD and IA kinetic theory models were performed in order to
determine at what point the simulated gas-particle flow behavior
became independent of the grid size. Fig. 1 illustrates the grid size
dependence of the gas-particle flow structures that are mani-
fested by the GHD kinetic theory model framework for Case D (see
Table 1). It is clear that as the grid resolution is increased, moving
from left to right, the scale of the flow structures present in the
simulation become finer. Analogous grid size dependent struc-
tures have been observed when performing continuum model
simulations of monodisperse gas-particle flows (Agrawal et al.,
2001; Igci et al., 2008). Similar grid size dependence was also
obtained for the IA model (not shown).

In order to determine what grid resolution was appropriate for
the comparison of GHD and IA kinetic theory model frameworks,
we examine the grid size dependence of the vertical component
of the domain-averaged slip velocity, and the meso-scale vertical
normal stress for different grid resolutions. To ensure that our
simulations capture the detailed structure of the gas-particle
flow, we also calculate and compare the energy spectra of the
volume fraction fluctuations, mixture velocity fluctuations and
mixture granular temperature fluctuations.

The vertical component of the domain-averaged slip velocity
(hereafter referred to as the domain-averaged slip velocity) is
defined as

/vslipS¼
ð1�fÞvf

/1�fS
�

fv

/fS


 �
ð34Þ

where / �S indicates a domain-averaged quantity. The domain-
averaged meso-scale vertical normal stress is defined as

X
i

fiv
0
iv
0
i

* +
¼
Xs

i ¼ 1

/fiviviS�/fiS/viS/viS ð35Þ
ations of the GHD model of Case D (see Table 1 for details). Finer gas-particle flow

� 32, (b) 16 �64, (c) 32 �128, and (d) 64 �256 grid cells. Similar grid size

theory model.
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Fig. 2 illustrates the grid size dependence of the scaled domain-
averaged slip velocity and the domain-averaged meso-scale
vertical normal stress for Case D. Both quantities are plotted
against N�1 where N is the number of grids in the horizontal
direction, and both are sensitive functions of N�1. However, this
dependence becomes very weak as N�1-0. This indicates at
sufficiently small values of N�1, or equivalently, high grid resolu-
tion, the domain-averaged quantities do become grid indepen-
dent for both GHD and IA kinetic theories.

In single phase turbulent flow research, grid independence in
large eddy and direct numerical simulations is determined by
examining how well the energy spectra of the velocity fluctua-
tions in a turbulent flow collapse for different grid resolutions
(Bose et al., 2010). In order to gauge the grid independence of our
simulation results we define energy spectra of the volume
fraction fluctuations Ef, dimensionless mixture velocity fluctua-
tions Ev, and dimensionless mixture granular temperature fluctua-
tions ET as follows:

f̂ðk,tÞ ¼

Z
ðfðx,tÞ�/fSÞexpðik � xÞ dx, EfðkÞ ¼ f̂f̂

n

ð36Þ

v̂ðk,tÞ ¼

Z
ðvðx,tÞ�/vðtÞSÞ

vt
expðik � xÞ dx, EvðkÞ ¼

1

2
ð bvx bvx

n
þcvycvy

n
Þ

ð37Þ

T̂ ðk,tÞ ¼

Z
ðTðx,tÞ�/TðtÞSÞ

mv2
t

expðik � xÞ dx, ET ðkÞ ¼ T̂ T̂
n

ð38Þ

where m is the average particle mass based on the Sauter mean
diameter, and ð�Þn indicates a complex conjugate. In Fig. 3, we
present Ef, Ev, and ET plotted against dimensionless scalar
wavenumber k̂ (here k̂ ¼ kv2

t =g) for four different grid resolutions
for both GHD and IA theories. In Fig. 3(a) and (b), it is clear that
the energy spectra of the particle volume fraction for the two
highest grid resolutions (or smallest values of N�1) collapse over a
large range of dimensionless wavenumber k̂ for both GHD and IA
theories, respectively. The same collapse is clear by inspection
of the energy spectra of dimensionless mixture velocity Ev and
dimensionless mixture granular temperature ET as is evidenced
in Fig. 3(c)–(f).

From Figs. 2 and 3 we can conclude that both the domain-
averaged quantities and the small scale variations are adequately
resolved in our gas-particle flow simulations for two highest grid
resolutions. In what follows, we present domain-averaged
quantities that are obtained from the highest grid resolution case
presented in Figs. 1–3.

3.2. Comparison of the predictions of GHD and IA kinetic theories

The meso-scale gas-particle flow structures that arise in
simulations of GHD and IA theories are compared via juxtaposi-
tion of instantaneous grayscale plots of the volume fraction and
volume fraction ratio fields in the periodic domain. In addition,
probability distribution functions (PDF) of the mixture and
species volume fractions are generated as a function of mixture
and species volume fraction, respectively, in order to provide a
more quantitative comparison of the meso-scale inhomogeneities
admitted by each polydisperse kinetic theory model. The PDFs are
obtained by binning the observed volume fraction in each cell
based upon the observed value. Several instantaneous snapshots
are used to generate a smooth distribution function of solids
volume fraction. We also compare the energy spectra of total and
species volume fraction admitted in GHD and IA theory simula-
tions for each case.

Fig. 4(a) and (b) provides a side-by-side comparison of the
instantaneous volume fraction fields obtained for Case D using
GHD and IA theories, respectively. It is clear that both GHD and IA
theory manifest qualitatively similar cluster and streamer forma-
tion throughout the periodic domain. Fig. 6(a) shows the PDF of f
as a function of mixture volume fraction for Case D. The distribu-
tion functions of mixture volume fraction for both GHD and IA
theory manifest bimodal structure. The large peak at low volume
fraction is a result of the fact that a large percentage of the
periodic domain contains a very low concentration of particles.
The small peak at high volume fractions corresponds to the dense
clustered regions that cover a smaller percentage of the periodic
domain. An additional quantitative comparison between the
volume fraction fields predicted by the two kinetic theory model
frameworks is given in Fig. 5(a) and (b) by comparing the energy
spectra of f for both GHD and IA theory for Cases D and C,
respectively. Fig. 5(a) and (b) demonstrates that the energy
spectrum is a strongly decreasing function of dimensionless
wavenumber k̂. Moreover, the energy spectra of f admitted by
the two different kinetic theory models collapse onto one another.
The grayscale plots of total volume fraction obtained for Case C

using GHD and IA kinetic theory in Fig. 4(c) and (d) reveal that
even for binary mixtures with large size ratios, the volume
fraction fields obtained by both mixture and species based kinetic
theories are qualitatively similar. A more quantitative comparison
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of the PDF of f predicted by the kinetic theory models shows that
there are more pronounced differences in the PDF of f for the
large size ratio bidisperse case (Case C) than in the smaller size
ratio case (Case D). However, both kinetic theory frameworks still
manifest nearly the same PDFs of f.

Comparison of the grayscale plots of the volume fraction ratio
field, shown in Fig. 4(e)–(h), reveals that both GHD and IA kinetic
theory models manifest qualitatively similar predictions. The
energy spectra of the volume fraction ratio field given in Fig. 5
show that while the energy spectra of the volume fraction ratio
for both GHD and IA kinetic theories manifest a similar decay
with increasing wavenumber, the energy associated with the
volume fraction ratio fluctuations is consistently larger for IA
kinetic theory. Direct comparison of the PDF of species volume
fraction for Case D in Fig. 6(b) and (c) illustrates that both mixture

and species kinetic theory frameworks have nearly identical PDFs
for each particle as well. Fig. 6(e) and (f), corresponding to Case C,
reveals that IA kinetic theory predicts slightly higher concentra-
tions of larger particles in clustered regions than GHD theory. It is
also noteworthy that the PDF of species volume fraction given in
Fig. 6(b) and (c) for Case D is qualitatively different from the
PDF of species volume fraction given in Fig. 6(e) and (f) for Case C.



Fig. 4. Instantaneous snapshots of particle volume fraction and particle volume fraction ratio fields obtained from two-dimensional bidisperse gas-particle flow

computations. The total volume fraction and volume fraction ratio fields are shown for four cases: Case D (see Table 1) using GHD theory —panels (a) and (e); Case D using

IA theory—panels (b) and (f); Case C using GHD theory—panels (c) and (g); Case C using IA theory—panels (d) and (h).
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The differences in the PDFs of species concentration in Cases C

and D arise as a result of the fact that the domain-averaged
species volume fractions are different between the two cases.
For example, in Case D the domain-averaged volume fraction
of particle species 2 is 0.028. Therefore, the range of the PDF of
species 2 concentration given in Fig. 6(c) only varies from 0 to
0.20 reflecting the very low probability of finding regions have
species concentrations higher than 0.20.

