
SANDIA REPORT
SAND2011-0475
Unlimited Release
January 2011

Trusted Computing Technologies,
Intel R©Trusted Execution Technology

Jeremy Daniel Wendt and Max Joseph Guise

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent that its use
would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government,
any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any agency thereof,
or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd.
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 6056900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods/asp?loc=7-4-0#online

2

SAND2011-0475
Unlimited Release

January 2011

Trusted Computing Technologies,
Intel R©Trusted Execution Technology

Jeremy Daniel Wendt and Max Joseph Guise
Information Systems Analysis Center

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-MS1073

Abstract

We describe the current state-of-the-art in Trusted Computing Technologies – fo-
cusing mainly on Intel’s Trusted Execution Technology (TXT). This document is
based on existing documentation and tests of two existing TXT-based systems: In-
tel’s Trusted Boot and Invisible Things Lab’s Qubes OS. We describe what features
are lacking in current implementations, describe what a mature system could pro-
vide, and present a list of developments to watch.

3

4

Contents

1 Introduction 7

2 Trust 9

3 Other Trusted Computing Solutions 11
3.1 The SSP . 11
3.2 Anti-Tamper . 11

4 Intel R©Trusted Execution Technology 13
4.1 Flicker . 14

5 Implemented Tests 15
5.1 tboot . 15
5.2 Qubes OS . 16

6 Further Possible Testing 19

7 TXT’s Limitations 21

8 Discussion 23

9 Future Developments Watchlist 27

10 Limitations on Research Performed 29

List of Figures

1 Security levels in Qubes OS: Qubes OS creates VMs with different security levels.
Red is least trusted: Browse any website, but don’t enter any secure data. Yellow
is somewhat trusted: Browse only trusted websites, and enter limited secure data.
Green is most trusted: Avoid nearly all web use, enter any secure data. 24

2 Disposable VMs in Qubes OS: Qubes OS allows creating disposable VMs that
allow viewing untrusted documents in an environment that any hidden malware
cannot affect external state, and all contents are deleted after closing. 25

5

6

1 Introduction

Critical systems perform operation-critical computations on high importance data. In such systems,
the inputs, computation steps, and outputs may be highly sensitive. Sensitive components must
be protected from both unauthorized release, and unauthorized alteration: Unauthorized users
should not access the sensitive input and sensitive output data, nor be able to alter them; the
computation contains intermediate data with the same requirements, and executes algorithms that
the unauthorized should not be able to know or alter.

Due to various system requirements, such critical systems are frequently built from commercial
hardware, employ commercial software, and require network access. These hardware, software, and
network system components increase the risk that sensitive input data, computation, and output
data may be compromised.

Problem Statement: Given a computing system built from commercial hardware, using com-
mercial software, on an untrusted network: Protect sensitive inputs, computations, and outputs
from unauthorized release and alteration.

This document describes an investigation into how “Trusted Computing Technologies” and specif-
ically Intel R©Trusted Execution Technology (TXT) can reduce the risk of critical-system compro-
mise. Section 2 defines how the word “trust” is used in trusted computing. Section 3 describes
non-Intel-based trusted computing solutions. Section 4 describes Intel’s Trusted Execution Tech-
nology. Section 5 describes what tests were performed on actual computing resources. Section 6
describes further tests which could be performed to further validate TXT-generated security im-
provements as claimed by Intel. Section 7 lists Intel’s acknowledged limits when creating TXT as
well as publicized flaws in TXT’s design or implementation. Section 8 summarizes and discusses
all previous sections. Section 9 discusses known developing technologies and improvements that
extend the current state-of-the-art. Section 10 provides the reasons for and defines the bounds of
what was researched.

7

8

2 Trust

In his Turing Award Lecture, Ken Thompson demonstrated ways to hide malicious code within
visually harmless source code [Thompson, 1984]. He concluded with the following: “You can’t trust
code that you did not totally create yourself.” He included language compilers, assemblers, and
hardware microcode as components that would need to be self-created to be completely trustworthy.

However, the modern computing environment contains many complicated components – hardware,
operating system, compiler, application software, and network capabilities. This set of components
is called the “trusted computing base” (TCB), as a vulnerability or bug in any component could
jeopardize the security of the whole [Wikipedia, 2010c]. A small, trusted group of engineers de-
signing and implementing each would likely never finish their project. Any system so-built would
still be susceptible to attack due to any design or implementation errors or oversights.

Therefore, using any modern computing environment requires trusting some set of externally de-
veloped hardware, software, or network resources. To permit the use of externally developed
tools, the Trusted Computing Group (TCG – an initiative formed by various technical compa-
nies, including Intel, AMD, Microsoft, and IBM) defines trust as follows: “Trust is the expec-
tation that a device [or component] will behave in a particular manner for a specific purpose”
[Trusted Computing Group, 2010]. For any component (hardware, software, or network), the user
has an expectation of what action it will or will not perform in response to some user input. By
the TCG’s definition, a trusted component is one that the user (or some entity trusted by the user)
has ensured behaves as expected.

Comparing these two definitions of trust is instructive. Both Thompson’s and the TCG’s definitions
of trust require considerable effort. Thompson’s trust requires all components be built by oneself
– or a small number of trusted individuals. The TCG’s trust requires that each component be
thoroughly evaluated. Both definitions require that no external entity has altered any of the
components or their configuration since the trusted system was established.

