
SANDIA REPORT 
SAND2010-6237 
Unlimited Release 
Printed September 2010 
 
 
 

Optimal Recovery Sequencing for 
Critical Infrastructure Resilience 
Assessment 
 
 
Eric D. Vugrin, Mark A. Turnquist, and Nathanael J. K. Brown 
 
 
 
 
 
Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 

 
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,  
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's  
National Nuclear Security Administration under contract DE-AC04-94AL85000. 
 
Approved for public release; further dissemination unlimited. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  



2 

 
 
 

Issued by Sandia National Laboratories, operated for the United States Department of Energy 
by Sandia Corporation. 
 
NOTICE:  This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government, nor any agency thereof, 
nor any of their employees, nor any of their contractors, subcontractors, or their employees, 
make any warranty, express or implied, or assume any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represent that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government, any agency thereof, or any of 
their contractors or subcontractors.  The views and opinions expressed herein do not 
necessarily state or reflect those of the United States Government, any agency thereof, or any 
of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best 
available copy. 
 
Available to DOE and DOE contractors from 
 U.S. Department of Energy 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN  37831 
 
 Telephone: (865) 576-8401 
 Facsimile: (865) 576-5728 
 E-Mail: reports@adonis.osti.gov 
 Online ordering: http://www.osti.gov/bridge 
 
Available to the public from 
 U.S. Department of Commerce 
 National Technical Information Service 
 5285 Port Royal Rd. 
 Springfield, VA  22161 
 
 Telephone: (800) 553-6847 
 Facsimile: (703) 605-6900 
 E-Mail: orders@ntis.fedworld.gov 
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online 
 
 

 
 

 



3 

SAND2010-6237 
Unlimited Release 

Printed September 2010 
 
 

Optimal Recovery Sequencing for Critical 
Infrastructure Resilience Assessment 

 
 

Eric D. Vugrin 
Infrastructure and Economic Systems Analysis Department 

Sandia National Laboratories 
P.O. Box 5800 

Albuquerque, New Mexico  87185-MS1138 
 

Mark A. Turnquist 
School of Civil and Environmental Engineering 

Cornell University 
220 Hollister Hall 
Ithaca, NY 14853 

 
Nathanael J. K. Brown 

Operations Research and Knowledge Systems 
Sandia National Laboratories 

P.O. Box 5800 
Albuquerque, New Mexico  87185-MS1138 

 
Abstract 

 
Critical infrastructure resilience has become a national priority for the U. S. 
Department of Homeland Security. System resilience has been studied for several 
decades in many different disciplines, but no standards or unifying methods exist for 
critical infrastructure resilience analysis. This report documents the results of a late-
start Laboratory Directed Research and Development (LDRD) project that 
investigated the identification of optimal recovery strategies that maximize resilience. 
To this goal, we formulate a bi-level optimization problem for infrastructure network 
models. In the “inner” problem, we solve for network flows, and we use the “outer” 
problem to identify the optimal recovery modes and sequences. We draw from the 
literature of multi-mode project scheduling problems to create an effective solution 
strategy for the resilience optimization model. We demonstrate the application of this 
approach to a set of network models, including a national railroad model and a supply 
chain for Army munitions production. 
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1.  INTRODUCTION AND BACKGROUND  

 
Historically, U. S. Federal Government policy towards critical infrastructure protection (CIP) has 
focused on physical protection and asset hardening (e.g., see Reagan, 1982; Clinton, 1998; Bush, 
2002; 2003). In recent years, CIP policies have shifted to include critical infrastructure resilience 
concepts and strategies. Critical infrastructure resilience (CIR) is a concept that describes the 
ability of infrastructure systems to absorb, adapt, and recover from the effects of a disruptive 
event while attempting to continue delivery of critical infrastructure services. 
 
The federal government has started a coordinated set of government resilience initiatives to 
begin the process of understanding what features create resilience in critical infrastructure 
systems. The DHS National Infrastructure Protection Plan (NIPP), in particular, contains explicit 
language calling for increasing the resilience of the nation’s critical infrastructure. Many of the 
NIPP sector-specific plans (SSPs) also have broad, if not specific, language that promotes critical 
infrastructure resilience as a primary objective. For example, in its SSP, the Transportation 
Security Administration (TSA) made “Enhance the resilience of the transportation system” one 
of its top three priorities (TSA, 2007). 
 
The process of institutionalizing CIR analysis in federal policy faces many challenges. In 
particular, the lack of standardized CIR definitions and analysis methods must be addressed in 
order to develop effective CIP policies. 
 
1.1. Current Assessment Methods 
 
Holling (1973) provided the first systems level definition of resilience more than 30 years ago. 
Since that initial definition, many different definitions of resilience have been proposed for use 
in infrastructure and economic systems analysis (for examples, see Bruneau et al., 2003; Chang 
and Shinozuka, 2004; Rose and Liao, 2005). These definitions all include some aspect of a 
system withstanding change due to a disruption or disturbance, whether by reducing the impact 
of the change, adapting to the change, or recovering from the change. 
 
Despite the large number of resilience definitions, few quantitative methods have been proposed 
for analysis of infrastructure and economics systems. Bruneau et al. (2003) measure seismic 
resilience loss for communities by integrating the difference between optimal infrastructure 
quality, i.e., 100 percent, and the degraded infrastructure quality following an earthquake. Chang 
and Shinozuka (2004) use a probabilistic formulation to estimate a system’s seismic resilience. 
They compare the decrease in system performance and time to recovery, predicted through a set 
of Monte Carlo simulations, against pre-defined performance and duration standards. According 
to this approach, the resilience of the system is the observed probability that both standards are 
met. Rose and Liao (2005) have developed resilience metrics for economic systems. Rose asserts 
that the static economic resilience of a system be measured as “the ratio of the avoided drop in 
[system] output and the maximum potential drop” in system output,. He further asserts that 
dynamic economic resilience be measured as the cumulative difference between system outputs 
with and without hastened recovery efforts. Each of these approaches focuses on the impact that 
a disturbance has on the state of the system or system outputs.  
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In general, these approaches have a common limitation: they do not explicitly consider the 
important role that recovery processes have in determining system resilience. Specifically, 

 The effectiveness of the recovery strategy that one selects directly affects the magnitude 
and duration of system performance impacts. Said differently, the resilience of a system 
to a particular disruption is a function of the recovery strategy initiated following the 
occurrence of that event. 

 Expenditure of resources during the recovery processes could be a significant contributor 
in the overall impacts and costs resulting from a disruption. Resource requirements for 
recovery strategies will affect the recovery strategy decision process. Additionally, the 
amount of resources required for a particular strategy may affect whether that strategy is 
feasible in a resource constrained environment.  

Hence, for these two reasons, we assert that recovery costs must be explicitly accounted for in 
CIR assessments. 
 
Resource allocation can be a critical concern during crisis events, and emergency responders 
need to decide how limited resources should be spent to minimize deleterious impacts and 
maximize response efficiencies. Vugrin, et al. (2010) have proposed a resilience assessment 
framework that expands upon the aforementioned assessment approaches in two key areas. First, 
Vugrin, et al.’s mathematical formulation for measuring resilience costs is not reliant upon a 
specific modeling paradigm to represent the system, so it can be generally applied across various 
infrastructure and economics models. This flexibility is necessary for establishing resilience 
analysis standards across all CIKR systems.  Secondly, it explicitly considers the costs and 
resources expended during recovery efforts following infrastructure disruptions. Inclusion of 
recovery costs in resilience evaluations provides a more comprehensive accounting of disruption 
impacts. This approach also provides a means for assessing feedback loops that include recovery 
processes and system performance.  
 
Vugrin, et al. (2010) define system resilience as follows: 
 

Given the occurrence of a particular disruptive event (or set of events), the resilience of a 
system to that event (or events) is the ability to efficiently reduce both the magnitude and 
duration of the deviation from targeted system performance levels. 

 
This definition provides the basis for the measurement of the two primary factors that determine 
the resilience costs: systemic impact (SI) and total recovery effort (TRE). SI is the impact that a 
disruption has on system productivity TRE refers to the efficiency with which the system 
recovers from a disruption. 
 
Consider a dynamic system modeled as follows: 

       , ,y t F X U t D t t  (1)

where 
 X is a state vector with dependence on the control term U and the disturbance D: 
 U is a time-dependent control vector representing the means by which the system 

recovers, i.e., U is the recovery effort; 
 D represents a time-dependent, piece-wise continuous, disturbance forcing term. 
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 y is the vector of system outputs under disturbance D, and is obtained by calculation of 
the function F. 

Let z be an exogenous reference signal that represents the time-dependent, targeted system 
performance level. Vugrin, et al. (2009) calculate SI and TRE as follows: 

 
0

( ) ( ) ,
tf

T

t

SI q z t y t dt   
(2)

 
tf

t

T dtturTRE
0

.  
(3)

 
where t0 > 0 is the time at which the disturbance initiates and tf is the time at which recovery is 
considered complete. The vectors q and r consist of sets of weighting factors that are used to 
calculate costs of decreased system performance and resource expenditures, respectively. 
 
Since X and y are dependent upon U; Vugrin, et al. (2010) define two types of resilience cost 
measurements: Recovery dependent resilience costs are those costs resulting from a particular 
recovery strategy, and they are calculated according to (4). 
 

 

0

( 0 , , )

( )
tf

T

t

SI TRE
RDR X t D U

q z t dt

 



 

(4)

 
The denominator in (4) is a normalizing term that permits comparison of RDR values for systems 
of varying magnitudes. When they exist, Vugrin et al. use the term optimal resilience costs, OR, 
to refer to the resilience costs that are minimized by an optimal recovery strategy. These costs 
are calculated as 
 

 

0

( 0 , ) min

( )
U tf

T

t

SI TRE
OR X t D

q z t dt

 



 

(5)

 
1.2. Project Goals 
 
Vugrin, et al.’s (2010) resilience cost approach lends itself nicely to mathematical formulations 
utilized for the development of optimal feedback control laws. Vugrin, et al. (2009b) 
investigated the development of quantitative CIR analysis through the application of control 
methods.  Vugrin, et al. (2009b) concluded that for a particular subset of infrastructure models, 
optimal feedback control design is a promising approach for identification of optimal recovery 
strategies. Specifically, Vugrin, et al. (2009b) demonstrated application of linear quadratic 
regulator (LQR) feedback control methods on a set linear models with continuous spatial 
domains for resilience assessment. However, Vugrin, et al. (2009b) also noted that many 
infrastructure models have nonlinearities and discrete decentralized components. Traditional 
feedback control design is generally not applicable to these types of models, and Vugrin, et al. 
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recommended the further investigation into more traditional optimization approaches for 
generalizing the optimal resilience problem.  
 
Any optimal control problem can be posed as a more general optimization problem. The benefit 
of this approach is that solution techniques exist that are applicable to a broader, more general set 
of models than classical optimal feedback control design can address. It is with this approach in 
mind that a Laboratory Directed Research and Development (LDRD) project was developed. 
Specifically, this project was designed to address the following question: 

In the context of a disruptive event affecting a discrete, (non)linear network, what 
is the optimal recovery sequence that minimizes resilience costs given that 1) 
recovery resources are limited; 2) multiple recovery modes are available; and 3) 
multiple asset restoration sequences are available. 

This paper describes the results of that investigation. 
 
The balance of this report is as follows. Chapter 2 describes the theoretical, mathematical 
formulation of the optimal resilience problem in which one attempts to solve the optimal 
resilience problem described above. Specifically, this chapter describes a bi-level programming 
model that serves as the basis for the nonlinear optimization algorithms. Chapter 3 describes a set 
of case studies in which the bi-level programming model is developed and numerical 
optimization algorithms are applied. The first example includes a simple transportation network 
that minimizes transportation costs. This example provides a proof of concept on a relatively 
simple system in which TRE is constant; hence, the optimal restoration sequence is the one that 
minimizes SI. In the second case study, the optimal resilience problem is formulated for a 
national rail system model. The Rail Network Analysis System (R-NAS) is a static, nonlinear 
optimization model that predicts the flow of commodities across the national rail system on an 
average day. For this LDRD project, an interface was developed to simulate dynamic recovery of 
the system following a disruption. The project specifically investigated the optimal restoration 
sequence following a flooding event that disabled a set of bridges. The third application involves 
the development of a dynamic supply chain model for the munitions production. We investigated 
the ability to meet mission goals when production facilities were unable to receive input goods 
due to supplier outages or transportation disruptions. The final chapter, Chapter 4, discusses 
follow-on work and analyses that should be considered in the further development of quantitative 
resilience methods. 
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2. MATHEMATICAL FORMULATION 
 
Our effort proceeds from Vugrin, et al.’s (2010) general definition of resilience for critical 
infrastructure systems. In the context of a transportation network, the disruptive event (or events) 
damages some set of links or nodes in the network. We will view this damage as a reduction in 
the capacity of a facility to handle flow, and the capacity may be reduced to zero, indicating 
destruction of that facility. The set of capacity reductions causes some flows across the network 
to be diverted to other facilities, or perhaps to be blocked entirely. Flow diversions may increase 
congestion in other parts of the network, and generally increase costs. Determination of the 
network flow pattern in the presence of disruptions is one sub-problem of the overall analysis of 
network resilience. 
 
Restoring the network is a problem of choosing the set of repair efforts (sequence and timing) 
that are most effective in simultaneously reducing the systemic impact and minimizing the 
required total recovery effort. Repairing a network link is a task with a cost, resource 
requirements, and a duration (i.e., the link improvement is begun in period t and becomes 
available in some later period t + ). Thus, we consider the recovery effort as a form of project 
scheduling problem. 
 
The analogy to project scheduling is to “multi-mode” scheduling because the link repairs may be 
done in one of several possible modes. For example, for each damaged link, we might consider 
three modes of repair action: 

1) “Normal”: Resources are applied to restore capability in an expeditious way. 
2) “Emergency”: Additional resources are applied to accomplish the capacity restoration in 

2/3 of the “Normal” time, but at a cost that is twice the “Normal” cost. 
3) “Staged”: Capacity restoration is done in two stages. The first stage restores 50% of the 

lost capacity in 60% of the time required for “Normal” restoration of full capacity, and at 
60% of the “Normal” cost. A second stage of restoration can be done later to restore the 
remaining 50% of damaged capacity. The second stage of action also requires 60% of the 
“Normal” time, and requires 60% of the “Normal” cost. 

 
The cost-effectiveness of Emergency repairs is lower than for Normal repairs, but the additional 
costs may be justified in some circumstances to avoid large system impacts. Staged repairs allow 
restoration of partial capacity fairly quickly at lower cost than a full Normal repair. This may be 
very useful in some circumstances, but breaking the repair into stages results in higher overall 
costs (20% higher than Normal) and longer overall time (at least 20% longer to reach full 
restoration). The two stages can be separated in time as part of the scheduling process. 
 
