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Abstract 
 
The recognition that resilience is a critical aspect of infrastructure resilience has caused the 
national and homeland security communities to ask “How does one ensure infrastructure 
resilience?” Previous analysis methods have primarily focused on system recovery activities 
following the occurrence of a disruptive event. In this report, we expand on those methods by 
including pre-disruption investment options, in addition to post-event recovery activities, as 
means to infrastructure resilience. The report describes a stochastic optimization model for 
designing network infrastructure resilience to a variety of uncertain potential disruptions. The 
model seeks investment-recovery combinations that minimize the overall cost to a regional 
distribution network. A set of numerical experiments illustrates how changes to disruption 
scenarios probabilities affect the optimal resilient design investments. 
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1.  INTRODUCTION 

 
Many elements of critical infrastructure take the form of networks. These networks provide service 
by allowing flows (of materials, information, electric power, fuels, etc.), given a capacity or 
operability state for nodes and links. Disruptions change the operability state of parts of the network 
(nodes and/or links), and recovery is a set of actions to restore capacity to damaged parts of the 
network, allowing system performance to return to nominal levels as quickly as possible. Since the 
1980’s, U.S. Federal Government policy toward critical infrastructure protection has focused 
primarily on physical asset protection and hardening (Reagan 1982; Clinton 1998; Bush 2002, 
2003), but there is now increasing emphasis on infrastructure resilience – the ability of infrastructure 
systems to withstand, adapt to, and rapidly recover from the effects of a disruptive event. The U.S. 
Department of Homeland Security National Infrastructure Protection Plan (NIPP) (DHS, 2009) 
contains explicit language calling for increasing the resilience of the nation’s critical infrastructure. 
 
Increasing network resilience involves three related capabilities – providing absorptive capacity so 
that the network can withstand disruptions, providing adaptive capacity so that flows through the 
network can be accommodated via alternate paths, and providing restorative capacity so that 
recovery from a disruptive event can be accomplished quickly and at minimum cost.  
 
There is considerable literature on system recovery in infrastructure networks following a disruptive 
event. As a few examples, see the work of Xu, et al. (2007) on electric power restoration, Clausen, et 
al. (2010) on airline system recovery, Luna, et al. (2011) on water distribution networks, Wang, et al. 
(2011) for internet protocol (IP) networks, and Chen and Miller-Hooks (2012) related to freight 
transportation networks. However, analyses of recovery strategies do not directly address the 
important design question: What capabilities, resources and/or network elements should be present 
to best provide absorptive capacity, adaptive capacity and restorative capacity in infrastructure 
networks? 
 
Resilience-enhancing investments made prior to the occurrence of disruptive events are important 
complements to effective post-event recovery strategies. Models that focus on post-event actions can 
be used in an ad hoc approach to determine benefits that could result from specific efforts to enhance 
resilience, but this approach frequently must be an iterative process, can be time-consuming, and 
does not guarantee that one will identify an optimal or near-optimal set of resilience-enhancing 
investments.  
 
In order to design infrastructure systems that are maximally resilient to a range of threats, 
infrastructure planners and managers need a capability that can simultaneously consider the impacts 
of pre-event resilience-enhancing design investments and post-event recovery actions. Concern with 
design-for-resilience in infrastructure systems has appeared in a variety of contexts in recent years 
(e.g., Little 2002; Fiksel 2003; Petersen and Johansson 2008; Mansouri, et al. 2010). However, there 
is little previous work on using explicit stochastic optimization models to design network 
infrastructures to be resilient to a variety of uncertain potential disruptions. A primary objective of 
the work described here is to develop such a capability. 
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One important class of infrastructure networks is distribution networks. These are networks that 
move or transform materials to meet demands. Production and distribution networks (including 
electric power, gas distribution, water supply, food production/processing/distribution, 
manufacturing supply chains, etc.) are examples of this class. The model in this report focuses on an 
example of such a network to illustrate several core ideas. 
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2. RESILIENCE MEASUREMENT AND OPTIMIZATION 
 
Vugrin et al. (2010) define system resilience as: 

Given the occurrence of a particular disruptive event (or set of events), the resilience 
of a system to that event (or set of events) is the ability to reduce effectively both the 
magnitude and duration of the deviation from targeted system performance levels. 

 
Measurement of resilience thus includes both the systemic impact (SI) of deviation from desired 
performance and the resources needed to reduce those impacts. The resource side of resilience is 
denoted total recovery effort (TRE). Figure 1 illustrates the concept of SI. The occurrence of an event 
reduces some performance metric for the system, and through recovery effort this metric returns to 
its nominal level over time, as shown in Figure 1(a). SI is the area of the degraded performance, as 
shown in Figure 1(b). 
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Figure 1.  Measurement of Systemic Impact. 
 
Varying strategies for recovery may affect SI, but require different levels of recovery effort (cost), as 
shown in Figure 2(a). It may also be possible to make investments in the system (design 
improvements) that will reduce the magnitude of the disruption from a given event occurrence as 
well as speed system recovery, as shown in Figure 2(b). These expenditures may be defined as 
resilience-enhancing investments (REI). Thus, as we consider system resilience, and design-for-
resilience in particular, it is important to incorporate all three elements: REI, SI and TRE, as they 
vary across some set of potential disruption scenarios. 
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Figure 2.  Recovery Effort Strategies, Costs and Effects of Pre-event Investment. 

 
In general, a system will have several performance metrics and SI measurement must include all the 
relevant performance dimensions. In some cases, the performance degradation will be measured as 
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an increase in costs (for operating and using the system, for example), and the measurement of SI 
will be the area above the nominal cost level, rather than below as shown in the example in Figures 1 
and 2. These variations are not conceptual differences, but simply reflect different performance 
measures that may be relevant in different situations. 
 