By either definition of trust, creating a trusted system requires a time consuming and costly pro-
cess. In fact, recreating or thoroughly validating all components of a modern computing system
is infeasible. Therefore, the set of all trusted components (TCB) must be decreased as much as
possible. Not only does a smaller TCB make trusting the system more possible, it also generally
leads to a more secure system [Shinagawa et al., 2009]. The following two sections describe different
solutions developed to shrink the untested TCB.

9

10

3 Other Trusted Computing Solutions

3.1 The SSP

The Sandia Secure Processor (SSP)1 was created to be a fully trusted processor for embedded
systems (by Thompson’s definition of trust) [Wickstrom et al., 2004a]. The hardware was devel-
oped at Sandia National Labs by a trusted team of engineers. They also created a trusted class
loader to ensure that programs loaded into the SSP will run precisely as coded. Both the hard-
ware and class loader were tested rigorously by different teams using various techniques to ensure
correctness. Further publications discuss more details of the class loader [Wickstrom et al., 2004b,
Winter et al., 2005].

The SSP’s stated purpose (embedded computing) does not match this paper’s stated problem
(protecting sensitive inputs, computations, and outputs on commodity hardware, software, and
networks). Due to this mismatch, we do not discuss it further herein.

3.2 Anti-Tamper

Anti-Tamper (AT) techniques are “intended to prevent and/or delay exploitation of critical tech-
nologies” of all kinds [Department of Defense, 2010]. AT attempts to prevent one or more of unau-
thorized access, reverse engineering, and violating code integrity (e.g., inserting malware). There-
fore, AT techniques could be used to protect either Thompson- or TCG-based trusted systems.
The following are common computer-based AT techniques [Atallah et al., 2004]:

• Hardware-supported protections: These protections are built into the computing system
itself. Intel R©’s TXT employs many of AT’s hardware-based protections. In short, these
protections include measuring programs before execution to ensure they are unchanged, and
hardware-based encryption. Such techniques’ strengths and weaknesses are further discussed
throughout this document.

• Encryption Wrappers: Portions of the code are encrypted separately from each other, with
each decrypted only when in use. In this way, the entire program is never decrypted at once.
While this does not prevent attackers from obtaining an unencrypted version of the entire
program, obtaining an unencrypted version requires running the program, taking multiple
memory images, analyzing each image to identify unencrypted portions, and then merging
these images.

• Code obfuscation: After compilation, the code’s layout, data, and control statements are
obfuscated to hinder reverse engineering. Care must be taken to make deobfuscation difficult,
and to ensure that obfuscated portions still appear to be standard program executions and
do not execute significantly slower than the original codes.

• Watermarking and fingerprinting: Watermarks and fingerprints are unique messages
inserted into each instance of a piece of software to identify the original purchaser, the legality
of the program, and/or the integrity of the program (that it is unchanged). Alone, they do

1This device is still being developed, although now called the “Score Processor”.

11

not prevent tampering, but provide evidence of it. To properly function, watermarks and
fingerprints must cover all secured portions of the code, and be difficult to reproduce.

• Guarding: Several software guards can be inserted into code that monitor if code is being
used incorrectly, and may alter or hinder the code from functioning if misuse is identified.
Guards should be hidden in the code so that they are hard to detect and remove.

No software-based AT technique will completely prevent unauthorized access, reverse engineering,
or integrity violation: Each serves only to increase the attack’s difficulty. It is recommended that
several AT techniques be used together to create a more robust defense. However, each technology
increases development effort, and frequently decreases execution efficiency. Furthermore, encryption
wrappers, code obfuscation, watermarking, and guarding all require the ability to alter the codebase
– preventing the use of many commercial codes.

12

4 Intel R©Trusted Execution Technology

Intel R©Trusted Execution Technology (TXT) is Intel’s implementation of the Trusted Comput-
ing Group’s specification for trusted computing hardware. The TCG proposed six technology
concepts required to create a system that fulfills their definition of “trusted” [Grawrock, 2008,
Wikipedia, 2010b]:

1. Endorsement key: An unalterable RSA public/private key pair, written in the computer
hardware. The private key is kept private even to software on the computer – it never leaves
the chip. These keys are used to create trusted digital signatures and perform RSA encryption.

2. Secure input and output: Information transmitted between computers (via “channels”)
and information transmitted between the user and the computer (via “paths”) must be pro-
tected from unauthorized reading or altering to be trusted.

3. Memory curtaining / protected execution: To trust a program’s execution, its data
and instructions must be secured. Both are stored in computer memory during execution.
Therefore, a securely launched program’s memory is protected from all external entities,
including the Operating System and Direct-Memory-Access-enabled devices such as network
cards. Protected execution also includes isolating all internal CPU state from external entities.

4. Sealed storage: This technique binds private information to specific computing system
signatures – hardware and software signatures. This means that data on a hard drive cannot
be read by removing the disk from one machine and making it a slave to another machine.

5. Remote attestation: When a computer system requests results or data from another sys-
tem, the requesting system needs to know that the second system is trustworthy. Remote
attestation is the mechanism whereby a computing system demonstrates to the requesting
system that it is using trustable hardware in a trusted configuration.