Thus, in addition to the “what link, when” decision, we also have to consider “what mode” for 
each link restoration task. This leads to a complex discrete optimization problem. 
 
2.1. Optimization Problem Formulation 
 
The objective function includes both system impact (SI) and total resources expended (TRE) for 
recovery: 
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Min  TRESIJ        (6) 

The trade-off between SI and TRE is governed by the weighting constant , and as  changes we 
can trace out alternative recovery strategies. 
 
The central variables in the optimization model are: 
 






otherwise

tperiodinilinkoninitiatedismmodeinactionif
yimt 0

1
 

 
Repair mode m for link i, initiated in period t, is assumed to imply: 

1) a lag duration im  periods before the action is completed; 

2) a cost stream:  )1(..,,  imtimimt cc   over the im  periods required for the action to be 

completed; 
3) a capacity increment im  that becomes available in period imt  . 

 
Because the TRE measure is an integral (or in discrete periods, a sum) of the cost stream 
elements, we can define  
 







1imt

t
imim cC




        (7) 

 
as the total cost of the recovery action in mode m for link i. Then TRE is 
 


i m t

imtim yCTRE      (8) 

 
In general, it is only possible to select a specific action once, so 
 

miy
t

imt ,1        (9) 

 
However, it may be possible to select more than one action for a single link (e.g., an initial 
partial repair that restores some of the capacity, followed by a more complete restoration action 
later). If modes m1 and m2 for link i could both be selected, but mode m1 must be completed 
before m2 could be started, we have a constraint of the form: 
 

 



T

t
timim

T

t
tim ytyt

11
112

      (10) 

 
In the specific optimization formulation applied here, we use the three repair modes described 
above (Normal, Emergency, Staged). These three repair modes imply four m-indices for each 
link (because the staged mode involves two stages, which are represented separately). If we 
adopt the notational convention: 
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m1:  normal mode 
m2:  emergency mode 
m3:  stage 1 of staged mode 
m4:  stage 2 of staged mode 

 
then we have a set of exclusivity constraints for each link: 
 

  1
321


t
timtimtim yyy      (11) 

 
The precedence constraints in (10) relate modes 3 and 4 for any link. However, we also allow a 
solution where the second stage of restoration on a link may not be performed at all. This is 
different from the usual project scheduling formulation, where all activities must be scheduled to 
complete the project. If the second stage is never scheduled ( 0

4
timy  for all t), the left-hand side 

of (10) is zero, which would preclude the first stage from being scheduled. To avoid this 
problem, we adopt the convention that if the second stage of restoration for a link is not actually 
scheduled, it “appears” to be scheduled in a time period beyond the end of the planning horizon, 
so that the left-hand side of (10) is a relatively large number, ensuring that stage 1 of the link 
repair can be scheduled. 
 
In general, link repairs require some physical resources that are in limited supply, and 
availability of these resources may constrain recovery scheduling. We apply these resource 
constraints in the form: 
 

tRyr t
i m

t

t
imm

im

 
 1

     (12) 

 
where rm is the weighting of mode m and Rt is interpreted as a maximum allowable effort level. 
For example, if an emergency-mode activity has a weight of 2 and normal or staged activities 
have weights of 1, an allowable effort level of Rt = 4  would allow no more than two 
simultaneous emergency-mode efforts, or one emergency and two normal efforts, etc. 
 
As a result of actions selected for link i, the capacity of link i in period t is: 
 







m

t

imimiit

im

yKK





1
0      (13) 

 
The value Ki0 is the (degraded) capacity at the beginning of the planning period (immediately 
after some disruption). This value may be 0, indicating that the link is unusable. 
 
The link capacities in a transportation network are a critical element in determining the flow 
patterns of people and/or goods over the network. A common structure is to represent congestion 
via a set of delay functions of the generic form: 
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with  iii Kxd ,  representing the time for a unit of flow to cross link i, when the flow over the link 

is xi and the link capacity (measured in units of flow per time period) is Ki . The value di0 
represents the “free-flow” travel time across the link (i.e., without congestion, or when xi = 0). 
Different values of the parameters ai and i may be used for different classes of links in the 
network. 
 
Given the network structure, the collection of parameter values for each link (di0, Ki, ai and i) 
and the set of origin-destination flows to be moved over the network, we find a set of link flows, 
xi, as the solution to the following optimization problem (at time period t): 
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In the network flow problem at time t, the following variables are used: 
 

p
rsQ  = units of commodity p to be shipped from origin r to destination s 
p

itf   = flow of commodity p on link i in the flow pattern for period t 
p

istg  = units of commodity p on link i headed for destination s in the flow  

   pattern for period t 

iP   = set of commodities that are allowed to use link i 

rI   = set of links inbound to node r  

rO   = set of links outbound from node r . 
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The function  ititi Kxd ,  in (15) is the delay function from (14), with specific link flows and 

capacities for period t. 
 
The objective function (15) in the flow prediction sub-problem (reflecting total travel time) is 
one component of computing the SI measure for the overall resilience objective in (6). An 
additional component is the total distance traveled. If the individual links have lengths, Li, the 
total distance traveled (for period t) is 

i
iti xL . If the disruption is severe enough to “disconnect” 

the network (i.e., some movements cannot occur at all), the portions of p
rsQ  that are not 

accommodated by the network can also become an element of computing SI. 
 
Because the variables in the overall resilience objective function (6) depend on the solution to 
another optimization problem (15-20), this is a bi-level optimization. The problem of 
determining the yimt variables is called the “upper” or “outer” problem, and the problem (15-20) 
to determine the link flows xit, is called the “lower” or “inner” problem. Bi-level problems are 
notoriously difficult to solve. Part of this difficulty is simply computation – simple evaluation of 
the objective function in the upper problem requires solution of an entire optimization in the 
lower problem. Another difficulty is theoretical – it is difficult to demonstrate desirable 
properties in the upper problem (convexity, etc.) that make the problem easier to solve or that 
allow guarantees of finding an optimal solution. 
 
 
2.2. Solving the Optimization Problem 
 
Because the upper problem in the bi-level optimization closely resembles a multi-mode project 
scheduling problem, we have drawn ideas from the literature in that area to help create an 
effective solution strategy for the resilience optimization model. The multi-mode resource-
constrained project scheduling problem (MRCPSP) is a challenging optimization problem that 
has received considerable attention from a variety of researchers. Sprecher and Drexl (1998) 
created an exact algorithm for the problem that remains the standard for methods guaranteed to 
solve the MRCPSP to optimality. However, it is very intensive computationally, and its use is 
limited to small problem instances. The resilience optimization problem is related to the 
MRCPSP, but is not exactly the same problem, and it may involve relatively large problem 
instances (i.e., many damaged network links), so a computationally intensive exact method for 
the MRCPSP is of limited interest. 
 
In general, heuristic methods for finding good (but not necessarily optimal) solutions relatively 
quickly, and scalable to large problem instances, are of greatest interest. Most of the recent 
advances in addressing the MRCPSP are heuristics of various forms. Mori and Tseng (1997), 
Ozdamar (1999), Hartmann (2001), and Alcaraz, et al. (2003) have proposed various forms of 
genetic algorithms. Kolisch and Drexl (1996) explored ideas of local neighborhood search for 
finding good solutions, and Tseng and Chan (2009) combined genetic algorithm ideas with local 
search to create a two-phase algorithm. Other recent work by Jarboui, et al. (2008) and Chen, et 
al. (2010) has explored using particle swarm and ant colony optimization approaches, and 
Damak, et al. (2009) have tried a differential evolution approach. 
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Another general class of meta-heuristics applied to the MRCPSP is simulated annealing. Good 
examples of this approach are the work of Boctor (1996), Bouleimen and Lecocq (1997) and 
Jozefowska, et al. (2001). Although simulated annealing is not the focus of the most recent work 
on the MRCPSP, there are very useful ideas in this approach that lend themselves well to the 
resilience optimization problem. This is particularly true of the work by Boctor (1996). 
 
A core idea of this approach is that a potential solution to the project scheduling problem can be 
described as an ordered list, or sequence, of tasks. The sequence implies a schedule, which can 
be evaluated relatively easily. In the multi-mode case, the sequence also contains mode selection 
for each task (which implies its duration and resource requirements). Sequences can also be 
checked easily for validity (i.e., no task can appear in the sequence before any of its required 
predecessors, or after any of its successors). 
 
To make this idea more clear, consider the small activity-on-arc project network shown in Figure 
1. There are eight tasks (A, …, H) with precedence requirements indicated by the network 
structure. The task durations are listed in parentheses alongside the task arc. We’ll assume for the 
moment that there is a single mode for each task, so there is only one duration value, and that 
each task (executed in the one mode available) requires one unit of an available resource of 
interest. 
 
 

 
 

Figure 1. Illustrative Activity-on-arc Project Network. 
 
 
The sequences: 
 

[ A  B  C  D  E  F  G  H ] [ B  A  E  C  F  H  D  G ] [ A  D  E  B  F  C  G  H ] 
 
are all valid sequences for this network because each task always appears after all of its 
predecessors and before any of its successors. However, the sequence: 
 

[ A  E  B  D  C  H  F  G ] 
 
is invalid because H appears before one of its predecessors, F. 
 
A sequence implies a schedule using the simple rule that each task is examined in order and 
scheduled to begin at the earliest time at which its predecessors are complete and there are 
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sufficient resources available. For example, suppose we have two units of resource available. 
Then the first valid sequence listed above can be scheduled using the following steps: 
 
 

1) Task A is scheduled to start at time 0. 
2) Task B is also scheduled to begin at time 0, because there is another unit of resource 

available. 
3) Task C is scheduled to begin at time 3, when a unit of resource becomes available as A 

finishes. 
4) Task D is scheduled to begin at time 4, when B finishes and a unit of resource becomes 

available. Its predecessor, A, has already finished. 
5) Task E is scheduled to begin at time 6, when D finishes and a unit of resource becomes 

available. Its predecessor, A, has already finished. 
6) Task F is scheduled to begin at time 9, when its predecessor, E, finishes. 
7) Task G is scheduled to begin at time 7, when C finishes and a unit of resource becomes 

available. 
8) Task H is scheduled to begin at time 14, when its predecessor, F, finishes. 

 
One way to represent this schedule is with a resource loading diagram, as shown in Figure 2. It is 
clear that the completion of the project is at time 16, and this value may be used to characterize 
the sequence [ A  B  C  D  E  F  G  H ]. 
 

 
 

Figure 2. Schedule and Resource Loading Associated with the Sequence  
[ A  B  C  D  E  F  G  H ]. 

 
 
In a similar way, we can apply the scheduling rule to the sequence [ B  A  E  C  F  H  D  G ] and 
obtain the schedule shown in Figure 3. The completion time for this schedule is 13, which is 
generally considered better than the 16 achieved for the first sequence, so we would prefer the 
second sequence to the first. 
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Figure 3. Schedule and Resource Loading Associated with the Sequence  
[ B  A  E  C  F  H  D  G ]. 

 
 
A second key idea in Boctor’s approach is that a neighboring solution (for the simulated 
annealing search process) can be constructed by shifting the position of one task in the sequence 
to another valid position. Thus, the sequence [ A  B  C  E  D  F  G  H ] would be considered a 
neighbor of [ A  B  C  D  E  F  G  H ] because E has been moved ahead of D. The shift to create a 
neighbor is not a swap of the positions of two tasks (although in the example cited here the effect 
is the same). We pick a task and shift its position in the list, with the tasks between its original 
position and its new position sliding up or down as necessary. 
 
In Boctor’s original work, the existence of multiple modes for execution of individual tasks was 
handled during the serial scheduling rule implementation. As each task is considered, possible 
beginning and ending times for each mode are determined and the mode that leads to earliest task 
completion is selected. Boctor mentions that other rules for selecting modes could be substituted, 
and in our application of his basic ideas, a revised version is important. 
 
To show how the basic ideas of representing a solution as a sequence of tasks and translating a 
sequence into a schedule apply to the network resilience optimization, consider the simple 
example transportation network shown in Figure 4. This example has two origin-destination 
pairs (A-D and B-D), with volumes qAD and qBD. 
 
 

 
 

Figure 4. Example Transportation Network. 
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Each of the five directional links has a delay function of the form: 
 

iiii xbat   

 
where xi is the volume on the link. Links are also assumed to have capacity limits, Ui, so that 
valid flows must have xi ≤ Ui for all links. Each origin-destination pair has two possible paths, 
and the O-D pairs interact via the link C-D. The flow pattern on the network is determined by an 
equilibrium condition (If both paths for a given O-D pair are used, the travel times for the two 
paths should be equal unless the flow on the shorter path is at capacity. No unused path may 
have a shorter travel time than a used path for the same O-D pair, unless the capacity of the 
shorter unused path is zero.). 
 
For purposes of this example, we will assume that qAD = 100,  qBD = 200, and the link 
characteristics are as shown in Table 1. In the nominal (base) case, there is sufficient capacity on 
the links to carry the specified O-D traffic, but under some damage scenarios, there may be 
demand that cannot be met. 
 

Table 1. Link Characteristics for Example Transportation Network. 
 

Link Index From-To ai bi Ui 
1 A-D 5 0.02 100 
2 A-C 2 0.01 100 
3 C-D 4 0.01 300 
4 B-C 2 0.02 200 
5 B-D 5 0.03 150 

 
 
In the nominal case, the equilibrium flow pattern on the network is the set of link flows shown in 
Table 2, and there is no unmet demand. The total travel time for all users of the network is 2393 
units. (Flows are shown rounded to the nearest whole unit, although the actual equilibrium 
calculations may involve fractional units.) 
 

Table 2. Equilibrium flow for nominal (base) case. 
 

Link Index From-To Ui Flow Time 
1 A-D 100 93 6.85 
2 A-C 100 7 2.07 
3 C-D 300 89 4.89 
4 B-C 200 82 3.64 
5 B-D 150 118 8.54  

 
 
As a specific damage scenario, assume that links 3-5 are severely damaged and out of service. 
This set of link losses means that there is no available path from B to D, and all the traffic on that 
O-D pair becomes unmet demand. The flow pattern on the network immediately following the 
damage event is summarized in Table 3. The total travel time is 700 units for the flow from A to 
D that can be accommodated. 
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Table 3. Equilibrium flow for damaged condition (unmet demand = 200). 
 