The specific infrastructure system of interest in this report is a distribution network where the SI 
measures include the additional costs of moving material through a degraded network and a set of 
penalty costs for not being able to meet all demand, in scenarios where that occurs. Recovery 
resources are limited, and in any given scenario, these resources must be allocated in the most 
effective way. Finally, several types of pre-event investment are available – to increase absorptive 
capacity, adaptive capacity and restorative capacity – and the optimization model trades off the costs 
of REI against the expected costs of SI and TRE in a range of scenarios. The following section 
describes the distribution network and its representation in the optimization model. 
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3. DISTRIBUTION NETWORK DESCRIPTION 
 
Consider a system that consists of a set of spatially separated distribution centers (DCs) and a set of 
customer locations that receive some product (or set of products) from the DCs. One obvious 
application of this structure is where the customers are retail stores that receive products from 
warehouses, but the structure could also represent electrical substations receiving power from 
generating stations, or municipal water systems receiving water from reservoirs. 
 
Index the customers by i and the DCs by j. Each customer has a demand qi, and each DC has a 
capacity Kj. The distance between customer i and DC j is dij. Under nominal conditions, each 
customer is connected to its nearest DC and its demand is met through that connection. Assume that 
the initial DC capacities are designed so that they can accommodate this operation, so that each DC 
has an initial capacity that equals the sum of the demands assigned to it. 
 
The focus in this analysis is on disruptions that create inoperability of one or more DC’s, and the 
ability of the system to continue to meet demands at the customer locations. The system design 
options available are: 

1) An opportunity to expand each DC, adding absorptive capacity to the system, allowing it to more 
easily weather the loss of one or more DCs; 

2) The ability to connect each customer to a single back-up DC, in the event that its primary DC is 
inoperable or runs out of capacity. In terms of the resilience assessment framework, this is an 
example of investment in adaptive capacity, as it allows the system to adapt to the loss of DC 
operation by reconfiguring the channels for movement of material; 

3) Investment in resources to allow faster recovery from a disruption – i.e., ability to restore lost 
capacity at the DCs more quickly. This is an example of investment in restorative capacity. 

The model is an optimization that considers all three types of potential pre-event investments, as 
well as the effects of post-event recovery decisions, and makes tradeoffs to determine an optimal 
allocation of overall resources to improve system resilience (i.e., minimize the total impact across a 
range of possible disruption scenarios). The likelihood that any scenario might occur is considered 
uncertain, so each scenario is assigned a likelihood of occurrence. For the sake of simplicity, we 
assume these probabilities are independent, but it should be noted that this assumption is reasonable 
for natural disaster types of disruptions. A network model described below estimates the impacts to 
the distribution system when one of the disruption scenarios is assumed to have occurred. 
 
An example of this problem type is shown in Figure 3, representing 39 customers spread throughout 
nine southeastern states in the United States, served by four DCs located in Memphis, TN; Nashville, 
TN; Knoxville, TN; and Atlanta, GA. Table 1 summarizes the customer locations, demand quantities 
and DC assignments. Note that each DC location is also a customer location (customers 36-39 in the 
list in Table 1). 
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Figure 3.  Example Distribution System Problem. 
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Table 1.  Customer Locations, Demands and DC Assignments 

Customer # City State Q Primary Assignment 
1 Opelika AL 25 Atlanta 
2 Huntsville AL 20 Nashville 
3 Muscle Shoals AL 110 Nashville 
4 Ormond Beach FL 137 Atlanta 
5 Hialeah FL 82 Atlanta 
6 Orlando FL 41 Atlanta 
7 Hartwell GA 61 Atlanta 
8 Sarepta LA 173 Memphis 
9 Brookhaven MS 115 Memphis 

10 Clarksville TN 219 Nashville 
11 Athens TN 45 Knoxville 
12 Livingston TN 28 Nashville 
13 Springfield TN 184 Nashville 
14 Smyrna TN 53 Nashville 
15 Galatin TN 32 Nashville 
16 Clinton TN 198 Knoxville 
17 Ripley TN 135 Memphis 
18 Lebanon TN 110 Nashville 
19 Jackson TN 172 Memphis 
20 Manchester TN 86 Nashville 
21 Lewisburg TN 146 Nashville 
22 Pulaski TN 166 Nashville 
23 Winchester TN 153 Nashville 
24 Pine Bluff AR 122 Memphis 
25 Fayetville AR 84 Memphis 
26 Paragould AR 32 Memphis 
27 Charleston SC 151 Atlanta 
28 Fort Mill SC 144 Knoxville 
29 Spartanburg SC 66 Knoxville 
30 Stanfield NC 70 Knoxville 
31 Fletcher NC 29 Knoxville 
32 Jefferson NC 136 Knoxville 
33 Burlington NC 99 Knoxville 
34 Hamptonville NC 145 Knoxville 
35 Newton NC 162 Knoxville 
36 Nashville TN 166 Nashville 
37 Memphis TN 107 Memphis 
38 Knoxville TN 124 Knoxville 
39 Atlanta GA 138 Atlanta 
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The DC capacities are set initially to just meet the total demand assigned (computed from the qi 
values in Table 1). The values are shown in Table 2. 
 

Table 2. DC loads and capacities.   
 

