Sensor systems for the Altair Lunar Lander:

PDF Version Also Available for Download.

Description

The Altair Lunar Lander will enable astronauts to learn to live and work on the moon for extended periods of time, providing the experience needed to expand human exploration farther into the solar system. My overriding recommendation: Use independent and complementary [sometimes referred to as 'orthogonal'] techniques to disambiguate confounding/interfering signals. E.g.: a mass spectrometer ['MS'], which currently serves as a Majority Constituent Analyzer ['MCA'] can be very valuable in detecting the presence of a gaseous specie, so long as it falls on a mass-to-charge ratio ['m/z'] that is not already occupied by a majority constituent of cabin air. Consider ... continued below

Physical Description

PDF-file: 1 pages; size: 8.9 Mbytes

Creation Information

Mariella, R December 22, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Altair Lunar Lander will enable astronauts to learn to live and work on the moon for extended periods of time, providing the experience needed to expand human exploration farther into the solar system. My overriding recommendation: Use independent and complementary [sometimes referred to as 'orthogonal'] techniques to disambiguate confounding/interfering signals. E.g.: a mass spectrometer ['MS'], which currently serves as a Majority Constituent Analyzer ['MCA'] can be very valuable in detecting the presence of a gaseous specie, so long as it falls on a mass-to-charge ratio ['m/z'] that is not already occupied by a majority constituent of cabin air. Consider the toxic gas, CO. Both N{sub 2} and CO have parent peaks of m/z = 28, and CO{sub 2} has a fragment peak at m/z = 28 [and at 16 and 12], so the N{sub 2} and CO{sub 2} m/z=28 signals could mask low, but potentially-dangerous levels of CO. However there are numerous surface-sensitive CO detectors, as well as tunable-diode-laser-based CO sensors that could provide independent monitoring of CO. Also, by appending a gas chromatograph ['GC'] as the front-end sample processer, prior to the inlet of the MS, one can rely upon the GC to separate CO from N{sub 2} and CO{sub 2}, providing the crew with another CO monitor. If the Altair Lunar Lander is able to include a Raman-based MCA for N{sub 2}, O{sub 2}, H{sub 2}O, and CO{sub 2}, then each type of MCA would have cross-references, providing more confidence in the ongoing performance of each technique, and decreasing the risk that one instrument might fail to perform properly, without being noticed. See, also Dr. Pete Snyder's work, which states 'An orthogonal technologies sensor system appears to be attractive for a high confidence detection of presence and temporal characterization of bioaerosols.' Another recommendation: Use data fusion for event detection to decrease uncertainty: tie together the outputs from multiple sensing modalities - eNose, solid-state sensors, GC-IMS, GC-MS - via nonlinear algorithms, such as an 'artificial neural net.' MA Ryan at the JPL and Henry Abarbanel at UCSD are possible candidates to implement such an approach.

Physical Description

PDF-file: 1 pages; size: 8.9 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LLNL-TR-421882
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/1020340 | External Link
  • Office of Scientific & Technical Information Report Number: 1020340
  • Archival Resource Key: ark:/67531/metadc831174

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 22, 2009

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 1, 2016, 7:52 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Mariella, R. Sensor systems for the Altair Lunar Lander:, report, December 22, 2009; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc831174/: accessed April 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.