6. Trusted Third Party (TTP): The signatures produced by these features could be used
to specifically identify machines and (by proxy) users. Many features of the current internet
benefit from user anonymity. A Trusted Third Party could validate a machine as trusted,
supply an unforgeable credential to the validated machine that the validated machine could
present to avoid self-identifying. If the third party is truly trusted by both parties, then the
requesting system can know that the computing system is trustworthy, and the computing
system can know that its identy is secure.

For this document’s problem – a critical system operating on high sensitivity data using third-party
technologies – there are two principle TXT features: static Roots of Trust for Measurement (RTM)
and dynamic RTM. In short, both RTM features measure some program or set of programs before
starting them to ensure they have not changed from a previously identified trusted configuration.

Static RTM begins at system boot. The TXT-enabled computer measures each boot component
via cryptographic hash before allowing it to execute. Each component’s hash is combined with the
previous component’s hash to create a new value. Each value is compared with a trusted boot
policy (the measurements produced by an earlier boot sequence that was specifically marked as
trusted). A static RTM begins by measuring the most fundamental components (SMM, BIOS,

13

VMM, OS, etc.). These measurements ensure two things: First, they ensure that each program
is unchanged from the previously identified trusted boot. Second, since each component’s hash
is combined with that of the previous component, and since the combined value is compared to
the trusted value, the measurements ensure that the boot order has not been changed: Only the
trusted components have been started as part of the boot process. Since static RTM begins at
system boot, it guarantees that no rootkit has installed itself below the operating system, and that
the operating system itself has not been corrupted by unwanted start-on-boot programs.

Dynamic RTM begins upon user or program request at any time during or after boot. The TXT-
enabled computer will measure the about-to-start program(s) in a similar fashion to the static RTM
– ensuring that the started programs have not been altered since a previously identified trusted
configuration. Furthermore, after a dynamic RTM completes, the resulting program can be run
with secure input and output, and memory curtaining / protected execution. By measuring all
programs that are launched into a secure I/O and memory/execution protected partition, TXT
guarantees that none of the programs in the trusted partition have been altered and protects their
data and execution from corruption while running.

4.1 Flicker

Flicker is an early technology built using AMD’s implementation of the TCG’s recommendation
called “Secure Virtual Machine” (SVM). In short, Flicker removes the trust-requiring components
from a larger program and quickly runs those trust-requiring components as needed in their own
dynamic RTM [McCune et al., 2008]. In this way, the TCB is reduced to a minimum: One need
trust only the computer hardware and the extracted software component.

Unfortunately, Flicker would not solve this document’s problem for the following reasons: First,
Flicker requires altering the program by extracting trust-requiring components from the rest of the
program. Our critical system employs sensitive data and operations continually during execution.
Second, Flicker halts execution of all other processes on the computer (including the operating
system) when the critical code runs. Flicker’s authors do not state if this was a decision they made,
or if AMD’s early SVM technology required this. However, this would prevent the system user
from doing two sensitive operations (or sensitive and normal operations) at the same time unless
both were within the same program.

14

5 Implemented Tests

To validate Intel R©’s claims and to provide us experience with TXT, we purchased a laptop with all
required TXT hardware and tested both currently existing TXT-based software systems: Intel R©’s
Trusted Boot (tboot), and Invisible Things Lab’s Qubes OS.

In both systems, our goal was to test TXT’s ability to secure the path from the keyboard to an
application. Our motivation was protecting a password or secret as it is typed into one program from
being recorded by a malware keylogger. A dynamic-RTM-launched application with partitioned
memory and protected execution should protect the typed password or secret from a keylogger not
in the secured partition.

5.1 tboot

Intel released the first software support for their TXT hardware, called Trusted Boot (tboot)
[Intel, 2010]. Tboot is a package which can be added to a Linux distribution to enable various
TXT features.

Unfortunately, Intel has provided little documentation on setting up and using tboot. What little
documentation we found (cited at the end of this section) was spread throughout the internet –
and was difficult to find. Generally, to find instructions on how to overcome a problem, we had
to attempt to employ some TXT technique, receive an error message, and search the internet for
that specific error message. As most attempts included minimally rebooting the machine and often
required installing a different version of the operating system, this was a painstakingly slow process.

After significant setup and configuration work, we stopped examining tboot in order to examine
Qubes OS before the deadline. Before stopping tboot work, we had configured the laptop as follows:
Fedora 13 (“Xenified” Linux kernel 2.6.32.13) on the Xen Hypervisor (version 3.4.3). After installing
Fedora and Xen, we installed tboot, and successfully took control of the TPM (a fundamental piece
of the TXT hardware), stored measurements of the Xen Hypervisor and components of Fedora,
and attempted a dynamic RTM (beginning with Xen boot) with a tboot-provided boot policy. The
RTM did not complete the boot process. We were able to see the system attempt to execute the
fundamental RTM operation (GETSEC[SENTER]), but then the laptop failed with a white screen
and no visible debugging information. We were unable to identify the error messages because the
hardware did not support external logging, and the internal memory logging did not work.