DC Nominal Demand 
and Capacity 

Nashville 1473 
Memphis 940 
Knoxville 1218 
Atlanta 635 
Total 4266 

 
We consider a set of disruption scenarios that describe different combinations of how the DCs are 
rendered nonfunctional. We formulate the model in a way to find both the design decisions and the 
recovery decisions that minimize an overall cost function. The costs include: 

 Pre-event costs (REI) for investing in absorptive, adaptive and restorative capacity to 
reduce the system impact of a disruption; 

 Post-event costs (SI and TRE) for: 
 Increased transportation associated with serving some customers from secondary DCs 
 Penalty costs for not meeting demand if insufficient capacity remains after the 

disruption 
 Costs of recovering the damaged capacity 
 Additional penalty costs for extreme outcomes (i.e., scenarios in which total system 

impact and recovery costs exceed some threshold). 
The post-event (scenario-specific) costs are weighted by the probabilities of the scenarios. 
 
The model formulation is built around eight sets of variables: 
 
  wj  =  additional initial capacity provided at DC j 
 

1 if customer is connected to DC

0 if notij

i j
z


 
  

 
R   =  additional restoration capacity investment (units/period) 
 

s
jtr   capacity at DC j that is restored in period t of scenario s  

 
s
jtU   cumulative capacity at DC j that is available in period t of scenario s  

 
s
ijtx   proportion of customer i demand that is served from DC j in period t of scenario s  

 
s
ity   proportion of customer i demand that is not met in period t of scenario s 
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sV   amount by which costs (systemic impact plus recovery costs) exceed a threshold G in 

scenario s. 
 
 
In addition, there are several parameters and data elements used in the model: 
 
   T  = total number of time periods considered 
 
   tB   =    available capability for restoration in period t  (units) 

 
   jc   = resource requirement for restoring one unit of capacity at DC j 

 
   jF   = unit cost of initial additional capacity at DC j 

 
   jK   = initial capacity of DC j  

 
   h    =    initial investment required for additional restorative capacity (per unit) 
 
   iq   = demand at customer i  

 
   ijd   = distance from DC j to customer i 

 
   sp   = probability of scenario s 
 
    G   = threshold on total cost that defines an extreme event 
 
   s

j     = fraction of capacity at DC j that remains available immediately after the  

    disruption represented in scenario s  
 
   *( )j i   =  index of the closest DC to customer i under nominal conditions. 

 
   , , , , ,          =  weighting coefficients. 
 
The optimization model formulation is as follows: 
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 

j j ij
j i j

s s s s
i ij ijt i it j jt

s i j t i t j t

s s s
j j jt

s j t

Min F w z hR

p q d x q y c r

p K w U V



  

 

 

 
   

 
 

    
 

 

      

 

   (1) 

 

 s.t.  0 , , ,s
ijt ijx z i j t s         (2) 

 

  2ij
j

z i         (3) 

 
  , *( ) 1i j iz i         (4) 

 

  1 , ,s s
ijt it

j

x y i t s         (5) 

 

  , ,s s
i ijt jt

i

q x U j t s        (6) 

 

   
1

1

, ,
t

s s s
jt j j j jU K w r j t s








        (7) 

 
  , ,s

jt j jU K w j t T s         (8) 

 

  ,s
jT j jU K w j s         (9) 

 

  s s s s
i ij ijt i it j jt

i j t i t j t

V q d x q y c r G s            (10) 

 
  ,s

j jt t
j

c r B R t s         (11) 

 
   0,1 ,ijz i j         (12) 

 
  , , , , , 0 , , ,s s s s s

j ijt it jt jtw x y r U V i j t s      (13) 

 
 
The objective (1) minimizes the sum of all costs considered in the model. The first line of the 
objective is the set of design-related costs incurred for capacity expansion (absorptive capacity), 
establishing back-up connections for customers to secondary DCs (adaptive capacity), and additional 
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capability for restoring capacity after a disruption (restorative capacity). The second line of the 
objective reflects the expected costs (across scenarios) of the movements from DCs to customers, 
plus the unmet demand costs, plus the costs of restoring capacity in damaged DCs. The coefficients 
 and  do the unit conversion to equivalent monetary units of the total transportation movements 
and the unmet demand values. The third line of the objective includes the expected penalties (across 
scenarios) for un-restored capacity and extreme scenario impacts. Each of these terms also has a 
weighting coefficient ( and , respectively). 
 
The objective separates the design-related costs (incurred for decisions made before any disruption 
scenario is experienced, and that are not adjustable within individual scenarios), and the expected 
value of post-event costs associated with variables that reflect the specifics of each disruption 
scenario. The first two lines of the objective function can be re-arranged to put it more clearly in the 
form of a sum of resilience-enhancing investment (REI), systemic impact (SI) and total recovery 
expenditure (TRE). The systemic impact in scenario s includes the increase in cost for movement of 
material, penalties for unmet demand (if any), and other costs associated with having un-restored 
capacity. These costs are measured relative to the cost in the nominal (base) case. In the nominal 
case, all demand is met, all installed capacity is operational and movements are from the closest DC 
to each customer, so if there are T periods in total, the total movement cost is: , *( )i i j i

i

T q d  . Thus, 

in scenario s, we can write the systemic impact, SI(s), as: 
 

  , *( )( ) s s s
i ij ijt i it j j jt i i j i

i j t i t j t i

SI s q d x q y K w U T q d                (14) 

 
 
Across the set of scenarios, the expected SI value is then: 
 

  ( )s

s

E SI p SI s       (15) 

 
The nominal case cost does not depend on the scenario, and since 1s

s

p  , equations (14) and (15) 

can be combined as follows:   
 

    , *( )
s s s s

i ij ijt i it j j jt i i j i
s i j t i t j t i

E SI p q d x q y K w U T q d   
 

      
 

      
    

(16) 

 
The initial investments include additional capacity at the DCs, investments in back-up connections, 
and investments to increase recovery resources available. These costs are not scenario-dependent 
and can be written as: 
 

 j j ij
j i j

REI F w z hR          (17) 

 
 The recovery costs are incurred after the disruption in each scenario. The expectation of these costs 
is: 
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  s s

j jt
s j t

E TRE p c r
 

  
 

  
      (18) 

 
 
The sum of equations (16)-(18) corresponds to the first two lines of the objective function (1), minus 
a constant (the nominal case cost: , *( )i i j i

i

T q d  ) which can be ignored in the optimization. The 

third line of eq. (1) contains some additional penalty terms that are discussed later. 
 