Fig. 7 shows the scaled domain-averaged mixture slip velocity,
the domain-averaged slip velocity of particles of type 1, and the
domain-averaged meso-scale vertical normal stress of the mix-
ture as functions of dimensionless time, t¼ tg=vt . As seen in
Fig. 7(a) and (b), the domain-averaged mixture slip velocity and
the domain-averaged slip velocity of a particle of type 1 in Case D

predicted by GHD and IA kinetic theories oscillate about similar
statistical steady state values. Fig. 7(c) shows that the same is true
for the meso-scale vertical normal stress as well. The rather large
fluctuations in the domain-averaged quantities given in Fig. 7
can be traced to the persistent fluctuations of the gas-particle
flow structures that arise due to the instability of the uniformly
fluidized state (Sundaresan, 2003). Time-averaged values of the
domain-averaged slip velocity of mixture, the domain-averaged
slip velocity of each particle species, and the domain-averaged
meso-scale normal stress are given in Table 2.

Fig. 8(a) and (b) shows three-dimensional instantaneous snap-
shots of the total volume fraction field obtained by simulating
Case C with GHD and IA kinetic theory models, respectively. The
qualitative similarity between the snapshots of the total volume
fraction is apparent. Furthermore, the dimensionless domain-
averaged slip velocities for Case C obtained in simulations using
GHD and IA theory were found to be 0.293 and 0.307, respec-
tively; these are within 5% of each other. Here the domain-
averaged slip velocities were scaled by vt for the respective
bidisperse particle mixture. Fig. 8(c) and (d) shows the volume
fraction field obtained from the simulation of Case D using GHD
and IA theory, respectively. Again the qualitative features of the
volume fraction field obtained using either kinetic theory frame-
work are similar. The dimensionless domain-averaged slip velo-
cities for Case D were found to be 0.430 and 0.455 for GHD and IA
theories, respectively.

To determine the similarity of the gas-particle flow structures
in our three-dimensional simulations, PDFs of the total and
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species particle volume fraction were calculated and compared
for both GHD and IA kinetic theories, and are given in Fig. 9. In
Fig. 9(a) and (d) we show PDFs of the total particle volume
fraction obtained from three-dimensional numerical simulations
of Cases D and C, respectively. It is clear that for both GHD and IA
kinetic theories the qualitative features of the PDF of total solid
volume fractions are similar with small quantitative variations.
The same feature can be noted by inspection of the PDF of species
volume fractions given in Fig. 9(b) and (c) and Fig. 9(e) and (f) for
Cases D and C, respectively.

It is interesting to note the qualitative differences in the PDFs
of total and species volume fractions observed in two- and three-
dimensional simulations for both particle size distributions
examined in this study. The PDFs of species and total volume
fraction obtained from three-dimensional simulations in Fig. 9
have very broad and monomodal shape, while the PDFs obtained
from two-dimensional simulations show two sharp peaks in the
PDFs corresponding to clustered and dilute regions. In two-
dimensional simulations the ability of the gas to bypass the solid
phase is inhibited by the lower dimensionality—this therefore
induces more severe particle clustering than is present in three-
dimensional simulations because it is generally easier for gas to
bypass solid phase flow structures in three-dimensions than in
two-dimensions.

A comparison of the computational times for GHD and IA
kinetic theories is shown in Table 3 for the two binary particle
size distributions used in this study. The mixture model frame-
work is computationally less expensive than the species model
framework; this can be attributed to the fact that GHD theory
requires the solution of fewer time-dependent, non-linear, partial
differential equations. However, the improvement in computa-
tional time appears to be a sensitive function the disparity in size
between the smaller and larger particles.

In the species based model framework (adopted by IA theory),
the momentum and granular energy of each particle phase are
allowed to evolve separately. In contrast, in the mixture based
model framework (adopted in GHD theory), the momentum and
granular energy of the particle mixture are allowed to evolve,
while it is postulated that the flux and granular energy of the
individual particle species relax with respect to the mixture
quantities rapidly. In Section 3.4, we develop an analysis to
indicate when species velocities are slaved to the mixture velocity
using an analysis similar to Goldman and Sirovich (1967) for
binary molecular gases.

3.3. Comparison of monodisperse and bidisperse systems

It is common practice in the continuum modeling community
to approximate a polydisperse gas–solid flow by an equivalent
monodisperse gas–solid flow with a particle diameter given by
the Sauter mean diameter (see Eq. (27a) for definition) of the
polydisperse system (Neri and Gidaspow, 2000; Jiradilok et al.,
2006, 2008). In order to understand the degree to which such an
approximation is valid, the meso-scale flow structures, the
domain-averaged slip velocities of the mixtures, and the meso-
scale vertical normal stresses obtained from periodic domain
simulations of bidisperse systems and equivalent monodisperse
systems are directly compared.
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Fig. 10 compares instantaneous snapshots of the particle
volume fraction fields obtained from a bidisperse system (Case C)
and a monodisperse system (Case A) with the same Sauter mean
diameter. It is clear that the gas-particle flow structure is character-
ized by clusters and streamers in both cases. Comparison of the
PDFs of the total particle volume fraction in Fig. 11 reveals that
both monodisperse and bidisperse systems manifest similar
distribution functions of solid volume fraction over the entire
volume fraction range. However, the two peaks in the distribution
appear to be slightly larger in the bidisperse case (Case C) than in
the monodisperse case (Case A) indicating a slightly larger
propensity of the bidisperse gas-particle flow to be heteroge-
neous. Fig. 12(a) and (b) shows the domain-averaged slip velocity
of the mixture and the meso-scale vertical normal stress,
respectively, for both monodisperse and bidisperse cases. It is
clear that the domain-averaged quantities are fluctuating about
similar statistically steady values for both the monodisperse and
bidisperse systems. The time-averaged values of these domain-
averaged quantities for the monodisperse (Case A) and bidisperse
(Case C) cases are reported in Table 2. Approximating this
bidisperse system with widely separated particle diameters with
a monodisperse system having the same Sauter mean diameter
leads to an underestimation of the mixture domain-averaged slip
velocity by 15% while the domain-averaged vertical normal meso-
scale stress is within 10% of that for the binary mixture (according
to GHD theory). The predictions are similar for these cases
according to IA theory as well; see Table 2. Comparison of the
predictions for Cases B and D shows that the monodisperse
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Table 2
Time-averaged results for the domain-averaged slip velocity and meso-scale vertical normal stress for all the simulated cases. The over-bar represents a time-averaged

quantity.

Case KT model /vslipS
vt

/vslip1
S

vt1

/vslip2
S

vt2

/
P

i
fiv
0

i
v0

i
S

fiv
2
t

A GHD theory 0.26576.72�10�3 – – 1.63�10�274.98�10�4

IA theory 0.24475.11�10�3 – – 1.17�10�275.13�10�4

B GHD theory 0.38071.15�10�2 – – 6.32�10�272.35�10�3

IA theory 0.39271.07�10�2 – – 5.96�10�272.17�10�3

C GHD theory 0.30577.69�10�3 7.49�10�271.88�10�3 0.91172.29�10�2 1.51�10�275.61�10�4

IA theory 0.31671.24�10�2 7.92�10�273.09�10�3 0.92473.64�10�2 1.57�10�276.86�10�4

D GHD theory 0.49671.56�10�2 0.48471.51�10�2 1.2673.98�10�2 6.47�10�272.85�10�3

IA theory 0.52671.82�10�2 0.51371.77�10�2 1.3374.59�10�2 7.06�10�273.13�10�3
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approximation underestimates the domain-averaged slip velocity
of a binary system by about 25%.

3.4. Mixture versus species kinetic theory frameworks

In Section 3.2, we emphasized that the GHD and IA kinetic
theory model frameworks have similar gas-particle flow predic-
tions in terms of both small scale and domain-averaged proper-
ties. However, it is of interest to develop a criteria upon which
one might expect the mixture and species based kinetic theories to
provide similar results. An approach was developed to compare
the mixture and species based kinetic theory approaches for
molecular systems (Goldman and Sirovich, 1967), and in this
section we employ the same technique to examine when the
species based kinetic theory model will reduce to a mathematical
form consistent with the GHD mixture kinetic theory model.
Simulation results presented in the previous section demonstrate
that quantitative differences in the constitutive relations of each
kinetic theory model have only a small quantitative effect
domain-averaged quantities, so we will only develop a scaling
analysis that indicates in what range we expect the species
velocities to be slaved to the mixture velocity.

