

Annual Report of Groundwater Monitoring at Centralia, Kansas, in 2011

Environmental Science Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report

reports@adonis.osti.gov

This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.

Annual Report of Groundwater Monitoring at Centralia, Kansas, in 2011

by

Applied Geosciences and Environmental Management Section Environmental Science Division, Argonne National Laboratory

June 2012

Contents

No	otation	1		v
1	Intro	duction	and Background	1-1
2	Sam	pling ar	nd Analysis Activities	2-1
	2.1 2.2 2.3 2.4	Monite Handli	rement of Groundwater Levels oring Well and Piezometer Sampling and Analyses ing and Disposal of Investigation-Derived Waste y Control for Sample Collection, Handling, and Analysis	2-1 2-1 2-2 2-2
3	Resu	lts and	Discussion	3-1
	3.1 3.2		dwater Level Data dwater Analysis Results Sitewide Monitoring Results Monitoring Results for the IM Pilot Test Area	3-1 3-1 3-2 3-3
4	Cond	clusions	and Recommendations	4-1
	4.1 4.2		usions mendations	4-1 4-3
5	Refe	rences.		5-1
Ap	pendi	x A: S	Sequence of Sampling Activities in 2011	A-1
Ap	pendi	x B: (Quality Control Data Summary	B-1
Ap	pendi	x C: 7	Time Series Diagrams for Selected Parameters at IM Monitoring Points	C-1
Su	pplem	nent 1:	Waste Characterization and Disposal Documentation	on CD
Su	pplem	nent 2:	Data Summaries for Verification VOCs Analyses by TestAmerica Laboratories, Inc.	on CD

Tables

3.1	Hand-measured water levels in 2011	3-6
-----	------------------------------------	-----

3.2	Analytical results from the AGEM laboratory for volatile organic compounds in groundwater samples collected from the sitewide monitoring points, August 2004 to October 2011	3-7
3.3	Field measurements for groundwater samples collected from the sitewide monitoring points, August 2004 to October 2011	3-11
3.4	Analytical results from the AGEM laboratory for volatile organic compounds in groundwater samples collected from the IM pilot test monitoring points, September 2008 to October 2011	3-15
3.5	Field measurements for groundwater samples collected from the IM pilot test monitoring points, September 2008 to October 2011	3-17
A.1	Sequence of sampling activities at Centralia in 2011	A-2
B.1	Analytical results from the AGEM Laboratory for quality control samples collected in 2011	B-2
B.2	Analytical results for verification groundwater samples from the AGEM Laboratory and TestAmerica	B-3

Figures

1.1	Currently approved annual sitewide monitoring network	1-3
1.2	Pilot test monitoring points currently approved for annual or twice-yearly sampling	1-4
3.1	Potentiometric surface, based on water levels measured manually on April 19, 2011	3-19
3.2	Potentiometric surface, based on water levels measured manually on September 29-October 1, 2011	3-20
3.3	Carbon tetrachloride concentrations in groundwater in the sitewide monitoring wells sampled in September-October 2011, with the interpreted lateral extent of the contaminant at intervals since August 2004	3-21
3.4	Carbon tetrachloride in groundwater samples collected during the pre-injection baseline sampling, September and November 2007	3-22
3.5	Field-measured results for DO in groundwater samples collected during the pre-injection baseline sampling, September and November 2007	3-23

3.6	Field-measured results for ORP in groundwater samples collected during the pre-injection baseline sampling, September and November 2007	3-24
3.7	Analytical results for carbon tetrachloride in groundwater samples collected in September 2010 and September-October 2011 at the IM pilot test monitoring points	3-25
3.8	Field-measured results for DO in groundwater samples collected in September 2010 and September-October 2011 at the IM pilot test monitoring points	3-26
3.9	Field-measured results for ORP in groundwater samples collected in September 2010 and September-October 2011 at the IM pilot test monitoring points	3-27
C.1	Analytical results for VOCs, DO, and ORP in groundwater samples collected at location MW02, November 2007 to October 2011	C-2
C.2	Analytical results for VOCs, DO, and ORP in groundwater samples collected at location PMP1, January 2008 to October 2011	C-3
C.3	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB2 and PMP2, November 2007 to October 2011	C-4
C.4	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB3 and PMP3, November 2007 to October 2011	C-5
C.5	Analytical results for VOCs, DO, and ORP in groundwater samples collected at location PMP4, January 2008 to October 2011	C-6
C.6	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB5 and PMP5, November 2007 to October 2011	C-7
C.7	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB6 and PMP6, November 2007 to October 2011	C-8
C.8	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB7 and PMP7, November 2007 to October 2011	C-9
C.9	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB8 and PMP8, November 2007 to October 2011	C-10
C.10	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB9 and PMP9, November 2007 to October 2011	C-11

Notation

AGEM	Applied Geosciences and Environmental Management
AMSL	above mean sea level
BGL	below ground level
°C	degree(s) Celsius
CAS	Corrective Action Study
CCC	Commodity Credit Corporation
CD	compact disc
COC	chain of custody
DO	dissolved oxygen
EPA	U.S. Environmental Protection Agency
ft	foot (feet)
IM	interim measure
in.	inch(es)
ISCR	in situ chemical reduction
KDHE	Kansas Department of Health and Environment
L	liter(s)
µg/L	microgram(s) per liter
µS/cm	microsiemen(s) per centimeter
mg/L	milligram(s) per liter
mi	mile(s)
mV	millivolt(s)
ORP	oxidation-reduction potential
RBSL	risk-based screening level
TOC	top of casing
USDA	U.S. Department of Agriculture
VOC	volatile organic compound
yr	year(s)

Annual Report of Groundwater Monitoring at Centralia, Kansas, in 2011

1 Introduction and Background

Periodic sampling is performed at Centralia, Kansas, on behalf of the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) by Argonne National Laboratory, in accord with the current interim monitoring program approved by the Kansas Department of Health and Environment (KDHE 2009). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater sitewide (Argonne 2003, 2004, 2005a), as well as the response to the interim measure (IM) pilot test that is in progress (Argonne 2007b).

An earlier monitoring plan (Argonne 2005b) was also approved by the KDHE (2005). Under this earlier plan, the groundwater was sampled twice yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation processes (reductive dechlorination) in the subsurface environment (Argonne 2006, 2007a, 2008a). The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 μ g/L for this compound, in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was talking place *in situ* at the former CCC/USDA facility on a localized scale.

After two years of monitoring under the earlier plan, the CCC/USDA developed an *Interim Measure Conceptual Design* (Argonne 2007b), proposing a pilot test of the Adventus EHC technology for *in situ* chemical reduction (ISCR). The proposed IM was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the pilot test occurred in November-December 2007. The objective was to create highly reducing conditions that would enhance both chemical and biological reductive dechlorination in the injection test area (Argonne 2009a).

The KDHE (2008a) requested that sitewide monitoring continue until a final remedy is selected and implemented. In response to this request, the established sampling across the site and additional sampling in the IM pilot test area continued in 2008 (Argonne 2008b, 2009a,b).

On the basis of results of the 2005-2008 sitewide monitoring and the 2008 IM pilot test monitoring, the CCC/USDA recommended a revised sampling program for both the wider site and the IM pilot test area (Section 4.2 in Argonne 2009b). The elements of this *interim monitoring plan* are currently as follows:

- Annual sampling of
 - Twelve monitoring points across the site (Figure 1.1) and
 - Five outlying IM pilot test monitoring points (PMP4, PMP5, PMP6, PMP7, PMP9; Figure 1.2).
- Twice yearly sampling of five IM pilot test monitoring points inside the injection area (PMP1-PMP3, PMP8, MW02; Figure 1.2).

With the approval of the KDHE (2009), groundwater sampling for VOCs and geochemical analyses under the current interim monitoring plan was previously conducted in 2009 and 2010 (Argonne 2010, 2011). The present report documents the findings of the 2011 monitoring events, conducted on April 19 and September 29-October 1, 2011.

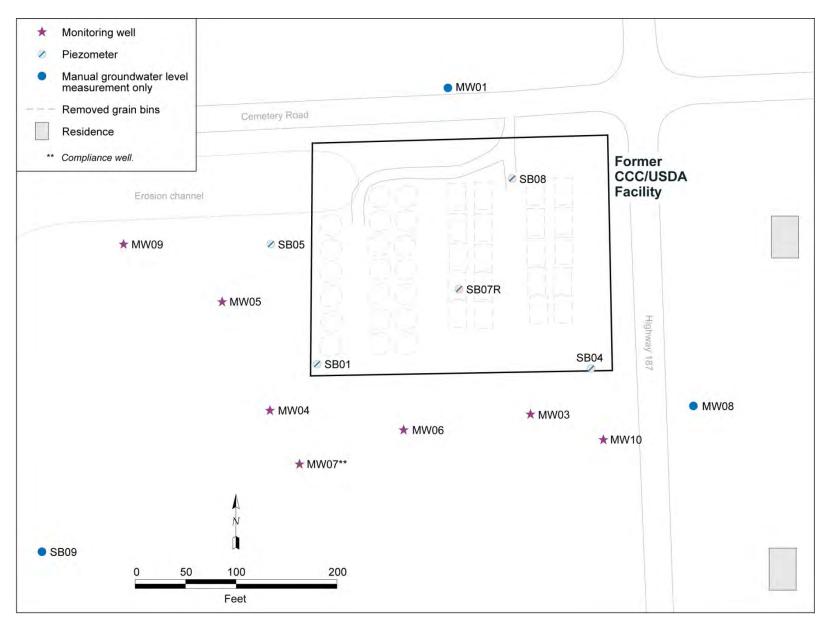


FIGURE 1.1 Currently approved annual sitewide monitoring network.

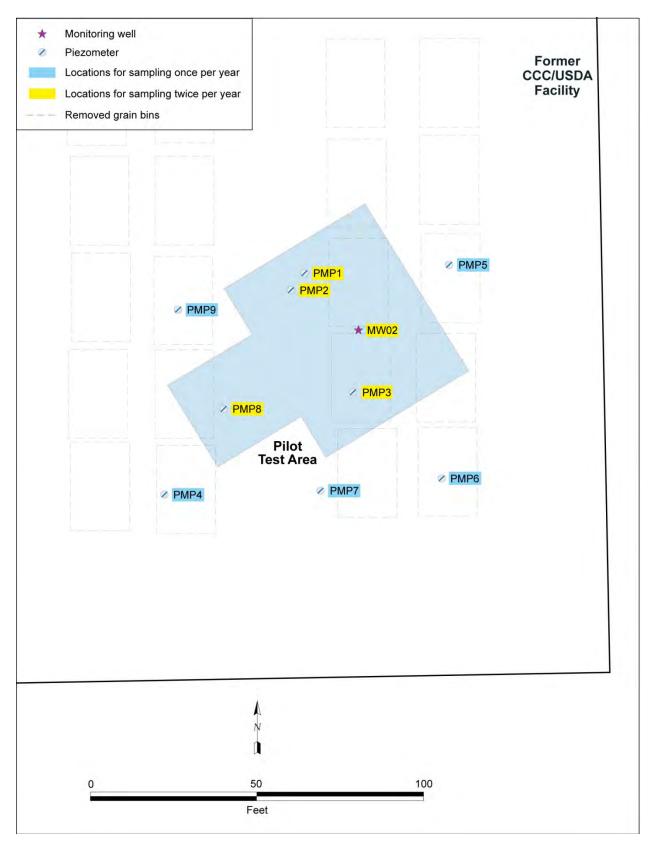


FIGURE 1.2 Pilot test monitoring points currently approved for annual or twice-yearly sampling.

2 Sampling and Analysis Activities

2.1 Measurement of Groundwater Levels

Pilot test monitoring points PMP1-PMP3, PMP8, and MW02 (Figure 1.2) were sampled on April 19, 2011. Pilot test monitoring points PMP1-PMP9 and MW02 (Figure 1.2) and sitewide monitoring points MW03-MW07, MW09, MW10, SB01, SB04, SB05, SB07R, and SB08 (Figure 1.1) were sampled on September 29-October 1, 2011. In conjunction with these sampling events, a water level indicator was used to measure the depth to groundwater (prior to sampling) from the top of the well casing at each sampled IM monitoring point (Figure 1.2), as well as in all of the sitewide monitoring wells (Figure 1.1). The groundwater level data are presented and discussed in Section 3.1.