Constraint (2) says that movements from DC j to customer i cannot be made unless that customer is 
connected to the DC. Constraints (3) and (4) govern the creation of additional connections between 
DCs and customers. Constraint (4) specifies the primary connections as given, implying that the 
decisions made in the model are only for the secondary (backup) connections. Constraint (3) allows 
one back-up connection for each customer, but does not force these connections to be made. 
 
Constraint (5) defines the unmet demand for cases where customer i cannot be served. In this model, 
partial service to customer i is possible, and that service may be provided by a combination of the 
primary DC connection and the secondary connection. 
 
Constraints (6)-(9) represent the capacity evolution of DCs over time in each scenario. Figure 4 
illustrates what the model is representing for a specific scenario at a given DC. The DC has an initial 
capacity, K. A decision is made on investment in additional (absorptive) capacity, bringing the total 
to K + w. At an assumed time t = 0, the DC capacity is reduced to ( )K w  . In the numerical 

experiments done below, the value of    is always either 0 or 1, but in general we could use any 
value 0 1   , and Figure 4 is drawn with an intermediate value of  . 
 
 

Capacity

Time0 1 2 3 4

K

K + w

 (K + w)
r1

 
Figure 4.  Modeled Evolution of DC Capacity Over Time. 

 
During the first period, the DC operates with capacity ( )K w  , but restoration efforts may be 
undertaken that will increase capacity by a value r1 at the end of the first period. That capacity is 
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available during the second period, and further restoration efforts increase capacity by r2 at the end 
of the second period. This process continues, with restoration efforts in each period determined 
within the optimization. Constraint (7) defines the available capacity at DC j during period t in 
scenario s, denoted by s

jtU . This can be no greater than the initial augmented level K w  [constraint 

(8)], and the final level of capacity to which the DC is restored must be that level [constraint (9)]. 
 
In each period t, the available capacity at each DC (including all restoration undertaken in the first t 
– 1 periods) is used in an optimal way to distribute material to the various customers. Constraint (6) 
limits the material distributed from that DC to no more than the available capacity. 
 
Figure 5 illustrates the same restoration of DC capacity as in Figure 4, but the final increment of 
restoration is delayed from period 3 to period 4. When the restoration resources and capability are 
limited, such delays may be necessary, but if resources are available it is desirable that restoration be 
completed as early as possible. When the initial capacity in the system is greater than the nominal 
demand, the optimization could delay some capacity restoration to the end of the model run without 
incurring unmet demand penalties or forcing any customers to be served from sub-optimal DC 
locations. Constraint (9) forces the final capacity to be K + w, but constraints (8) and (9) don’t force 
the solution to restore all of the capacity as early as possible. However, this type of early recovery is 
desirable in the solution, so the first term in the third line of the objective function is there to produce 
that behavior. That term penalizes the difference between the final restored capacity (K + w) and the 
currently available capacity in period t. This difference is illustrated in Figure 5 (for period 2). By 
summing across time periods, this term is representing the area above the restored capacity step-
function and below the end value, K + w. By placing a small cost penalty on that area, the model is 
encouraged to produce the solution shown in Figure 4, rather than the solution shown in Figure 5, if 
recovery resources are available. 

Capacity

Time0 1 2 3 4

K

K + w

 (K + w)
r1

K + w – U2

 
Figure 5.  Delayed Restoration of DC Capacity. 

 
Constraint (11) reflects the resource constraint on the restoration activities in each period. A nominal 
capability to restore disrupted DC capacity (Bt) is available for each period (and may vary across 
periods). A first-stage design decision can be made to augment that capability by an amount R. The 
augmentation (purchased at unit cost h, in the objective function) is assumed to be available in all 
periods. Individual DC facilities may require different amounts of resources to restore one unit of 
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lost capacity (cj). Within each period, the available resources (Bt + R) can be allocated across various 
damaged DC’s, but the overall level of restoration activity is limited. 
 
Across some set of disruption scenarios, the total cost impact (SI + TRE) will vary, and if we attach 
probabilities to the different scenarios, we can construct a probability distribution of total impact. A 
conceptual version of such a distribution is shown in Figure 6. The version in Figure 6 is drawn as a 
continuous probability density function, and this may be appropriate in some circumstances. If we 
represent uncertainty in the model with discrete scenarios, the distribution of SI + TRE will be 
discrete, and should be drawn as a probability mass function, but this distinction is unimportant for 
the moment. 

Cost Impact (SI + TRE)

Prob (Cost Impact)

G

Vs

 
Figure 6.  Probability Distribution of Total Impact Across Scenarios, and Definition of Vs. 

 
The purpose of the optimization is to find a set of investment and operational decisions that shift this 
distribution to the left, resulting in smaller total impacts, and the model measures the expected value 
of this distribution in the objective function. However, we may also be particularly sensitive to 
extreme values in the right-hand tail of this distribution, representing a subset of scenarios which 
produce very large impacts (in general, with small probability). 
 