Helpful resources: The information necessary to understand and use Intel’s TXT via tboot
were spread across various sources. Intel Senior Principal Engineer David Grawrock’s text
provides details of TXT architecture and argues for why TXT is a complete solution, but lacks
specific details on how to use TXT and tboot [Grawrock, 2008]. Another Intel Technologist
– Joseph Cihula – created slides on how to use tboot [Cihula, 2007]. Invisible Things Lab
has successfully attacked TXT, and their write-ups contain useful information on the steps
tboot must take to startup [Wojtczuk and Rutkowska, 2009, Wojtczuk and Rutkowska, 2009].
Various internet websites provided other useful answers during debugging and
setup: tboot-focused (http://blog.gmane.org/gmane.comp.boot-loaders.tboot.devel
and http://lwn.net/Articles/382077/), Xen and Fedora focused

15

(http://fclose.com/b/2405/setting-up-stable-xen-dom0-with-fedora-xen-3-4-3-with-
xenified-linux-kernel-2-6-32-13-in-fedora-12/), and an overview of TXT hardware
(http://www.linuxjournal.com/article/6633?page=0,0).

5.2 Qubes OS

Invisible Things Lab (ITL) is a group of world-class cybersecurity researchers who frequently
demonstrate some of the most groundbreaking security breaches at BlackHat conferences. They
have discovered all known TXT breaches (see below). They have also created Qubes OS –
a Linux-based, cyber-security-focused Operating System that employs various TXT principles
[Rutkowska and Wojtczuk, 2010, Rutkowska, 2010]. It is currently an Alpha release – meaning
the software is feature complete for their first planned release, but has several bugs. Qubes’s distin-
guishing characteristic is that, to better protect system resources, most operations and programs
are launched into their own Virtual Machines (VMs). Although the current system only supports
launching Linux-based VMs, they plan later releases supporting Windows- and Macintosh-based
VMs.

Qubes OS employs various components of Intel TXT technologies:

• The harddisk, network, and user I/O controllers are partitioned from each other.

• The system boot code is protected.2

• A root of trust is created on startup – after the bootloader.

We found installing and running Qubes OS to be straightforward. We then performed the following
tests:

• Downloaded malware: Qubes OS launches most applications into their own separate VMs.
We attempted to install a keylogger into one of these application VMs to see which parts of
the system were vulnerable should such an attack succeed. In the limited time we had, we
were unable to install a successful keylogger to an application VM for two Qubes-OS-security
reasons: First, Qubes employs Intel VT-d (one TXT technology) to partition the VMs from
unnecessary I/O devices. This partitioning prevented us from transferring the keylogger to
the application VM via CD ROM or memory stick. Second, had we successfully imported the
keylogger into the application VM, the application VM lacks sufficient privileges to install
our keylogger.

We were able to download the keylogger via FTP into a networking VM (a VM that sandboxes
networking capaiblities). However, Qubes VMs use a different set of interrupts than the Dom0
VM to handle keystrokes. This difference meant that our keylogger would not work for this
test. The project funding ended before we were able to modify the software to correctly
monitor keystrokes in the VM. We believe that a successfully installed keylogger would only
have been able to monitor keystrokes typed into the same VM as it is loaded into – missing
all keystrokes typed into other VMs.

2Their documentation doesn’t specify precisely how it is protected, but we guess the boot code is encrypted
through the TPM. While an attacker could destroy this code and make the system unbootable, he could not alter
the boot code.

16

• Corrupted Qubes OS Dom0: In Qubes OS, user I/O functions – including keyboard
handling – are performed by the administrative domain (Dom0). Keystrokes are passed
from Dom0 to the appropriate application VM. This design indicates that a Dom0-installed
keylogger would capture all keystrokes. To verify this, we installed a keylogger into Qubes
OS’s Dom0. We verified this keylogger could see all keystrokes. This problem is mitigated
somewhat by the difficulty of installing a keylogger into Dom0 over the network without user
consent. Qubes OS sandboxes all networking capabilities in unprivileged VMs – code sent to
these VMs cannot write to Dom0.

Although all TXT hardware features were enabled in the BIOS, we are not certain that Qubes
OS was properly configured to leverage each of them – the documentation does not specify how
to enable them in the OS, nor how to determine if they are being used. ITL should soon release
further Qubes OS documentation.

17

18

6 Further Possible Testing

Due to this project’s constraints (Section 10), we were unable to perform any comprehensive tests
of Intel’s claims of TXT’s protections. If these constraints were removed, we would perform at least
the following tests:

• Complete Qubes OS tests: We would like to verify our suspicion that a downloaded key-
logger would only be able to monitor keystrokes typed in the infected VM. Furthermore, we
would like to search for any ways that a downloaded malware could circumvent the unprivi-
leged VM and install itself into Dom0.

• Other common attacks: The Qubes-OS-based keyboard logger test we performed tested
the secure path from the keyboard to the program. However, this still leaves two areas that
non-TXT systems leave open to attack: the secure channel from the program to the screen,
and the curtained memory / protected execution. Screen scrapers can read the memory used
for the frame buffer and store any data presented there to the user. Priviledged ring 0 codes
have access to other code’s memory and CPU state. Intel claims that TXT prevents these
attacks from succeeding, but we would like to validate these claims.

• Known successful TXT attacks: Invisible Things Lab (ITL) has demonstrated three
different ways to corrupt TXT-enabled compute systems: an Intel BIOS bug (see demo
advertised in [Invisible Things Lab, 2009b]), two System Managment Mode (SMM) memory
vulnerabilities3 [Wojtczuk and Rutkowska, 2009, Invisible Things Lab, 2009b], and a bug in
the SINIT module [Wojtczuk et al., 2009, Invisible Things Lab, 2009a]. As all but the SMM
vulnerabilities4 are supposed to be patched [Intel, 2008, Intel, 2009], we would expect the
BIOS and SINIT bugs to fail on a current system.