Link Index From-To Ui Flow Time 
1 A-D 100 100 7.0 
2 A-C 100 0 2.0 
3 C-D 0 0 -- 
4 B-C 0 0 -- 
5 B-D 0 0 --  

 
 
To measure overall impact of the damage, assume that the “cost” of a unit of unmet demand is 
20, so that the total travel cost in the damaged state is  700  +  20 (200)  =  4700. The impact can 
be measured as the increase in total travel cost, relative to the nominal case, or 4700    2393 = 
2307. 
 
Repair actions will focus on the three damaged links and can be undertaken in the three possible 
modes mentioned above (Normal, Emergency and Staged). Table 4 summarizes a set of 
characteristics for the repair actions in the various modes on the three links assumed for purposes 
of this example.  
 

Table 4. Parameters for modes of repair on damaged links. 
 

Link Mode Duration 
(periods) 

Cost Capacity 
Increment 

3 (C-D) 

Normal 3 3000 300 
Emergency 2 6000 300 

Staged – Part 1 2 1800 150 
Staged – Part 2 2 1800 150 

4 (B-C) 

Normal 5 4000 200 
Emergency 3 8000 200 

Staged – Part 1 3 2400 100 
Staged – Part 2 3 2400 100 

5 (B-D) 

Normal 6 5000 150 
Emergency 4 10000 150 

Staged – Part 1 4 3000 75 
Staged – Part 2 4 3000 75 

 
 
To implement the idea of a sequence as defining a solution that implies a schedule, consider a 
general structure in which each link is listed with two stages, labeled (a) and (b). The precedence 
structure implies that stage (b) for a given link cannot be listed before stage (a) for the same link, 
but there are no precedence restrictions across links. Using the two-stage structure allows for 
situations where the Normal or Emergency modes are chosen for a particular link (in which case 
the (a) stage has duration and cost and the (b) stage becomes a dummy) or where the Staged 
mode is chosen (in which case both stages have duration and cost, but at the end of the first 
stage, partial capacity is restored). Thus, for the example problem, a possible valid sequence 
would be: 
 

[ 3a, 5a, 3b, 4a, 4b, 5b ]. 
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To evaluate this sequence as a possible solution, we must be able to choose modes for each link 
and construct a schedule of activities to determine the times at which capacity restoration occurs 
on individual links. 
 
The mode selection for tasks can be done as a “local random search” process. That is, we can 
sample modes for the link tasks randomly, generating a set of N trials for the same sequence. 
Each trial can be scheduled using a simple single-pass scheduling mechanism (like in the normal 
project scheduling process) and the trial that yields the earliest restoration of full capacity on all 
links can be chosen as the representative schedule for the current sequence. This selected 
schedule can then be evaluated using a series of network flow assignments. 
 
To illustrate this idea, consider the sequence listed above for the three links requiring repair and 
a small value of N (i.e., N = 5). The sample of mode choices for the three links is listed in Table 
5. 
 

Table 5. Sample of repair modes on damaged links for 5 trials. 
 

Link Trial
1 2 3 4 5 

3 (C-D) Staged Normal Staged Normal Emergency
4 (B-C) Normal Staged Staged Normal Normal 
5 (B-D) Emergency Normal Normal Staged Emergency

 
For Trial 1, the set of mode selections implies the sequence really is as follows (because the 4b 
and 5b elements become dummies): 
 

[ 3 (Staged – Part 1), 5 (Emergency), 3 (Staged – Part 2), 4 (Normal), -- , -- ]. 
 
For scheduling, we use the characteristics from Table 2-4, and assume that the resource limit is  
a limit on the total activity that can be sustained simultaneously. Two “units” of work can be 
undertaken simultaneously; an action in either Normal mode or Staged mode on a given link 
counts as one unit, and an action in Emergency mode counts as two units. 
 
For Trial 1, the simple serial scheduler proceeds as follows: 

1) Part 1 of the staged effort on link 3 begins at time 0. 
2) Emergency action on link 5 begins at time 2, when the stage 1 work on link 3 is finished 

and resources are available. 
3) Part 2 of the staged effort on link 3 begins at time 6, when link 5 is restored. 
4) Normal action on link 4 begins at time 6, when link 5 is finished. 

 
The illustration of this schedule is as shown in Figure 5. Complete restoration of the network 
capacity is at time 11. 
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Figure 5. Trial 1 schedule for example network. 
 
The Trial 2 selection of modes for the same sequence implies the effective sequence is: 
 

[ 3 (Normal), 5 (Normal), --, 4 (Part 1), 4 (Part 2) , -- ]. 
 
Scheduling this selection results in the schedule depicted in Figure 6, with a completion time of 
9. In this schedule, parts 1 and 2 of the staged effort on link 4 are directly in series. However, 
they are separated because partial capacity on link 4 is restored at time 6, rather than having to 
wait for full restoration later. 
 

 
 

Figure 6. Trial 2 schedule for example network. 
 
 
Figure 7 through Figure 9 illustrate the schedules developed for Trials 3-5 for the same sequence. 
Trial 4 produces the shortest completion time, so this schedule is accepted as the representation 
of the current sequence. 
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Figure 7. Trial 3 schedule for example network. 
 
 

 
 

Figure 8. Trial 4 schedule for example network. 
 
 

 
 

Figure 9. Trial 5 schedule for example network. 
 
 
For the schedule from Trial 4, there are changes in available link capacity at time 3 (restoration 
of link 3), time 4 (partial restoration of link 5), and time 8 (full restoration of both links 4 and 5). 
To evaluate SI for this schedule, we require two network flow assignments (for times 3 and 4). 
At time 8, the network returns to full service and the total travel time for that state (2393 units) is 
already known. 
 
At time 3, with link 3 restored to service, the resulting flow pattern is shown in Table 6. There is 
no available path from B to D, so there are still 200 units of unmet demand. The total travel time 
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for the 100 units of flow from A to D is 650, so the total cost computed is 650  +  20 (200) = 
4650. The impact measure for this state is  4650    2393 = 2257. 
 
Table 6. Equilibrium flow for partially restored condition at time 3 (unmet demand = 200). 

 
Link Index From-To Ui Flow Time 

1 A-D 100 75 6.5 
2 A-C 100 25 2.25 
3 C-D 300 25 4.25 
4 B-C 0 0 -- 
5 B-D 0 0 --  

 
 
At time 4, link 5 is partially restored to service (with capacity 75), and the resulting flow pattern 
is shown in Table 7. The unmet demand from B to D decreases to 125 units. The total travel time 
for the 175 units of flow accommodated on the network is 1194, so the total cost computed is 
1194  +  20 (125) = 3694. The impact measure for this state is  3694    2393 = 1301. 
 
Table 7. Equilibrium flow for partially restored condition at time 4 (unmet demand = 125). 

 
Link Index From-To Ui Flow Time 

1 A-D 100 75 6.5 
2 A-C 100 25 2.25 
3 C-D 300 25 4.25 
4 B-C 0 0 -- 
5 B-D 75 75 7.25  

 
 
Computation of SI , i.e., the increase in travel cost relative to baseline conditions, for this 
solution is illustrated in Figure 10. SI is the area of the shaded region, or 14382 units. 
 

 
 

Figure 10 . Measurement of SI for the example sequence. 
 
For this sequence, TRE is the sum of the costs incurred for the specific modes chosen in Trial 4:  
3000 + 3000 + 3000 + 4000 = 13,000. If we use a weighting of  = 1 to combine SI and TRE, 
our overall evaluation of this potential solution (sequence) is: 
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It is important to note that we need to invoke the network flow calculation only for the single 
selected schedule from the N trials associated with picking modes for a given sequence. The 
evaluation of the trials themselves is based only on minimum total restoration time, and requires 
just the serial scheduler. 
 
Once a particular sequence has been evaluated, the algorithm moves to a neighboring point by 
choosing an element of the sequence (e.g., 4a, or 3b, etc.) randomly and moving it to a randomly 
chosen valid position in the list, adjusting the other elements of the sequence as necessary. This 
new sequence is then evaluated in the same way just illustrated. One special aspect of this 
movement is that if in the sequence just evaluated, there are dummy “part b” elements (because 
the mode chosen was Normal or Emergency for that link), the algorithm does not choose one of 
those dummy elements to move in the sequence because it won’t really change anything. Thus, 
when an element is chosen randomly for shifting, if that element in the current sequence is a 
dummy, it is rejected and another sample is drawn to create a new sequence. 
 
The process discussed at some length here is then embedded within a simulated annealing search 
algorithm, such as the one described by Boctor (1996) and shown as Figure 11. The process 
described above illustrates how a point in the search space is represented, how the objective 
function is evaluated for that point, and how the algorithm moves to a neighboring point. 
 

Call Initial (find an initial solution) 
Call Current (store the solution obtained as the current solution) 
Call Best (store the current solution as the best found so far) 
h := 0  (initialize heating cycle counter) 
Repeat until h = HMAX 

 T := TMAX  (initialize the cooling temperature) 
 c := 0  (initialize the cooling cycle counter) 
 Repeat until c = CMAX 
 r := 0  (initialize repetition counter) 
 if c < CMAX then R := RMAX else R := f * RMAX 
 Repeat until r = R 
  Call Neighbor (generate a neighboring solution) 
  d := objective function (neighbor)  objective function (current) 
  if d < 0 or random(0,1) < exp(-d/T) then 
  call Current (store as current solution) 
  if objective function (current) < objective function (best) then 
   r := 0  (re-initialize the repetition counter) 
   Call Best  (store as the best solution so far) 
  endif 
       endif 
       r := r + 1 
 endRepeat 
 T := a * T  (reduce cooling temperature) 
 c := c + 1 
              endRepeat 
              h := h + 1 

endRepeat 
Figure 11. Algorithm statement for Boctor’s (1996) implementation of simulation 

annealing for project scheduling. 
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3. APPLICATIONS AND ANALYSES 

 
In this chapter we describe a set of case studies in which the bi-level programming model is 
developed and numerical optimization algorithms are applied. The first example includes a 
simple transportation network that minimizes transportation costs. This example provides a proof 
of concept on a relatively simple system in which we assume TRE is constant; hence, the optimal 
restoration sequence is the one that minimizes SI. In the second case study, the optimal resilience 
problem is formulated for a national rail system model. The R-NAS model is a static, nonlinear 
optimization model that predicts the flow of commodities across the national rail system on an 
average day. For this project, an interface was developed to simulate dynamic recovery of the 
system following a disruption. The project specifically investigated the optimal restoration 
sequence following a flooding event that disabled a set of bridges. The third application involves 
the development of a dynamic supply chain model for the munitions production.  This example is 
rather different from the first two in that we do not attempt to identify an optimal restoration 
sequence. Rather, we investigated the ability to meet mission goals when production facilities 
were unable to receive input goods due to supplier outages or transportation disruptions. 
 
3.1. Optimal Recovery Sequencing when TRE is Constant 
 
As a proof-of-concept demonstration, we investigate a simplification of the MRCPSP described 
by (15) – (20).  
 
3.2.1. Problem Formulation  
Assume the flows across a network are governed by the minimum cost flow problem below 
(adapted from Bradley, et al. 1977): 
 
At a given time step, t,  

   


j i

ijijtt cxzmin            (21) 

 
 

subject to:  nibxx i
j

kit
j

ijt ,...,1      (22) 

 

ijijtijt uyx 0       (23) 

where 

ijtx  =  the flow from node i to node j during time step t; 

ijc  =  the unit transportation cost from node i to node j; 

iju  =  the flow capacity from node i to node j;  

 0,1ijty   denotes whether the link between node i and node j is functional at time t. 

Equation (22) represents flow conservation, i.e., 0ib   when node i is a source node, 0ib   

when node i is a sink node, and 0ib  when node i is a transshipment node. 
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For this investigation, we make the following simplifying assumptions and modifications to the 
MRCPSP described by (15) – (20): 

1 0,   , ,ijy i j D  
         (24) 

where D represents the set of disrupted network links.  

0 1,   ,ijy i j 
;          (25) 

,   0.ijt ijmy y t m   
        (26) 

A single mode of recovery that returns a link to full capacity, 0iju , is available. The cost 

of restoring capacity, i.e., restoration cost, is denoted by the variable ijr , and this cost is 

constant with respect to time. 
 
Equation (24) describes the impact of the disruption on the network. In this scenario, capacities 
are reduced to 0, but sources and sinks are not affected.  Equation (25) describes that all links are 
at full capacity prior to the disruption. Equation (26) indicates that after a link is repaired, it stays 
repaired. The impact of the final assumption is that TRE is constant in the optimal resilience 
problem (5). Hence, for this example, the mathematical formulation of the optimal resilience 
problem is as follows: 

 
t

t
y

zzSI 0min       (27) 

 
 
subject to  

1

m

ijt ij m m
t

y r R T


        (28) 

where tz and 0z are described by (21) – (23) and the variable mT  represents the cumulative 

recovery resource constraints. In the bi-level optimization problem, (21) – (23) describe the inner 
loop problem and (27) and (28) describe the outer loop problem. Note that in this formulation, 
we assume uniform time steps where ∆ =1. The problem can be easily generalized for time steps 
of variable size. 
 
3.2.3. Solution Methodology 
To solve the bi-level optimization problem, we adapt Kim, et al’s. (2008) solution approach. 
Inequalities (26) and (28) define the set of feasible solutions; that is, (26), termed the “conceptual 
feasibility” constraint by Kim, et al. (2008) indicates that once capacity is restored to a link, the 
capacity is maintained. The “financial feasibility” constraint, (28), indicates that the rate of 
recovery is limited by resource constraints. 
 
To define the feasible solution space, the following methodology was implemented: 

1) Create the  max 1
n

n t  permutation matrix, P, where each column consists of a 

permutation (repetition permitted) of the integers 1, …, maxt . (The integer n denotes the 

number of links to be repaired and maxt  denotes the minimum number of time steps until 

all links can be restored.)  Each column in the matrix denotes a different restoration 
sequence, without regard to resource constraints, and the ith entry in a column indicates 
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the time step after which the ith link is repaired. For example, if n=3 and maxt =3, the 

following permutation matrix would denote: 
a. In the first recovery sequence, link 2 was repaired after the first time step, and 

links 1 and 3 were repaired after the second time step.  
b. In the second recovery sequence, the first, second, and third links were repaired 

after the first, second, and third time steps, respectively. 
c. In the third recovery sequence, the first and second links were repaired after the 

second time step, and the third link was not repaired since maxt <4. 

2 1 2

1 2 2

2 3 4

 
 
 
  







 

This approach to developing restoration sequences ensures that the “conceptual 
feasibility” constraint is met. 