The variables Vs, and constraints (10) which define their values, create a means of placing special 
emphasis on reducing the extreme impact values. To implement this mechanism, we define an input 
parameter, G, that represents a threshold value of total impact for definition of what constitutes an 
extreme scenario. Constraints (10) require that if the system impact plus recovery effort in scenario s 
exceeds the value G, then Vs is defined as the amount of the difference. The values of Vs are 

penalized in the objective function (with non-negative weights, sp ). For each scenario, 0sV    
[see constraint (13)], so if the system impact plus recovery effort in a given scenario is less than G, 
the corresponding 0sV  . However, if the total impact exceeds G, constraint (10) forces Vs to 
measure the difference. The weights on the Vs terms in the objective function reflect both the 
probability of occurrence for the extreme scenarios and the overall relative weighting () of these 
large impacts relative to the expected value (which is still computed across all scenarios, extreme or 
not). 
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The combination of the input parameters  and G allows us to tune how sensitive the model is to 
extreme outcomes, by determining which outcomes are counted as extreme (G), and how heavily 
they are weighted (). 
 
Mathematically, the optimization model formulated in eqs. (1)-(13) is a mixed-integer linear 
programming (MILP) problem, because it contains both continuous and discrete decision variables. 
It is also a particular form of optimization formulation known as a two-stage stochastic programming 
problem because it contains scenarios whose occurrence is uncertain and represented by 
probabilities. Some of the variables in the problem are first-stage variables (i.e., determined before 
the scenario outcome is known), and others are second-stage variables (determined specifically in 
each scenario). The second-stage variables are sometimes called recourse variables, because their 
values are determined in each scenario, but are conditioned on the choices made in the first stage. A 
general discussion of stochastic programming models can be found in Kall and Wallace (1994) or 
Birge and Louveaux (1997). 
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4. COMPUTATIONAL EXPERIMENTS 
 
To explore various aspects of the model, five numerical experiments have been performed using the 
illustrative setting of four DCs and 39 customers described at the beginning of section 3. All 
experiments are based on a set of eleven different scenarios, corresponding to loss of all 
combinations of zero, one or two DC’s. Possible scenarios involving three or more DC outages are 
not considered in these experiments. The presumption in this example is that those scenarios have 
sufficiently low probability that it is not worth planning for them. Four of the five experiments focus 
on the scenarios, their relative likelihoods, and the effects of changes on the solutions produced by 
the optimization model. For these four experiments, the parameter () for including penalties on 
extreme costs has been set to zero, so the model is minimizing expected costs across the set of 
scenarios. In the fifth experiment, the term relating to extreme costs is introduced, and the effects 
that has on the model solution are illustrated. 
 
In all five experiments, input parameters in the model have been set as follows: 
 
   T    = 10  (total number of time periods considered) 
 
   tB   = 500   (nominal units of available restoration capability in each period t ) 

 
   jc   = 1  (unit requirement for restoring capacity at each DC) 

 
    h    = 300  (cost of augmenting restoration capability by one unit per period) 
 
   jF   = 100  (unit cost of initial additional capacity at each DC) 

 
        =   0.1  (weighting coefficient on ton-miles of movement) 
 
        =   500  (penalty coefficient for unmet demand) 
 
        =   4000   (fixed cost of additional DC-customer connection) 
 
        =   10   (weighting coefficient on un-restored capacity at disrupted DCs) 
 
        =  50   (cost conversion coefficient on restoration effort at disrupted DCs). 
 
Computations for all experiments reported here have been done using a commercial MIP solver, 
Lingo (version 12), (Lindo Systems, 2010). For the modest example solved here, the optimization 
problem has approximately 22,500 variables and 23,000 constraints, and a typical solution requires 
about 4 minutes of computation time on a laptop computer. As the problem size increases (larger 
network, more scenarios, more time periods), the computation times will also increase. 
 
In the first two experiments, the probability of the “no disruption” scenario (i.e., no DCs out of 
service) is set to zero. Thus, the analysis is based on an assumption that some disruption will occur, 
and the specified probabilities represent the relative likelihood of different types and magnitudes of 
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disruption. The analysis in these two experiments represents a perspective in which we’ve 
committed to preparing for various types of disruptions and want to decide how best to do that. In 
that instance, the “no disruption” scenario becomes irrelevant (even though there may be a large 
probability of no disruption occurring over any given planning horizon – e.g., a year). Table 3 shows 
the assumed scenario probabilities for experiment 1. The single-outage scenarios are assumed to be 
more likely than the dual outages, and disruption of the various DCs is assumed to be equally likely. 
 

Table 3.  Scenarios and Probabilities – Experiment 1 
Scenario Number Inoperable DC’s Probability 

1 Nashville 0.175 
2 Memphis 0.175 
3 Knoxville 0.175 
4 Atlanta 0.175 
5 Nashville, Memphis 0.05 
6 Nashville, Knoxville 0.05 
7 Nashville, Atlanta 0.05 
8 Memphis, Knoxville 0.05 
9 Memphis, Atlanta 0.05 

10 Knoxville, Atlanta 0.05 
11 No Disruption 0 

 
In experiment 2, the probabilities are adjusted geographically to make outages at the eastern DCs 
(Atlanta and Knoxville) more likely than disruption at the western DCs (Memphis and Nashville). 
The scenario probabilities are shown in Table 4. 
 

Table 4.  Scenarios and Probabilities – Experiment 2 
Scenario Number Inoperable DC’s Probability 

1 Nashville 0.117 
2 Memphis 0.117 
3 Knoxville 0.233 
4 Atlanta 0.233 
5 Nashville, Memphis 0.023 
6 Nashville, Knoxville 0.046 
7 Nashville, Atlanta 0.046 
8 Memphis, Knoxville 0.046 
9 Memphis, Atlanta 0.046 

10 Knoxville, Atlanta 0.093 
11 No Disruption 0 

 
Experiments 3 and 4 include the “no disruption” scenario with two different probabilities (0.7 and 
0.9) attached to it, representing an analysis that reflects expected value decision making when there 
is a relatively large probability that nothing happens to disrupt normal operations. In both of these 
experiments, the assumption of equally likely disruption at the various DC’s (from experiment 1) is 
maintained. Tables 5 and 6 illustrate the scenario probabilities for these experiments. 
 

