Solid State Electron Transfer via Bacterial Nanowires: Contributions Toward a Mechanistic Understanding of Geophysical Response of Biostimulated Subsurface

PDF Version Also Available for Download.

Description

The degradation of organic matter by microorganisms provides a source of electrical potential or so-called 'self potential' (SP) that can be measured by using a voltmeter. During this process electrons are being produced as a waste-product and bacterial cells have to dispose of these to allow for the complete biodegradation of organic matter. Especially in anaerobic microbial communities, exo-cellular electron transfer is the most important driving force behind this process and organisms have developed different, but also similar, ways to transfer electrons to other microorganisms. Recently, it has been postulated that direct electron transfer from cell-to-cell is actually done by ... continued below

Physical Description

960 KB

Creation Information

Atekwana, Estella May 8, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The degradation of organic matter by microorganisms provides a source of electrical potential or so-called 'self potential' (SP) that can be measured by using a voltmeter. During this process electrons are being produced as a waste-product and bacterial cells have to dispose of these to allow for the complete biodegradation of organic matter. Especially in anaerobic microbial communities, exo-cellular electron transfer is the most important driving force behind this process and organisms have developed different, but also similar, ways to transfer electrons to other microorganisms. Recently, it has been postulated that direct electron transfer from cell-to-cell is actually done by 'hard-wired' microorganisms. This shuttling of electrons is most likely done by certain c-type cytochromes that form the functional part of electrically conductive nanowires. In this study we investigated if nanowires can explain the geoelectrical (self potential and spectral induced polarization) signals observed at some biostimulated environments such as DOE sites. The objectives of our project are to: (1) investigate any temporal changes in the geophysical signatures (Self Potential (SP) and Induced Polarization (IP)) associated with nanowires of the bacterium Shewanella oneidensis MR-1, wild type and mtrc/omcA deletion mutant, (2) demonstrate that mutant strains of bacteria that produce nonconductive nanowires do not contribute to geoelectrical responses. We accomplished the following: (1) Provided training to students and a postdoctoral fellow that worked on the project, (2) Conducted several SP & IP measurements correlating the distribution of nanowires and SIP/SP signals in partial fulfillment of object No. 1 and 2. On the following we will report and discuss the results of our last experiment with some emphasis on the source mechanisms of both SP and IP associated with Shewanella oneidensis MR-1, wild type in sand columns.

Physical Description

960 KB

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: 0013349
  • Grant Number: FG02-07ER64413
  • DOI: 10.2172/1039660 | External Link
  • Office of Scientific & Technical Information Report Number: 1039660
  • Archival Resource Key: ark:/67531/metadc831138

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 8, 2012

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 1, 2016, 10:47 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Atekwana, Estella. Solid State Electron Transfer via Bacterial Nanowires: Contributions Toward a Mechanistic Understanding of Geophysical Response of Biostimulated Subsurface, report, May 8, 2012; United States. (digital.library.unt.edu/ark:/67531/metadc831138/: accessed November 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.