Although ITL has found all known TXT exploits, ITL is quick to emphasize that TXT is a
major step forward [Invisible Things Lab, 2009a].

3ITL’s vulnerabilities make it possible to inject an SMM rootkit [Embleton et al., 2008].
4Intel says they have a design for a “SMM Transfer Monitor” (STM) that should eliminate the SMM vulnerabilities.

These STMs are not yet released in any system.

19

20

7 TXT’s Limitations

Other than the successful attacks discussed previously, TXT still has several limitations.

Poor external support: Principal among these is poor external support. The only two exist-
ing operating systems supporting TXT are Linux variants: Xen/Linux with Intel’s tboot, and ITL’s
Qubes OS. Windows’s only TXT use is BitLocker Drive Encryption [Microsoft, 2010, Wikipedia, 2010a].
We know of no TXT use by Mac OS X. Since creating a dynamic RTM requires ring 0 (or OS-level)
privileges and static RTM requires measurements on startup, until Microsoft and Apple add TXT
support, TXT is unusable on their operating systems.

We believe that this poor external support is caused by two related problems. First, TXT is a rel-
atively new technology: TXT-supporting hardware is only a few years old. Since TXT requires OS
support, until operating systems are released with TXT support, TXT-feature-leveraging applica-
tions cannot be created. Second, since the principles behind TXT are new, implementations differ.
Since Intel’s and AMD’s solutions do not support the exact same features, software companies are
slower to support it. They don’t want to invest considerable energy into supporting a technology
that is only available to a fraction of their users without strong customer demand.

Time costs: Another limitation is the time cost required for a complete static RTM. In creating
a static RTM, every piece of code, and every code dependency must be examined via crytographic
hash before that program is executed. This means that before booting a VMM (such as Xen) in
a static RTM, the TXT hardware must perform a cryptographic hash on several GBs of files –
slowing the boot time substantially.

Limited measurements: Currently, it seems that RTMs only measure up to the VMM that
launches each VM. This means that the VM, its OS, and any applications launched into it are
not individually measured and ensured to be unchanged. This means that any of these could be
corrupted without TXT alerting the user. We believe that this limitation applies only to current
implementations: TXT hardware could be used to allow further measurements through further OS
software support.

User burden: TXT also increases the system administration burden. TXT’s measurements en-
sure that a program has not changed since a user specifically marked that program as “trusted”.
However, security patches are valid reasons for the trusted program to change. This means that
after the update has completed, the user (or some system administrator) would have to explicitly
mark the new versions as “trusted”. If this step were somehow made implicit, what would prevent
malware from exploiting the “implicit trust feature” to mark itself as trusted?

After-startup attacks: Both static and dynamic RTMs measure the launched environment. Dy-
namic RTMs also provide several useful security features (curtained memory, protected execution,
etc.). However, once the program is launched there is no way to identify if the executing program has
been compromised. Therefore, a program could be corrupted after execution begins and the attack
would go undetected until the next time the program is launched [“University of Michigan”, 2010].
The longer a dynamic RTM is left open, the greater the chance of a successful attack.

Identifies corruption only: Furthermore, TXT only identifies a corrupted system and prevents
it from executing. While this is very useful, fixing a corrupted system is still the system adminis-
trator’s job and requires other tools.

21

Trusted path not complete: A trusted path ensures that no input from the user or output to
the user can be read or altered by any untrusted party. TXT prevents several trusted-path attacks.
However, since TXT features are purely within the chipset, there are still available attacks:

• Hardware keyboard loggers can be inserted between the keyboard’s plug and the computer’s
socket. These hardware loggers store all keyboard data – awaiting physical retrieval.

• A similar device could be created to store display output to the monitors.

• A truly desperate attacker could simply video record the keyboard or monitors themselves.

Hardware attacks: The trusted path attacks described above are hardware attacks: They require
the attacker to be physically present at the machine at some time to add the sniffing hardware.
Intel TXT was not intended to prevent hardware attacks, and Grawrock lists several other hardware
attacks that would succeed to varying degrees (see Chapter 17, [Grawrock, 2008]).

Hardware damage can cause data loss: TXT permits encrypting data on the hard drive using
the encryption keys bound to a specific machine’s hardware. This prevents theives from extracting
data by simply pulling the hard drive from a machine. However, if that machine’s TXT hardware
were destroyed (by power surge or other accident), any TXT-encrypted data would be permanently
lost to the system owners as well.

TCB still requires trusting others: When launching a static or dynamic RTM, TXT measures
the current software’s harddisk image against a previously “trusted” image. However, the “trusted”
image is likely simply the image received from the manufacturer. Marking that image as “trusted”
implies that it has no exploitable bugs, no intentional back doors, and that it does not leak infor-
mation (intentionally or not) over any network connections. For many professional applications,
many of these statements are known to be false. What TXT provides is the knowledge that the
software has not changed from the last approved state, and that software packages launched in
separate dynamic RTMs are reasonably secured from the rest of the system and each other.