Table 5.  Scenarios and Probabilities – Experiment 3 
Scenario Number Inoperable DC’s Probability 

1 Nashville 0.0525 
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2 Memphis 0.0525 
3 Knoxville 0.0525 
4 Atlanta 0.0525 
5 Nashville, Memphis 0.015 
6 Nashville, Knoxville 0.015 
7 Nashville, Atlanta 0.015 
8 Memphis, Knoxville 0.015 
9 Memphis, Atlanta 0.015 

10 Knoxville, Atlanta 0.015 
11 No Disruption 0.7 

 
Table 6.  Scenarios and Probabilities – Experiment 4 

Scenario Number Inoperable DC’s Probability 
1 Nashville 0.0175 
2 Memphis 0.0175 
3 Knoxville 0.0175 
4 Atlanta 0.0175 
5 Nashville, Memphis 0.005 
6 Nashville, Knoxville 0.005 
7 Nashville, Atlanta 0.005 
8 Memphis, Knoxville 0.005 
9 Memphis, Atlanta 0.005 

10 Knoxville, Atlanta 0.005 
11 No Disruption 0.9 

 
Figures 7-10 summarizes the absorptive capacity solutions (added DC capacity) in the four 
experiments. In experiment 1 (Figure 7), a total of 2494 units of capacity are added, and the 
additional capacity is allocated to make three of the four DC’s nearly equal in total capacity. The 
2494 units of additional capacity represents an increase of about 58%, and allows the system to 
absorb the capacity disruption in nearly all the scenarios with very little unmet demand. In 
experiment 2 (Figure 8), the total added capacity is somewhat smaller (2102 units), and the capacity 
additions are focused on the western DC’s (Nashville and Memphis) which have the smaller 
probability of disruption. 
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Figure 7.  . Summary of DC Capacity Added in Experiment 1. 

 

Nashville Memphis Knoxville Atlanta

Added Capacity 528 991 0 583

Initial Capacity 1473 940 1218 635

1473

940

1218

635

528 991

0 583

0

500

1000

1500

2000

2500

U
n
it
s 
o
f 
C
ap
ac
it
y

DC

 
 

Figure 8.  Summary of DC Capacity Added in Experiment 2. 
 
In experiment 3, where there is a relatively high probability of no disruption at all, the amount of 
added capacity is substantially smaller, 888 units, and focused in Atlanta and Memphis, as shown in 
Figure 9. In experiment 4 (Figure 10), where the probability of no disruption is 0.9, the optimal 
solution is to not add any absorptive capacity at all. The decrease in total added capacity from 
experiment 1 to experiment 3, and from experiment 1 to experiment 4, mirrors the decreasing 
likelihood of requiring it to absorb a disruption. In experiment 3, the added capacity is used to make 
the four DC’s have more nearly equal total capacity, as in experiment 1. This reflects the assumption 
that disruptions, should they occur, are equally likely at all DC’s. 
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Figure 9.  Summary of DC Capacity Added in Experiment 3. 
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Figure 10.  Summary of DC Capacity Added in Experiment 4. 
 
The pattern of secondary connections to customers in the four solutions is summarized in Table 7. 
For experiments 1 and 2, a total of 32 of the 39 customers have secondary connections established, 
but the specific connections created are not the same in the two experiments. In experiment 1, there 
is a clear cutoff based on demand volume – customers whose volume is 45 or higher have a 
secondary connection, and the seven smallest customers do not. In experiment 2, there is also a 
strong correlation with demand volume, but a few exceptions are made based on customer location 
because the probability of disruption is not the same for all DC’s. 
 
In experiment 3, where there is a 70% chance of no disruption at all, the number of back-up 
connections to customers is only 14, and these connections are generally made for the largest 
customers. The majority of the back-up connections are to Atlanta, and this is consistent with the 
investment in absorptive capacity at that DC, noted in Figure 9. 
 
In experiment 4, where no investment in absorptive capacity is made, so the DC’s all have capacity 
that just meets the nominal assigned demand, there are also no back-up connections made for 
adaptive capacity because in any disruption scenario the unaffected DC’s would have no additional 
capacity to handle extra demand. The joint decisions to make no investment in either absorptive 
capacity or adaptive capacity in this experiment reflect the very high probability of no disruption. 
 
It is also noteworthy that many of the back-up connections made in experiments 1-3 are not to the 
second closest DC for a given customer. Although using the next closest DC would appear to be a 
natural decision for each customer when considered independently, there are much more complex 
interactions of decisions across the network  �  where to invest in absorptive capacity, and how 
these decisions affect the creation of adaptive capacity.  This illustrates the importance of taking a 
system-wide perspective on the design of investments to enhance resilience. 
 