2) For p= 1…  max 1
n

t  , calculate the vector pR  of length maxt  

p pV RS RC   

 where    
 

0,  ,
,

1,  ,p

l P m p
RS m l

l P m p

   
, m=1, …, maxt  , l=1,… , , n  

and RC is the vector of restoration costs for the disabled links. 
3) If the mth element of pR , is less than or equal to mT , for all m=1, …, maxt , then the pth 

column of P denotes a feasible solution that meets both conceptual and financial 
feasibility constraints. 

Having defined the feasible solution space, we are ready to solve the optimal resilience problem. 
 
We define the variables, ijty , for each feasible recovery sequence, and then solve the minimum 

cost flow problem (defined by 17-19) at each time step, t=0,…, maxt . The optimal recovery 

sequence is the sequence that minimizes the objective function in (27). 
 
3.2.4. Application and  Analysis 
 
Consider the network depicted in Figure 12 and capacities, transportation costs, and restoration 
costs, determined by Table 8 and Table 9. Nodes 1 and 2 represent network sources, and node 5 
is the only sink.  
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(a) 

 
(b) 

Figure 12.  Transportation Network (a) nominal state and (b) disrupted state. 
Red indicates links have no capacity. 

 
Table 8.  Network link characteristics. 

 
Link i,j 

iju  1,ijy ijc  ijr  

1,2 100 1 5 2 
1,3 100 1 5 2 
2,4 100 1 5 2 
3,5 100 1 5 2 
4,5 100 1 5 2 
1,5 20 0 5 4 
1,4 10 0 4 2 

 
Table 9.  Additional network characteristics. 

 
Node Characteristics 

Node 
ib  

1 20 
2 10 
3 0 
4 0 
5 -30 

Resource Constraints 

mT  2 4 6 

Maximum Time Steps 

maxt  3 

 
In the nominal, undisrupted case, all flow (20 units) entering at node 1 goes to node 5 across link 
1,5 and the 10 units of flow entering the network at node 2 go along link 2,4 and then 4,5 to node 

1
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5

4

2 1

3

5
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5. Flow across link 1,5 is preferable since the transportation unit cost is cheapest across this link 
(5 per unit flow). The total transportation cost for the undisrupted case is 200 (20x5+10x5 + 
10x5) (Table 10).  
 
When link 1,5 is disrupted and no capacity exists, flow from node 1 must be diverted along links 
1,3 and 3,5. In this scenario, the optimal recovery strategy is to fix link 1,5 first, even though this 
takes 2 time periods for completion. Even though restoring capacity to link 1,4 reduces the 
transport unit cost from 10 to 9 for flow from node 1, those intermediate savings are not enough 
to offset the additional amount of time it takes to restore the preferred link, link 1,5 (Table 11).  

 
Table 10.  Optimal network flows when  = 20. 

Link i,j t=0 t=1 t=2 t=3 t=4 

12tx  0 0 0 0 0 

13tx  0 20 20 20 0 

24tx  10 10 10 10 10 

35tx  0 20 20 20 0 

45tx  10 10 10 10 10 

15tx  20 0 0 0 20 

14tx  0 0 0 0 0 

Transportation Costs  

iz  200 300 300 200 200 

SI=200 
 

Table 11.  Network flows when  = 20 and link 1,4 is restored first. 
Link i,j t=0 t=1 t=2 t=3 t=4 

12tx  0 0 0 0 0 

13tx  0 20 0 0 0 

24tx  10 10 10 10 10 

35tx  0 20 0 0 0 

45tx  10 10 30 30 10 

15tx  20 0 0 0 20 

14tx  0 0 20 20 0 

Transportation Costs  

iz  200 300 280 280 200 

SI=260 
 
If, however, the unit transportation costs across link 1,4, , is reduced from 4 to 2, and the 
nominal flow capacity across link 1,5 , is 10 instead of 20, the optimal restoration sequence 
changes (Table 12); link 1,4 should be restored before link 1,5. Immediately following the 
disruption, 10 additional units of flow from node 1 to node 5 are diverted from link 1,5 to links 
1,3 and 3,5. This path has a unit transportation cost of 10. In this scenario, the optimal restoration 
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sequence is to restore link 1,4 first, which immediately reduces the unit transportation cost from 
10 to 7 for 10 units of flow. These intermediate savings are large enough to offset the additional 
length of time the system is without the single cheapest transportation route, link 1,5. Table 13 
shows network flows for this scenario when link 1,5 is restored first. 
 

Table 12.  Optimal network flows when  = 10, and   = 2. 
Link i,j t=0 t=1 t=2 t=3 t=4 

12tx  0 0 0 0 0 

13tx  0 20 10 10 0 

24tx  10 10 10 10 10 

35tx  0 20 10 10 0 

45tx  20 10 20 20 20 

15tx  10 0 0 0 10 

14tx  10 0 10 10 10 

Transportation Costs  

iz  220 300 270 270 220 

SI=180 
 

Table 13.  Network flows when  = 10, and   = 2 and link 1,5 is restored first. 
Link i,j t=0 t=1 t=2 t=3 t=4 

12tx  0 0 0 0 0 

13tx  0 20 20 10 0 

24tx  10 10 10 10 10 

35tx  0 20 20 10 0 

45tx  20 10 10 10 20 

15tx  10 0 0 10 10 

14tx  10 0 0 0 10 

Transportation Costs  

iz  220 300 300 250 220 

SI=190 
 
3.2.4. Summary 
 
From this relatively simple example, we are able to demonstrate the key steps that must be taken 
to solve the optimal restoration sequencing problem: 

 Develop the mathematical formulation of the optimal resilience problem for the specific 
network system under consideration; 

 Develop an approach to solving the bi-level optimization. Frequently, this involves 
searching the space of restoration sequences for feasible solutions that meet both 
“conceptual” and “financial” feasibility constraints. 
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 Implement solution methodology in software, when necessary. This step is likely 
necessary for models of “real” infrastructure systems. 

 Analyze and validate results against other potential recovery sequences. 
In the following section, we apply this approach to a more complex model of the U.S. freight rail 
network. 
  
3.2. Application to the U.S. Freight Rail Network 
 
The U.S. railroad industry originated about 26 million carloads of traffic in 2009, moving 
approximately 1.7 billion tons of commodities (Association of American Railroads, 2010). 
Industry freight revenue is approximately $46 billion annually. There are currently nine large 
railroads operating in the U.S., including seven U.S. companies (Class I railroads) and two 
Canadian companies. These nine large railroads are: Burlington Northern and Santa Fe Railway 
(BNSF), CSX Transportation, Canadian National (CN), Canadian Pacific, Grand Trunk 
Corporation, Kansas City Southern Railway, Norfolk Southern Combined Railroad Subsidiaries, 
Soo Line Railroad, and Union Pacific Railroad (UP). 
 
A wide variety of commodities move over the rail network, but in this case study we pay specific 
attention to five major categories: coal, grain, chemicals, motor vehicles and intermodal 
shipments. These five categories account for about 70% of total tonnage moved by rail. Coal is 
the primary single commodity moved by rail. Approximately 800 million tons of coal were 
moved by Class I railroads in 2009, accounting for 47% of all traffic (by weight). Much of this 
coal is used for electric power generation and support of other basic industries (such as steel). 
Many consumers of coal maintain substantial inventories, but an extended disruption in the 
ability of railroads to move coal could create a very significant economic impact. 
 
Railroads are major movers of grain from producing areas to food processing plants, as well as to 
ports for export. Grain makes up about 8% of total tons originated on Class I railroads, but in 
some areas (notably the Midwest) and during some parts of the year, grain movements are a 
much larger fraction of the total. Disruption in grain movements can affect domestic food 
supplies, national balance-of-payments accounts, and food supplies in many areas of the world. 
 
Chemicals make up about 10% of total tons moved on the rail network, and constitute about 14% 
of railroad revenue. These movements are important both because they are vital for many 
different industries and because many of the chemicals are considered hazardous materials. 
Railroads move approximately 70% of motor vehicles from assembly plants to distribution 
points. Motor vehicles constitute only about 1% of total tonnage moved, but because they are 
very high-value goods, revenue from moving motor vehicles is 5% of total revenue for Class I 
railroads. 
 
Intermodal shipments (i.e., the movement of containers or truck trailers on specialized rail 
equipment) account for approximately 6% of tonnage and 13% of total freight revenue for Class 
I rail carriers. There are about 10 million containers and trailers shipped via rail each year, and 
these movements tend to be concentrated in a few high-density corridors. Intermodal traffic tends 
to be high-value manufactured goods destined for final consumption, and disruption of these 
flows can have significant economic consequences. 
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Our focus in this analysis is on the resilience of the rail network to a disruption that would cause 
outage of several major bridges across the Mississippi River between Iowa or Missouri (on the 
west side of the river) and Illinois (on the east side). Such an event might be the result of major 
flooding on the upper Mississippi River, for example. Chicago is the largest east-west 
interchange point in the rail network (where freight traffic is transferred between the western 
railroads and the eastern railroads), and the major rail lines going west from Chicago toward 
Kansas City, Omaha and Denver all cross the Mississippi River in this area. These major railroad 
bridges are “pinch points” for the rail network and crucial infrastructure elements to the national 
system. 
 
Specifically, the four bridges on which we focus are as follows. 
 

1. Union Pacific Crossing at Clinton, IA 
 

The Union Pacific main line west of Chicago crosses the Mississippi River at Clinton, IA. 
The very high traffic density on this line is illustrated in Figure 13. The crossing at 
Clinton is actually a series of three bridges. The main channel of the river is on the 
western (Iowa) side, and is spanned by a double-track steel truss bridge with a swing span 
that opens for barge traffic on the river. In the middle is the Illinois Channel Bridge, a 
double-track steel truss bridge with no moveable sections, and easternmost is the Sunfish 
Slough Bridge, a double-track steel plate girder bridge with no moveable sections. 

 
 
 

 
 

Figure 13. Union Pacific traffic density (2007 data). 
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2. BNSF Bridge at Burlington, IA 
 

West of BNSF’s major yard at Galesburg, IL, its main lines split, with one going west 
through Iowa and Nebraska to Denver, and the other going southwest to Kansas City. The 
line west to Denver crosses the Mississippi River at Burlington, IA. The bridge is a 
double-track steel truss bridge with a swing span to open for river traffic. 

 
3. BNSF Bridge at Ft. Madison, IA 

 
The BNSF main line between Chicago and Kansas City crosses the Mississippi River at 
Ft. Madison, IA. The bridge is a steel truss double-deck bridge that carries both auto and 
rail traffic (autos on the upper deck and rail on the lower). The bridge has a swing section 
to open for river traffic. The rail line is single-track, but carries very heavy traffic  
approximately 70 trains/day. 

 
4. Norfolk Southern Bridge at Hannibal, MO 

 
The Norfolk Southern line between Kansas City and Ft. Wayne, IN crosses the 
Mississippi River at Hannibal, MO. The bridge (sometimes called the Wabash Bridge) is 
a single-track steel truss bridge with a lift section for river traffic. 

 
Our assessment of flow impacts from closure of these bridges focuses on a five-state area, 
including Nebraska, Kansas, Missouri, Iowa and Illinois, but within the context of a national rail 
network representation. The physical rail network that we are using is represented in Figure 14. 
This network does not include all rail track in the U.S. It focuses on the main lines that are used 
for long-distance movement and that carry high volumes of freight. 
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Figure 14.  Representation of main lines in the national rail network. 
 
The impacts of outage of the four bridges will be felt most strongly within the five-state region 
that we have identified, and our focus in measuring systemic impact (SI) is on increases in car-
miles and car-hours for diverted flows, and on movements that may not be made at all. In total, 
these three measures capture the direct economic impact of the disruption to normal flow 
patterns. 
 
The following subsections describe more details of this analysis – the national rail network flow 
model used to assess changes in flow patterns under various disruption and repair scenarios, the 
computation of overall SI and TRE for the restoration of normal service, the implementation of 
the optimization concepts from section 2 for this analysis, and the results of illustrative analyses. 
 
3.2.1. The Rail Network Model 
 
The flows across specific links in the rail network depend on the volume of commodities to be 
moved between origins and destinations. In the real system, there are thousands of origin and 
destination points where individual shippers and receivers are located. However, for modeling 
purposes, we aggregate these points into a much smaller set of “zones” for origins and 
destinations of commodity traffic. Our set of zones, which we will refer to as Transportation 
Analysis Zones (TAZs), is illustrated in Figure 15. There are 84 TAZs defined, covering the 
lower 48 states of the continental U.S. We have not considered Alaska and Hawaii in the analysis 
because they are not directly affected by rail movements in the rest of the nation. Each TAZ is 
represented by a zone centroid – a major city within that zone that serves as the modeled origin 
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or destination for commodity movements for the entire zone. The volume of freight to be moved 
(within each commodity group) can then be summarized in an 84x84 table (referred to as an 
origin-destination, or O-D, table). These shipments (across all commodity groups) form the 
demand on the system. 

 
Figure 15.  Transportation Analysis Zones (TAZs) and centroids. 

 
Given the set of commodity groupings of interest, the definition of TAZs and centroids, and the 
structure of the national rail network (including potential link capacity reductions or outages), the 
prediction of flows in the network is accomplished by a model called R-NAS (Rail Network 
Analysis System) developed at Sandia National Laboratories (Jones et al., 2003). 
 
The links in R-NAS have lengths (Li, in miles) and delay functions to represent travel time (in 
hours). The delay functions are of the generic form described in (14) in Section 2.1: 
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with  iii Kxd ,  representing the time (in hours) for a carload to cross link i, when the flow 

(measured in carloads/day) over the link is xi and the link capacity (also measured in 
carloads/day) is Ki . The value di0 represents the “free-flow” travel time across the link (i.e., 
without congestion, or when xi = 0). Different values of the parameters ai and i are used for 
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different classes of links in the network. R-NAS solves the optimization problem described in 
equations (15)-(20) in Section 2.1 to predict flows (by commodity group) over individual links in 
the represented rail network. When some link capacities are degraded (or zero), R-NAS predicts 
how flows will divert through the network to other links that are available. These diversions 
create additional costs (both distance and time-related), which are the basis for computing the SI 
measure. 
 
 
3.2.2. Computing the SI and TRE Measures 
 
From the link flows (by commodity group) computed in R-NAS, total car-miles and total car-
hours accumulated in the network can be computed. If (as a result of damage) the network 
becomes partially disconnected, some origin-destination pairs may not be serviced and carloads 
for those pairs will be recorded as not moved. These three basic measures (car-miles, car-hours 
and carloads not moved) can be converted into a (monetary) measure of SI as follows. 
 