In order to directly compare the species kinetic theory model
framework with that of a mixture kinetic theory model, we must
construct a mixture momentum equation from the species

momentum balance given in Eq. (3). Using the definition of the
mixture velocity and species mass flux, it can readily be shown
that one can construct an effective mixture momentum balance



Fig. 8. Instantaneous snapshots of particle volume fraction fields obtained from three-dimensional bidisperse gas-particle flow simulations. Domain size: 8 cm �16 cm

�8 cm; 32 �64 �32 grid cells. The total volume fraction fields is shown for the following four cases: (a) Case C using GHD theory; (b) Case C using IA theory; (c) Case D

using GHD theory; and (d) Case D using IA theory.

W. Holloway et al. / Chemical Engineering Science 66 (2011) 4403–44204414
equation from IA kinetic theory as follows:
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If we restrict our attention to binary mixtures only, we can
construct an evolution equation for the diffusion velocity of a
particle of type 1 by subtracting Eq. (3) for particle species 1 from
Eq. (39) to obtain
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� �
�
n1

r1f1

F1þ
1

rs

X
i

niFi ð41Þ

where Dð�Þ=Dt ¼ @ð�Þ=@tþv � rð�Þ is the material derivative and I12

is the particle–particle collisional momentum transfer given in Eq.
(7). Inserting Eq. (7) into Eq. (41) and using the definition of the
mass flux in Eq. (22) we obtain
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Fig. 9. Probability distribution function (PDF) of mixture and species volume fraction observed in three-dimensional bidisperse gas-particle flow simulations. The PDF of
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D in (b), and for Case C in (e) as a function of the volume fraction of species 1. The PDF of the volume fraction of species 2 is given for Case D in (c), and for Case C in (f) as a

function of the volume fraction of species 2.

Table 3
Computational times for both GHD and IA kinetic theories for the two different

bidisperse PSDs simulated in this study. These computations were performed on

2.5 GHz Intel Xeon E5420 processors with all computational times given on a per

processor basis.

Dimensionality Case GHD CPU time

ðCPU hrs: used
Sec:simulationÞ

IA CPU time

ðCPU hrs: used
Sec:simulationÞ

IA
GHD

2D C 29.9 87.9 2.93

D 25.8 41.6 1.61
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In order for the species velocity to be slaved to the mixture
velocity the first term on the right-hand side of Eq. (42) must be
very small compared with to the left-hand side. In other words,
the timescale associated with the relaxation of the diffusion
velocity of species 1 must be much faster than the relaxation of
the mixture velocity to its steady state value. From inspection of
the mixture momentum balance expression given in Eq. (39), one
can deduce that the timescale associated with the relaxation
of the mixture velocity is be given as tmix ¼ rs=ðb1þb2Þ, and the
characteristic timescale for the relaxation of the diffusion velocity
of a particle of type 1 is the inverse of the prefactor of the
diffusion velocity on the left-hand side of Eq. (41). Therefore, in
order for the individual species velocity to be slaved to the
mixture velocity the following inequality must hold:

Z ¼

ffiffiffiffiffiffi
8p
p

r2
s d2

12g12m3
0ð1þe12ÞðT1T2Þ

2

2ðb1þb2Þðm1m2Þ
1=2
ðm1T2þm2T1Þ

3=2
ðm1T1þm2T2Þ

2
b1 ð43Þ



Fig. 10. Two-dimensional instantaneous snapshots of particle volume fraction

fields obtained for (a) bidisperse (Case C) and (b) monodisperse (Case A) cases with

the same Sauter mean diameter. The qualitative nature of the gas-particle flow

structures in monodisperse and bidisperse is similar. Both snapshots illustrated

above were obtained via GHD theory simulations.
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Fig. 11. Probability distribution of function of f for monodisperse (Case A) and

bidisperse (Case C) cases. The monodisperse system has the same Sauter mean

diameter as the bidisperse system.
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At this point it should be noted that the same inequality
can be used for type 2 particles as well, due to the fact that
g12 ¼ g21. In deriving Eq. (43) we have also only considered the
first term in the expression for R2 as it has been shown that the
first term is dominant (Iddir and Arastoopour, 2005). Fig. 13
shows an instantaneous snapshot of Z obtained from IA theory
simulations for both Cases C and D. It is clear that over a large
percentage of the flow domain this value is much greater
than unity. Therefore, the assumption that species velocities are
slaved to the mixture is validated by our simulations to a good
approximation. This analysis can be used to rationalize why the
results obtained from GHD and IA kinetic theories are in quanti-
tative agreement. However, it should be noted that these simula-
tions were conducted at domain-average volume fractions of
f¼ 0:15, and as the domain-average volume fraction decreases
the difference between the two kinetic theory approaches will
increase. This is true because all of the regions where Z is O(1)
are regions where the particle concentration is very low. It is
also worth noting that in Eq. (41), if all of the terms in the first
row and third row of the right-hand side are very small com-
pared to the terms in the second row, one will recover a similar
form to the flux expression given by the GHD mixture theory
given in Eq. (22).
3.5. On the need for sub-grid scale models for coarse-grid simulation

of binary gas-particle flows

It is well known that continuum models of gas-particle flow
manifest persistent density and velocity fluctuations that occur
over a range of length scales. The length scale of the smallest
inhomogeneities is known to be on the order of 10 particle
diameters which necessitates prohibitively small grid sizes in
order to fully resolve them (Agrawal et al., 2001). However, in
order to simulate large scale gas-particle flows in fluidized beds
and risers, grids much larger than 10 particle diameters are used
in order to keep the total computational time within reasonable
bounds (Sundaresan, 2000). Coarse-grid simulations which ignore
the consequences of the sub-grid scale flow structures tend to
overestimate the fluid-particle drag force (Agrawal et al., 2001;
Andrews et al., 2005; Igci et al., 2008). In light of these observed
differences between fine- and coarse-grid simulations of conti-
nuum models there has been a substantial amount of research
devoted to the development of filtered two-fluid model equa-
tions, which are obtained by filtering the microscopic two-fluid
model equations (Andrews et al., 2005; Igci et al., 2008). The
filtered fluid-particle flow model requires constitutive relations
for the filtered drag coefficient, particle phase viscosity, and
particle phase pressure in terms of the filtered variables (Igci
et al., 2008).

While a large effort has been focused on the development of
filtered two-fluid models for the coarse-grid simulation of mono-
disperse gas-particle flows, polydisperse systems have not
received any attention so far. As a first step in that direction, we
have filtered the results of the highly resolved two-dimensional
simulations carried out in this study and gathered statistics on the
effective fluid-particle drag coefficient for each particle type for
square filters of different sizes. The procedure follows that of Igci
et al. (2008) for monodisperse systems. We define the effective
drag force in a filtered multi-fluid model framework as follows:

ffDi
¼gbieff

ð evf� evi Þ ð44Þ

where ffDi
is the filtered fluid-particle drag force, gbieff

is the filtered

drag coefficient, evf is the filtered gas velocity, and evi is the filtered

velocity of a particle of species i. The right-hand side of Eq. (44) is
the postulated form of a closure model for the filtered effective
drag force. Using a closure of the form given in Eq. (44) we

gathered filtered statistics for the filtered drag coefficient gbieff
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Fig. 12. Time progression of the (a) domain-averaged mixture slip velocity and (b) domain-averaged meso-scale vertical normal stress obtained from periodic domain
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simulations. Table 2 summarizes the time-averaged values for all cases examined in this study.