Preventing user control: Finally, many free-software advocates see TXT and the larger Trusted
Computing movement as a threat to the end user’s control over his own system. Many of the
features described herein that prevent malware from altering a computer’s state could also prevent
users from controlling their own system. For instance remote attestation and sealed storage could be
used to ensure that a legally purchased DRM-protected song could only be played on one computer
by one program.5 Although we don’t specifically know how decreased user control could affect a
critical system calculating against critical data, we believe some problems could arise from these
changes.

5More examples can be found by internet searching for “Treacherous Computing” or “Richard Stallman”.

22

8 Discussion

TXT is extremely new: TXT is a new technology that could drastically alter the way computing
is performed: It permits measuring that software is unchanged from a previous “trusted” version.
It can protect software from several common software-based attacks. It can also decrease the
user’s control over his own data. Its newness leaves open many of the details of how it will affect
computing.

This newness leads to several issues as well: Current TXT-enabling software systems are hard to
use and don’t supply all TXT features. Precise documentation is limited.

However, TXT’s newness leaves open a valuable window: If we were to dedicate resources to
researching and using TXT now – before it is widely accepted – we could shape the details of how
TXT affects computing. Opening a relationship with Intel could provide answers to many of the
questions that current documentation does not answer.

Merging solutions: We believe properly used, fully mature TXT-based systems could reduce a
critical system’s vulnerability – even in an otherwise untrusted environment. Critical data could
be protected before and after program execution through hard drive encryption. During program
execution, the program could be launched into a trusted, partitioned dynamic RTM that would
protect user input, output, and program computation and data from loss or corruption from other
system components. However, the program itself could still be corrupted due to errors in its own
programming (e.g., buffer overflow attacks).

To best protect a critical system from attack, we recommend a holistic approach in which TXT is
only a component. Other than employing other well-known techniques (such as Anti-Tamper), we
believe TXT’s newness provides another opportunity. Intel and AMD currently provide disparate
implemenations of the TCG’s recommended Trusted Computing Platform. If a system were built
for each of Intel’s and AMD’s solutions, an interesting system could be built by combining both. If
Intel’s and AMD’s systems were run on the same problem concurrently – with both being measured
on startup – corruption in one system could be identified at runtime as it would differ from the
other system. In order for an attack to succeed and not be quickly detected, the attack would have
to succeed against two different technologies at the same time – a much harder feat.

Supply-chain-based hardware attacks: TXT prevents many common software attacks. TXT’s
stated goal is to force all viable attacks to be hardware attacks [Grawrock, 2008]. Intel asserts that
such attacks require physical presence. While altering hardware configurations of a functioning
system requires physical presence, this alteration could happen before the system arrives at its final
destination [Adee, 2008, Derene and Pappalardo, 2009, Markoff, 2009]. The effect of a hardware-
based attack would depend on which component is compromised: If a peripheral (e.g., network
card) were compromised, any data which passed through that device could be compromised; if a
TXT-critical component (e.g., the TPM) were compromised, all TXT-provided guarantees could
be nullified. Detecting compromised hardware is a very complex problem – and an active research
area [Adee, 2008, Cooper, 2009].

TXT’s help to the problem: This document focused on Intel’s Trusted Execution Technology
and how it could help prevent sensitive data loss or corruption on a system built of commercial
components on an untrusted network. In short, a fully realized TXT-based system can decrease

23

Figure 1: Security levels in Qubes OS: Qubes OS creates VMs with different security levels. Red is least trusted:
Browse any website, but don’t enter any secure data. Yellow is somewhat trusted: Browse only trusted websites,
and enter limited secure data. Green is most trusted: Avoid nearly all web use, enter any secure data.

the portion of the system that must be trusted, but does not create a fully secure system from
untrusted components. Through partitioning and protected execution, TXT can protect the critical
components from other, untrusted components. Through pre-launch measurements, TXT can
ensure that the critical components have not changed from a previously identified “trusted” state.
Through hardware-hidden keys, TXT can encrypt data such that external entities can only decrypt
them through brute force.

These three features – partitioning, measurements, and hidden encryption keys – could considerably
improve security of critical computing resources. If the critical-computation program does not
require access to the network, or a storage device (e.g., USB memory stick), the program can be
loaded into a VM that lacks the unnecessary devices. This would prevent a program that does
not require network access from leaking data over the network, and prevents network-based attack.
Thus, executing software can be made more secure. Qubes OS provides some of these features
(Figure 1).

Qubes OS demonstrates another benefit of partitioning: disposable VMs (Figure 2). Malware
is frequently unwittingly downloaded and executed as part of an otherwise useful attachment.
Disposable, unprivileged VMs can be quickly generated to permit reading common file formats
(Adobe PDF, Microsoft PowerPoint or Word Documents, etc.), but contain any potential malware
in a no-network, no-storage VM that cannot change any machine state (including disposable VM
settings) or send any external messages. After the document is read, the VM is closed, and all
contents are permanently deleted. Thus, a common malware attack vector is closed.

With measured launches of key programs, an engineer can know that his critical programs have not
been altered by malware since he identified them as trusted. Although this still requires creating or
verifying software as trusted (both very difficult tasks), it protects such trusted software. Without
measured launches, the trusted software may be invisibly corrupted after its first use; with measured
launches, any corrupted once-trusted software is identified during its first post-corruption launch.