Automated measurement of the groundwater levels at Centralia was initiated in April 2002 and continued in selected wells until 2010 (Argonne 2011). The results of this program, in conjunction with periodic manual determinations of the water levels in all available monitoring points, demonstrated long-term consistency in both the groundwater levels and the interpreted patterns of groundwater flow across the investigation site. In light of these findings, automated measurement of the groundwater levels was terminated in 2010 (Argonne 2011).

2.2 Monitoring Well and Piezometer Sampling and Analyses

After manual measurement of water levels, each monitoring point was purged of a small volume by using a bladder pump or a Waterra pump. With the approval of the KDHE (2008b), the purging was performed by using low-flow techniques in accord with U.S. Environmental Protection Agency (EPA) procedure EPA/540/S-95/504 (Puls and Barcelona 1996) and the equipment manufacturers' instructions. Field measurements of temperature, pH, conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) were taken during purging until the measurements stabilized. Field measurements of iron(II) were made as outlined in the (2005-2007) monitoring plan (Argonne 2005b), in accord with procedures in the *Master Work Plan* (Argonne 2002). The sequence of activities during the April and September 2011 sampling events is summarized in Appendix A, Table A.1.

Groundwater samples designated for VOCs analyses were collected in appropriate laboratory containers, labeled, packaged, and chilled to 4°C by placement in ice-filled coolers. The samples were shipped by an overnight delivery service to the Applied Geosciences and Environmental Management (AGEM) Laboratory at Argonne for VOCs analyses by EPA Method 524.2 (EPA 1995). Aliquots of selected samples (chosen in the field) were also shipped to TestAmerica Laboratories, Inc., South Burlington, Vermont, for verification VOCs analyses.

The analytical results for groundwater samples are discussed in Section 3.2.

2.3 Handling and Disposal of Investigation-Derived Waste

Purge water generated as potentially contaminated investigation-derived waste was containerized on-site. The accumulated purge water was sampled on October 31, 2011 (along with wastewater from several other CCC/USDA sites in Kansas). The water was analyzed by Pace Analytical Services, Inc., Lenexa, Kansas, for VOCs on November 4 by EPA Method 5030/8260; for ethylene dibromide on November 8 by EPA Method 504.1; and for nitrate/nitrite nitrogen on November 2 by EPA Method 353.2. Carbon tetrachloride was detected at $1.3 \mu g/L$. Nitrate/nitrite nitrogen was present at 4.4 mg/L. Ethylene dibromide was not detected. The laboratory results are in Supplement 1, on the compact disc (CD) inside the back cover of this report. The water was delivered on December 19, 2011 (together with purge water from several other CCC/USDA investigation sites in Kansas), for disposal at the Sabetha publicly owned wastewater treatment plant.

2.4 Quality Control for Sample Collection, Handling, and Analysis

Quality assurance/quality control procedures followed during the April and September 2011 monitoring events are described in detail in the *Master Work Plan* (Argonne 2002). The results are summarized as follows:

• Sample collection and handling activities were monitored by the documentation of samples as they were collected and the use of chain-of-custody forms and custody seals to ensure sample integrity during handling and shipment.

- Samples designated for VOCs analyses were received with custody seals intact and at the appropriate preservation temperature. All samples were analyzed within the required holding times.
- Quality control samples collected to monitor sample handling activities (equipment rinsates and trip blanks; Table B.1 in Appendix B) and method blanks analyzed with the samples to monitor analytical methodologies were all free of carbon tetrachloride and chloroform contamination.
- Groundwater samples were analyzed for VOCs at the AGEM Laboratory with the purge-and-trap method on a gas chromatograph-mass spectrometer system (modified EPA Method 524.2 [EPA 1995]). Calibration checks with each sample delivery group were required to be within ±20% of the standard. Surrogate standard determinations performed on samples and blanks were within the specified range of 80-120% for all samples, in either the initial analysis or a successful reanalysis. Accuracy and precision of the analytical methodology was evident in the analysis of 3 replicate samples and duplicate analysis of 4 additional samples, with average relative percent difference values of approximately 2% between the initial analysis and the associated quality control analysis for both carbon tetrachloride and chloroform (Table B.1 in Appendix B). The groundwater analytical data from the AGEM Laboratory are acceptable for quantitative determination of contaminant distribution.
- In accordance with the quality control procedures defined in the *Master Work Plan* (Argonne 2002), the analyses of water samples at the AGEM Laboratory were verified by a second laboratory. Two groundwater samples collected during the April 2011 monitoring event (from MW02 and PMP3) and three samples from the September-October 2011 event (from MW04, PMP6, and PMP9) were submitted to TestAmerica for verification organic analysis according to EPA Contract Laboratory Program methodology (EPA Method SOM01.2 for trace volatiles). The results (Table B.2 in Appendix B) showed good agreement over the range of contaminant concentrations detected, with average relative percent difference values of < 20% for both carbon tetrachloride and chloroform. The detection of methylene chloride, a</p>

secondary dechlorination by product of carbon tetrachloride, was confirmed in the verification analyses. The verification organic analyses from TestAmerica are in Supplement 2 (on CD).

3 Results and Discussion

3.1 Groundwater Level Data

Depths to groundwater were measured manually in the sitewide monitoring wells, plus wells MW01, MW08, and SB09 (Figure 1.1), and in the IM monitoring points sampled on April 19 and September 29-October 1, 2011 (Figure 1.2). The hand-measured water level data are in Table 3.1. The potentiometric surfaces determined from these sets of measurements are depicted, respectively, in Figures 3.1 and 3.2.

The recent results are consistent with previous interpretations (Argonne 2006, 2007a, 2008a,b, 2009b, 2010, 2011), indicating an apparent groundwater flow direction toward the southwest across much of the former CCC/USDA facility. Like previous depictions, Figures 3.1 and 3.2 indicate that groundwater flow appears focused toward a localized low in the potentiometric surface, defined by the water level measurements at SB01, MW04, MW06, and MW07. Argonne's earlier investigations (Argonne 2003, 2004) suggested that the increased hydraulic gradients observed near these wells are a reflection of relatively low-permeability silts and clays that compose the aquifer unit in this portion of the study area, in comparison to the coarser-grained deposits identified in the northern and eastern portions of the site. The results of the sitewide groundwater analyses discussed in Section 3.2.1 support an interpretation of slow groundwater flow (and carbon tetrachloride migration) to the south-southwest, in keeping with the observed water level patterns.

3.2 Groundwater Analysis Results

In September-October 2011, sitewide groundwater sampling was performed, with the approval of the KDHE (2009), in a suite of 12 monitoring points (Figure 1.1). More detailed sampling in the IM pilot test area was conducted in April and September-October 2011, in the wells identified in Figure 1.2. The results of the 2011 sitewide (September-October) and IM pilot test area (April and September-October) monitoring efforts are summarized, respectively, in Section 3.2.1 and Section 3.2.2.

3.2.1 Sitewide Monitoring Results

The analytical data for VOCs in the groundwater samples collected in the network of sitewide monitoring wells in September-October 2011 are in Table 3.2, together with data generated since sampling of the monitoring wells began in 2004. The September 2011 sitewide data for carbon tetrachloride are illustrated in Figure 3.3, along with the lateral margins of the contaminant distribution, as interpreted on the basis of each of the sitewide groundwater sampling events summarized in Table 3.2.

Carbon tetrachloride was detected in September-October 2011 at 9 of the 12 sitewide monitoring locations on and downgradient from the former CCC/USDA facility (Figure 3.3), at concentrations ranging from 3.1 μ g/L (at MW04) to a maximum of 276 μ g/L (at SB01). Chloroform concentrations ranging from <1 μ g/L to 22 μ g/L were detected at 6 of the 12 sampled locations (Table 3.2).

The carbon tetrachloride concentrations identified in the sitewide monitoring wells in 2011 were generally comparable to the measurements obtained in the previous (2010) monitoring period, except at well SB05, where the concentration decreased from $374 \ \mu g/L$ in 2010 to 245 $\mu g/L$ in 2011. These results reversed an apparently increasing trend at SB05 from 2004 to 2010. Minor decreases in carbon tetrachloride concentrations were also observed at monitoring points SB01 and MW05, in the apparent direction of groundwater flow near the west margin of the groundwater plume. These results indicate no detectable expansion of the contaminant distribution in this area in 2011. The results in Table 3.2 and Figure 3.3 continue to reflect, however, the trend (observed since 2004) of slightly increasing carbon tetrachloride levels at monitoring point MW03, along the southeastern margin of the groundwater plume. The concentrations at locations SB07R and SB08 in the more central part of the plume showed little change in 2011.

The results of field measurements on the groundwater samples from wells in the sitewide monitoring network are summarized in Table 3.3. The presence of trace to relatively low levels of chloroform at most of the monitoring points having detectable levels of carbon tetrachloride (Table 3.2) suggests that some degradation of carbon tetrachloride is occurring at these locations. The relatively high DO concentrations (3.11-10.45 mg/L) and positive ORP levels (76 mV to 243 mV) identified at the sitewide monitoring points (Table 3.3) do not, however, support the

widespread occurrence of anaerobic reducing conditions in the Centralia aquifer outside the treatment area.

Table 3.3 documents erratic fluctuations in DO concentrations and ORP levels at monitoring well MW06 since 2004. The low DO concentrations (< 1 mg/L) and negative ORP values (-96 mV and -72 mV, respectively) at MW06 in September 2008 and October 2009 (Table 3.3) were interpreted as possibly suggesting the transient development of increasingly anaerobic reducing conditions at this location (Section 3.2.1 in Argonne 2010); however, these results were not reproduced in 2010 or 2011.

3.2.2 Monitoring Results for the IM Pilot Test Area

Baseline groundwater sampling was conducted within and adjacent to the IM pilot test area in September and November 2007, prior to the injection of the ISCR materials, to provide a basis for assessment of the ISCR treatment technology over time. The pre-treatment concentrations of carbon tetrachloride and the values of DO and ORP identified during this sampling (Argonne 2009a) are illustrated in Figures 3.4-3.6, respectively.

Injection of the ISCR materials in November-December 2007 initially generated extremely reducing, oxygen-depleted groundwater conditions (conducive to the reductive dechlorination of carbon tetrachloride) in the injection field. Less dramatic reductions in DO and ORP were observed at monitoring points outside the treatment area. The extremely low DO and ORP levels were, however, maintained for only approximately 5-7 weeks after injection. Subsequent monitoring in 2008 (Argonne 2009a,b) demonstrated that the DO and ORP levels remained consistently lower in the injection field than outside that area, but the results showed no clear indication of geochemical effects outside the injection field.

Reductions of 96-99% in the concentrations of carbon tetrachloride in groundwater in the injection field and of 20-70% at most monitoring points near the injection area were observed in the first 5-7 weeks after injection. Continued monitoring in 2008 showed that carbon tetrachloride concentrations in the injection field generally remained near the initial post-injection levels or decreased slightly more, while the concentrations at points bordering or outside the injection area showed little consistency and variably decreased, increased, or

remained relatively unchanged (Argonne 2009a) after the initial 5-7 weeks following the injection.

The analytical data for VOCs in the groundwater samples collected from the IM pilot test monitoring points (PMP1-PMP9 and MW02; Figure 1.2) in April and September-October 2011 are in Table 3.4, together with data collected at these locations since September 2008. The corresponding field measurements for these locations and sampling events are in Table 3.5. Time series diagrams summarizing the complete sequence of analysis results for carbon tetrachloride, chloroform, methylene chloride, DO, and ORP at each IM monitoring point since ISCR pilot test implementation in November 2007 are in Appendix C, Figures C.1-C.10.