Figure 11 shows the amount of restorative capacity investment in each of the experiments. In 
experiment 1, the addition to capacity to allow more rapid restoration after disruptions is about 8% 
of the nominal value (250) assumed to exist a priori. In experiment 2, there is greater investment, 
equal to about a 23% increase in restoration capability. This should be viewed in concert with the 
decision in experiment 2 to invest less in adaptive capacity than in experiment 1. In experiment 2, it 
is more likely that disruptions will strike in the eastern part of the network (Knoxville and Atlanta), 
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so absorptive capacity is concentrated in the “safer” western DC’s, and is smaller in total than in 
experiment 1. However, there is larger investment in restorative capacity to allow disrupted DC’s to 
be brought back online more quickly and reduce total system impact that way. 
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Table 7.  Summary of Secondary Connections Established 

 Secondary Assignment 

# City State Q 
Primary 

Assignment

2nd 
Closest 

DC 
Exp. 1 Exp. 2 Exp. 3 Exp. 4 

1 Opelika AL 25 Atlanta Knoxville -- -- -- -- 
2 Huntsville AL 20 Nashville Atlanta -- -- -- -- 

3 Muscle 
Shoals AL 110 Nashville Memphis Memphis Memphis -- -- 

4 Ormond 
Beach FL 137 Atlanta Knoxville Nashville Nashville -- -- 

5 Hialeah FL 82 Atlanta Knoxville Memphis Memphis -- -- 
6 Orlando FL 41 Atlanta Knoxville -- Memphis -- -- 
7 Hartwell GA 61 Atlanta Knoxville Knoxville Nashville -- -- 
8 Sarepta LA 173 Memphis Nashville Atlanta Nashville Atlanta -- 
9 Brookhaven MS 115 Memphis Nashville Atlanta Atlanta -- -- 

10 Clarksville TN 219 Nashville Memphis Memphis Memphis Memphis -- 
11 Athens TN 45 Knoxville Atlanta Memphis Nashville -- -- 
12 Livingston TN 28 Nashville Knoxville -- -- -- -- 
13 Springfield TN 184 Nashville Knoxville Knoxville Memphis Knoxville -- 
14 Smyrna TN 53 Nashville Knoxville Atlanta -- -- -- 
15 Galatin TN 32 Nashville Knoxville -- -- -- -- 
16 Clinton TN 198 Knoxville Nashville Nashville Nashville Nashville -- 
17 Ripley TN 135 Memphis Nashville Knoxville Nashville Nashville -- 
18 Lebanon TN 110 Nashville Knoxville Knoxville Atlanta -- -- 
19 Jackson TN 172 Memphis Nashville Nashville Nashville Atlanta -- 
20 Manchester TN 86 Nashville Knoxville Knoxville Atlanta -- -- 
21 Lewisburg TN 146 Nashville Knoxville Atlanta Memphis -- -- 
22 Pulaski TN 166 Nashville Memphis Memphis Memphis Atlanta -- 
23 Winchester TN 153 Nashville Knoxville Atlanta Atlanta Atlanta -- 
24 Pine Bluff AR 122 Memphis Nashville Atlanta Atlanta -- -- 
25 Fayetville AR 84 Memphis Nashville Knoxville Nashville -- -- 
26 Paragould AR 32 Memphis Nashville -- -- -- -- 
27 Charleston SC 151 Atlanta Knoxville Knoxville Nashville Knoxville -- 
28 Fort Mill SC 144 Knoxville Atlanta Atlanta Atlanta Atlanta -- 
29 Spartanburg SC 66 Knoxville Atlanta Atlanta Atlanta -- -- 
30 Stanfield NC 70 Knoxville Atlanta Atlanta Atlanta -- -- 
31 Fletcher NC 29 Knoxville Atlanta -- -- -- -- 
32 Jefferson NC 136 Knoxville Atlanta Nashville Nashville Atlanta -- 
33 Burlington NC 99 Knoxville Atlanta Atlanta Nashville -- -- 
34 Hamptonville NC 145 Knoxville Atlanta Atlanta Nashville Atlanta -- 
35 Newton NC 162 Knoxville Atlanta Atlanta Nashville Atlanta -- 
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36 Nashville TN 166 Nashville Knoxville Atlanta Memphis Atlanta -- 
37 Memphis TN 107 Memphis Nashville Knoxville Atlanta -- -- 
38 Knoxville TN 124 Knoxville Nashville Nashville Nashville -- -- 
39 Atlanta GA 138 Atlanta Knoxville Nashville Nashville -- -- 
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Figure 11.  Restorative Capacity Investments in the Four Experiments. 
 
In experiments 3 and 4, when there is a substantial probability of no disruption, there is less 
investment in additional restorative capacity, and in experiment 4, none at all. This reflects the 
reduced likelihood that such capacity will be needed (and also the relative costs assumed in these 
experiments for the various types of resilience-enhancing investments, the costs of unmet demand, 
etc.). 
 
The results summarized in Figures 7-11, and in Table 7, reflect the design decisions for the network 
– those investments in the three types of enhancements to system resilience that allow the system to 
respond to a variety of potential disruption scenarios. In each scenario, there are also adaptation and 
recovery decisions that are made (within the limits created by the original design) to minimize the 
system impact and recovery effort. For example, in experiment 1, let us focus on scenario 5 
(Nashville and Memphis disrupted). For this experiment, there has been investment in absorptive 
capacity to increase the capability of all the DCs, so some of the customers normally served by 
Nashville and Memphis can be shifted to Atlanta and Knoxville. These shifts follow the pattern 
shown in Table 7, where secondary connections have been established (adaptive capacity). Some 
customers nominally served by Nashville or Memphis (e.g., customer 2) had no secondary 
connection established, so their demand is unmet until capacity can be restored at their original DC. 
Other customers (e.g., customer 3) did have secondary connections established, but to another DC 
that is disrupted. Their demand is also unmet until some capacity is restored at one or the other of the 
DCs to which they are connected. However, many of the customers nominally assigned to Nashville 
or Memphis have secondary connections to Atlanta or Knoxville, and these customers can be served 
(at least within the capacity established at Atlanta and Knoxville). 
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Table 8 shows the unmet demand in this scenario of experiment 1, summarized by customer location 
and time period. The unmet demand is concentrated in eight customer locations, four of which have 
no back-up connections. In the first period after the disruption, the total unmet demand is 779 units 
(approximately 18% of the total demand). During the first period, 521 units of capacity are restored 
(the capability created by the 500 units of nominal restoration capacity plus 21 units of additional 
restorative capacity in which initial investment was made), and the unmet demand in the second 
period falls to 258 units. By the third period, sufficient restoration has been accomplished to 
eliminate the unmet demand in the network.  
 