In the base case (prior to any damage) the flows on the network result in a level of car-miles 
denoted M0 and a level of car-hours denoted H0. The carloads not moved are zero. In some 
damaged state at time t, the flows over the network produce car-miles Mt, car-hours Ht, and 
carload not moved Zt. The “extra” car-miles induced by the damage to the network, 0MMt  , 

create additional costs. Average revenue per car-mile in the rail industry in 2009 was 
approximately $1.93 (Association of American Railroads, 2010). The operating ratio (ratio of 
total operating expenses to total operating revenue) for Class I railroads was 77.8% (Association 
of American Railroads, 2010), so an approximate estimate of the cost of an additional car-mile to 
the railroad is $1.50. This can be used to convert extra car-miles to dollars of SI. 
 
The costs of extra time in-transit include the costs of the in-transit inventory for the commodity 
being carried, the cost of extra car-time for the rolling stock, and the additional operating costs 
(more labor-hours, etc.). Most of the additional operating costs for train movements are captured 
by the change in car-miles, but the additional costs for yard operations are more time-related than 
distance-related. According to the 2007 Commodity Flow Survey, the average value of 
commodities moved by rail is $234 per ton (Bureau of Transportation Statistics, 2010). An 
average carload is 64.1 tons (Association of American Railroads, 2010), so the average value of 
a carload is approximately $15,000. Assuming a 10% cost of capital, the in-transit inventory 
carrying cost for an average carload is approximately $4 per day. Railway equipment can be 
either owned or leased, and leasing rates provide a mechanism for estimating average daily cost 
of the rolling stock. Leasing rates vary by car type, but are typically in the range of $400-$500 
per car per month (Railway Age, 2008). On a daily basis, this can be expressed as $13-$17 per 
day, and we can use a value of $15 per car-day as an estimate. Additional operating costs 
(especially for yard delays) are difficult to estimate directly, but a reasonable estimate of the cost 
of delays is twice the cost of the in-transit inventory plus the car cost. This would imply a total 
estimate of $38 per car-day for excess delays. 
 
For shipments not moved, the cost to the shipper must be at least the cost of transporting the 
shipment. For railroads in 2009, the average revenue per carload was $1770 (Association of 
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American Railroads, 2010). We can use that as a rough estimate of the cost to the shipper of not 
moving the material. 
 
Thus, we can construct an estimate of SI as follows (where t is assumed to index days): 
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For each damaged link, we consider three modes of repair action: 

4) “Normal”: Resources are applied to restore capability in an expeditious way. 
5) “Emergency”: Additional resources are applied to accomplish the capacity restoration in 

2/3 of the “Normal” time, but at a cost that is twice the “Normal” cost. 
6) “Staged”: Capacity restoration is done in two stages. The first stage restores 50% of the 

lost capacity in 60% of the time required for “Normal” restoration of full capacity, and at 
60% of the “Normal” cost. A second stage of restoration can be done later to restore the 
remaining 50% of damaged capacity. The second stage of action also requires 60% of the 
“Normal” time, and requires 60% of the “Normal” cost. 

 
Durations and costs for each mode are related to estimates for the Normal mode. We have used 
an estimate that the cost for Normal repairs to a damaged bridge is $5 million, and the duration is 
15 days. Thus, an Emergency repair costs $10 million, but is completed in 10 days. A Staged 
repair restores 50% of capacity to the bridge in 9 days, at a cost of $3 million. The remaining 
50% of capacity restoration requires an additional 9 days and an additional $3 million. In the 
analysis for the four Mississippi River bridges, these values are assumed to apply to each bridge, 
and create the Cim values noted in (7) of Section 2.1. 

 
Thus, the overall objective function for the resilience optimization is: 
 

Min    
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The variables in this optimization (yimt) are binary, and are subject to constraints (14)-(17) noted 
in Section 2.1. Mt, Ht, and Zt are determined by R-NAS based on the solution to the nonlinear 
minimum-cost flow problem at time t ( (15)-(20) in section 2.1). 
 
3.2.3. Implementation of the Simulated Annealing Algorithm with R-NAS 
 
The R-NAS RNR (Rail Network Resilience) software, hereafter referred to as RSW, is an 
implementation of Boctor’s (1996) simulated annealing (SA) algorithm that has been adapted for 
use with the R-NAS rail network model.  As R-NAS itself is a static representation of the U.S. 
freight rail network and it represents flows across the network under a set of conditions for an 
average day, it was necessary to add the dynamics of network recovery to the model. Hence, the 
RSW targets a set of links (as specified by the configuration file) for disabling and then simulates 
how network flows change as links are repaired. Integration of this process with Boctor’s (1996) 
SA algorithm identifies the optimal restoration sequence and mode combination. 
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The following steps are performed in the RSW: 
1. An XML configuration file is read in at initialization which defines all constant values 

and target links (see the section “Configuration File” in Appendix A for a description of 
the structure and all parameters). 

2. In order to establish a baseline for full capacity, the R-NAS network simulation is run and 
traffic flows are calculated with all links enabled (day = -1).  The values for the length 
and baseline capacity are read from the R-NAS database and used for all future 
calculations.  The flow calculations consist of the following: 

a. Read the AB and BA flow values and times from the R-NAS link flow table 
(values change based on enabled/disabled links). 

b. Calculate the car-hours for each commodity group (CG) via:  (AB_time*AB_flow 
+ BA_time*BA_flow)  

c. Calculate the car-miles for each CG via: distance * (AB_flow + BA_flow) 
d. Aggregate the values calculated in (b) and (c) to get the total car-hours and car-

miles. 
e. Values for (b), (c) and (d) are stored for later use. 

3. A second run of R-NAS is then performed with all target links disabled to determine the 
baseline constrained capacity (day = 0).   Car-miles and car-hours are calculated and 
stored as in (2). 

4. On day 1, repairs can be initiated and the software enters the “heating” cycle of the SA 
algorithm where the temperature is set to the maximum value. 

5. The RSW then enters the “cooling” cycle where the temperature gradually decreases 
according to the SA parameters set in the configuration file. 

6. Within the cooling cycle is a repetition loop where, for each iteration, the order of one 
link repair is randomly changed.  Note that each link has 2 associated repairs to allow for 
a single repair (normal or emergency) or for a 2 stage repair with different start times.  
The order assignment has to ensure that for each link, the second repair always follows 
the first.  In addition, if the current second repair is NULL (do nothing repair associated 
with a single repair mode), it will not be reassigned since the assumption is that it will not 
lead to a better ordering. This step in the process is searching the space of feasible 
restoration sequences. 

7. Also within the repetition loop is an inner repair mode loop where multiple iterations are 
made to determine the optimal (shortest time) selection of repair modes across the target 
links for the current ordering.  Part of this calculation depends on the resource threshold 
which limits the number of resource units that can be applied in parallel.  Each type of 
repair has a defined resource usage depending on the link type being repaired and is in 
effect for the duration of the repair activity.  The final repair order is used to generate a 
“change list” which delineates each day when a change in capacity occurs based on 
completed repairs. 

8. For each day in the current “change list”, the RSW updates the capacity, duration and 
cost of repair for each target link and runs an R-NAS simulation.  The car-miles/hours are 
calculated and stored as in (2) for each change day. 

9. SI is calculated with Eq. 16 using the results from (2), (3) and (8) and aggregating the 
values in between change days.  The formula is as follows:  
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a. SI = sum(over time)[sum(over CG) [REV_PMI*(CAR_MILES[t] - 
CAR_MILES[-1]) + REV_PHR*(CAR_HOURS[t]) - CAR_HOURS[-1])/24 + 
REV_CAR * CARLOADS_NOT_MOVED[t]]] 

b. REV_PMI = Revenue per mile, converts car-miles into dollars (per CG, read from 
configuration file) 

c. REV_PHR = Revenue per hour, converts car-hours into dollars (per CG, read 
from configuration file) 

d. REV_CAR = Revenue per carload, the cost in dollars for not moving a carload 
(per CG, read from configuration file) 

10. The TRE (Total Recovery Effort) is calculated as the sum of all repair costs determined 
in (8). 

11. The objective function is calculated as: SI + α * TRE.  The alpha value is read from the 
configuration file; typically, we use a value between 0 and 1. 

12. The objective function for the test solution is compared to the current solution.  If the 
value is smaller (better), then the algorithm sets the current solution to the test solution.  
If the value is larger (worse), determine if it should be set as current, dependent on the 
value of a random number (between 0 and 1) being less than exp(-diff/temp), where diff 
is ObjectiveFunc(test) – ObjectiveFunc(current) and temp is the current “temperature” in 
the SA algorithm.  If the current solution is also better than the global optimum, set the 
global optimum equal to the current solution. 

 
3.2.4. Results of the Analysis 
 
In addition to the four major bridges that are subject to damage in the experiments, the R-NAS 
network includes three other major Mississippi River bridges within the five-state region of 
interest, all south of the four that are subject to damage. There are two bridges in the St. Louis, 
Missouri, area (both operated by the Terminal Railroad Association of St. Louis), and the Union 
Pacific bridge near Thebes, Illinois, south of St. Louis. These locations are shown in Figure 16. 
In the event of inability to use some or all of the four bridges on which the analysis is focused, 
diversion of some rail traffic to these other three bridges is to be expected. However, such 
diversion would increase car-miles and car-hours, and hence be reflected in the systemic impact 
measure. 
 

 
Figure 16. Locations of other Mississippi River crossings. 

 

Thebes (UP)

St. Louis
(2 bridges)
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There are also three other rail bridges within the study area that may be usable in an emergency. 
The BNSF has bridges at Davenport, Iowa, and Quincy, Illinois, that are not normally very 
heavily used, but do provide some potential capacity. In addition, there is a Kansas City Southern 
bridge at Louisiana, Missouri. None of these bridges are on heavily used main rail lines, so they 
have not been included in the national network in R-NAS. The model thus does not predict 
diversion of traffic to these bridges and they are not considered further in this analysis. 
 
Under base case conditions (all seven bridges operating normally), a total of approximately 
15,300 carloads cross the Mississippi River within the study area each day. Across the entire 
five-state area, the total daily car-miles and car-hours predicted by R-NAS (for each commodity 
group) are shown in Table 14. 
 

Table 14. Summary of daily flow statistics within five-state region. 
 

 
 
When all four bridges under analysis are out of service, there is substantial disruption to rail flows within 
the region, as summarized in Table 15. Most coal shipments are still made (i.e., the daily carloads not 
moved is quite small), but the total car-hours for the coal shipments nearly doubles, indicating very large 
delays. The total car-miles for grain shipments decreases because many shipments (about 700 carloads 
per day) are not being made at all. There is also a very large impact on intermodal shipments. 
Approximately 1100 carloads per day that would normally move through the region (along the major 
transport corridors) are not moved, and the movements that do occur suffer significant increases in 
distance and time as a result of route diversions. In total, some 5600 carloads per day do not move across 
the river. 

 
Table 15. Summary of daily flow changes within five-state region with all four bridges out 

of service. 
 

 
 

Commodity Car-Miles Car-Hours
Group (000) (000)

Coal 5870 303
Grain 1322 215
Chemicals 1804 437
Intermodal 1392 67
Motor Veh 1428 70
Other 5522 1571
Total 17337 2663

Regional Totals

Commodity Additional % Additional % Not SI
Group Car-Miles Change Car-Hours Change Moved ($000)

Coal 169929 2.9 294479 97.2 58 824
Grain -26182 -2 6892 3.2 700 1211
Chemicals 28220 1.6 14234 3.3 819 1514
Intermodal 213801 15.4 31928 48 1146 2400
Motor Veh 45550 3.2 61109 87.1 355 793
Other 88613 1.6 15616 1 2539 4652
Total 519931 3 424258 15.9 5617 11394
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The route diversions that occur are primarily to move carloads through St. Louis, and cross the 
river there. This, of course, creates congestion and increases delays for all traffic moving through 
St. Louis. There is little diversion of traffic to the Thebes Bridge because it is on a primarily 
north-south route (connecting Texas and Chicago), so the east-west traffic disrupted by the four 
bridge outages has little opportunity to use that bridge. In total, the SI measure when all four 
bridges are out of service is approximately $11.4 million per day. 
 
To create a service restoration plan, we have assumed capacity exists to operate three “units” of 
repair effort simultaneously. A unit of effort is the repair of one bridge under either the Normal 
or Staged modes. An Emergency repair is assumed to require two units of effort. The assumption 
of three units of available resource is related to the fact that the bridges are owned by three 
different major railroads, and each railroad is assumed to be able to support one major repair. To 
do an Emergency repair, it would be necessary for two railroads to cooperate, agreeing to share 
resources on one project. 
 
For the optimization of restoration, we assume that the combined resources of the three railroads 
are available to support whatever schedule of repairs is optimal for the system as a whole. That 
is, they are not limited to working only on their own bridge(s). We also assume that the 
weighting of SI and TRE in the restoration objective is with  = 1 (i.e., a dollar of SI cost is 
valued equally to a dollar of TRE cost). 
 
Under these conditions, the optimal restoration schedule is shown in Figure 17. Two of the four 
damaged bridges are repaired in a Staged mode, allowing partial capacity restoration after 9 
days. The Burlington and Hannibal bridges are repaired in Normal mode, requiring 15 days for 
each. The entire repair program requires 24 days. 
 
 

 
 

Figure 17. Optimal restoration schedule for damaged bridges. 
 
The SI measure over the duration of the service restoration is summarized in Figure 18. After 9 
days’ effort, partial capacity is restored at both Clinton and Ft. Madison. This allows more cross-
river traffic to be accommodated, reducing the “not moving” carloads to less than 1000 per day, 

0

Clinton – (a) Clinton – (b)

Hannibal – Normal Mode

9 24

Ft. Madison – (a)

Burlington–Normal Mode Ft. Madison – (b)

15 Days

Effort

18
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and eliminating the most egregious delays at St. Louis. After day 9, the remaining “not moving” 
traffic is primarily some grain and “other” carloads. At day 15, full service is restored at 
Burlington, creating significant further improvements. The “not moving” carloads are 
eliminated, and the remaining delays are relatively minor. When all remaining service is restored 
at day 24, the daily system impact drops to zero. 
 

 
 

Figure 18. Systemic impact summary for optimal restoration plan. 
 

 
The total SI measure for this plan is approximately $117 million. The total cost of the repairs is 
$22 million, so the overall cost of this disruption is estimated at $139 million. 
 
One of the interesting comparisons for this overall resilience measure is to contrast it with a 
situation where the railroads operate independently, each repairing their own infrastructure. The 
restoration schedule for this situation is depicted in Figure 19, and the resulting SI summary is 
shown in Figure 20. Because the BNSF railroad has two bridges out, and can support one major 
repair at a time, they must be done in sequence. 
 