Carbon tetrachloride was detected at 3 of the 5 pilot test area locations sampled in April 2011 and at 7 of the 10 locations sampled in September-October 2011. In April 2011, carbon tetrachloride concentrations ranging from < 1 μ g/L to 317 μ g/L were identified at PMP1, PMP2, and PMP3. In September-October 2011, concentrations ranging from 27 μ g/L (at PMP4) to 600 μ g/L (at PMP5) were detected at piezometers PMP1, PMP2, PMP4-PMP7, and PMP9 (Table 3.4). No carbon tetrachloride was detected at monitoring points MW02 and PMP8 during either 2011 sampling event.

The results of the September 2010 and September-October 2011 analyses for carbon tetrachloride are compared in Figure 3.7. At location PMP5, the carbon tetrachloride concentration in groundwater decreased from 779 μ g/L in 2010 to 600 μ g/L in 2011. The concentrations at the other locations changed little or increased slightly during this period. The graphs in Figures C.1-C.10 in Appendix C illustrate the trends in carbon tetrachloride concentrations in 2008-2011 at the IM monitoring locations. The scales on the vertical axes vary among the graphs, reflecting higher and lower VOCs concentrations at the various monitoring points.

The recorded carbon tetrachloride concentrations at monitoring point PMP1, in the injection field, have varied since 2008 (Table 3.4 and Appendix C, Figure C.2) in a pattern suggesting a long-term decrease with higher concentrations in the fall than in the spring. No indication of a seasonal influence in the carbon tetrachloride concentrations has been identified at any other IM monitoring point, including immediately adjacent well PMP2 (Figure 3.7).

The DO concentrations and ORP levels identified in the pilot test area in September 2010 and September-October 2011 are summarized in Table 3.5 and Figures 3.8 and 3.9, respectively. The ORP levels (Figure 3.9) at most of the IM monitoring points were relatively stable or decreased slightly from 2010 to 2011, with the most significant decreases occurring within the injection field at points PMP1-PMP3 and PMP8. Consistently lower (and predominantly negative) ORP values have persisted in the injection field relative to monitoring points outside this area. These observations demonstrate a continuing localized influence of the ISCR treatment. Similarly, DO concentrations have remained consistently lower, although somewhat more variable, in the injection field than at nearby locations outside this area (with the possible exception of PMP7; Table 3.5, Figure 3.8, and Figures C.1-C.10).

Additional evidence of the persistence of the ISCR material in the injection field is the continued observation of gray color and unpleasant odor in some groundwater samples, though the number of affected samples and the intensity of the color and odor have diminished since the initial observations after injection (Argonne 2009a).

Relatively high levels of chloroform ($\geq 10\%$ of the carbon tetrachloride concentrations; Table 3.4 and graphs in Appendix C) were observed at PMP1, PMP2, and PMP7 in 2011. Methylene chloride ($\leq 6\%$ of the carbon tetrachloride concentrations) was detected at PMP2 and PMP7 at values of 1.1 µg/L and 5.8 µg/L, respectively, during the September 2011 sampling event. The level of methylene chloride in PMP7 exceeds the KDHE Tier 2 RBSL value of 5.0 µg/L. Chloroform and methylene chloride are both breakdown products of carbon tetrachloride. Together, these findings indicate that geochemical conditions favorable to the reductive dechlorination of carbon tetrachloride persist in and (to an extent) downgradient of the pilot test area as a result of the November 2007 ISCR injections.

Data discussed previously (Argonne 2010) indicated that DO and ORP values decreased from September 2008 to October 2009 at monitoring points PMP4, PMP6, PMP7, and PMP9 immediately to the south, west, and downgradient of the pilot test injection field. Slightly lower concentrations of carbon tetrachloride were also identified at PMP4 and PMP7 in October 2009 (Table 3.4). These relationships suggested slow expansion of the range of influence of the ISCR treatment technology with time, in the direction of natural groundwater flow to the southwest. Additional monitoring in the pilot test area might support this hypothesis, though the suggestion of coupled geochemical and concentration trends cannot be substantiated on the basis of the 2011 and 2010 results alone.

		April 19	, 2011 ^a	September 2 201	
Well	Top of Casing Elevation ^b (ft AMSL)	Depth to Groundwater ^c (ft TOC)	Groundwater Elevation (ft AMSL)	Depth to Groundwater ^c (ft TOC)	Groundwater Elevation (ft AMSL)
MW01 MW02 MW03 MW04 MW05 MW06 MW07 MW08 MW09 MW10 SB01 SB01 SB04 SB05 SB07R SB08 SB07R SB08 SB09 PMP1 PMP2 PMP3 PMP4 PMP5 PMP6	1329.17 1334.67 1334.51 1322.57 1317.97 1329.63 1324.76 1332.34 1310.41 1334.39 1325.15 1335.67 1321.28 1331.57 1332.48 1311.07 1333.70 1333.67 1334.57 1334.57 1331.99 1335.07 1335.19	12.48 20.96 20.68 23.85 8.86 35.76 27.24 18.47 NR ^d 20.52 18.65 21.82 10.73 17.72 18.62 5.40 19.96 20.11 20.78	1316.69 1313.71 1313.83 1298.72 1309.11 1293.87 1297.52 1313.87 1306.50 1313.85 1310.55 1313.85 1313.85 1313.86 1305.67 1313.74 1313.56 1313.79	11.75 21.93 21.35 24.55 13.65 36.76 29.56 19.78 6.23 21.89 20.28 22.72 13.33 19.63 19.66 9.32 21.38 21.38 21.38 NR 0.83 22.77 21.97	1317.42 1312.74 1313.16 1298.02 1304.32 1292.87 1295.20 1312.56 1304.18 1312.50 1304.87 1312.95 1307.95 1311.94 1312.82 1301.75 1312.32 1312.29 1331.16 1312.30 1313.22
PMP6 PMP7 PMP8 PMP9	1334.06 1332.94 1331.83	20.31	1312.63	21.97 21.47 20.32 17.97	1312.59 1312.62 1313.86

TABLE 3.1 Hand-measured water levels in 2011.

^a Measurements made during sampling.

- ^b 2009 surveyed elevations.
- ^c Depths measured from the top of casing (TOC).

^d No measurement recorded.

TABLE 3.2 Analytical results from the AGEM Laboratory for volatile organic compounds in groundwater samples collected from the sitewide monitoring points, August 2004 to October 2011.

				Concentration (µg/L)			
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride	
MW01	54.5-64.5	CNMW01-W-16158 CNMW01-W-19276 CNMW01-W-16308 CNMW01-W-19890 CNMW01-W-22501	8/24/04 9/10/05 10/11/05 3/15/06 9/25/06	ND ^a ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	
		CNMW01-W-16326 CNMW01-W-16228 CNMW01-W-26023 CNMW01-W-26673	3/29/07 9/26/07 3/19/08 9/9/08	ND 1.0 R ^b ND ND	ND ND ND ND	ND ND ND ND	
MW02 ^c	49.5-59.5	CNMW02-W-16159 CNMW02-W-19282 CNMW02-W-16309 CNMW02-W-19908 CNMW02-W-22508 CNMW02-W-15489 CNMW02-W-16227	8/26/04 9/11/05 10/12/05 3/16/06 9/26/06 3/26/07 9/26/07	215 776 528 847 1233 829 1138	6.2 33 21 21 25 14 18	ND ND ND ND ND ND	
MW03	50.5-60.5	CNMW03-W-16178 CNMW03-W-19277 CNMW03-W-16310 CNMW03-W-19909 CNMW03-W-22513 CNMW03-W-15494 CNMW03-W-16223 CNMW03-W-26001 CNMW03-W-26675 CNMW03-W-27151 CNMW03-W-27188 CNMW03-W-27228	8/24/04 9/10/05 10/11/05 3/17/06 9/26/06 3/27/07 9/25/07 3/12/08 9/9/08 10/6/09 9/19/10 9/29/11	1.2 1.6 1.8 2.6 2.7 2.5 3.5 2.3 3.2 6.2 7.5 8.3	ND ND 0.2 J ^d ND ND ND 0.3 J ND 0.3 J ND	ND ND ND ND ND ND ND ND ND ND ND	
MW04	37.5-47.5	CNMW04-W-16180 CNMW04-W-19280 CNMW04-W-16311 CNMW04-W-19891 CNMW04-W-22506 CNMW04-W-16210 CNMW04-W-16220 CNMW04-W-26024 CNMW04-W-26676 CNMW04-W-27152 CNMW04-W-27189 CNMW04-W-27229	8/24/04 9/11/05 10/11/05 3/15/06 9/25/06 3/28/07 9/24/07 3/19/08 9/9/08 10/7/09 9/20/10 9/29/11	ND 0.9 J 0.8 J 1.3 1.4 2.1 2.0 1.3 2.0 2.9 2.2 3.1	ND ND ND 0.1 J ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	

TABLE 3.2 (Cont.)

Well	Screen					
	Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
MW05	34.5-44.5	CNMW05-W-16183	8/25/04	ND	ND	ND
		CNMW05-W-19279	9/10/05	1.9	ND	ND
		CNMW05-W-16312	10/11/05	1.5	ND	ND
		CNMW05-W-19976	3/15/06	1.3	ND	ND
		CNMW05-W-22505	9/25/06	1.3	ND	ND
		CNMW05-W-16213	3/28/07	0.5 J	ND	ND
		CNMW05-W-16218	9/24/07	1.2	ND	ND
		CNMW05-W-26025	3/19/08	1.9	ND	ND
		CNMW05-W-26677	9/10/08	13	0.7 J	ND
		CNMW05-W-27153	10/7/09	18	1.1	ND
		CNMW05-W-27190	9/20/10	22	1.4	ND
		CNMW05-W-27230	9/30/11	12	0.9 J	ND
MW06	46.5-56.5	CNMW06-W-16184	8/25/04	ND	ND	ND
		CNMW06-W-19278	9/10/05	ND	ND	ND
		CNMW06-W-16313	10/11/05	0.3 J	ND	ND
		CNMW06-W-19889	3/15/06	0.2 J	ND	ND
		CNMW06-W-22511	9/27/06	ND	ND	ND
		CNMW06-W-16208	3/27/07	ND	ND	ND
		CNMW06-W-16222	9/24/07	ND	ND	ND
		CNMW06-W-26026	3/19/08	ND	ND	ND
		CNMW06-W-26678	9/9/08	ND	ND	ND
		CNMW06-W-27154	10/6/09	ND	ND	ND
		CNMW06-W-27191 CNMW06-W-27231	9/20/10 9/30/11	ND ND	ND ND	ND ND
MW07	45-55			0.4 J	0.6 J	ND
	45-55	CNMW07-W-19887 CNMW07-W-22512	3/14/06 9/26/06	0.4 J 1.1	0.8 J ND	ND
		CNMW07-W-22512 CNMW07-W-15492	3/26/07	1.1	ND	ND
		CNMW07-W-16221	9/24/07	2.4	ND	ND
		CNMW07-W-26027	3/19/08	3.0	ND	ND
		CNMW07-W-26679	9/9/08	4.0	0.2 J	ND
		CNMW07-W-27155	10/6/09	5.1	0.2 J	ND
		CNMW07-W-27192	9/20/10	6.6	0.3 J	ND
		CNMW07-W-27232	9/30/11	6.3	0.7 J	ND
MW08	38-53	CNMW08-W-19284	3/14/06	ND	ND	ND
		CNMW08-W-22507	9/26/06	ND	ND	ND
		CNMW08-W-15493	3/27/07	ND	ND	ND
		CNMW08-W-16226	9/25/07	ND	ND	ND
		CNMW08-W-26028	3/20/08	ND	ND	ND
		CNMW08-W-26680	9/10/08	ND	ND	ND
MW09	25-35	CNMW09-W-19285	3/15/06	ND	ND	ND
		CNMW09-W-22504	9/25/06	ND	ND	ND
		CNMW09-W-16209	3/27/07	ND	ND	ND
		CNMW09-W-16219	9/24/07	ND	ND	ND
		CNMW09-W-26029	3/20/08	ND	ND	ND
		CNMW09-W-26681	9/10/08	ND	ND	ND
		CNMW09-W-27157	10/6/09	ND	ND	ND
		CNMW09-W-27194	9/19/10	ND	ND	ND
		CNMW09-W-27234	9/30/11	ND	ND	ND

TABLE 3.2 (Cont.)