Fig. 13. (Color online) Instantaneous snapshot of the value of Z throughout the

simulation domain obtained at statistical steady state for both (a) Case C and (b)

Case D using IA kinetic theory. The color plots indicate that the value of Z is much

greater than unity throughout the simulation both binary systems under

investigation.
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from high-resolution simulation results, and examined its depen-
dence on filter size. Fig. 14(a) and (b) shows the dimensionless

filtered drag coefficient dbieff
obtained by averaging the high-

resolution simulation for Case C (using the GHD theory). Heredbieff
¼gbieff

vti
=ðrsi

gÞ. It is clear that the dimensionless filtered drag

coefficient is a strong function of the filter size for both the large
particle (type 1 particle) and small particle (type 2 particle)
species. The same feature can be seen in Fig. 15(a) and (b), where
the filtered drag coefficients for the two particle types are given
for Case C using IA kinetic theory. For both models, the filtered
drag coefficient decreases with increasing filter sizes, and this is
exactly the same qualitative trend reported in the literature
for monodisperse systems (Igci et al., 2008). So, one can readily
anticipate that filtered constitutive relations must be developed
for polydisperse systems as well, just as they are currently being
done for monodisperse systems. This is true for both mixture and
species based kinetic theory model frameworks.
4. Conclusions

In this work the predictions of two different polydisperse
kinetic theory model frameworks have been compared for two
different binary particle size distributions spanning a range of
particle sizes and particle volume fraction ratios. Inspection of
snapshots of the instantaneous particle volume fraction and
volume fraction ratio fields revealed that the GHD and IA theories
(representative of the mixture and species based modeling
approaches, respectively) manifest qualitatively similar flow
structures. Both models yields nearly identical probability dis-
tribution functions for the total particle volume fraction in a grid
cell. Furthermore, the energy spectra of the particle volume
fraction for both kinetic theory models are essentially the same;
this serves as direct evidence that the nature of the gas-particle
flow structures admitted by both kinetic theories are similar.

Direct comparison of bidisperse systems with equivalent
monodisperse systems having the same Sauter mean diameters
reveals that the qualitative nature of the gas-particle flow
structures are similar for both monodisperse and bidisperse cases.
More quantitative comparisons of the PDF of total volume frac-
tion in a cell revealed a slightly higher probability of observing
heterogeneous flow structures in the flow of the bidisperse
systems; correspondingly, bidisperse flow simulations in periodic
domains yielded larger slip velocities (or equivalently lower
overall drag coefficients) than the equivalent monodisperse
systems.

A systematic filtering of the high-resolution binary gas-parti-
cle flow simulation results revealed that the filtered drag coeffi-
cients decreased with increasing filter size. This filtering analysis
clearly shows that filtered multi-fluid models are needed in order
to reconcile the differences between coarse and highly resolved
simulation results. While the need for filtered models for con-
tinuum model simulations of monodisperse gas-particle flows is
well known, the present study provides the first demonstration of
the need for filtered models for bidisperse gas-particle flows. It is
expected that additional filtered models for the particle phase
pressure and viscosity will also be necessary. The detailed form of
the filtered multi-fluid models and the associated constitutive
models will be the topic of future work within our group.
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Nomenclature
a
 polynomial of particle volume fraction
/dS
 Sauter mean diameter of the mixture
di
 diameter of a particle of species i
Dij
 ordinary diffusivity of particles of type i in particles of
type j
DF
ij
mass mobility of particles of type i in particles of type
j

DT
i

thermal diffusivity of particles of type i
e
 coefficient of restitution

eij
 coefficient of restitution between particles of types i

and j
Ef
 energy spectra of volume fraction fluctuations
Ef
 energy spectra of dimensionless mixture velocity
fluctuations
ET
 energy spectra of dimensionless mixture granular
temperature fluctuations
Fn

D�fixed
 dimensionless fluid-particle drag force in a
monodisperse fixed bed
fDi

fluid-particle drag force per unit volume experienced
by a particle of type i
ffDi

filtered fluid-particle drag force per unit volume

experienced by a particle of type i
FDi

fluid-particle drag force per particle experienced by a
particle of type i
Fn

Di�fixed
 dimensionless fixed bed fluid-particle drag force
experienced by a particle of type i in a polydisperse
assemblage of particles
Fi
 sum of external forces experienced by the ith particle
type
g
 gravitational acceleration vector

gim
 radial distribution function at contact for a bidisperse

mixture of particles of types i and m
Iim
 momentum exchanged between particles of types i

and m due to collisions
joi

mass flux of a particle of type i relative to the mixture
k
 wavenumber
k̂
 dimensionless wavenumber ðk̂ ¼ kv2
t =gÞ
m
 average particle mass based on the Sauter mean
diameter of the mixture
mi
 mass of the ith particle type n mixture number density

N
 number of horizontal grid points

ni
 number density of a particle of type i
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Nip
 granular energy collisional dissipation term

q
 granular energy flux vector of the mixture

qi
 granular energy flux vector of a particle of type i
Remix
 mixture Reynolds number

s
 number of particle types in a polydisperse mixture

t
 time T mixture granular temperature

Ti
 granular temperature of a particle of type i
v
 velocity vector of the particle mixture

vf
 velocity vector of the fluid phase
evf
 filtered velocity vector of the fluid phase
vi
 velocity vector of the ith particle phase
evi
 filtered velocity vector of the ith particle phase
Vi
 volume of a particle of type i
v0i
 velocity fluctuation of a particle of type i
/vslipS
 vertical component of the domain-averaged slip
velocity
vt
 terminal settling velocity of an isolated particle with
diameter given by the Sauter mean diameter of the
system
vti

terminal settling velocity of a particle of type i
yi
 ratio of the diameter of a particle of type i to the
Sauter mean diameter of the mixture
Z
 ratio of the timescale associated with mixture velocity
relaxation to the timescale associated with the
relaxation of the velocity species to the mixture
velocity
Greek letters
aij
 parameter in expression for the fluid-mediated

particle–particle friction coefficient bij
bi
 fixed bed friction coefficient of a particle of type i
gbieff
filtered effective drag coefficient of a particle of type i
dbieff
dimensionless effective drag coefficient of a particle of

type i: dbieff
¼ bieff

vti
=ðrsi

gÞ
bij
 fluid-mediated particle–particle friction coefficient
D
 filter size
D̂
 dimensionless filter size; D̂ ¼D=/dS

DUmix
 mixture velocity
Ef
 the void fraction of the fluid phase
z
 cooling rate of the mixture
z0
 zeroth order cooling rate
zU
 cooling rate transport coefficient of the mixture
l
 lubrication cutoff distance
mf
 viscosity of the fluid phase
rf
 density of the fluid phase
rs
 mixture density
rsi

density of the ith particle phase
sf
 gas phase stress tensor
ss
 solid phase stress tensor the particle mixture

ssi
solid phase stress tensor of a particle of type i
t
 dimensionless time given as t¼ tg=vt
f
 total volume fraction particle phase
fi
 volume fraction of the ith particle phase
wn
BVK
 inertial correction for fixed beds
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Lattice Boltzmann simulations of fluid flow through sheared assemblies of monodisperse
spherical particles have been performed. The friction coefficient tensor extracted from
these simulations is found to become progressively more anisotropic with increasing Peclet
number, Pe = γ̇d2/D, where γ̇ is the shear rate, d is the particle diameter, and D is
the particle self-diffusivity. A model is presented for the anisotropic friction coefficient,
and the model constants are related to changes in the particle microstructure. Linear
stability analysis of the two-fluid model equations including the anisotropic drag force
model developed in the present study reveals that the uniformly fluidized state of low
Reynolds number suspensions is most unstable to mixed mode disturbances that take the
form of vertically travelling waves having both vertical and transverse structures. As the
Stokes number increases, the transverse-to-vertical wavenumber ratio decreases towards
zero; i.e. the transverse structure becomes progressively less prominent.

1. Introduction
Fluidized beds where particles are kept in a suspended state by upward flowing fluid

are common in chemical process industries. In most of these beds, the Stokes number,
St = mut/6πµga2, is usually much larger than unity. Here, m represents the particle
mass, ut is the terminal settling velocity of an isolated particle, µg represents the fluid
viscosity, and a is the particle radius. Such beds are often unstable, with homogeneous
suspensions giving way to persistent spatial and temporal inhomogeneities in particle
volume fraction and the local average velocities of the fluid and particle phases. An in-
homogeneous velocity field can be expected to lead to anisotropic microstructure of the
particle assembly with the extent of anisotropy increasing with the Peclet number. In this
communication, we examine the influence of this anisotropy on the fluid-particle interac-
tion force. When the particle microstructure is anisotropic, the fluid-particle drag must
be modeled via an anisotropic friction coefficient tensor; although this been recognized in
soil mechanics for decades (for example, see Renard & Marsily (1997) and the references
cited therein), to the best of our knowledge, the potential influence of this anisotropy on
the dynamics of fluidized beds has not been studied in the literature. In the present study,
we have first performed lattice Boltzmann simulations of fluid flow through anisotropic
assemblies of spherical particles (at low Reynolds numbers) and determined the friction
coefficient tensor for various volume fractions and degrees of anisotropy. The anisotropic
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microstructures were created by shearing assemblies of elastic particles at different shear
rates while maintaining them in a thermostat (i.e. fixed granular temperature). The fric-
tion coefficient anisotropy is then related to microstructural anisotropy and modeled in
terms of Peclet number Pe.