24

Figure 2: Disposable VMs in Qubes OS: Qubes OS allows creating disposable VMs that allow viewing untrusted
documents in an environment that any hidden malware cannot affect external state, and all contents are deleted
after closing.

Thus, successful measured launches guarantee pristine, uncorrupted codes.

Hardware-protected, software-invisible encryption keys prevent attackers from obtaining usable
data from a hard drive separated from the encryption-key containing hardware device. Thus,
stealing an encrypted file over the network will provide no useful data: The necessary decryption
key is only available on the machine that generated the file. Furthermore, it is impossible to invisibly
alter a hardware-encrypted file: Any altered portion will not match the encrypted portions, and
will be quickly identified after hardware-based decryption. Thus, hardware-protected encryption
keys protect critical data.

While TXT provides many protections, privilege-requiring software must still be trustworthy. TXT
cannot protect data if the critical-calculation-performing software requires network access and has
an intentional backdoor, or can be hacked during runtime.

25

26

9 Future Developments Watchlist

Since it’s a new technology, there are many exciting developments that could improve or change
how well Trusted Computing technologies are accepted.

First, both Intel and AMD need to complete and debug their trusted computing solutions. AMD’s
SVM does not supply all features required by the Trusted Computing standard. As previously men-
tioned, Intel has announced an STM unit that should fix ITL’s successful SMM attacks. However,
the design has not yet been disclosed, and no hardware with an STM has been announced.

Second, operating systems need to further their support for Trusted Computing technologies. Until
Windows and Mac OS X provide support for static and dynamic RTMs, Trusted Computing will
continue to be a niche technology: There are so many applications that could benefit from a secured
execution environment that can only run on Windows or OS X. Qubes OS’s alpha versions look
promising. However, until Qubes Pro is released with Windows and OS X VMs, it will also lack
critical applications.

Sandia need not idly wait for these events to occur. Sandia could seek industry partnerships to
create a higher security system with the tool-required features. From external evidence, it seems
that Qubes OS was developed using Xen, Fedora, and tboot by two or three expert engineers over
the course of less than one year. We believe that if Sandia dedicated ten operating system and
computer security engineers for approximately one year, they could develop an OS similar to Qubes
– but with more of the necessary features (better OS support, graphics drivers, etc.).

27

28

10 Limitations on Research Performed

Several factors limited the scope and type of the research performed in creating this report:

• Time: Work on this project began less than eleven weeks before the final report was due.

• Money: This project’s funding provided for only one testing machine, and less than 50%
time for two technical staff.

• Existing Knowledge Base: The trusted computing technologies discussed herein are new.
This leads to few technical staff with knowledge of them, few available good documentation
sources, and few existing supporting technologies.

Due to these limitations, research was precisely focused. We focused principally on Intel R©Trusted
Execution Technology (TXT): reading Intel documentation, reading reports from non-Intel technol-
ogists, purchasing a TXT-capable system, and testing the few existing TXT-supporting technologies
(tboot and Qubes OS). Section 6 presents other attacks we think should be attempted. To present
an overview of other proprosed critical system safeguards, we read technical reports and discussed
with knowledgable technical staff about various other systems (reported in Section 3). We did not
test or personally experience any of these systems.

29

30

References

[Adee, 2008] Adee, S. (2008). The hunt for the kill switch.
http://spectrum.ieee.org/semiconductors/design/the-hunt-for-the-kill-switch.

[Atallah et al., 2004] Atallah, M. J., Bryant, E. D., and Stytz, M. R. (2004). A survey of anti-
tamper technologies. http://www.stsc.hill.af.mil/crosstalk/2004/11/0411Atallah.html.

[Cihula, 2007] Cihula, J. (2007). Trusted boot: Verifying the xen launch.
http://xen.org/files/xensummit fall07/23 JosephCihula.pdf.

[Cooper, 2009] Cooper, N. (2009). Engineer to develop methods to detect tampering in computer
chips. http://advance.uconn.edu/2009/090521/09052106.htm.

[Department of Defense, 2010] Department of Defense (2010). DoD anti-tamper.
http://at.dod.mil/.

[Derene and Pappalardo, 2009] Derene, G. and Pappalardo, J. (2009).
Counterfeit chips raise big hacking, terror threats, experts say.
http://www.popularmechanics.com/technology/gadgets/news/4253628.

[Embleton et al., 2008] Embleton, S., Sparks, S., and Zou, C. (2008). SMM rootkits: A new breed
of OS independent malware. In Proceedings of the 4th international conference on Security and
Privacy in Communication Networks.

[Grawrock, 2008] Grawrock, D. (2008). Dynamics of a Trusted Platform: A building block approach.
Intel Press.

[Intel, 2008] Intel (2008). Intel desktop and intel mobile boards privilege escalation. http://security-
center.intel.com/advisory.aspx?intelid=INTEL-SA-00017&languageid=en-fr.

[Intel, 2009] Intel (2009). SINIT misconfiguration allows for privilege escalation. http://security-
center.intel.com/advisory.aspx?intelid=INTEL-SA-00021&languageid=en-fr.

[Intel, 2010] Intel (2010). Trusted boot. http://sourceforge.net/projects/tboot/.

[Invisible Things Lab, 2009a] Invisible Things Lab (2009a). Press release – another way to cir-
cumvent Intel trusted execution technology. http://www.invisiblethingslab.com/press/itl-press-
2009-04.pdf.