			-	Concentration (µg/L)			
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride	
MW10	30-45	CNMW10-W-19886	3/14/06	ND	ND	ND	
		CNMW10-W-22510	9/26/06	ND	ND	ND	
		CNMW10-W-16215	3/28/07	ND	ND	ND	
		CNMW10-W-16224	9/25/07	ND	ND	ND	
		CNMW10-W-26030	3/20/08	ND	ND	ND	
		CNMW10-W-26682	9/9/08	ND	ND	ND	
		CNMW10-W-27158 CNMW10-W-27195	10/6/09 9/19/10	ND ND	ND ND	ND ND	
		CNMW10-W-27235	9/30/11	ND	ND	ND	
SB01	40-50	CNSB01-W-16188	8/26/04	186	6.5	ND	
		CNSB01-W-19274	9/9/05	269	6.8	ND	
		CNSB01-W-16314	10/12/05	288	6.6	ND	
		CNSB01-W-19979	3/17/06	320	5.7	ND	
		CNSB01-W-22516	9/27/06	267	6.3	ND	
		CNSB01-W-15491	3/27/07	222	4.9	ND	
		CNSB01-W-16232	9/27/07	283	4.6	ND	
		CNSB01-W-26031	3/20/08	325	4.8	ND	
		CNSB01-W-26683	9/10/08	378	4.1	ND	
		CNSB01-W-27159 CNSB01-W-27196	10/7/09 9/20/10	396 319	5.0 4.7	ND ND	
		CNSB01-W-27236	10/1/11	276	4.7	ND	
SB04	51-61	CNSB04-W-16189	8/26/04	30	ND	ND	
		CNSB04-W-19273	9/9/05	47	0.6 J	ND	
		CNSB04-W-16315	10/12/05	44	0.5 J	ND	
		CNSB04-W-19906	3/16/06	51	0.5 J	0.4 J B ^e	
		CNSB04-W-22503	9/25/06	54	0.7 J	ND	
		CNSB04-W-16216	3/28/07	44	0.5 J	ND	
		CNSB04-W-16230	9/26/07	36	0.4 J	ND	
		CNSB04-W-26002	3/12/08	30	0.3 J	ND	
		CNSB04-W-26684 CNSB04-W-27160	9/9/08	15	0.3 J	ND	
		CNSB04-W-27197	10/8/09 9/20/10	17 17	0.3 J 0.3 J	ND ND	
		CNSB04-W-27237	9/30/11	8.7	ND	ND	
SB05	32-42	CNSB05-W-16190	8/26/04	59	5.5	ND	
		CNSB05-W-19275	9/9/05	77	7.2	ND	
		CNSB05-W-16323	10/12/05	54	5.5	ND	
		CNSB05-W-19904	3/17/06	104	7.2	ND	
		CNSB05-W-19940	9/27/06	139	12	ND	
		CNSB05-W-16212	3/28/07 9/26/07	138	12		
		CNSB05-W-16233 CNSB05-W-26032	9/26/07 3/20/08	221 224	16 17	ND ND	
		CNSB05-W-26685	3/20/08 9/9/08	224 256	20	ND	
		CNSB05-W-27161	10/8/09	289	19	ND	
		CNSB05-W-27198	9/21/10	374	32	ND	
		CNSB05-W-27238	9/30/11	245	22	ND	

TABLE 3.2 (Cont.)

				Concentration (μg/L)			
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride	
SB07R	45-60	CNSB07R-W-19978	3/15/06	41	2.7	ND	
		CNSB07R-W-19924	9/26/06	30	1.7	ND	
		CNSB07R-W-15490	3/26/07	30	1.7	ND	
		CNSB07R-W-16225	9/25/07	50	2.4	ND	
		CNSB07R-W-26003	3/12/08	13	0.9 J	ND	
		CNSB07R-W-26686	9/9/08	21	1.4	ND	
		CNSB07R-W-27162	10/7/09	38	1.7	ND	
		CNSB07R-W-27199	9/20/10	42	2.5	ND	
		CNSB07R-W-27239	9/30/11	44	2.5	ND	
SB08	52-62	CNSB08-W-16192	8/26/04	79	3.1	ND	
		CNSB08-W-19272	9/8/05	80	2.6	ND	
		CNSB08-W-16317	10/12/05	77	2.8	ND	
		CNSB08-W-19903	3/17/06	91	2.7	ND	
		CNSB08-W-22500	9/21/06	53	1.6	ND	
		CNSB08-W-16214	3/28/07	64	2.0	ND	
		CNSB08-W-16229	9/26/07	68	1.8	ND	
		CNSB08-W-26004	3/12/08	28	1.1	ND	
		CNSB08-W-26687	9/8/08	22	1.2	ND	
		CBSB08-W-27163	10/8/09	29	1.2	ND	
		CNSB08-W-27200	9/20/10	16	0.9 J	ND	
		CNSB08-W-27240	10/1/11	13	1.0	ND	
SB09	32-42	CNSB09-W-16193	8/26/04	ND	ND	ND	
		CNSB09-W-19281	9/11/05	ND	ND	ND	
		CNSB09-W-16318	10/11/05	ND	ND	ND	
		CNSB09-W-19902	3/17/06	ND	ND	ND	
		CNSB09-W-22502	9/25/06	ND	ND	ND	
		CNSB09-W-16211	3/28/07	ND	ND	ND	
		CNSB09-W-16231	9/26/07	ND	ND	ND	
		CNSB09-W-26033	3/20/08	ND	ND	ND	
		CNSB09-W-26688	9/10/08	ND	ND	ND	

^a ND, not detected at instrument detection limit of 0.1 µg/L.

^b Qualifier R indicates that the contaminant was present in the associated equipment rinsate.

^c Data are for samples collected prior to implementation of the IM ISCR pilot test in November 2007. More recent results are in Table 3.4.

^d Qualifier J indicates an estimated concentration below the method quantitation limit of 1.0 µg/L.

^e Qualifier B indicates that the contaminant was present in the associated method blank.

TABLE 3.3 Field measurements for groundwater samples collected from the sitewide monitoring	
points, August 2004 to October 2011.	

	Saraan					Concer	-		
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	Iron(II)	ORP (mV)
MW01	54.5-64.5	8/24/04 9/10/05	16.3 16.3	7.39 7.26	652 599	0.06 6.31	25 _a	0.00 0.00	230 104
		10/11/05	16.4	6.45	634	-	_	-	-
		3/15/06	14.3	7.56	621	9.33	30	0.04	297
		9/25/06	13.3	7.01	782	6.82	50	0.31	92
		3/29/07	16.5	6.54	629	4.39	_	0.00	174
		9/26/07	17.8	7.06	630	0.89	35	0.09	146
		3/19/08	9.5	7.31	613	3.34	_	_	122
		9/9/08	13.9	7.28	595	5.18	20	0.03	28
MW02 ^b	49.5-59.5	8/26/04	14.4	7.31	729	0.16	20	0.12	235
		9/11/05	15.3	7.02	739	1.28	-	-	-
		10/12/05	14.8	6.60	766	-	-	-	_
		3/16/06	14.2	6.78	759	1.24	-	0.00	295
		9/26/06	13.2	6.98	957	3.05	40	0.06	67
		3/26/07	15.7	6.39	739	2.29	50	-	67
		9/26/07	15.4	7.04	763	3.39	25	0.00	156
MW03	50.5-60.5	8/24/04 9/10/05	13.1 15.1	7.28 7.05	783 715	0.10 10.42	55 65	0.21 0.00	230 142
		10/11/05	16.3	6.46	765	10.42	-	0.00	-
		3/17/06	13.8	6.75	753	9.39	77	0.00	290
		9/26/06	13.2	6.92	960	11.57	45	0.08	251
		3/27/07	15.3	6.40	774	7.73	25	-	268
		9/25/07	14.3	6.97	738	8.44	30	0.00	162
		3/12/08	14.6	7.12	777	7.90	_	3.13	88
		9/9/08	14.9	7.13	763	9.60	110	0.12	66
		10/6/09	13.8	7.08	770	9.66	95	0.03	216
		9/19/10	14.7	6.98	762	10.48	_	0.08	178
		9/29/11	15.2	7.61	647	10.19	-	0.00	243
MW04	37.5-47.5	8/24/04	16.2	7.39	717	0.11	40	0.04	210
		9/11/05	15.4	7.18	665	8.43	60	0.00	226
		10/11/05	14.4	7.14	811	_	_	_	_
		3/15/06	13.5	7.78	675	6.82	55	0.06	283
		9/25/06	_	7.02	613	9.13	40	0.19	46
		3/28/07	15.4	6.47	678	5.46	_	0.00	197
		9/24/07	17.4	7.10	667	6.94	35	0.24	261
		3/19/08	11.2	7.32	636	7.55	-	-	164
		9/9/08	14.2	7.14	648	8.68	100	0.00	72
		10/7/09	13.9	7.17	671	8.64	100	0.02	183
		9/20/10	16.2	7.18	572	8.91	-	0.10	164
		9/29/11	15.8	7.57	566	7.66	-	0.09	242

TABLE 3.3 (Cont.)

	0					Concentrations (mg/L)			
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	Iron(II)	ORP (mV)
MW05	34.5-44.5	8/25/04 9/10/05 10/11/05	14.3 14.2 14.8	7.14 6.80 6.35	613 620 610	0.08 1.40	25 110	0.06 0.00	215 160
		3/15/06 9/25/06	14.3 13.6	6.90 6.95	701 768	0.90 0.09	30 50	0.06 0.02	156 55
		3/28/07 9/24/07 3/19/08	14.4 15.8 12.9	6.44 7.06 7.42	573 368 642	4.53 3.09 5.42	35 45 _	0.00 0.00 -	295 182 177
		9/10/08 10/7/09 9/20/10	13.9 14.2 17.2	7.11 7.11 7.18	663 672 675	7.14 7.05 6.07	95 90 —	0.00 0.00 0.01	130 194 183
MW06	46.5-56.5	9/30/11 8/25/04	14.4 15.9	7.71 7.50	540 637	6.50 0.05	- 15	0.03 0.00	163 215
WWWOO	40.0-00.0	9/10/05 10/11/05 3/15/06 9/27/06	14.6 15.8 14.1 13.1	7.23 6.99 7.38 6.16	659 638 630 652	0.03 0.04 - 9.87 0.05	60 - 35 45	0.00 - 0.02 1.12	41 - 263 63
		3/27/07 9/24/07 3/19/08	19.0 16.8 14.1	6.42 7.11 7.01	466 463 552	0.11 8.00 7.00	20 25 -	0.00 0.41 -	13 191 172
		9/9/08 10/6/09 9/20/10 9/30/11	14.4 13.5 15.6 14.8	7.20 6.69 6.97 7.55	437 255 369 411	0.36 0.61 2.48 5.49	105 110 –	0.07 0.06 0.04 0.04	-96 -72 86 172
MW07	45-55	3/14/06 9/26/06 3/26/07 9/24/07 3/19/08 9/9/08 10/6/09 9/20/10 9/30/11	14.7 13.1 15.8 19.0 12.5 15.6 13.9 16.6 16.3	6.61 7.23 6.50 7.18 7.29 7.10 7.19 7.22 7.57	709 642 609 647 629 618 622 545	0.34 2.91 1.87 9.05 2.70 1.41 1.42 2.93 3.11	- 50 30 60 - 68 70 -	0.03 0.00 0.00 0.18 - 0.00 0.00 0.00 0.00	143 - 261 190 215 16 53 132 132
MW08	38-53	3/14/06 9/26/06 3/27/07 9/25/07 3/20/08 9/10/08	13.5 13.3 15.8 15.8 13.5 16.3	6.35 6.75 6.31 6.92 7.19 7.03	854 1095 874 627 869 864	5.32 0.16 1.49 1.42 2.11 1.17	- 50 30 45 - 100	0.00 0.18 0.21 0.14 - 0.03	145 37 237 219 185 117
MW09	25-35	3/15/06 9/25/06 3/27/07 9/24/07 3/20/08 9/10/08 10/6/09 9/19/10 9/30/11	17.7 12.8 14.9 16.6 13.5 14.7 13.2 14.6 15.4	7.33 6.87 6.35 6.94 7.17 7.02 7.00 6.99 7.40	664 859 689 1999 720 706 715 711 609	0.95 1.59 4.10 3.86 4.70 3.68 3.73 3.60 3.49	55 45 30 55 - 110 110 -	0.09 0.18 0.69 0.14 - 0.07 0.08 0.09 0.08	214 90 152 186 173 120 148 159 182

TABLE 3.3 (Cont.)