We then present an analysis of the linear stability of the state of uniform fluidization
to illustrate the influence of an anisotropic friction coefficient. The growth rate of insta-
bilities in gas-fluidized beds of particles is too rapid to permit experimental observation
of the initial stages of the formation of inhomogeneous structures. In contrast, the slower
growth rates in liquid-solid systems permit observation of different structures in the hier-
archy of instabilities. Convective instabilities in liquid fluidized beds that take the form of
one-dimensional vertically traveling waves (Anderson & Jackson 1969; Ham et al. 1990;
Nicolas et al. 1996; Duru & Guazzelli 2002) and two-dimensional structures (Duru &
Guazzelli 2002) have been reported. Hydrodynamic models for fluidized beds that treat
the fluid and particle phases as interpenetrating continua (the so-called two-fluid models)
have been analyzed by several researchers to probe the emergence of the inhomogeneous
structures; in all these studies, the friction coefficient contained in the fluid-particle drag
force model is assumed to be isotropic, corresponding to a locally isotropic particle mi-
crostructure (for example, see Anderson & Jackson (1969); Batchelor (1988); Ham et al.
(1990); Koch (1990); Koch & Sangani (1999); Jackson (2000)). These studies revealed
that the state of homogeneous fluidization would first give rise to one-dimensional waves
with no horizontal structures. These one-dimensional waves undergo subsequent bifurca-
tions leading to the formation of bubble-like voids in dense fluidized beds, and particle
clusters in dilute gas-solid systems (Anderson et al. 1995; Glasser et al. 1996, 1997, 1998;
Agrawal et al. 2001). In the present study, we demonstrate that when anisotropic friction
coefficient is taken into consideration the state of uniform fluidization is predicted to be
unstable over a much wider parameter space and that in some regions of the parameter
space the dominant mode has both vertical and lateral structures.

2. Continuum models for gas-particle flows
In order to place the objective of the work in more concrete terms, we begin with two-

fluid model equations that are commonly used to describe the flow of uniformly sized
particles and the interstitial (fluidizing) gas, which are given as

∂ (ρg(1 − φ))
∂t

+∇ ⋅ (ρg(1 − φ)u) = 0, (2.1)

∂ (ρsφ)
∂t

+∇ ⋅ (ρsφv) = 0, (2.2)

∂ (ρg(1 − φ)u)
∂t

+∇ ⋅ (ρg(1 − φ)uu) = −(1 − φ)∇ ⋅σg − fD + ρg(1 − φ)g, (2.3)

∂ (ρsφv)
∂t

+∇ ⋅ (ρsφvv) = −φ∇ ⋅σg −∇ ⋅σs + fD + ρsφg, (2.4)

3ρs
2
(∂ (φT )

∂t
+∇ ⋅ (φTv)) = −∇ ⋅ q −σs ∶ ∇v + Γslip − Jcoll − Jvis, (2.5)

where φ is the particle volume fraction; ρg and ρs are fluid and particle phase densities,
respectively; u and v are fluid and particle phase velocities, respectively; σg and σs
are fluid and particle phase stress tensors, respectively; fD is the fluid-particle drag
force per unit volume of suspension; g is the gravitational acceleration; T is the granular
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temperature (defined as the root mean square of the particle velocity fluctuations); q
is the granular energy flux vector; Γslip is the rate of production of granular energy
through slip between particle and fluid phases per unit volume of suspension; Jcoll is
the rate of dissipation of granular energy due to inelastic collisions per unit volume
of suspension; and Jvis is the rate of viscous dissipation of granular energy per unit
volume of suspension. Eqs. (2.1) and (2.2) represent the continuity equations for particle
and fluid phases; eqs. (2.3) and (2.4) are fluid and particle phase momentum balances;
and eq. (2.5) is an evolution equation for the granular energy associated with particle
velocity fluctuations. In this work a Newtonian closure is adopted for gas phase stress
tensor. Several authors have derived constitutive models for σs and Jcol using the kinetic
theory of granular flow (for example, see Lun et al. (1984); Gidaspow (1994); Garzó &
Dufty (1999)). For the purpose of the present study, we employ the model for σs and
Jcol derived by Lun et al. (1984), and use expressions for the role of the interstitial fluid
on the granular energy production (Γslip) and dissipation (Jvis) described by Koch &
Sangani (1999):

σs = (ps −
(1 + ep)

2
µb∇ ⋅ v) I − 2µsS S = 1

2
(∇v +∇vT ) − 1

3
(∇ ⋅ v) I, (2.6)

ps = ρsφ (1 + 4ηφg0)T µb =
256

96
√
π
ρsd
√
Tφ2g0 η = 1 + ep

2
, (2.7)

µs = (
5ρsd
√
πT

96g0η(2 − η)
(1 + 8

5
φηg0)(1 −

8
5
φη(3η − 2)g0) +

3
5
ηµb) , (2.8)

Γslip =
81φµ2

g ∣u − v∣2Ξ

g0d3ρs
√
πT

, (2.9)

Ξ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

( 1+3
√
φ/2+(135/64)φ lnφ+17.14φ

1+0.681φ−8.48φ2+8.16φ3 )
2

( 1

1+3.5
√
φ+5.9φ

) φ < 0.40

( 10φ

(1−φ)3 + 0.7)
2
( 1

1+3.5
√
φ+5.9φ

) φ ≥ 0.40

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (2.10)

q = −κ∇T, (2.11)

κ = 75ρsd
√
πT

48g0η (41 − 33η) ((1 +
12
5
ηφg0)(1 +

12
5
η2(4η − 3)φg0) +

64
24π
(41 − 33η)η2)φ2g2

0) ,
(2.12)

Jvis =
54φµgT
d2

Rdiss, (2.13)

Rdiss = 1 + 3

√
φ

2
+ 135

64
φ lnφ + 11.26 (1 − 5.1φ + 16.57φ2 − 21.77φ3) − φg0 ln εm, (2.14)

Jcoll =
12
π
(1 − e2

p)
ρsφ

2

d
g0T

3/2, (2.15)

where ps is the particle phase pressure, µb is the bulk viscosity of the particle phase,
µs is the particle phase viscosity, µg is the gas phase viscosity, ep is the coefficient of
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restitution, κ is the conductivity, Rdiss is the coefficient associated with viscous granular
energy dissipation, εm = 0.01, and g0 is the radial distribution function at contact for
which we use the expression of Ma & Ahmadi (1988)

g0 (φ) =
1 + 2.5φ + 4.5094φ2 + 4.515439φ3

(1 − (φ/φm)3)
0.67821

, (2.16)

where φm = 0.64356. This form of the radial distribution function was used by Koch &
Sangani (1999) in their analysis of the stability of the uniformly fluidized state.

The fluid-particle interaction force fD is usually written as

fD = β (u − v) (2.17)

where the friction coefficient β is assumed to be isotropic; this is reasonable only if
the particle microstructure is isotropic. However, the particle microstructure in fluidized
beds is not isotropic (see Figure 8 (a)–(d)). Thus, in writing eq. (2.17), it is implicitly
assumed that the microstructural anisotropy is unimportant in the drag force model. In
fluidization problems, the weight of the particles is largely supported by the fluid-particle
drag, and hence even a small change in the fluid-particle drag can have large influence on
the dynamics. When the microstructural anisotropy is important, the drag force model
should be modified as:

fD = β̂ ⋅ (u − v) (2.18)
where β̂ is the friction coefficient tensor, whose diagonal elements will simply be β
(eq. (2.17)) for isotropic systems. In this manuscript, we ask how significant the anisotropy
of β̂ is and what its consequence on the state of uniform fluidization is.

In the suspension rheology community, a substantial amount of work has been de-
voted toward describing the rheology of concentrated suspensions in terms of particle
microstructure (for example, see Brady & Vicic (1995); Brady & Morris (1997); Stickel
& Powell (2005)). The changes in particle microstructure upon simple shear deformation
have been linked to nonlinear response properties like shear thinning, shear thickening,
and normal stress differences (for example, see Phung et al. (1996)). The extent of de-
viation of the particle microstructure from an equilibrium state depends on the Peclet
number

Pe = γ̇d
2

D
= γ̇d√

T

16φg0(φ)√
π

, (2.19)

where the shear rate γ̇ =
√

2 (E ∶ E), and the deformation rate tensorE = (1/2) (∇v +∇vT ).
In eq. (2.19) we have used the expression for the self-diffusivity D that was derived by
Savage and Dai using the fact that the particles in this study interact through elastic
collisions (namely ep = 1) (Savage & Dai 1993). If the Peclet number is substantially less
than unity, the particle microstructure resembles that of an equilibrium configuration of
spheres, however, as the Peclet number is increased beyond unity substantial anistropy
develops in the particle microstructure.