With this restoration sequence, the major change is at day 15, when service is restored on three 
of the four bridges. At that point, the number of cars not moving drops from about 5600 per day 
to approximately 1000 per day, and the additional costs (car-hours and car-miles) for traffic 
diversion drop substantially as well. The remaining SI costs over the final 15 days of the 
restoration effort are just under $2 million per day. In this mode of operation, it requires 30 days 
to restore full service to the network, and the total SI cost is approximately $204 million. 
However, since all bridges are repaired in Normal mode, the TRE costs are minimized, at $20 
million. 
 

0

$11.4 million

$2.1 million

9 24

Area = Total SI = $117 million $0.2 million

15 Days

Daily SI

18
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Figure 19. Restoration schedule assuming no cooperation among companies. 
 

 
 

Figure 20. Systemic impact summary for “independent” restoration plan. 
 

Thus, taking a system-wide view of the resilience and service restoration challenge results in a 
repair sequence that reduces the time for full service restoration from 30 days to 24 days, and 
saves approximately $87 million (43%) in SI costs, as compared to the situation where each 
railroad operates independently. The TRE costs increase from $20 million to $22 million, but the 
overall objective function is reduced by approximately $85 million. This creates a powerful 
argument for the system-wide view of resilience, rather than a company-specific view. 
 
3.3. Dynamic Munitions Supply Chain Example  
 
The Program Executive Office for Ammunition (PEO Ammo) is the DoD organization that is 
responsible for managing the procurement and distribution of conventional munitions for the 
U.S. Army. The munitions of concern range from small caliber (5.56 mm, 7.62 mm and .50 cal.) 
cartridges to 155 mm artillery shells. These munitions are produced in an array of assembly 
facilities around the nation, and delivered to the military at depots and port facilities. Production 
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of each type of ammunition involves a supply chain of producers of basic chemicals and 
components, producers of intermediate products and sub-assemblies, final assembly and delivery 
to the military. 
 
The mission objective of PEO Ammo is to deliver the right ammunition to the military, in the 
desired quantities, and at the correct time and place. The resilience question of primary concern 
is: “How might disruption of some stage in the supply chain (either production or transportation) 
affect the ability of the system to meet its mission objective, and how might the system be 
reconfigured to make it more resilient?” 
 
Analysis of resilience in this “supply network” has similarities to the analysis of other 
transportation networks exemplified by the rail analysis in the previous section. “Links” in the 
supply chains may be disrupted, leading to systemic impacts on the desired flows through the 
supply network. However, there are also important differences between the two situations. In the 
supply network, products and materials are transformed as they move through the network, and 
“what goes in” is not the same as “what comes out.” This product transformation must be 
modeled within the resilience analysis, and this is quite different from the model structure used 
in the rail analysis. Secondly, the dynamic characteristics of flows through the supply network 
are much more important. Material and products can be inventoried, whereas the “services” 
provided by the rail transportation system cannot be. The supply network model must reflect 
inventory opportunities (and costs), and in fact, strategic inventories at critical locations may be 
an important means of increasing resilience. 
 
Our objective in this section is to describe a model for analysis of resilience in the PEO Ammo 
supply chain. This model has the same overall goal as the analysis of resilience in transportation 
infrastructure networks exemplified by the rail analysis – to provide quantitative assessments of 
resilience and apply optimization tools to the analysis to uncover “best” recovery strategies after 
a disruption. However, because the operation of the PEO Ammo supply network is different 
from operations in the network of a transportation service provider (like a railroad), a different 
optimization formulation is created. We will denote this model as the Munitions Supply Network 
Resilience Optimization Model (MSN-ROM). 
 
3.3.1  Model Formulation 
 
The formulation of the MSN-ROM represents merger of two types of network representation. 
The first is the Bill-of-Materials (BOM) information for a product. This can be represented as a 
network of the form indicated in Figure 21. The network has “tiers.” Final assembly of a product 
occurs at the end of the network, using inputs from tier 1 suppliers. The tier 1 suppliers, in turn, 
create their products using inputs from the tier 2 suppliers, etc. At the far left-hand side of the 
network are raw materials. At each production node in the BOM network, there is a materials 
conversion “recipe” – x units of input 1 and y units of input 2 are needed to make 1 unit of 
product. 
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Figure 21. Bill-of-materials (BOM) network representation. 
 
The second type of network structure included in the formulation is the movements of materials 
across locations over time. This concept is illustrated in the network fragment shown in Figure 
22. Different locations are represented as different “y-coordinates” in the network, and time 
advances along the “x-axis”. Two nodes at the same “height” in the network represent the same 
location at different times, and movement of material across an arc connecting them represents 
storage (inventory) of material at that location. An arc connecting two nodes at different “y-
coordinates” and different “x-coordinates” represents transportation of material from one 
location to another, which requires some elapsed time. This “time-space” network structure is 
important for representing the dynamics of the supply network. 
 
 

 
 

Figure 22. Time-space network representation of movements within a supply network. 
 
The MSN-ROM is formulated as a linear programming optimization, where the objective is to 
meet the mission delivery goals for final products, subject to possible limits on available 
materials, production capability and capacity at different locations, and transportation capacity 
between locations.  Ideas contained in the model formulation have been drawn from several 
previous developments in capacity-constrained material requirements planning in manufacturing 
industries (e.g., Billington, et al., 1983; Maes, et al., 1991; Adenso-Diaz and Laguna, 1996. 
 
We consider a set of products indexed by i = 1, … I with the products in a subset  being 
denoted as the final products.  We denote time periods with index t = 1, … T.   The MSN-ROM 
is formulated as follows: 
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where:  
Pit = production of product i in period t 

 Qit = inventory of finished product i at the end of period t 
 Rit = inventory of raw material i at the end of period t 
 aij = units of product i required to produce one unit of a subsequent product j 
 Vit =  inventory shortage of raw material i at the end of period t  
 Sit        = units of product i shipped in period t 
 Uit = production capacity for product i in period t 
 Kit = shipment capacity for product i in period t 

min
itR  = target minimum inventory for raw material i at the end of period t 

Di = demand for final product i over the analysis horizon 
(i) = transportation delay for product i (from its origin to destination) 

 m = small positive value (e.g., .01) 
  = relative weight on inventory targets 
 
The objective of the model in (32) contains a term that attempts to maximize output of all the 
final products, i  , across all time periods.  Because there is generally value in producing as 
much output as possible in early time periods (if there are available resources), the term e-mt 

provides a small “discounting” of production in later time periods. The second term in the 
objective provides a small penalty cost on production of intermediate products, to prevent 
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solutions that produce excess amounts that are not used in subsequent products. The final term of 
the objective function represents a penalty on missing inventory targets for raw materials. 
 
Throughout the model, a distinction is drawn between “raw materials” and “products,” even 
though both are indexed by i, and both are within the set of all products. A good i is considered a 
product if it is still located where it was produced (i.e., from the perspective of that location it is 
a finished good). If it has been transported to a location where it will be used to make another 
product, it is (at that location) considered a raw material. Inventory targets are placed on raw 
materials, implying that those goods should have been transported to where they will be used, 
rather than held where they were produced. 
 
The first set of constraints (33) links production, shipments, and inventory of finished goods.  At 
the beginning of period t, there is a finished-goods inventory of product i equal to Qi,t-1.  During 
period t, Pit units of product i are processed, and Sit units are shipped out to their destination.  The 
total of beginning inventory plus production, minus shipments, constitutes finished-goods 
inventory left at the end of period t.  
 
Constraints (34) link raw materials, arrivals of shipments from suppliers and production 
volumes. The raw materials in inventory at the end of period t-1 are augmented by arrivals of 
shipments from suppliers (after a delay in transit of (i) periods), and decreased by usage of the 
materials to create products. The aij coefficients represent the information in the bill-of-materials 
for each product. The remaining material constitutes raw material inventory at the end of period 
t. 
 
Constraint (35) measures the deviation from target values if the raw material inventory falls 
below min

itR . The deviation is Vit, and it is penalized in the objective function. If no strategic 

inventory targets have been set (i.e., min
itR = 0), these constraints have no effect on the solution. 

Setting of inventory targets represents one way of increasing the resilience of the supply 
network, because it creates stocks of material that can be used to buffer disruptions affecting 
suppliers “upstream” of the inventory. 
 
Constraints (36) and (37) limit production and transportation activities, respectively. These 
constraints are used to reflect capacity constraints at production facilities, and also to allow 
specification of disruptions (e.g., a given production facility goes down for three periods, 
reflected by setting the capacity of that facility to zero for those periods). 
 
Constraints (38) limit the production of final products to the amounts required by the Army. 
With these constraints present, the objective function strives to meet, but not exceed, the 
specified delivery targets over the course of the planning horizon. 
 
3.3.2 Illustrative Computations 
 
PEO Ammo maintains BOM information for the various types of munitions using a software tool 
called IBAT (Industrial Base Assessment Tool). Other required information for the MSN-ROM 
(facility locations, products and capacities, target inventory levels, etc.) can be obtained from 
planning staff at individual facilities in the supply network. However, the assembly of all this 
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information creates a fairly detailed picture of munitions production, which is sensitive. Thus, for 
purposes of this report, we have used some artificial data to illustrate the character of model 
solutions, without disclosing actual values. 
 
As an illustration, we consider three final products produced in two final assembly locations, a 
set of 42 parts/materials, and 22 supplier locations. Our analysis uses weekly periods, with a 13 
week planning horizon and a single desired quantity of each final product to be delivered to the 
Army at the end of the 13 weeks. For this example, systemic impact (SI) is measured simply as 
the amount short in the delivery of each product at the end of the 13 weeks. 
 
In an initial experiment, we consider a three-week disruption at the beginning of the planning 
horizon in the final assembly location for product 1. The demand for product 1 is 2000 units to 
be delivered at the end of week 13, and the capacity of the assembly plant is specified to be 180 
units/week. Quite clearly, with only 10 weeks to produce the product after the disruption (and no 
initial finished goods inventory in place), the delivery target cannot be met. Figure 23 shows this 
situation. The nominal production is 2000/13  154 units/week, so without the disruption, the 
target is achievable. However, when there is no production in the first three weeks, the plant 
cannot catch up, and ends the quarter 200 units short on this product. 
 

 
Figure 23. Cumulative production of product 1 after three-week disruption at the 

beginning of the planning horizon. 
 
As a second experiment, we consider a more complicated situation, where production of a tier 2 
product (nitrocellulose) is disrupted for four weeks at the beginning of the planning horizon. The 
normal production limit on this product is 3000 units/week, but for the first four weeks, only 
1000 units/week are produced. The downstream customer for this product is the tier 1 supplier 
who produces propellant used in both products 1 and 2. That supplier has a 3000 unit inventory 
of nitrocellulose on hand at the beginning of the analysis period. The initial raw material 
inventory helps sustain the propellant production and shipment to the final assembly plant, but it 
is insufficient to cover the whole shortfall in nitrocellulose production. Figure 24 shows the 
cumulative production of product 1, and Figure 25 shows the same data for product 2. Product 1 
output is slowed over the first four weeks, but then sufficient propellant is allocated to allow its 
production to recover and meet the end-of-quarter target of 2000 units. However, this is at the 
expense of product 2. The end-of-quarter target for product 2 is 5000 units, but the constraint on 
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the upstream production at the tier 2 supplier of nitrocellulose limits the production of propellant, 
which in turn “starves” the production of product 2 over the quarter, and the end result is a 
shortfall of approximately 1850 units. 
 

 
Figure 24. Cumulative production of product 1 when production of a tier 2 material is 

constrained. 
 
 
 

 
Figure 25. Cumulative production of product 2 when production of a tier 2 material is 

constrained. 
 
 
As a third experiment, we assume that the propellant manufacturer at tier 1 had a 6000 unit 
inventory of nitrocellulose at the beginning of the planning period, rather than a 3000 unit 
inventory. All other conditions are the same as in experiment 2. Figure 26 shows the cumulative 
production of final product 2 in this experiment. The larger initial inventory of raw material at 
the tier 1 supplier allows more propellant to be produced and this translates directly into a 
smaller impact on product 2 quantity. The shortfall in this case is approximately 1300 units. The 
larger initial inventory of raw material has not eliminated the entire problem, but it has improved 
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the resilience of the overall system and reduced the systemic impact of the disruption at the tier 2 
supplier. 
 

 
Figure 26. Cumulative production of product 2 when tier 1 supplier has larger initial raw 

material inventory. 
 
3.3.3 Extensions to the Model 
 
The MSN-ROM represented in equations (32)-(39) in section 3.3.1 contains an implicit 
assumption that each product is produced at one location. For several of the products in the 
munitions supply network, this is true, but it is not universally so. One of the next extensions of 
the model is to include multiple suppliers, with choices available at the next tier in the supply 
network. Having multiple potential suppliers for a given material/product is another way of 
increasing resilience in the supply network, and this extension will enhance the model 
significantly. 
 
A second extension is to include aggregate production constraints (across multiple products) at 
individual facilities. This will also make the model more flexible and realistic. The product-
specific constraints currently present are effective for testing the effects of disruptions at a plant, 
but are not sufficient for reflecting overall capacity limits within the system. 
 
Third, we will add more detail about shipment of final products to military destinations (depots 
and ports), along with more detail about the desired shipment sizes and schedule. This will make 
the goals on production of final products more realistic. 
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4. SUMMARY AND CONCLUSIONS 
 
The overall goal of this LDRD project was to advance the state of resilience science to enable the 
optimization of infrastructure recovery strategies in a constrained resource environment. 
Towards this effort, we have developed the theoretical, mathematical framework for identifying 
optimal recovery responses that minimize resilience costs. The optimal resilience problem that 
we have posed is a bi-level optimization problem. In the “inner” problem, we solve for network 
flows, and we use the “outer” problem to identify the optimal recovery modes and sequences. 
We have adapted solution techniques, previous leveraged for the Multi-Modal Resource 
Constrained Project Scheduling Problem, to numerically solve the optimization problem for a set 
of infrastructure models. 
 
We believe that this LDRD effort represents significant progress in the field of resilience 
science. The framework that we have developed is capable of including: the dynamics of 
recovery processes and feedback of these processes with system performance; accounting of 
resource expenditures from recovery processes; and identifying the optimal combination of 
recovery sequences and modes that minimize resilience costs in the context of constrained 
resources. These factors are unique within the set of quantitative resilience assessment 
capabilities currently being utilized for infrastructure assessment. Subsequent to developing the 
mathematical framework, we adapted a rail network model, R-NAS, that is currently being used 
for infrastructure analysis and applied the resilience framework to the model to develop an 
integrated resilience analysis and optimization capability. The integration of this framework with 
a complex, infrastructure model currently being used by NISAC, demonstrates the feasibility and 
benefit of this framework. 
 