	Saraan					Concentrations (mg/L)			
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	Iron(II)	ORP (mV)
MW10	30-45	3/14/06 9/26/06 3/28/07	14.8 13.6 17.0	6.60 6.87 6.36	834 1058 834	6.42 6.94 5.09	65 50 35	0.00 0.50 0.00	166 51 270
		9/25/07 3/20/08	15.8 10.9	6.94 7.18	827 898	6.64 6.12	35	0.21	199 187
		9/9/08 10/6/09	14.8 13.7	7.05 7.04	879 883	7.18 6.67	100 95	0.06 0.08	94 201
		9/19/10 9/30/11	15.1 15.6	6.95 7.46	882 759	6.76 6.03	_	0.00 0.07	186 193
SB01	40-50	8/26/04 9/9/05	26.0 25.0	7.46 7.11	699 674	5.21 6.25	30 95	0.00 0.00	210 140
		10/12/05 3/17/06 9/27/06	13.8 12.4 14.4	7.23 7.30 7.03	686 692 832	- 5.98 6.54	- 55 40	- 0.00 0.52	_ 185 198
		3/27/07 9/27/07	18.0 13.5	6.37 7.24	659 720	3.81 6.55	25 45	0.23 1.04	173 143
		3/20/08 9/10/08	15.6 16.5	7.29 7.10	783 676	8.02 2.89	_ 100	_ 0.17	182 100
		10/7/09 9/20/10 10/1/11	14.8 17.1 18.7	7.11 7.24 7.51	761 679 632	7.69 7.10 10.45	105 	0.07 0.00 0.07	215 163 207
SB04	51-61	8/26/04	17.9	7.14	765	3.78	- 55	0.07	207
		9/9/05 10/12/05	16.0 13.9	7.09 7.17	708 813	8.67	100	-	206
		3/16/06 9/25/06	13.0 14.9	7.57 7.16	799 791	5.96 9.32	30 70	_ 1.18	276 64
		3/28/07 9/26/07 3/12/08	16.2 19.8 15.5	6.45 7.03 7.04	850 760 819	6.18 6.61	_ 30 _	0.23 0.00 0.09	266 202 154
		9/9/08 10/8/09	16.5 12.2	7.04 7.11 7.11	802 797	6.16 6.48 7.43	_ 100 95	0.09 0.02 0.09	70 238
		9/20/10 9/30/11	22.3 16.1	7.04 7.06	806 663	6.98 7.33	_	0.06 0.00	143 158
SB05	32-42	8/26/04 9/9/05	15.7 16.9	7.25 6.98	761 687	- 7.58	25 100	0.06	220
		10/12/05 3/17/06 9/27/06	14.0 13.3 13.7	7.00 7.67 6.58	728 718 763	- 4.80 4.70	- 40 50	_ 0.18 0.25	_ 253 78
		3/28/07 9/26/07 3/20/08	16.7 15.1 14.5	4.03 6.98 7.11	1100 810 870	2.58 4.10 5.56	35 30 -	0.07 0.50 -	296 221 206
		9/9/08 10/8/09 9/21/10	13.7 12.7 14.4	6.79 7.09 7.18	890 874 862	7.60 6.63 7.69	90 100 -	0.09 0.08 0.54	56 209 60
		9/30/11	13.2	7.28	652	4.87	_	0.00	86

TABLE 3.3 (Cont.)

	0					Concer	ntrations (r	ng/L)	_
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	Iron(II)	ORP (mV)
SB07R	45-60	3/15/06	16.8	7.24	685	7.41	60	0.08	83
		9/26/06	13.2	6.89	842	6.17	55	0.26	67
		3/26/07	19.0	6.38	668	5.08	40	0.07	237
		9/25/07	17.4	7.06	642	6.30	35	0.11	170
		3/12/08	17.3	7.18	639	5.33	-	0.00	108
		9/9/08	14.1	7.06	631	5.08	100	0.07	55
		10/7/09	13.3	7.11	629	6.67	110	0.10	224
		9/20/10	15.5	7.04	648	5.87	-	0.13	161
		9/30/11	15.5	7.44	556	5.80	-	0.00	189
SB08	52-62	8/26/04	19.5	7.31	635	0.16	20	0.53	235
0200	02 02	9/8/05	21.2	7.27	598	3.21	75	0.00	111
		10/12/05	13.9	7.15	630	_	_	_	_
		3/17/06	12.9	7.14	645	3.40	40	0.00	246
		9/21/06	14.1	6.96	809	4.53	40	0.00	37
		3/28/07	15.8	6.53	645	3.57	35	0.24	208
		9/26/07	17.4	7.11	617	4.56	40	0.77	156
		3/12/08	17.1	7.17	642	3.63	_	0.14	102
		9/8/08	13.6	7.14	626	2.70	90	0.00	230
		10/8/09	12.3	7.22	617	4.43	95	0.00	221
		9/20/10	15.2	7.12	616	3.73	-	0.05	166
		10/1/11	15.4	7.90	492	3.35	-	0.01	76
SB09	32-42	8/26/04	30.9	7.09	910	0.26	75	0.00	185
		9/11/05	14.6	6.71	877	0.13	225	0.00	_
		10/11/05	13.9	6.85	910	_	_	_	_
		3/17/06	11.7	7.03	969	1.53	99	0.00	206
		9/25/06	14.2	7.00	976	0.29	70	0.38	86
		3/28/07	14.3	6.32	957	0.89	40	0.09	236
		9/26/07	15.2	6.77	969	1.53	45	0.12	199
		3/20/08	10.1	6.94	1000	1.57	-	_	221
		9/10/08	18.4	6.87	977	0.56	160	0.11	109

^a No measurement obtained.

^b Data are for samples collected prior to implementation of the IM ISCR pilot test in November 2007. More recent results are in Table 3.5.

TABLE 3.4 Analytical results from the AGEM Laboratory for volatile organic compounds in groundwater samples collected from the IM pilot test monitoring points, September 2008 to October 2011.

	2			Con	/L)	
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
MW02 ^a	49.5-59.5	CNMW02-W-26674 CNMW02-W-27140	9/8/08 4/22/09	18 ND ⁵	57 ND	11 1.8
		CNMW02-W-27150	10/8/09	ND	ND	ND
		CNMW02-W-27179	4/5/10	ND	ND	ND
		CNMW02-W-27187	9/20/10	1.7	ND	ND
		CNMW02-W-27218	4/19/11	ND	ND	ND
		CNMW02-W-27227	9/29/11	ND	ND	ND
PMP1	50-60	CNPMP1-W-26689	9/9/08	136	30	ND
		CNPMP1-W-27141	4/22/09	102	21	_c
		CNPMP1-W-27165	10/7/09	167	20	ND
		CNPMP1-W-27180	4/5/10	91	15	ND
		CNPMP1-W-27202	9/21/10	103	11	ND
		CNPMP1-W-27219	4/19/11	63	8.4	ND
		CNPMP1-W-27242	9/29/11	134	13	ND
PMP2	50-60	CNPMP2-W-26690	9/9/08	1854	318	5.6
		CNPMP2-W-27142	4/22/09	1398	299	_c
		CNPMP2-W-27166	10/7/09	1384	272	6.6
		CNPMP2-W-27181	4/5/10	991	182	5.1
		CNPMP2-W-27203	9/21/10	117	55	2.3
		CNPMP2-W-27220	4/19/11	317	59	_c
		CNPMP2-W-27243	9/29/11	277	45	1.1
PMP3	50-60	CNPMP3-W-26691	9/9/08	21	57	6.2
		CNPMP3-W-27143	4/22/09	3.2	5.8	ND
		CNPMP3-W-27167	10/7/09	0.5 J ^d	3.9	ND
		CNPMP3-W-27182	4/5/10	ND	ND	ND
		CNPMP3-W-27204	9/21/10	ND	ND	ND
		CNPMP3-W-27221	4/19/11	0.1 J	ND	ND
		CNPMP3-W-27244	9/29/11	ND	ND	ND
PMP4	48.75-58.75	CNPMP4-W-26692	9/9/08	49	4.2	ND
		CNPMP4-W-27168	10/6/09	39	2.9	ND
		CNPMP4-W-27205	9/21/10	28	1.8	ND
		CNPMP4-W-27245	9/29/11	27	1.4	ND
PMP5	50-60	CNPMP5-W-26693	9/10/08	418	46	1.6
		CNPMP5-W-27169	10/8/09	728	43	1.2
		CNPMP5-W-27206	9/20/10	779	35	0.9 J
		CNPMP5-W-27246	10/1/11	600	27	_c
PMP6	50-60	CNPMP6-W-26694	9/8/08	110	7.8	ND
		CNPMP6-W-27170	10/6/09	199	12	ND
		CNPMP6-W-27207	9/21/10	143	9.6	ND
		CNPMP6-W-27247	9/29/11	152	9.9	ND

TABLE 3.4 (Cont.)

				Con	centration (µg/	/L)
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
PMP7	50-60	CNPMP7-W-26695 CNPMP7-W-27171 CNPMP7-W-27208 CNPMP7-W-27248	9/9/08 10/6/09 9/21/10 9/29/11	119 84 98 103	13 23 37 41	ND 1.8 4.0 5.8
PMP8	50-60	CNPMP8-W-26696 CNPMP8-W-27144 CNPMP8-W-27172 CNPMP8-W-27183 CNPMP8-W-27209 CNPMP8-W-27222 CNPMP8-W-27249	9/9/08 4/22/09 10/7/09 4/5/10 9/21/10 4/19/11 9/29/11	72 3.2 16 0.4 J 0.7 J ND ND	125 5.6 21 0.7 J ND ND ND	3.4 1.9 1.8 ND ND ND ND
PMP9	50-60	CNPMP9-W-26697 CNPMP9-W-27173 CNPMP9-W-27210 CNPMP9-W-27250	9/9/08 10/7/09 9/21/10 9/29/11	7.6 29 24 28	0.4 J 0.5 J 0.2 J ND	ND ND ND ND

^a Data are for samples collected after implementation of the IM ISCR pilot test in November 2007. Earlier data are in Table 3.2.

^b ND, not detected at instrument detection limit of 0.1 µg/L.

^c No analysis.

 d Qualifier J indicates an estimated concentration below the method quantitation limit of 1.0 μ g/L.

TABLE 3.5 Field measurements for groundwater samples collected from the IM pilot test monitoring
points, September 2008 to October 2011.