In most gas-particle fluidized beds, the Reynolds number based on particle diameter
and the fluid-particle slip velocity is O(1) or smaller; thus, the inertial correction to the
fluid-particle drag force is quite small. With this in mind, we restrict our attention in
this study to low Reynolds number flows. (In contrast, the Stokes number is much larger
than unity, which is assumed in the present study.) In the low Reynolds number limit,
we express the friction coefficients in eqs. (2.17) and (2.18) as:

β = 18
µg

d2
φ(1 − φ)F (φ) β̂ = 18

µg

d2
φ(1 − φ)F̂ (φ,Pe, . . .). (2.20)
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Figure 1. Schematic of homogeneous simple shear deformation of the particle phase. In this
work, x is the mean flow direction, y is the vorticity direction, and z is the gradient direction
associated with the simple shear deformation.

where F (φ) is a dimensionless friction coefficient, and F̂ (φ,Pe, . . .) is a dimensionless
friction coefficient tensor. In section 4 we demonstrate the dependence of the elements
of the friction coefficient tensor on Pe, and subsequently link the changes in the fluid-
particle drag to the microstructure of the particle assembly.

3. Simulation Method
To isolate the effect of microstructural anisotropy on the fluid-particle drag force,

our simulations were performed in two separate steps. First, we created anisotropic mi-
crostructures by performing constant volume simple shear simulations of a granular sys-
tem using the large-scale atomic/molecular massive parallel simulator (LAMMPS) code
that was developed at Sandia National Laboratories (Plimpton 1995). In order to ensure
that the simple shear deformation of the particle assembly was homogeneous, the simula-
tion domain was continuously deformed, and gravitational effects were not included. The
simulations were initiated by depositing a number of elastic particles into a periodic box,
and allowing the particle assembly to equilibrate to a random hard sphere microstruc-
ture. Subsequently, the particle assembly was sheared, as illustrated in Figure 1, for a
strain in excess of unity in order to ensure that the particle microstructure had reached
steady state. For all of the fluid-particle drag results presented in this work, the x -, y-,
and z - components refer to the mean flow, vorticity, and gradient direction, respectively.
The magnitude of the particle fluctuating velocity was controlled during the deformation
using a thermostat, thus facilitating the creation of microstructures with different Pe
associated with the deformation. These molecular dynamics simulations were repeated
for 16 different realizations of each Peclet number Pe and volume fraction φ in order to
provide a large number of microstructures from which good statistical averages of the
elements of the friction coefficient tensor could be obtained.

The second step in the simulation procedure consisted of performing lattice-Boltzmann
simulations of fluid flow through the anisotropic assembly of spheres. For our calculations
we used the lattice-Boltzmann code developed by Tony Ladd for the simulation of partic-
ulate suspensions (Ladd 1994a,b; Ladd & Verberg 2001). The unique feature about the
lattice-Boltzmann method is that it solves the evolution of a simplified particle velocity
distribution function on a fixed lattice rather than solving the Navier-Stokes equations
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directly (Chen & Doolen 1998; Ladd & Verberg 2001). The propagation and relaxation
of the simplified particle velocity distribution function is designed such that the Navier-
Stokes equations are reproduced on large length and time scales (Chen & Doolen 1998).
In our simulations a 19 point quadrature in velocity space was used (D3Q19 method)
giving a fluid density ρg = 36 in lattice units. In all simulations presented in this work the
fluid viscosity µg = 6 in lattice units. Previous work performed with the lattice-Boltzmann
code of Ladd has shown that there is a substantial dependence of the fluid-particle drag
results on the size of the particle used (van der Hoef et al. 2005). In order to obtain
fluid-particle drag results that were independent of size of the particle (i.e. grid reso-
lution) used, an extrapolation as a function of the hydraulic radius rh = d(1 − φ)/6φ
was performed (van der Hoef et al. 2005). In this study all simulations were performed
with d = 16.2 lattice units in the cubic domain with 1603 grid points. At such high grid
resolutions and fluid viscosities we find our results to be independent of grid resolu-
tion, therefore we do not perform an extrapolation of our fluid-particle drag results. The
Reynolds number Re = ρgd∣u − v∣/µg < 0.04 in the results presented here.

Two types of simulations were performed. In the first type, snapshots of deformed
particle microstructure and particle velocities in the periodic domain were imported from
LAMMPS into the lattice Boltzmann simulation, fluid flow simulations were performed
by freezing the positions of the particles (even though their velocities are non-zero) and
applying a pressure gradient; this is a good approximation for large St and low Re
systems. In the second type, only the particle positions were imported while setting their
velocities to zero; fluid flow simulations were then performed in this fixed bed. The friction
coefficient tensors obtained in these two types of simulations were virtually identical.

To determine the friction coefficient tensor, three simulations were performed with
each snapshot, applying a pressure gradient in the three directions one at a time. The
fluid-particle drag force from each realization was obtained by integrating the traction
over the surface of all the particles in the simulation domain.

4. Fluid-particle drag in sheared assemblies
In assemblies subjected to simple shear as illustrated in Figure 1, the friction coefficient

tensor was found to be essentially symmetric, and the xy− and yz− components were
found to be zero within the uncertainty of the measured friction coefficient. Figures 2
(a)-(d) illustrate the variation of the remaining four components (scaled by the diagonal
entries at Pe = 0) for a particle volume fraction of 0.45. (Simulations were also performed
at volume fractions of 0.20, 0.30, 0.35 and 0.40; the same trends as shown in Figure 2
were obtained at all these volume fractions.) The xx-component manifests only a weak
dependence on Pe, while the other three shown in Figure 2 reveal much larger variations.
At Pe > 100, the friction coefficient tensor becomes essentially independent of Pe. The
analysis discussed in Appendix A suggests 0 < Pe < 50 as a reasonable range for fluidized
beds, and hence further discussion is limited to only this range which is before the high
Pe plateau.

In Figure 3 we show a montage of the two-dimensional projection of the radial distri-
bution of particles in xy-, xz -, and yz -planes for three different values of Pe at a particle
volume fraction φ = 0.45. The change in the particle microstructure is apparent as Pe is
increased. In the xz -plane a surplus of particles accumulate near the compressional axis
of the simple shear deformation, while a depleted region is formed in the extensional axis
of the shear flow. The depleted regions in the extensional axis of the simple shear defor-
mation provide low resistance “channels” for the fluid to flow through, thereby decreasing
the ensemble averaged βyy value.
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Figure 2. (Color online) The (a) βxx, (b) βyy, (c) βzz, and (d) βxz components of the friction
coefficient tensor are given as a function of Pe for a particle volume fraction φ = 0.45. In these
simulations the domain size is 1603 lattice units with 798 particles at a particle Reynolds number
of Re = 0.01. The dotted lines are intended to guide the eye.

It is clear that the changes in the observed fluid-particle drag force arise from changes in
the particle microstructure from an isotropic random array of spheres. The microstructure
tensor, Y , is written as (Stickel et al. 2006)

Y = ζsI +Z, (4.1)

where I is the identity tensor, and

ζs =
1

4π ∫Ω

a

lmf(x̂)
dΩ Z = 1

4π ∫Ω
X(x̂) a

lmf(x̂)
dΩ λ = ζ−1

s . (4.2)

In eq. (4.2), ζs is the particle radius scaled by the mean free path averaged over the solid
angle Ω, lmf(x̂) is the mean free path associated with a given direction x̂, λ is the mean
free path averaged over all solid angles scaled by the particle radius, and X(x̂) is the
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Figure 3. Grayscale plot of the two-dimensional projection of the radial distribution function
in the (a) xy-plane, (b) xz-plane, and (c) yz-plane at three different values of Pe for a particle
volume fraction of φ = 0.45.

traceless dyadic product of x̂ given as

X(x̂) =
√

15
2

⎡⎢⎢⎢⎢⎢⎣

x̂xx̂x − 1/3 x̂xx̂y x̂xx̂z
x̂xx̂y x̂yx̂y − 1/3 x̂yx̂z
x̂xx̂z x̂yx̂z x̂zx̂z − 1/3

⎤⎥⎥⎥⎥⎥⎦
. (4.3)

Deviations of the angle-averaged mean free path from the isotropic value, and changes
in the off-diagonal components of the microstructure tensor from zero are related to the
level of anisotropy of the particle assembly, which is directly related to Pe. Here we define

λres = λ − λ0, (4.4)

where λ0 is the mean free path scaled by the particle radius for an isotropic system.
Figures 4 (a) and (b) illustrates that λres and Yxz/φ for the deformed particle assembly
can be expressed functions of Pe.