To date, our research focus has been on how the system responds and evolves after a disruptive 
event. We believe that the next logical research and development area is the integration of 
system redesign with recovery responses to improve resiliency. One can think of this issue as a 
tri-level optimization problem. At the lowest level, there is an optimization to find flows in the 
network, given a current state of links/nodes. At the next level up, there is the optimization of 
sequencing/allocating recovery resources, necessary to quantify resiliency. If one adds the 
opportunity for system redesign, at a third level up, one has the optimization of 
reconfiguring/adding/redesigning pieces of the network to improve the achievable resiliency. 
 
  



56 

 



57 

4.  REFERENCES 
 
Adenso-Diaz, B. and M. Laguna (1996). "A Technique to Minimize Overtime in the Capacitated 
MRP Problem," Production and Operations Management, 5:4, pp.  357-370. 
 
Alcarez, J., C. Maroto and R. Ruiz, “Solving the Multimode Resource-Constrained Project 
Scheduling Problem with Genetic Algorithms,” Journal of Operational Research Society, 54, 
2003, pp. 614-626. 
 
Association of American Railroads, Class I Railroad Statistics, May 24, 2010, available online at 
www.aar.org. 
 
Billington, P.J., J.O. McClain and L.J. Thomas (1983). "Mathematical Programming Approaches 
to Capacity-Constrained MRP Systems: Review, Formulation and Problem Reduction," 
Management Science, 29:10, pp.  1126-1141. 
 
Boctor, F.F., “Resource-Constrained Project Scheduling by Simulated Annealing,” International 
Journal of Production Research, 34:8, 1996, pp. 2335-2351. 
 
Bouleimen, K. and H. Lecocq, “A New Efficient Simulated Annealing Algorithm for the 
Resource-Constrained Project Scheduling Problem and Its Multiple Mode Version,” European 
Journal of Operational Research, 149, 2003, pp. 268-281. 
 
Bradley, S., A. Hax, and T. Magnanti, Applied Mathematical Programming, Addison-Wesley 
Publishing Company, Menlo Park, CA, 1977. 
 
Bruneau, M., S. Chang, R. Eguchi, G. Lee, T. O’ Rourke, A. Reinhorn, M. Shinozuka, K. 
Tierney, W. Wallace, and D. von Winterfeldt, “A Framework to Quantitatively 
Assess and Enhance the Seismic Resilience of Communities,” Earthquake Spectra 19(2003), pp. 
737-38. 
 
Bureau of Transportation Statistics, Shipment Characteristics by Geography by Mode: 2007, 
U.S. Department of Transportation, Washington, DC, accessed online at 
http://www.bts.gov/publications/commodity_flow_survey/, 7/2/2010. 
 
Bush, G. W., “Homeland Security Presidential Directive-3 (HSPD-3),” Washington, D.C., 
2002. 
 
Bush, G. W., “Homeland Security Presidential Directive-7 (HSPD-7),” Washington, D.C., 
2003. 
 
Chang, S. and M. Shinozuka, “Measuring Improvements in the Disaster Resilience of 
Communities,” Earthquake Spectra, 20(2004), pp. 739-755. 
 



58 

Chen, W.-N., J. Zhang, H. S.-H. Chung, R.-Z. Huang and O. Liu, “Optimizing Discounted Cash 
Flows in Project Scheduling – An Ant Colony Optimization Approach,” IEEE Transactions on 
Systems, Man and Cybernetics, Part C, 40:1, 2010, pp. 64-77. 
 
Clinton, W., “Presidential Decision Directive PDD-63, Protecting America’s Critical 
Infrastructures,” Washington, D.C., 1998. 
 
Damak, N., B. Jarboui, P. Siarry and T. Loukil, “Differential Evolution for Solving Multi-Mode 
Resource-Constrained Project Scheduling Problems,” Computers & Operations Research, 36, 
2009, pp. 2653-2659. 
 
Hartmann, S., “Project Scheduling with Multiple Modes: A Genetic Algorithm,” Annals of 
Operations Research, 102, 2001, pp. 111-135. 
 
Holling, C., “Resilience and Stability of Ecological Systems,” Annual Review of Ecology and 
Systematics 4 (1973), pp. 1-23 
 
Jarboui, B., N. Damak, P. Siarry and A. Rebai, “A Combinatorial Particle Swarm Optimization 
for Solving Multi-Mode Resource-Constrained Project Scheduling Problems,” Applied 
Mathematics and Computation, 195, 2008, pp. 299-308. 
 
Jones, D.A., L.K. Nozick, M.A. Turnquist, M.W. Hollingsworth, C.R. Lawton, M.A. Ehlen, J.R. 
Davis, and D.W. Talso, Impact Analysis of Potential Disruptions to Major Railroad Bridges in 
the U.S. – Phase I Report, National Infrastructure Simulation and Analysis Center, Sandia 
National Laboratories, Albuquerque, NM, 2003. 
 
Jozefowska, J., M. Mika, R. Rozychi, G. Waligora and J. Weglarz, “Simulated Annealing for 
Multimode Resource-Constrained Project Scheduling,” Annals of Operations Research, 102, 
2001, pp. 137-155. 
 
Kim, B. J., W. Kim, and B. H. Song, “Sequencing and Scheduling Highway Network Expansion 
Using a Discrete Network Design Model,” Ann. Reg. Science, 2008, 42, 621-642. 
 
Kolisch, R., and A. Drexl, “Local Search for Nonpreemptive Multimode Resource-Constrained 
Project Scheduling,” IIE Transactions, 43, 1996, pp. 987-999. 
 
Maes, J., J.O. McClain and L.N. Van Wasenhove. "Multilevel Capacitated Lot-Sizing 
Complexity and LP-Based Heuristics," European Journal of Operational Research, 53:2, pp. 
131-148, 1991. 
 
Mori, M., and C.C. Tseng, “A Genetic Algorithm for Multimode Resource-Constrained Project 
Scheduling,” European Journal of Operational Research, 100, 1997, pp. 134-141. 
 
Ozdamar, L., “A Genetic Algorithm Approach to a General Category Project Scheduling 
Problem,” IEEE Transactions on Systems, Man and Cybernetics, Part C, 29:1, 1999, pp. 44-59. 
 



59 

Railway Age, “Railcar Market: What’s Equipment Worth Today?” June, 2008. 
 
Reagan, R., “Executive Order 13282, National Security Telecommunications Advisory 
Committee,” Washington, D.C., 1982. 
 
Rose, A. and S.-Y.Liao, “Modeling Regional Economic Resilience to Disasters: A Computable 
General Equilibrium Analysis of Water Service Disruptions,” Journal of Regional Science 
45(2005), pp. 75-112. 
 
Sprecher, A., and A. Drexl, “Multimode Resource-Constrained Project Scheduling by a Simple, 
General and Powerful Sequencing Algorithm,” European Journal of Operational Research, 107, 
1998, pp. 431-450. 
 
Transportation Safety Administration (TSA), “Transportation Systems Critical Infrastructure and 
Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan,” 
Washington, D. C., 2007. 
 
Tseng, L.-Y., and S.-C. Chen, “Two-Phase Genetic Local Search Algorithm for the Multimode 
Resource-Constrained Project Scheduling Problem,” IEEE Transactions on Evolutionary 
Computation, 13:4, 2009, pp. 848-857. 
 
Vugrin, E. D., R. C. Camphouse, P. S. Downes, M. A. Ehlen, and D. E. Warren,“Measurement 
of System Resilience: Application to Chemical Supply Chains,” Proceedings of SIAM 
Conference on Mathematics for Industry: Challenges and Frontiers, San Francisco, October 9-
10, 2009a. 
 
Vugrin, Eric D., R. Chris Camphouse, and Daniel Sunderland, Quantitative Resilience Analysis 
through Control Design, technical report SAND2009-5957, Sandia National Laboratories, 
September 2009b 
 
Vugrin, E. D., D. E. Warren, M. A. Ehlen, and R. C. Camphouse, “A Framework for Assessing 
the Resilience of Infrastructure and Economic Systems,” in Sustainable and Resilient Critical 
Infrastructure Systems: Simulation, Modeling, and Intelligent Engineering, Kasthurirangan 
Gopalakrishnan and Srinivas Peeta, eds., Springer-Verlag, Inc., 2010. 
 
 
  



60 



61 

APPENDIX A:  ADDITIONAL DETAILS FOR THE RAIL NETWORK 
RESILIENCE SOFTWARE 

 
This appendix provides additional details on the testing and input-output details for the RSW. 
 
Evaluation of RNR Software 
 
In order to evaluate the efficacy of the SA algorithm, a comparison was made between running 
the SA algorithm versus a fully exhaustive search over all order and repair mode permutations 
for 5 rail links.  In order to facilitate this comparison, a simplified network model (SNM) was 
developed to simulate each R-NAS run since a complete run of all iterations of the RSW using 
R-NAS requires over 70 hours.  Using the SNM, a fully exhaustive search over all order/mode 
permutations took 449 minutes and found 27,556,200 solutions with an optimal solution value of 
2,255,324 for the objective function.  The SA algorithm using the SNM took 13.6 seconds and 
found 2796 solutions with an optimal solution value of 2,284,218 for the objective function (this 
was with 50 mode steps, 6 heating steps, 6 cooling steps, max repetition of 48 steps, and a 
repetition factor of 4).  By comparison, the SA algorithm only required 0.05% the amount of 
time to generate a solution that was within 1.3% of the true optimal solution. 
 
The full R-NAS rail network is comprised of 5330 links of which 5064 are involved in the RSW 
link flow calculations.  Additionally, there are 13 commodities which are tracked over the 
network.  In order to determine the impact within a sub-network of the model (containing only 
the Midwest states of Iowa, Nebraska, Kansas and Missouri), only 946 links are examined.  This 
area was chosen because it contains seven bridges that can be used to characterize the total flow 
within the region.  Of these seven bridges, four were selected as the target links for 
disabling/repairing during the simulation and are captured in the configuration file. 
 
Input Files 
 
The RSW uses the following two files for configuration of an analysis run: 

 Configuration File (rnrSchema.xml) – Provides the various RNR (Rail Network 
Resilience) constants related to link types, repair types, commodity groups and overall 
optimization.   Also contains a list of the target links to be disabled and repaired (see the 
section on the configuration file for more details). 

 Selection Set (MidwestLinks.txt) – Provides a listing of all links of interest in a single 
column text file.  If this file is not specified in the configuration file, all links in the R-
NAS database are used for the analysis. 

 
Output Files 
 
The RSW produces the following two files at completion: 

 CommoditySums.csv – A comma-separated values file which holds the final optimal 
solution of the SA process as a single table of flow values.  The column is the flow value 
(Total Carloads, Carloads Not Moved, Carloads Moved, Car-Hours, Car-Miles) for each 
commodity group and the row is the day on which these values were calculated.  In 
addition, the values of the objective function, SI, TRE and all pertinent optimization 
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constants are included along with a listing of the optimal Link Repair order.  Each link 
entry is formatted as follows:  <link ID> [<repair mode> <start day(s)>].   Note that 
staged repairs have 2 start days separated by a colon specified in the link repair list (e.g., 
1234 [staged 1:4]). 

 ComSumDaily.csv – A comma-separated values file which holds the flow values broken 
out by day and commodity group as well as the list of constrained links per day with 
capacity following each link ID.  This file holds all iterations of the SA algorithm, but not 
the sub-iterations where the minimum time for each repair sequence is determined. 

 
Object Model of RSW 
 
The RSW is an object oriented package written in the C# language (version 2.0) using Microsoft 
Developer’s Studio 2005.  The following is a list of all classes used by the RSW with 
descriptions of their responsibilities as well as their dependencies.  The source code is stored in 
the TeamForge project https://teamforge-web.sandia.gov/sf/projects/r_nas_resilience. 
 
Class Name: RNASTest 
Description: This class is the main driver application which is also used to interface to the 
TransCAD application for executing R-NAS runs. 
Responsibilities: 

 Initializes all connections to TransCAD in order to interact with the R-NAS model 
 Provides the main SA algorithm for generating all solution. 

Dependencies:  
 Utilizes the RepairMgr class for parsing the configuration file and computing/storing 

solutions to each candidate repair strategy.   
 Calls the R-NAS model for every day that a repair is completed within the repair strategy  

 
Class Name: RepairMgr 
Description: The Repair Manager class holds all possible repair modes and link repair 
information.   It is used to drive most optimization calculations and stores the associated 
solution. 
Responsibilities: 

 Parses the input configuration file. 
 Calculates, stores and saves all intermediate and final solutions. 
 Provides the algorithms for iterating across all repair modes and orderings, either 

randomly or sequentially. 
Dependencies:  

 Utilizes the C# XML parser for parsing the configuration file. 
 Uses the RepairMode class for storing the characteristics associated with executing a 

specific repair mode on a link. 
 Uses the RepairLink class for storing the characteristics associated with repairing a 

specific link type. 
 Uses the Link class for holding the target links which are to be disabled and then 

repaired. 
 Uses the Repair class for determining a repair strategy ordering. 
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 Uses the StateCounter class for sequentially iterating across all repair ordering and/or 
mode permutations. 

 Uses the ConstantGroup class to store all constants related to the optimization process. 
 Uses the CommodityGroup class to store the constants associated with each commodity 

group. 
 
Class Name: RnrNode 
Description: The RNR (Rail Network Resilience) Node class holds a collection of RNR 
properties associated with a particular node (i.e., Commodity Group, Link, Repair Link, or 
Repair Mode).  It provides a mapping from each node in the XML configuration file to the 
appropriate software object.  This is the base class for many of the other classes used within the 
RSW. 
Responsibilities: 

 Provides the ability to parse each XML node and convert all XML attributes to key-value 
pairs (referred to as “properties”). 

 Provides an interface for retrieving properties as string, integer or double values. 
 Provides basic validation capability for ensuring that certain properties appear within the 

RnrNode. 
Dependencies:  

 Utilizes the C# XML parser for parsing configuration file XML tags. 
 

Class Name: RepairLink 
Description: The Repair Link class holds the repair characteristics pertinent to repairing a 
particular type of link (normal, yard, bridge). 
Responsibilities: 

 Provides method for parsing a link repair node from the XML configuration file. 
Dependencies:  

 This class is derived from the RnRNode class. 
 Utilizes the C# XML parser for parsing configuration file XML tags. 
 

Class Name: RepairMode 
Description: The Repair Mode class holds the repair characteristics pertinent to the mode used 
for repairing a link (mode, duration, cost, resource utilization, restored capacity, and probably of 
choosing this repair mode). 
Responsibilities: 

 Provides method for parsing and validating a link repair mode from the XML 
configuration file. 