						Concentrations (mg/L)			
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	lron(II)	ORP (mV)
MW02 ^a	49.5-59.5	9/8/08 4/22/09 10/8/09 4/5/10 9/20/10 4/19/11 9/29/11	13.1 14.8 12.7 15.0 15.7 11.4 15.6	6.12 6.71 6.98 8.79 6.98 7.16 7.63	6821 2943 1829 1675 1608 1004 770	0.40 0.60 0.44 0.08 0.01 0.56 0.46	50 110 50 115 – –	3.30 ^b 2.70 3.06 2.36 3.30 ^b 2.23 1.07	-74 -131 -138 -72 -139 -143 -128
PMP1	50-60	9/9/08 4/22/09 10/7/09 4/5/10 9/21/10 4/19/11	14.4 15.1 13.8 15.0 15.8 11.6	5.54 6.97 7.30 7.13 6.83 7.18	700 667 623 545 617 444	1.37 3.62 0.56 0.24 0.53 0.49	115 115 110 110 –	0.23 0.60 0.33 0.00 0.67 0.24	40 -79 -34 53 34 -83
PMP2	50-60	9/9/08 4/22/09 10/7/09 4/5/10 9/21/10 4/19/11 9/29/11	14.4 15.0 13.9 13.6 15.8 11.5 13.6	7.09 6.91 7.65 7.05 6.82 7.12 7.81	997 829 775 667 747 514 531	0.05 3.57 0.19 0.22 0.21 0.09 0.14	180 150 160 140 - -	1.68 1.36 1.53 1.87 3.06 1.51 0.14	-41 -101 -89 -93 -90 -158 -140
PMP3	50-60	9/9/08 4/22/09 10/7/09 4/5/10 9/21/10 4/19/11	14.5 14.3 14.0 13.3 16.1 11.6	6.98 7.13 8.06 7.59 7.28 7.50	1301 506 472 433 492 362	0.03 2.64 0.17 0.16 2.02 0.03	150 130 140 140 - -	3.30 ^b 2.51 0.37 0.24 1.18 0.42	-150 -114 -129 -175 -138 -203
PMP4	48.75-58.75	9/9/08 10/6/09 9/21/10 9/29/11	14.3 13.2 15.5 13.6	4.97 6.46 7.15 7.79	738 705 747 553	4.87 2.20 5.66 4.12	100 110 –	0.49 0.08 0.25 0.01	134 43 36 25
PMP5	50-60	9/10/08 10/8/09 9/20/10 10/1/11	16.9 10.7 20.0 15.9	7.20 7.10 7.05 7.87	875 839 904 742	2.51 3.18 3.35 3.64	105 100 _	0.18 0.00 0.12 0.06	117 43 92 76
PMP6	50-60	9/8/08 10/6/09 9/21/10 9/29/11	13.2 13.5 15.5 14.2	6.87 6.80 7.22 7.54	787 692 777 607	3.32 2.30 1.90 0.37	75 80 –	0.09 0.07 0.59 0.08	173 159 91 147
PMP7	50-60	9/9/08 10/6/09 9/21/10 9/29/11	14.2 13.4 15.2 13.9	6.30 6.74 7.23 7.93	807 655 664 509	2.18 0.46 0.20 0.08	70 70 	0.18 0.12 0.07 0.14	15 -13 -38 -32

TABLE 3.5 (Cont.)

	0					Conce	_		
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	Iron(II)	ORP (mV)
PMP8	50-60	9/9/08	14.4	7.05	1388	0.03	60	2.72	-129
		4/22/09	15.2	7.30	776	1.74	150	2.03	-139
		10/7/09	13.9	7.69	688	0.81	120	0.27	-155
		4/5/10	13.3	7.46	555	0.19	145	0.92	-156
		9/21/10	14.8	7.44	592	2.00	_	1.66	-138
		4/19/11	11.0	7.47	416	2.01	_	0.00	-157
							_		
PMP9	50-60	9/9/08	14.0	6.36	606	7.78	120	0.10	45
		10/7/09	13.7	7.50	568	5.82	125	0.06	-1
		9/21/10	15.2	7.26	605	6.67	_	0.15	44
		9/29/11	13.4	7.80	459	6.75	-	0.05	-12

^a Data are for samples collected after implementation of the IM ISCR pilot test in November 2007. Earlier results are in Table 3.3.

^b Maximum reading from instrument.

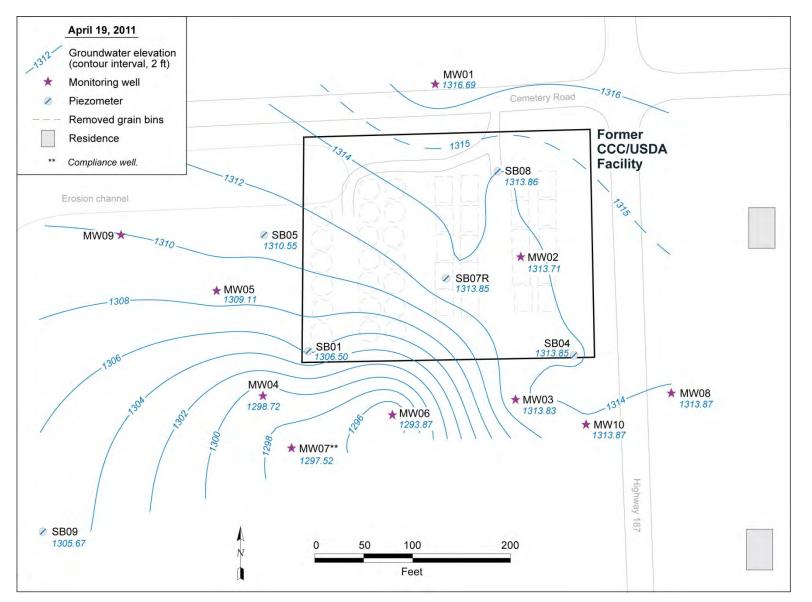


FIGURE 3.1 Potentiometric surface, based on water levels measured manually on April 19, 2011.

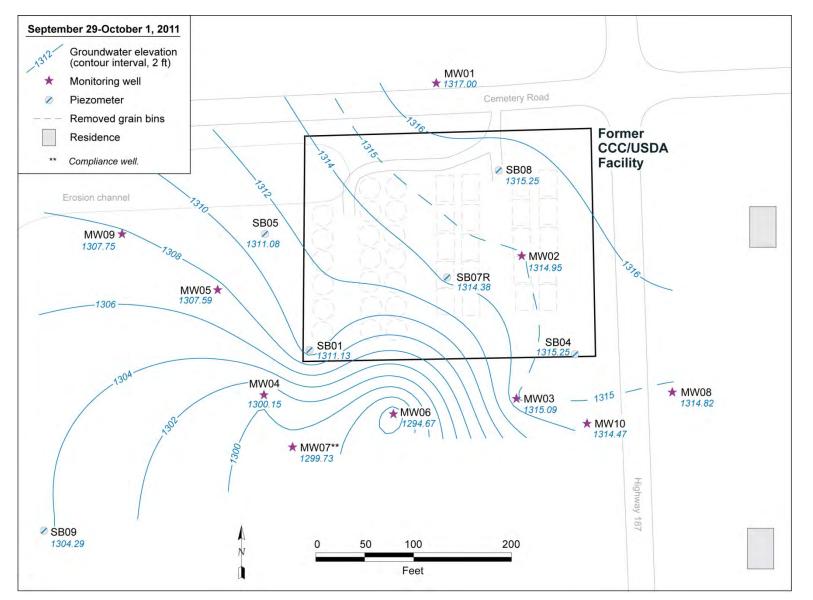


FIGURE 3.2 Potentiometric surface, based on water levels measured manually on September 29-October 1, 2011.



FIGURE 3.3 Carbon tetrachloride concentrations in groundwater in the sitewide monitoring wells sampled in September-October 2011, with the interpreted lateral extent of the contaminant at intervals since August 2004.

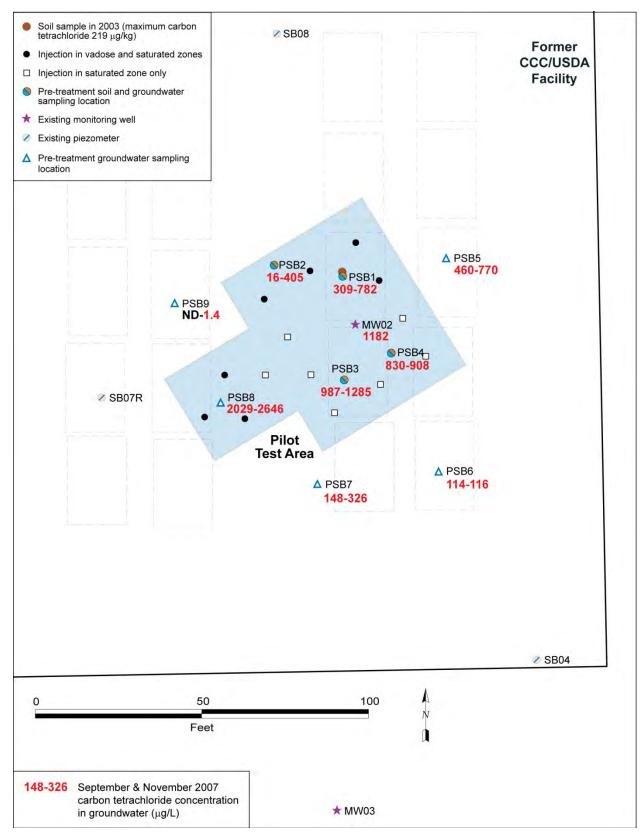


FIGURE 3.4 Carbon tetrachloride in groundwater samples collected during the pre-injection baseline sampling, September and November 2007.

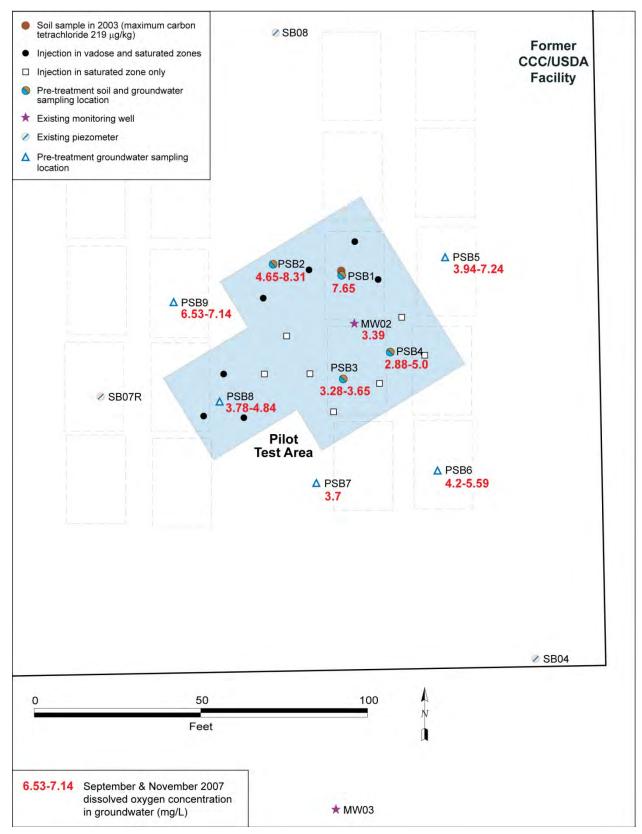


FIGURE 3.5 Field-measured results for DO in groundwater samples collected during the pre-injection baseline sampling, September and November 2007.

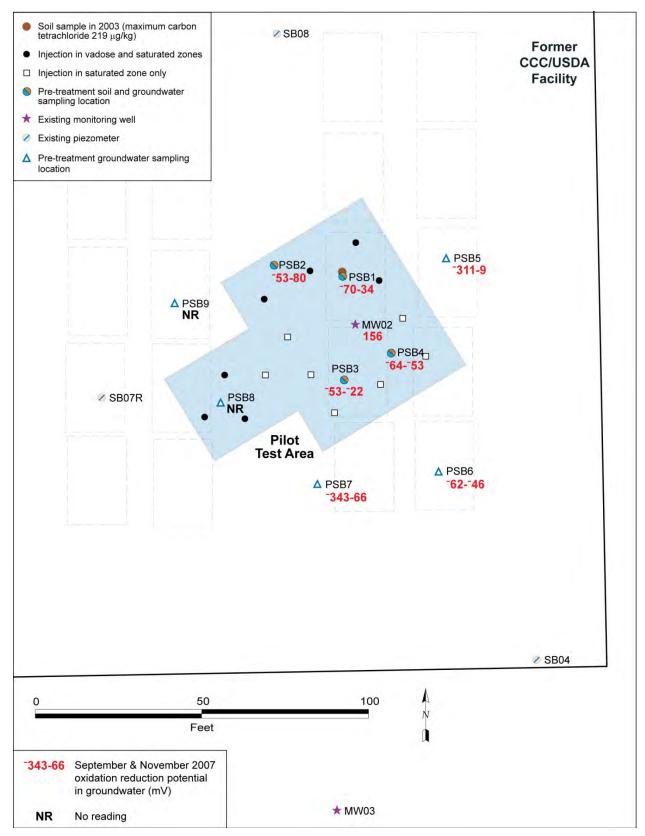


FIGURE 3.6 Field-measured results for ORP in groundwater samples collected during the pre-injection baseline sampling, September and November 2007.