[Invisible Things Lab, 2009b] Invisible Things Lab (2009b). Press release – attacking Intel trusted
execution technology. http://www.invisiblethingslab.com/press/itl-press-2009-02.pdf.

[Markoff, 2009] Markoff, J. (2009). Old trick threatens the newest weapons.
http://www.nytimes.com/2009/10/27/science/27trojan.html.

[McCune et al., 2008] McCune, J. M., Parno, B., Perrig, A., Reiter, M. K., and Isozaki, H. (2008).
Flicker: An execution infrastructure for TCB minimization. In Proceedings of EuroSys ’08, pages
315–328.

31

[Microsoft, 2010] Microsoft (2010). Bitlocker. http://www.microsoft.com/windows/windows-
7/features/bitlocker.aspx.

[Rutkowska, 2010] Rutkowska, J. (2010). Qubes, Qubes Pro, and the future...
http://theinvisiblethings.blogspot.com/2010/09/qubes-qubes-pro-and-future.html.

[Rutkowska and Wojtczuk, 2010] Rutkowska, J. and Wojtczuk, R. (2010). Qubes OS architecture
– version 0.3. http://qubes-os.org/files/doc/arch-spec-0.3.pdf.

[Shinagawa et al., 2009] Shinagawa, T., Eiraku, H., Tanimoto, K., Omote, K., Hasegawa, S., Horie,
T., Hirano, M., Kourai, K., Oyama, Y., Kawai, E., Kono, K., Chiba, S., Shinjo, Y., and Kato, K.
(2009). BitVisor: A thin hypervisor for enforcing I/O device security. In Proceedings of the 2009
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE
2009), pages 121–130.

[Thompson, 1984] Thompson, K. (1984). Reflections on trusting trust. Communications of the
ACM, 27(8):761–763.

[Trusted Computing Group, 2010] Trusted Computing Group (2010). Trusted computing group –
developers – glossary. http://www.trustedcomputinggroup.org/developers/glossary/.

[“University of Michigan”, 2010] “University of Michigan” (2010). Intel trusted execution technol-
ogy slides. http://www.slideshare.net/slkevin/txt-introduction. The slides do not list an author.
The slideshare username “University of Michigan” uploaded the slides.

[Wickstrom et al., 2004a] Wickstrom, G. L., Davis, J., Morrison, S. E., Roach, S., and Winter,
V. L. (2004a). The SSP: An example of high-assurance systems engineering. In Proceedings of
the Eigth IEEE International Symposium on High Assurance System Engineering (HASE’04).

[Wickstrom et al., 2004b] Wickstrom, G. L., Winter, V. L., Beranek, J., Roach, S., and Fraij, F.
(2004b). An abstract class loader for the SSP and its implementation in TL. Unlimited Release
3225, Sandia.

[Wikipedia, 2010a] Wikipedia (2010a). Bitlocker drive encryption.
http://en.wikipedia.org/wiki/BitLocker Drive Encryption.

[Wikipedia, 2010b] Wikipedia (2010b). Trusted computing. http://en.wikipedia.org/wiki/
Trusted Computing.

[Wikipedia, 2010c] Wikipedia (2010c). Trusted computing base.
http://en.wikipedia.org/wiki/Trusted computing base.

[Winter et al., 2005] Winter, V. L., Beranek, J., Fraij, F., Roach, S., and Wickstrom, G. L. (2005).
A transformational overview of the core functionality of an abstract class loader for the SSP. In
Tenth IEEE International Workshop on Object-oriented Real-time Dependable Systems (WORDS
2005).

[Wojtczuk and Rutkowska, 2009] Wojtczuk, R. and Rutkowska, J. (2009). Attacking Intel trusted
execution technology. In Black Hat.

[Wojtczuk et al., 2009] Wojtczuk, R., Rutkowska, J., and Tereshkin, A. (2009). Another way to
circumvent Intel trusted execution technology. In Black Hat.

32

DISTRIBUTION

1 MS-0620 Daniel R. Cantu 5634
1 MS-0620 Berlinda B. Eras 5644
1 MS-0620 Rebecca Darnell Horton 5640
1 MS-0620 Marian Chrisma Jackson 5625
1 MS-0620 Edward J. Nava 5620
1 MS-0620 Frederick W. Sexton 5622
1 MS-0620 Mark Terhune 5630
1 MS-0621 Kim M. Denton-Hill 5638
1 MS-0621 Roxana M. Jansma 5631
1 MS-0621 Leann Adams Miller 5636
1 MS-0621 Dallas J. Wiener 5632
1 MS-0627 Steven Rinaldi 5643
1 MS-0671 Jennifer M. Depoy 5628
1 MS-0671 Frederick Mitch McCrory 5627
1 MS-0672 Jeffrey J. Danneels 5621
1 MS-0672 Han Wei Lin 5629
1 MS-0899 Technical Library 9536 (electronic copy)
1 MS-1027 Bernard P. Clifford 5633
1 MS-1027 Curtis M. Johnson 5635
2 MS-1069 Marion W. Scott 2300
1 MS-1073 Benjamin K. Cook 5641
1 MS-1221 Cindy L. Longenbaugh 5642
1 MS-1221 James S. Peery 5600
1 MS-1397 Bridget L. Rogers 5626

33

34