4.1. Fluid-particle drag model
We express the friction coefficient tensor

β̂ = βI +β1 β1 = β̂1I + β̃1

β̂1 = 18µg

d2
φ(1 − φ)F̂1(φ,Pe) β̃1 = 18µg

d2
φ(1 − φ)F̃1(φ,Pe)

(4.5)
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Figure 4. (Color online) Connection between particle microstructure and changes in Pe is
illustrated by (a) a plot of λres versus Pe, and (b) a plot of Yxz/φ versus Pe.

where β1 represents the anisotropic friction coefficient tensor which is partitioned into an
isotropic part β̂1, and a deviatoric part β̃1. F̂1(φ,Pe) and F̃1(φ,Pe) are dimensionless
and must be modeled. We propose a model for F̃1 as

F̃1(φ,Pe) = χ1(φ,Pe)Ŝ+χ2(φ,Pe) (Ŝ ⋅ Ŝ − (1/3)(Ŝ ∶ Ŝ)I)+χ3(φ,Pe) (Ŝ ⋅ Ŵ − Ŵ ⋅ Ŝ) ,
(4.6)

where Ŝ and Ŵ are rate-independent traceless deformation rate, and vorticity tensors,
respectively, which are given as

Ŝ = S√
E∶E

2

Ŵ = W√
E∶E

2

, (4.7)

and are used to represent the kinematic effect of the shear deformation. In eq. (4.6),
χ1(φ,Pe), χ2(φ,Pe), and χ3(φ,Pe) represent the three model constants that constitute
the deviatoric part of anisotropic friction coefficient tensor. In this model, χ1 and χ2 are
introduced to capture the βxz and βyy, respectively, in simple shear; F̂1 and χ3 then allow
us to model observed βxx and βzz. It should also be noted that in eq. (4.6) the second and
third terms on the right hand side do not depend on the direction of shear deformation,
while the first term does. This was deliberately done because the off-diagonal friction
coefficient βxz was observed to change sign upon reversing the direction of shear, while
the diagonal components of the friction coefficient tensor remained unchanged.

Figure 5 shows the variation of model parameters with the microstructural parameters.
Figures 5 (a) - (c) reveal that F̂1φ

3/F , χ2, and χ3φ
2 correlate with λres and φ, while

figure 5 (d) shows that χ1 is a function of Yxz/φ. Based on Figures 4 and 5, we arrive at
the following correlations for the four model parameters

F̂1 =
0.01
φ3

Fλ2
res (4.8)

χ1 = 1.51 (1 − exp (−1.17Yxz/φ)) (4.9)
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Figure 5. (Color online) Dependence of model constants on particle microstructure. (a)

F̂1φ
3
/F vs λres; (b) χ2 vs. λresφ; (c) χ3φ

2 vs. λres; (d)χ1 vs. Yxz/φ.

χ2 = 1.54 (1 − exp (−12.67λresφ)) (4.10)

χ3 = −
0.097
φ2

λ4/3
res. (4.11)

The microstructural variables in Figure 4 can be related to Pe as follows

λres = 0.073( 1
1 + 0.925 (exp (−0.0422Pe) − 1) − 1) (4.12)

Yxz = 0.016φ (Pe + 2.13 × 10−4Pe3) . (4.13)
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Figures 4 and 5 also show the fits represented by eqs. (4.8)-(4.13). For small Pe, these
expressions reduce to

F̂1 ∼ φ−3Pe2 χ3 ∼ φ−2Pe4/3

χ1 ∼ Pe χ2 ∼ φPe.
(4.14)

In eq. (4.8) any isotropic drag model can be used for F . We found that the relationship
proposed by van der Hoef et al. (2005) for low-Reynolds number flows through random
arrays given as

F (φ) = 10φ
(1 − φ)2 + (1 − φ)

2 (1 + 1.5
√
φ) , (4.15)

agrees with our simulation results to within 1%. It should also be noted that the drag
relation developed by Koch & Sangani (1999) describes our drag results equally well.
Eq. (4.15) is invoked in the linear stability analysis presented in the next section.

5. Discussion
It can readily be seen from the sedimentation velocity of particles in a homogeneous

suspension can be increased (by up to ∼ 10%) by subjecting the suspension to shear in
the horizontal plane (so that the sedimentation is in the vorticity direction). In horizontal
transport of non-neutrally buoyant suspensions, where velocity gradients naturally arise,
the rates of sedimentation (or rise) of heavier (lighter) particles predicted by the isotropic
and anisotropic drag models will differ. However, both of these effects are relatively small.
In contrast, a more striking effect of the anisotropic drag model is observed in the classical
problem of stability of uniform fluidization (sedimentation), which is discussed below.

We probe the effect of the anisotropic friction coefficient on the stability of uniformly
fluidized state by performing a linear stability analysis in one and two dimensions, and
comparing dispersion relations for both isotropic and the anisotropic drag models. Our
analysis is based on eqs. (2.1)–(2.5). The governing equations are made dimensionless
using u2

t /g, ut/g, ut, u2
t , and ρsu2

t as the characteristic length, time, velocity, temperature,
and pressure scales, respectively. For a uniformly fluidized state, eqs. (2.1) – (2.5) reduce
to the following set of equations for elastic particles

φ = φ0 = constant (5.1)

−2φ0(1 − φ0)
Fr

St
F (φ0)ũ0 − (1 − φ0)(

1
δ
− ∂p̃

f
0

∂x̃
) = 0 (5.2)

2φ0(1 − φ0)
Fr

St
F (φ0)ũ0 − φ0 (1 +

∂p̃f0
∂x̃
) = 0 (5.3)

T̃0 = (
Ξ(φ0)

16
√
πg0St(1 − φ0)2F (φ0)2Rdiss(φ0)

)
2/3

(5.4)

where the subscript zero refers to the base state, Fr is the Froude number based on
particle diameter defined as Fr = u2

t /(gd), ũ0 is the dimensionless slip velocity between
solid and fluid phases at the base state, p̃f0 is the dimensionless base state fluid pressure,
T̃0 is the dimensionless base state granular temperature, and δ = ρs/ρg. In this section
the x -direction points vertically upward while the z -direction is in the horizontal plane.
Note that for the low-Re number flows considered here, Fr = (1 − 1/δ)St/2, and so the
model parameters simply St, φ0 and δ.
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The perturbations to the particle volume fraction, particle and fluid phase velocities,
fluid phase pressure, and the granular temperature have the following form

ψ = ψ0 + ψ1 (5.5)

where ψ represents a generic field variable, ψ0 is its value at the base state, and ψ1 is a
small perturbation variable of the form

ψ1 = ψ̂1 exp (ik ⋅x) exp (σt), (5.6)

where ψ̂1 sets the amplitude, k is the wavenumber vector associated with the pertur-
bation, and σ is the growth rate of the perturbation. Inserting these perturbations into
eqs. (2.1)- (2.5), and simplifying we obtain a set of linear algebraic equations in the coeffi-
cients ψ̂1. The resulting characteristic equation takes the form of a fifth order polynomial
for the growth rate σ as a function of the wavenumbers kx and kz. Note that while Pe = 0
in the base state, it will be nonzero in the perturbed state. Terms involving (∂χ1/∂Pe)0
will appear in the characteristic equation, but F̂1, χ2, and χ3 and their derivatives with
respect to Peclet number do not. As a result, identical dispersion relations are obtained
with isotropic and anistropic drag models for one-dimensional perturbations in the ver-
tical direction (k̂x ≠ 0 and k̂z = 0, here k̂ = kv2

t /g). It then follows that the region in the
(St, φ0, δ) space where the state of uniform fluidization is predicted to be unstable using
an anisotropic friction coefficient will not be smaller than that afforded by the isotropic
friction coefficient.