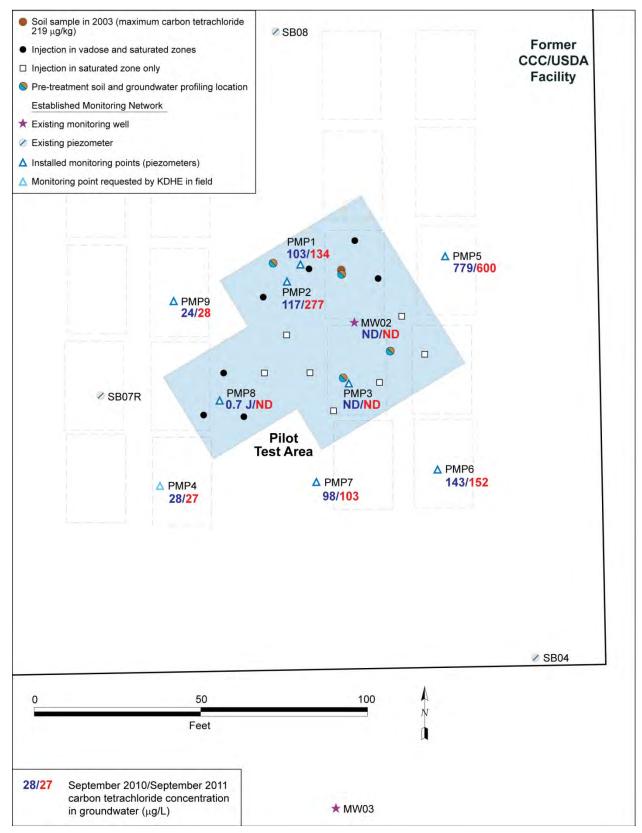


FIGURE 3.7 Analytical results for carbon tetrachloride in groundwater samples collected in September 2010 and September-October 2011 at the IM pilot test monitoring points.

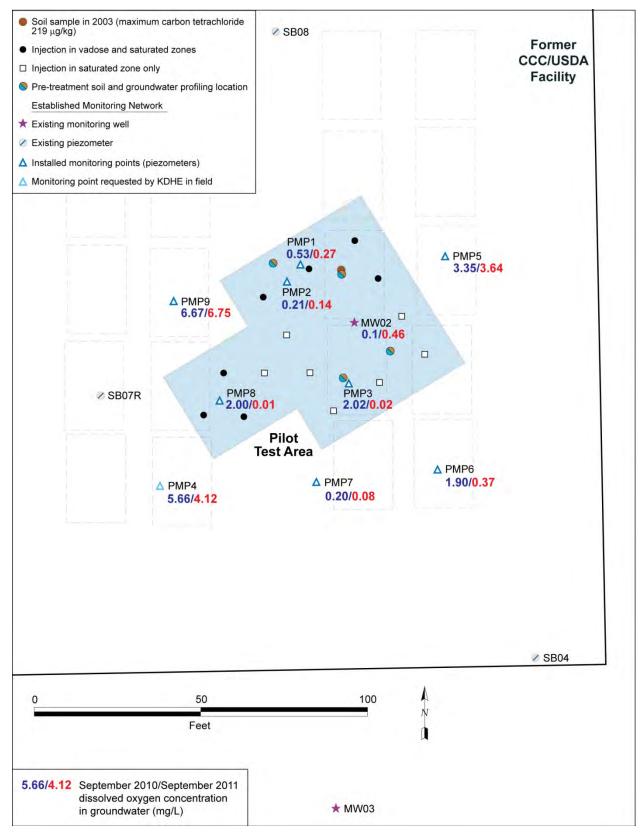


FIGURE 3.8 Field-measured results for DO in groundwater samples collected in September 2010 and September-October 2011 at the IM pilot test monitoring points.

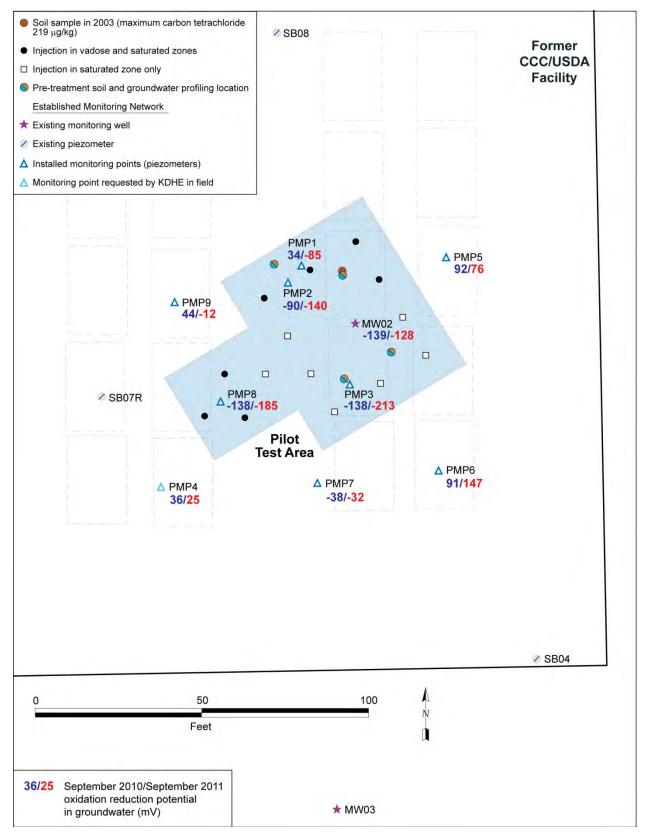


FIGURE 3.9 Field-measured results for ORP in groundwater samples collected in September 2010 and September-October 2011 at the IM pilot test monitoring points.

4 Conclusions and Recommendations

4.1 Conclusions

The findings of the sitewide monitoring in September-October 2011 support the following conclusions for the wider investigation area:

- Manual measurements of groundwater levels continued to indicate a groundwater flow direction to the south-southwest across the former CCC/USDA facility.
- The September-October 2011 carbon tetrachloride data for monitoring points in the approved sitewide network were generally consistent with previous results. Decreases in carbon tetrachloride concentrations were observed near the western and southwestern margins of the groundwater plume, in the apparent direction of groundwater flow, suggesting that no detectable expansion of the contaminant distribution occurred in this area in 2011. A continuing longer-term trend of slightly increasing carbon tetrachloride concentrations along the southeastern margin of the contaminant distribution in groundwater suggested very slow downgradient expansion of the plume in this direction.
- The presence of trace to relatively low concentrations of chloroform at most of the sitewide monitoring points having detectable carbon tetrachloride concentrations suggests that some degradation of carbon tetrachloride is occurring at these locations, even outside the pilot test area.
- The relatively high DO concentrations and positive ORP levels identified at the sitewide monitoring points indicate that notwithstanding the observed chloroform concentrations anaerobic reducing conditions conducive to the reductive dechlorination of carbon tetrachloride are not widely developed outside the pilot test area.

• Although the low DO concentrations and negative ORP levels detected at monitoring well MW06 in September 2008 and October 2009 hinted at possible development of increasingly anaerobic reducing conditions at this location, such values did not persist in 2010 and 2011. The variability in these parameters (particularly the negative ORP levels) is somewhat greater at MW06 than at other monitoring locations, for reasons that are not clear.

The findings of the IM pilot test monitoring in April and September-October 2011 support the following conclusions for the pilot test area:

- The concentrations of carbon tetrachloride in groundwater in the IM pilot test injection field remained considerably below pre-injection levels in 2011, although no significant decreases were observed from September 2010 to September-October 2011. Carbon tetrachloride levels in the injection area occurred at levels up to 317 μ g/L (PMP2), which is well above the KDHE Tier 2 RBSL of 5.0 μ g/L. The largest reduction observed outside the injection field (from 779 μ g/L in September 2010 to 600 μ g/L in September-October 2011) occurred at piezometer PMP5, to the northeast and slightly upgradient of the injection field.
- The 2011 results confirmed that relatively oxygen-depleted, chemically reducing conditions favorable to the degradation of carbon tetrachloride via reductive dechlorination persist in the injection field as a result of the ISCR injections in November 2007. The apparent longevity (4 yr to date) indicated by these observations for the ISCR material confirms the range of 1-5 yr estimated by the manufacturer (Adventus 2012). Continued observations will track the ongoing viability of the ISCR material.
- Decreases in DO and ORP values observed from September 2008 to October 2009 immediately southwest and downgradient of the pilot test injection field suggested that the range of influence of the injected ISCR treatment technology might be slowly increasing with time, in the direction of natural groundwater flow. Data from the 2010 and 2011 sampling events did not, however, confirm this trend.

4.2 Recommendations

The groundwater sampling conducted at Centralia in April 2011 and September-October 2011 represented the third year of monitoring performed under the interim site monitoring plan (Section 1) approved by the KDHE (2009). The results support the following recommendations:

- Analytical results continue to indicate that groundwater movement and contaminant migration are slow and predictable. These findings demonstrate that the present KDHE-approved frequency for groundwater monitoring is sufficient to remain protective of human health and the environment.
- Continued monitoring in the pilot test area is appropriate, because the geochemical impacts of the injected ISCR material are still evident. The full effects of the treatment and the lifetime of these impacts under the subsurface conditions at Centralia remain to be determined.
- Continued monitoring is needed to evaluate and confirm observations made previously. For example, more time is needed to test the hypothesis (suggested by geochemical and contaminant concentrations observed in 2009) that the range of influence of the ISCR material is expanding slowly with time in the direction of natural groundwater flow.
- Manual water level measurements made in conjunction with groundwater sampling are adequate to confirm the established groundwater flow direction.
- The rate of change in contaminant concentrations, ORP, and DO in the treatment area is not rapid enough to warrant continuation of twice yearly sampling in that area. The CCC/USDA recommends a change in sampling frequency from twice yearly to once yearly at pilot test monitoring points PMP1-PMP3, PMP8, and MW02.

- Under an annual sampling schedule, the next sampling event will occur in September 2012, at locations PMP1-PMP9 and MW02 in the injection area and at sitewide monitoring points MW03-MW07, MW09, MW10, SB01, SB04, SB05, SB07R, and SB08.
- Reporting of 2012 monitoring results will occur in January 2013.

5 References

Adventus, 2012, *EHC*® *Environmental Remediation Products*, Adventus Americas, Inc., Freeport, Illinois, http://www.adventusgroup.com/products/ehc.shtml, accessed February 3.

Argonne, 2002, *Final Master Work Plan: Environmental Investigations at Former CCC/USDA Facilities in Kansas, 2002 Revision*, ANL/ER/TR-02/004, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, December.

Argonne, 2003, *Final Phase I Report and Phase II Work Plan: QuickSite® Investigation, Centralia, Kansas*, ANL/ER/TR-02/009, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, March.

Argonne, 2004, *Final Phase II Report: QuickSite® Investigation, Centralia, Kansas,* ANL/ER/TR-03/006, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, March.

Argonne, 2005a, *Final Report: 2004 Monitoring Well Installation and Sampling at Centralia, Kansas*, ANL/ER/TR-04/011, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, October.

Argonne, 2005b, *Final Work Plan: Groundwater Monitoring at Centralia, Kansas,* ANL/ER/TR-05/004, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, August.

Argonne, 2006, *Final Report: Groundwater Monitoring at Centralia, Kansas, in September-October 2005 and March 2006, with Expansion of the Monitoring Network in January 2006,* ANL/EVS/AGEM/TR-06-06, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, October.

Argonne, 2007a, *March 2007 Monitoring Results for Centralia, Kansas*, ANL/EVS/AGEM/TR-07-08, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, June. Argonne, 2007b, Interim Measure Conceptual Design for Remediation at the Former CCC/USDA Grain Storage Facility at Centralia, Kansas: Pilot Test and Remedy Implementation, ANL/EVS/AGEM/TR-07-11, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, October.

Argonne, 2008a, *September 2007 Monitoring Results for Centralia, Kansas*, ANL/EVS/AGEM/TR-08-01, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, January.

Argonne, 2008b, *March 2008 Monitoring Results for Centralia, Kansas*, ANL/EVS/AGEM/TR-08-08, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, May.