Figure 12 shows the restoration of capacity at Nashville and Memphis in this scenario. At Nashville, 
there is modest additional capacity investment initially (see Figure 7). The nominal initial capacity 
of 1473 is increased by 320 units, to 1793. After the capacity is lost in the disruption at t = 0, it is 
restored over six periods, with the original capacity of 1473 reached after five periods. At Memphis, 
there is a much larger initial investment in absorptive capacity, increasing the total capacity at the 
DC from 940 to 1480, an increase of approximately 57%. After the disruption, the restoration of the 
total capacity requires seven periods, but the original capacity of 940 is reached after four periods. 
The available recovery resources are divided between the two DCs in each period, although not 
necessarily equally. 
 

Table 8.  Unmet Demand in Scenario 5 of Experiment 1 
 Unmet Demand by Period 

Customer # City State Q 1 2 3 
2 Huntsville AL 20 20 20 0 
3 Muscle Shoals AL 110 110 110 0 

10 Clarksville TN 219 219 0 0 
12 Livingston TN 28 28 28 0 
15 Gallatin TN 32 32 0 0 
19 Jackson TN 172 172 100 0 
22 Pulaski TN 166 166 0 0 
26 Paragould AR 32 32 0 0 

Total 779 258 0 
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Figure 12.  Restoration of Capacity in Scenario 5 of Experiment 1. 

 



32 

In each experiment, there is a distribution of total impact (SI plus TRE) values across the various 
scenarios. For example, Figure 13 shows the distribution for experiment 1. The smaller impact 
values of (less than $1 million) are associated with the scenarios that have a single DC disrupted. 
The larger values correspond to the scenarios that involve two disruptions simultaneously. 
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Figure 13.  Probability Distribution of Total Impacts in Experiment 1. 
 
In these four experiments, no special weight is placed on scenarios that cause large impact values 
(i.e.,  = 0), but if that were changed and a value of G were specified at $1.4 million (for example), 
we could expect some changes in overall policy to reduce the likelihood and magnitude of the largest 
impacts. Experiment 5 implements values of G = $1.4 million and  = 2, with all other parameters 
identical to experiment 1. 
 
One of the principal results from experiment 5 is shown in Figure 14. Comparing Figure 14 with 
Figure 7, we see that when the extreme impacts are weighted more heavily, there is slightly more 
absorptive capacity added to the system (2632 units vs. 2494 units), but the pattern of investments is 
quite similar – bringing the four DCs up to essentially equal capacity. 
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Figure 14.  Capacity Additions in Experiment 5. 
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The total restorative capacity added in experiment 5 is also larger than in experiment 1 (75 units vs. 
21 units). The combination of larger absorptive capacity and larger restorative capacity allows faster 
recovery in the most disruptive scenarios, reducing the total impact cost below the threshold. The 
distribution of total impact across the scenarios for experiment 5 is shown in Figure 15. The range of 
impacts for the more severe scenarios (two DCs disrupted) has been reduced very significantly, with 
all six of those scenarios having nearly equal impacts. 
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Figure 15.  Distribution of Total Impact in Experiment 5. 
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5. CONCLUSIONS 
Increasing network resilience involves three related capabilities – providing absorptive capacity so 
that the network can withstand disruptions, providing adaptive capacity so that flows through the 
network can be accommodated via alternate paths, and providing restorative capacity so that 
recovery from a disruptive event can be accomplished quickly and at minimum cost. Resilience-
enhancing investments made prior to the occurrence of disruptive events are important complements 
to effective post-event recovery strategies and a design capability that considers these decisions 
jointly represents an important advance in tools available to infrastructure planners/managers. 
 
Distribution networks that move or transform materials to meet demands (including electric power, 
gas distribution, water supply, food production/processing/distribution, manufacturing supply chains, 
etc.) are an important class of infrastructure networks. The model in this report focuses on an 
example of such a network to illustrate several core ideas. 
 
This report describes a stochastic optimization model that addresses the design question: What 
capabilities, resources and/or network elements should be present to best provide network resilience 
against a variety of potential damage scenarios? This model includes design decisions that represent 
possible investments in absorptive capacity, adaptive capacity and restorative capacity 
simultaneously. By including potential investments in all three types of resilience-enhancing 
capacity, as well as the recovery strategy for a variety of disruption scenarios, we have a useful 
overall framework for examining design-for-resilience in infrastructure networks. 
 
Mathematically, the optimization model is a mixed-integer linear programming (MILP) problem, 
because it contains both continuous and discrete decision variables. It has the particular structure of a 
two-stage stochastic programming problem because it contains scenarios whose occurrence is 
uncertain and represented by probabilities. Some of the variables in the problem are first-stage 
variables (i.e., determined before the scenario outcome is known), and others are second-stage 
variables (determined specifically in each scenario). 
 
A series of computational experiments on a test network with four distribution centers and 39 
customer locations has allowed exploration of the behavior of network solutions as important 
parameters of the problem are varied. This small set of experiments is intended to illustrate basic 
properties of the solutions, but is not intended to be comprehensive. A wide variety of other 
numerical experiments could be done with the model. 
 
Computations for all experiments reported here have been done using a commercial MILP solver. 
For the modest example solved here, the optimization problem has approximately 22,500 variables 
and 23,000 constraints, and a typical solution requires about 4 minutes of computation time on a 
laptop computer. As the problem size increases (larger network, more scenarios, more time periods), 
the computation times will also increase, and this provides motivation for exploring specialized 
solution methods that might better take advantage of the problem structure. 
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