Dependencies:  
 This class is derived from the RnRNode class. 

 
Class Name: ConstantGroup 
Description: The Constant Group class holds all of the global constants related to performing the 
RNR optimization. 
Responsibilities: 

 Provides method for parsing and validating a collection of constant value nodes from the 
XML configuration file. 
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 Provides methods for efficiently retrieving the constant values as integer or decimal 
values. 

 Validates all constants according to their type (integer, decimal or string). 
Dependencies:  

 This class is derived from the RnRNode class. 
 Utilizes the C# XML parser for parsing configuration file XML tags. 

 
Class Name: CommodityGroup 
Description: The Commodity Group class holds all of the RNR constants associated with a 
particular Commodity Group (e.g., Coal). 
Responsibilities: 

 Validates that all required properties are specified for each commodity group (revenue 
per carload, cost per mile, cost per hour). 

Dependencies:  
 This class is derived from the ConstantGroup class. 

 
Class Name: Link 
Description: The Link class represents a physical link in a rail network: normal, bridge or yard.  
One of these entities can have zero (NULL repair mode), one (NORMAL or EMERGENCY 
repair modes) or two (STAGED repair mode) Repairs.  The Repair period is inclusive such that 
if start = 3 and end = 5, then the link is being repaired on days 3, 4 and 5. 
Responsibilities: 

 Provides an interface for retrieving the properties associated with a rail link. 
 Provides an interface for updating the repair modes and duration(s) associated with 

repairing the link. 
Dependencies:  

 This class is derived from the RnRNode class. 
 

Class Name: Repair 
Description: The Repair class represents a repair action to be performed on a rail link.  It 
encapsulates the start time, repair method (normal, emergency, stage1 stage2), duration, cost, and 
resources required. The duration and cost are modified according to the link type (normal, yard, 
bridge) for which the repair is targeted. 
Responsibilities: 

 Provides an interface for initializing the properties associated with a link (duration, cost, 
restored capacity). 

Dependencies:  None 
 
Class Name: StateCounter 
Description: The StateCounter class is used to iterate a collection of objects through a sequence 
of states.  The objects can all have the same number of states or they can each have unique 
values. 
Responsibilities: 

 Provides methods for sequentially iterating a collection of objects through a sequence of 
states. 

 Provides a method for generate all unique permutations of a sequence. 
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Dependencies:  None 
 
Class Name: StrUtil 
Description: The String Utility class provides string parsing functionality beyond what is 
provided by the standard C# String class. 
Responsibilities: 

 Provides methods for converting from strings to numbers (integer, decimal) and vice-
versa. 

 Provides parsing methods for converting numeric string sequences into collections of 
numbers (integer, decimal). 

 Provides parsing methods for converting delimited string sequences into collections of 
string objects. 

Dependencies:  None 
 
Configuration File 
 
The configuration file for the RSW  is in XML format and is broken into the following sections: 

 constant group – This section is a collection of numeric (integer or decimal) and/or string 
constants utilized by the software.  Each constant is represented by an empty tag where 
the tag name is the constant name, the “type” attribute is the type (“int”, “dec” or “str”), 
and the “value” attribute is the constant value.  The following constants are delineated in 
the file: 

o diff_norm – The difference normalization factor which is used to normalize the 
difference between the objective function values for the candidate solution and 
the current solution.  This factor is required such that when the candidate solution 
is worse than the current solution, the exponential of the negative difference is a 
finite value between 0 and 1.  Values too large will drive the exponential to zero 
which the normalization factor is used to guard against.  (Simulation value = 1e6.) 

o number_mode_steps – The number of steps to iterate when choosing an optimal 
repair mode for the current repair sequence.  This value equates to the number of 
permutations to examine when selecting an optimal repair combination for all 
affected links and will likely be less than the total number of permutations.  
(Simulation value = 50.) 

o resource_threshold – The maximum number of resource “units” that can be 
applied in parallel.  This value correlates with the “resource” attribute specified in 
the repair mode. 

o weight_TRE – The “alpha” multiplicative factor applied to the TRE (Total 
Recovery Effort) before being added to the SI (System Impact) to compute the 
final objective function:    SI + α * TRE  

o max_heat_steps – The number of steps to iterate during the “heating” cycle of the 
SA (Simulated Annealing) algorithm. 

o max_cool_steps – The number of steps to iterate during the “cooling” cycle of the 
SA algorithm. 

o max_repetition – The number of steps to iterate within each step of the cooling 
cycle. 
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o repetition_factor – The multiplicative factor to apply to the max_repetition value 
on the last step of the cooling cycle. 

o max_temperature – The maximum temperature to be set prior to each cooling 
cycle. 

o cooling_factor – The multiplicative factor to be applied to the current temperature 
in each step of the cooling cycle. 

o sim_carloads_not_moved – The maximum value of carloads not moved when 
using the simplified network model (i.e., when not using TransCAD). 

o sequential_repair_order – A true/false (1/0) value indicating if the repair order 
should be selected randomly for each iteration or if all permutations should be 
iterated across in sequential order. 

o sequential_repair_mode – A true/false (1/0) value indicating if the repair mode 
should be selected randomly for each iteration or if all permutations should be 
iterated across in sequential order. 

o single_repair_mode – A true/false (1/0) value indicating if only a single repair 
mode should be specified and evaluated.  In order for this option to work 
properly, the “repair_mode” and “start” attributes must be specified in each target 
link (described below) in order to define the single repair mode. 

o use_transcad – A true/false (1/0) value indicating if the TransCAD software 
should be used for the network simulation or if the simplified network model 
should be applied. 

o selection_set – The name of the file which specifies the subset of links to use 
when calculating all flow values for a sub-network.  The file is a columnar text 
listing of all links to include in the analysis.  If this tag is not included, then all 
links within the R-NAS database are included in the analysis. 

o total_flow_set – The collection of links which define the total flow over a sub-
network defined by a selection set.  The type is “string” and the value is a comma-
separated list of link IDs which are used to calculate the total flow.  The baseline 
case (day = -1), defines the total carloads moved.  The carloads not moved 
statistic is calculated by finding the flow across these links (when one or more are 
disabled) and subtracting from the baseline value. 

 repair info – This section describes the different types of links that can appear in the 
model as well as the types of repairs that can be performed (normal, emergency, stage1, 
stage2).  It contains the following tags: 

o link – The type of link that can appear in the model (normal, bridge or yard) 
which is described by the following tags: 
 duration – The duration required for the repair of a link of this type.  The 

duration can be of type “fixed” where the value is a fixed number of days 
or “per_mile” where the value is the number of days per mile required to 
fix the link in addition to a “base” number of days. 

 cost – The cost associated with repairing a link of this type.  The cost can 
either be “fixed” where the value is the exact number of dollars required 
or “per_mile” where the value is the dollars per mile for such a repair. 

o mode – The repair mode to be performed which is described by the following 
attributes: 
 type – the repair type name (normal, emergency, stage1 or stage2)   
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 duration – the multiplicative time factor (e.g., “1” indicates that the repair 
takes as long as the duration indicated by the link type whereas ”0.66” 
indicates that the repair takes only 0.66 times the duration indicated by the 
link type). 

 cost – multiplicative cost factor (e.g., “1” indicates that the repair cost is 
equal to the value defined by the link type whereas ”2” indicates that the 
repair costs twice as much as indicated by the link type). 

 resource – the number of resource “units” required to perform the repair 
over the specified duration (e.g., twice as many resources are required to 
perform an emergency repair as compared to a normal repair). 

 capacity – the multiplicative capacity of the link after the repair is 
complete (e.g., “1” indicates the link has full capacity whereas “0.5” 
indicates that the link has 50% capacity). 

 prob – the probability that this type of repair is selected (e.g., “0.4” 
indicates a 40% probability that this repair type is selected). 

 target links – This section delineates which links should be included in the analysis to be 
disabled and repaired.  Each link is described by its type (as described above) and an ID 
which is the link ID used within the R-NAS model environment. In order to test out a 
specific repair scenario, two additional attributes can be added to each link:  

o repair_mode – Indicates the repair mode to be applied to the link (normal, 
emergency or staged). 

o start – Indicates the start day on which the repair is to be performed.  If the repair 
mode is “staged”, then this value will contain the start day of stage 1 followed by 
the start day of stage 2 with a colon separator (e.g., “1:4”). 

 commodity group info – This section enumerates all commodities and their associated 
constants.  The following constant values are defined: 

o revenue_per_mile – converts car-miles into dollars 
o revenue_per_hour – converts car-hours into dollars 
o revenue_per_carload – converts carloads not moved into dollars 
o capacity – used in simulation (non R-NAS mode) to determine the fraction of 

flow attributed to each CG.  The sum of this value across all CGs must equal 1. 
 

The following is an example of an RNR configuration file: 
 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<RNR> 
 <constant_group id="global"> 
  <diff_norm type="dec" value="1e6"/> 
  <number_mode_steps type="int" value="50"/> 
  <resource_threshold type="int" value="3"/> 
  <weight_TRE type="dec" value="1"/> 
  <max_heat_steps type="int" value="6"/> 
  <max_cool_steps type="int" value="6"/> 
  <max_repetition type="int" value="48"/> 
  <repetition_factor type="dec" value="4"/> 
  <max_temperature type="dec" value="8"/> 
  <cooling_factor type="dec" value="0.25"/> 
  <sim_carloads_not_moved type="int" value="650"/> 
  <sequential_repair_order type="int" value="0"/> 
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  <sequential_repair_mode type="int" value="0"/> 
  <use_transcad type="int" value="1"/> 
  <selection_set type="str" value="MidwestLinks.txt"/> 
 </constant_group> 
 <repair_info> 
  <link type="normal"> 
   <duration type="per_mile" base="1" value="1"/> 
   <cost type="per_mile" value="3e5"/> 
  </link> 
  <link type="bridge"> 
   <duration type="fixed" value="15"/> 
   <cost type="fixed" value="5e6"/> 
  </link> 
  <link type="yard"> 
   <duration type="fixed" value="15"/> 
   <cost type="fixed" value="10e6"/> 
  </link> 
  <mode type="normal" duration="1" cost="1" resource="1" capacity="1" prob="0.4"/> 
  <mode type="emergency" duration="0.66" cost="2" resource="2" capacity="1" prob="0.3"/> 
  <mode type="stage1" duration="0.66" cost="0.6" resource="1" capacity="0.5" prob="0.3"/> 
  <mode type="stage2" duration="0.66" cost="0.6" resource="1" capacity="1" prob="0"/> 
 </repair_info> 
 <target_links> 
    <link type="bridge" id="3148"/> 
    <link type="bridge" id="3438"/> 
    <link type="bridge" id="3185"/> 
    <link type="bridge" id="3434"/> 
 </target_links> 
 <commodity_group_info> 
    <commodity_group id="Coal"> 

    <revenue_per_carload type="dec" value="1700"/> 
    <cost_per_mile type="dec" value="1.50"/> 
    <cost_per_hour type="dec" value="38"/> 
    <capacity type="dec" value="0.1"/> 
   </commodity_group> 
   <commodity_group id="Chlorine"> 
    <revenue_per_carload type="dec" value="1700"/> 
    <cost_per_mile type="dec" value="1.50"/> 
    <cost_per_hour type="dec" value="38"/> 
    <capacity type="dec" value="0.1"/> 
   </commodity_group> 
   <commodity_group id="Farm Products"> 
    <revenue_per_carload type="dec" value="1700"/> 
    <cost_per_mile type="dec" value="1.50"/> 
    <cost_per_hour type="dec" value="38"/> 
    <capacity type="dec" value="0.1"/> 
   </commodity_group> 
   <commodity_group id="Minerals etc"> 
    <revenue_per_carload type="dec" value="1700"/> 
    <cost_per_mile type="dec" value="1.50"/> 
    <cost_per_hour type="dec" value="38"/> 
    <capacity type="dec" value="0.1"/> 
   </commodity_group> 
   <commodity_group id="Food and Kindred Products"> 
    <revenue_per_carload type="dec" value="1700"/> 
    <cost_per_mile type="dec" value="1.50"/> 
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    <cost_per_hour type="dec" value="38"/> 
    <capacity type="dec" value="0.1"/> 
   </commodity_group> 
   <commodity_group id="Motor Vehicles and Equipment"> 
    <revenue_per_carload type="dec" value="1700"/> 
    <cost_per_mile type="dec" value="1.50"/> 
    <cost_per_hour type="dec" value="38"/> 
    <capacity type="dec" value="0.1"/> 
   </commodity_group> 
   <commodity_group id="Other Products"> 
    <revenue_per_carload type="dec" value="1700"/> 
    <cost_per_mile type="dec" value="1.50"/> 
    <cost_per_hour type="dec" value="38"/> 
    <capacity type="dec" value="0.1"/> 
   </commodity_group> 
   <commodity_group id="Intermodal"> 
    <revenue_per_carload type="dec" value="1700"/> 
    <cost_per_mile type="dec" value="1.50"/> 
    <cost_per_hour type="dec" value="38"/> 
    <capacity type="dec" value="0.05"/> 
   </commodity_group> 
   <commodity_group id="Other Chemicals"> 
    <revenue_per_carload type="dec" value="1700"/> 
    <cost_per_mile type="dec" value="1.50"/> 
    <cost_per_hour type="dec" value="38"/> 
    <capacity type="dec" value="0.05"/> 
   </commodity_group> 
   <commodity_group id="Crude Pet. Nat Gas or Gasoline"> 
    <revenue_per_carload type="dec" value="1700"/> 
    <cost_per_mile type="dec" value="1.50"/> 
    <cost_per_hour type="dec" value="38"/> 
    <capacity type="dec" value="0.05"/> 
   </commodity_group> 
   <commodity_group id="Petroleum Products"> 
    <revenue_per_carload type="dec" value="1700"/> 
    <cost_per_mile type="dec" value="1.50"/> 
    <cost_per_hour type="dec" value="38"/> 
    <capacity type="dec" value="0.05"/> 
   </commodity_group> 
   <commodity_group id="Inorganic Chemicals"> 
    <revenue_per_carload type="dec" value="1700"/> 
    <cost_per_mile type="dec" value="1.50"/> 
    <cost_per_hour type="dec" value="38"/> 
    <capacity type="dec" value="0.05"/> 
   </commodity_group> 
   <commodity_group id="Hazardous Waste"> 
    <revenue_per_carload type="dec" value="1700"/> 
    <cost_per_mile type="dec" value="1.50"/> 
    <cost_per_hour type="dec" value="38"/> 
    <capacity type="dec" value="0.05"/> 
   </commodity_group> 

 </commodity_group_info> 
</RNR> 
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