Figures 6 (a) and (b) show the real part of the maximum dimensionless growth rate
σ̂r(= σrvt/g) as a function of St for three different particle volume fractions for the
isotropic and anisotropic drag model, respectively. Figure 6 (c) and (d) compare the
corresponding wavelengths in the vertical direction. When the isotropic friction coefficient
is used in the analysis the uniformly fluidized state is unstable at large St values, but
below a threshold value that depends on particle volume fraction the uniformly fluidized
state is predicted to be stable. In contrast, the uniformly fluidized state is found to be
unstable at all St values when the anistropic friction coefficient is used in the analysis.
At very large St values, where both models predict instability, the growth rates and
the dominant vertical wavelength predicted with the isotropic and anisotropic friction
coefficients are quantitatively similar.

While the isotropic drag model predicts a one-dimensional traveling wave having no
horizontal structure as the dominant mode of instability in a uniformly fluidized suspen-
sion, we find that the dominant instability mode has two-dimensional structure when an
anistropic drag model is used. Figure 7 shows the ratio between k̂z and k̂x for the fastest
growing instability predicted by the linear stability analysis with the anisotropic drag
model developed in this study. At each of the three volume fractions shown in this figure,
a vertically traveling wave having both transverse and vertical structures is dominant at
lower St values and it transitions to a mode with little lateral structure at large St values.
The St value at which this transition occurs increases with particle volume fraction.

In our stability analysis, the granular temperature has been assumed to be isotropic;
Koch & Sangani (1999) allowed the mean-squared velocity fluctuations in the vertical
direction to differ from that in the transverse direction and formulated a more elaborate
set of equations, but employed an isotropic friction coefficient. The St value at which the
uniformly fluidized state became stable for a given particle volume fraction was lower in
the work of Koch & Sangani (1999) than what we report in figure 6 (a) as a result of their
anistropic granular temperature formulation. The influence of the anisotropic granular



Effect of microstructural anistropy 13

10ï1 100 101 102 103
10ï4

10ï2

100

101

10ï3

10ï1

St

σ̂
r

 

 

φ = 0.15
φ = 0.35
φ = 0.55

(a)

10ï1 100 101 102 103
10ï4

10ï3

10ï2

10ï1

100

101

St

σ̂
r

 

 

φ = 0.15
φ = 0.35
φ = 0.55

(b)

10ï1 100 101 102 103
100

101

102

St

λ
x
/
d

 

 

φ = 0.15
φ = 0.35
φ = 0.55

(c)

10ï1 100 101 102 103
100

101

102

St

λ
x
/
d

 

 

φ = 0.15
φ = 0.35
φ = 0.55

(d)

Figure 6. Dominant growth rate as a function of St for three different particle volume fractions
using (a) the isotropic and (b) anisotropic drag models. The wavelength λx of the dominant
instability mode (in the direction parallel to gravity) scaled by the particle diameter is also
presented for both (c) isotropic and (d) anistropic drag models.

temperature, however, is only quantitative; in contrast, a qualitative change is seen in
our studies upon introduction of anisotropic friction coefficient.

It should be noted that the model analyzed here is valid only for large Stokes numbers
and hence the lower end of St values shown in these figures is outside the scope of the
model. The impact of the anisotropic friction coefficient is, however, observed already at
St >> 1 (see figures 6 (c), 6 (d) and 7); hence, we believe that our observation that the
inclusion of anisotropic friction coefficient removes the stability predicted by the isotropic
friction coefficient model remains valid.

Secondary circulation cells have been observed in low St sedimentation (Segre et al.
2001; Guazzelli & Hinch 2011). These have been rationalized in terms of particle volume
fraction fluctuations that are always present in homogeneous sedimentation (Segre et al.
2001) and small gradients in vertical volume fraction (Mucha et al. 2004). It will be in-
teresting to see if anisotropic friction coefficient has any role in inducing these circulation
cells and/or the wavelength selection.
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Figure 7. The ratio between dimensionless transverse (k̂z) and parallel (k̂x) wavenumbers of
the dominant instability mode is plotted against St for three different particle volume fractions.
Here, we illustrate the emergence of two-dimensional structure that arises due to anistropy in
the fluid-particle drag force.

6. Summary
The results of a computational study of the anisotropy in the fluid-particle friction co-

efficient in sheared particle assemblies are described. A model for the anisotropic friction
coefficient tensor under low Reynolds number conditions is presented (eq. (4.5)) and the
model constants are connected to microstructural changes in the particle assemblies that
arise due to the shearing of the particle assembly (eqs. (4.8)–(4.11)), which are in turn
connected to the Peclet number associated with the deformation (eqs. (4.12)–(4.13)).

The influence of an anisotropic friction coefficient on the stability of the uniformly
fluidized state was probed through linear stability analysis of the two-fluid model equa-
tions. When the friction coefficient anisotropy is not included, the uniformly fluidized
state is most unstable at high Stokes numbers to vertically traveling disturbances having
no transverse structure, but below some threshold St value which depends on the particle
volume fraction it is predicted to be stable.

When the anisotropy is included, a qualitatively different result obtains, and the sta-
bility predicted at low St disappears. The uniformly fluidized state is now most unstable
to vertically traveling disturbances having both vertical and transverse structures. The
aspect ratio of the most dominant mode is a function of both St and particle volume
fraction. At high Stokes numbers, the most dominant mode has very little transverse
structure (and so, is nearly the same as that obtained with an isotropic friction coeffi-
cient), but at lower Stokes numbers the aspect ratio is predicted to be of the order of unity.

The authors would like to thank Professor James Gilchrist and his student Roy Xu
for insightful conversations on particle microstructure and also Stefan Radl for carefully
reading our manuscript.
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Figure 8. Three different colormaps of Pe are given for domain-averaged volume fractions of
(a) φ = 0.20, (b) φ = 0.30, and (c) φ = 0.40. In these periodic domain simulations the particle
and fluid phase properties are as follows: d = 75 µm, ρs = 1500 kg/m3, ρg = 1.3 kg/m3, and
µg = 1.8 × 10−5 kg/ (m ⋅ s). These particle and fluid phase properties give St ≈ 180. These
simulations were performed in a two-dimensional periodic domain measuring 64 cm × 64 cm
using 512 × 512 grid cells. The box size scaled by the particle diameter in this simulation is
8.53 × 105, and the Reynolds number based on the single particle terminal settling velocity is
1.4.

Appendix A
In section 2 the deformation of the particle microstructure was linked to the magnitude

of the Peclet number Pe. Estimates of typical values of Pe for large Stokes number sus-
pensions can be obtained by simulating eqs. (2.1)–(2.5) with constitutive relations given
by eqs. (2.6)–(2.14) using finite volume methods. In Figures 8 (a)–(d) we show colormaps
of the spatial variation of the Peclet number that were obtained from two-dimensional
periodic domain simulations of the two-fluid model equations using the isotropic drag
model. It is clear that the local Peclet number varies between 0 < Pe < 50 throughout
the periodic domain. Therefore, the microstructural anisotropy resulting at such large
values of Pe could have a substantial impact on the predictions of these two-fluid model
equations.



16 William Holloway, Jin Sun, and Sankaran Sundaresan

REFERENCES

Agrawal, K., Loezos, P. N., Syamlal, M. & Sundaresan, S. 2001 The role of meso-scale
structures in rapid gas-solid flows. J. Fluid Mech. 445, 151–185.

Anderson, K., Sundaresan, S. & Jackson, R. 1995 Instabilities and the formation of bubbles
in fluidized beds. J. Fluid Mech. 303, 327–366.

Anderson, T. B. & Jackson, R. 1969 A fluid mechanical description of fluidized beds. com-
parison of theory and experiment. Ind. Eng. Chem. Fundam. 8, 137–144.

Batchelor, G. K. 1988 A new theory of the instability of a uniformly fluidized bed. J. Fluid
Mech. 193, 75–110.

Brady, J. F. & Morris, J. F. 1997 Microstructure of strongly sheared suspensions and its
impact on rheology and diffusion. J. Fluid Mech. 348, 101–139.

Brady, J. F. & Vicic, J. F. 1995 Normal stresses in colloidal dispersions. J. Rheol. 39, 545–566.

Chen, S. & Doolen, G. D. 1998 Lattice-boltzmann method for fluid flows. Annu. Rev. Fluid
Mech. 30, 329–364.

Duru, P. & Guazzelli, E. 2002 Experimental investigation on the secondary instability of
liquid-fluidized beds and the formation of bubbles. J. Fluid Mech. 470, 359–382.
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