Argonne, 2009a, *Progress Report and Technical Evaluation of the ISCR Pilot Test Conducted at the Former CCC/USDA Grain Storage Facility in Centralia, Kansas*, ANL/EVS/AGEM/TR-08-18, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, January.

Argonne, 2009b, *September 2008 Monitoring Results for Centralia, Kansas,* ANL/EVS/AGEM/TR-09-01, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, February.

Argonne, 2010, *Annual Report of Groundwater Monitoring at Centralia, Kansas, in 2009*, ANL/EVS/AGEM/TR-10-07, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, October.

Argonne, 2011, Annual Report of Groundwater Monitoring at Centralia, Kansas, in 2010, ANL/EVS/AGEM/TR-11-02, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, March.

EPA, 1995, Method 524.2: Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry, Revision 4.1, edited by J.W. Munch, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

KDHE, 2005, letter from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding Centralia groundwater monitoring plan, October 13.

KDHE, 2007, letter from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding review of *Interim Measure Conceptual Design* for Centralia, Kansas, November 9.

KDHE, 2008a, letter from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding *September 2007 Monitoring Results for Centralia, Kansas*, March 12.

KDHE, 2008b, electronic mail message from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to L. LaFreniere (Argonne National Laboratory, Argonne, Illinois), regarding use of the low-flow sampling technique at Centralia, February 11.

KDHE, 2009, letter from E. Finzer (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding Centralia monitoring reports for 2008 and the progress report for the ISCR pilot test, April 6.

Puls, R.W., and M.J. Barcelona, 1996, "Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures," EPA/540/S-95/504, in *Ground Water Issue*, Superfund Technology Support Center for Ground Water, National Risk Management Research Laboratory, Ada, Oklahoma, April (www.epa.gov/tio/tsp/download/lwflw2a.pdf).

Appendix A:

Sequence of Sampling Activities in 2011

Samp Date and		Sample	Sample Type	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
April 2011	l sampli	ing event						
4/19/11	17:02	CNPMP1-W-27219	MW	PMP1	50-60	4821	4/20/11	Depth to water = 19.96 ft. Depth of 0.5-in. well 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 5.5 L.
4/19/11	17:03	CNPMP1DUP-W-27223b	MW	PMP1	50-60	4821	4/20/11	Replicate of sample CNPMP1-W-27219.
4/19/11		CNMW02-W-27218	MW	MW02	49.5-59.5	4821	4/20/11	Depth to water = 20.96 ft. Depth of 4-in. well = 61.22 ft. Sample collected by using low-flow bladder pump positioned at 54.5 ft after purging of 11.5 L.
4/19/11	17:36	CNPMP2-W-27220	MW	PMP2	50-60	4821	4/20/11	Depth to water = 20.11 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 5.5 L.
4/19/11	18:08	CNPMP3-W-27221	MW	PMP3	50-60	4821	4/20/11	Depth to water = 20.78 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 5.5 L.
4/19/11	18:40	CNPMP8-W-27222	MW	PMP8	50-60	4821	4/20/11	Depth to water = 20.31 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 5.5 L.
4/19/11	18:52	CNQCIR-W-27224 ^b	RI	QC	_	4821	4/20/11	Rinsate of decontaminated sampling line after collection of sample CNPMP8-W-27222.
4/19/11	19:00	CNQCTB-W-27225b	TB	QC	_	4821	4/20/11	Trip blank with water samples to AGEM Laboratory for organic analysis listed on COC 4821.
Septembe	er 2011	sampling event						
9/29/11	14:05	CNMW01-W-27226	MW	MW01	54.5-64.5	3184	9/29/11	Depth to water = 11.75 ft. Depth of 4-in. well = 64.5 ft. Sample collected by using low-flow bladder pump positioned at 59.5 ft after purging of 9 L. Water clear.
9/29/11	14:12	CNPMP6-W-27247	MW	PMP6	50-60	3184	9/29/11	Depth to water = 21.97 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 6 L. Water tan.
9/29/11	14:58	CNPMP7-W-27248	MW	PMP7	50-60	3184	9/29/11	Depth to water = 21.47 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 6 L. Water clear with slight odor.

TABLE A.1 (Cont.)

Samı Date and		Sample	Sample Type	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
Septembe	er 2011	sampling event (cont.)						
9/29/11	15:14	CNMW03-W-27228	MW	MW03	50.5-60.5	3184	9/29/11	Depth to water = 21.35 ft. Depth of 4-in. well = 60.5 ft. Sample collected by using low-flow bladder pump positioned at 55.5 ft after purging of 8 L. Water clear.
9/29/11	15:36	CNPMP4-W-27245	MW	PMP4	48.75-58.75	3184	9/29/11	Depth to water = 19.56 ft. Depth of 0.5-in. well = 58.75 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 6.5 L.
9/29/11	16:13	CNMW04-W-27229	MW	MW04	37.5-47.5	3184	9/29/11	Depth to water = 24.55 ft. Depth of 4-in. well = 7.5 ft. Sample collected by using low-flow bladder pump positioned at 42.5 ft after purging of 8 L. Water clear.
9/29/11	16:26	CNPMP3-W-27244	MW	PMP3	50-60	3184	9/29/11	Depth to water not recorded. Depth of 0.5-in. well = 60 t. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 6 L. Water gray with strong odor.
9/29/11	17:04	CNPMP8-W-27249	MW	PMP8	50-60	3184	9/29/11	Depth to water = 20.32 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 6.7 L.
9/29/11	17:22	CNMW02-W-27227	MW	MW02	49.5-59.5	3184	9/29/11	Depth to water = 21.93 ft. Depth of 4-in. well = 59.5 ft. Sample collected by using low-flow bladder pump positioned at 54.5 ft after purging of 7 L. Water clear.
9/29/11	17:23	CNMW02DUP-W-27251b	MW	MW02	49.5-59.5	3184	9/29/11	Replicate of sample CNMW02-W-27227.
9/29/11	17:44	CNPMP9-W-27250	MW	PMP9	50-60	3184	9/29/11	Depth to water = 17.97 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 9 L.
9/29/11	18:18	CNPMP2-W-27243	MW	PMP2	50-60	3184	9/29/11	Depth to water = 21.38 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 7 L. Water clear with strong odor.
9/29/11	18:30	CNQCTB-W-27256 ^b	TB	QC	_	3184	9/29/11	Trip blank sent to the AGEM Laboratory for VOCs analysis with water samples listed on chain-of- custody form (COC) 3184.
9/29/11	18:38	CNPMP1-W-27242	MW	PMP1	50-60	3184	9/29/11	Depth to water = 21.38 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 7 L. Water brown and silty.

Samp Date and		Sample	Sample Type	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
Septembe	er 2011	sampling event (cont.)						
9/30/11	11:20	CNMW05-W-27230	MW	MW05	34.5-44.5	3185	10/1/11	Depth to water = 13.65 ft. Depth of 4-in. well = 44.5 ft. Sample collected by using low-flow bladder pump positioned at 39.5 ft after purging of 8 L. Water clear.
9/30/11	12:17	CNMW06-W-27231	MW	MW06	46.5-56.5	3185	10/1/11	Depth to water = 36.76 ft. Depth of 4-in. well = 56.5 ft. Sample collected by using low-flow bladder pump positioned at 51.5 ft after purging of 6 L. Water clear.
9/30/11	12:40	CNQCIR-W-27253b	RI	QC	-	3185	10/1/11	Rinsate of decontaminated sampling line after collection of sample CNMW06-W-27231.
9/30/11	12:56	CNSB05-W-27238	MW	SB05	32-42	3185	10/1/11	Depth to water = 13.33 ft. Depth of 1-in. well = 42 ft. Sample collected by using low-flow bladder pump positioned at 37 ft after purging of 16 L.
9/30/11	13:27	CNMW07-W-27232	MW	MW07	45-55	3185	10/1/11	Depth to water = 29.56 ft. Depth of 2-in. well = 55 ft. Sample collected by using low-flow bladder pump positioned at 50 ft after purging of 4 L. Water clear.
9/30/11	14:43	CNMW08-W-27233	MW	MW08	38-53	3185	10/1/11	Depth to water = 19.78 ft. Depth of 2-in. well = 53 ft. Sample collected by using low-flow bladder pump positioned at 45.5 ft after purging of 7 L. Water silty.
9/30/11	15:30	CNMW09-W-27234	MW	MW09	25-35	3185	10/1/11	Depth to water = 6.23 ft. Depth of 2-in. well = 35 ft. Sample collected by using low-flow bladder pump positioned at 30 ft after purging of 6 L. Water clear.
9/30/11	16:48	CNMW10-W-27235	MW	MW10	30-45	3185	10/1/11	Depth to water = 21.89 ft. Depth of 2-in. well = 45 ft. Sample collected by using low-flow bladder pump positioned at 37.5 ft after purging of 6 L. Water clear.
9/30/11	17:50	CNSB07R-W-27239	MW	SB07R	45-60	3185	10/1/11	Depth to water = 19.63 ft. Depth of 2-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 52.5 ft after purging of 6 L. Water clear.
9/30/11	18:00	CNSB04-W-27237	MW	SB04	51-61	3185	10/1/11	Depth to water = 22.72 ft. Depth of 1-in. well = 47.5 ft. Sample collected by using low-flow bladder pump positioned at 42.5 ft after purging of 1.5 L.
9/30/11	18:01	CNSB04DUP-W-27252b	MW	SB04	51-61	3186	10/1/11	Replicate of sample CNSB04-W-27237.
9/30/11		CNQCIR-W-27254 ^b	RI	QC	_	3185	10/1/11	Rinsate of decontaminated sampling line after collection of sample CNSB04-W-27237 and replicate CNSB04DUP-W-27252.

TABLE A.1 (Cont.)

Samp Date and		Sample	Sample Type	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
Septembe	er 2011	sampling event (cont.)						
10/1/11	11:24	CNSB08-W-27240	MW	SB08	52-62	3186	10/1/11	Depth to water = 19.66 ft. Depth of 1-in. well = 53 ft. Sample collected by using low-flow bladder pump positioned at 45.5 ft after purging of 2.5 L.
10/1/11	11:25	CNSB09-W-27241	MW	SB09	32-42	3186	10/1/11	Depth to water = 9.32 ft. Depth of 1-in. well = 42 ft. Sample collected by using low-flow bladder pump positioned at 37 ft after purging of 2 L. Water clear.
10/1/11	12:00	CNDIH2O-W-27255 ^b	FB	QC	-	3186	10/1/11	Field blank of water used for equipment decontamination during the sampling event on 9/29/11-10/1/11.
10/1/11	12:10	CNQCTB-W-27257 ^b	ТВ	QC	-	3186	10/1/11	Trip blank sent to the AGEM Laboratory for VOCs analysis with water samples listed on COCs 3185 and 3186.
10/1/11	12:30	CNSB01-W-27236	MW	SB01	40-50	3186	10/1/11	Depth to water = 20.28 ft. Depth of 1-in. well = 50 ft. Sample collected by using low-flow bladder pump positioned at 45 ft after purging of 3 L. Water clear.
10/1/11	12:38	CNPMP5-W-27246	MW	PMP5	50-60	3186	10/1/11	Depth to water = 22.77 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using low-flow bladder pump positioned at 55 ft after purging of 2.2 L.

^a Sample types: FB, field blank; MW, monitoring well; RI, rinsate; TB, trip blank.

^b Quality control sample.

Appendix B:

Quality Control Data Summary

				Cor	icentration (με	ı/L)		
Location	Sample	Sample Date	Depth (ft BGL)	Carbon Tetrachloride	Chloroform	Methylene Chloride	Analysis Type	
PMP1	CNPMP1-W-27219	4/19/11	50-60	63	8.4	ND ^a	Primary sample	
PMP1	CNPMP1DUP-W-27223	4/19/11	50-60	67	8.6	ND	Replicate	
PMP8	CNPMP8-W-27222	4/19/11	50-60	ND	ND	ND	Primary sample	
PMP8	CNPMP8-W-27222DUP	4/19/11	50-60	ND	ND	ND	Duplicate analysis	
QC	CNQCIR-W-27224	4/19/11	_	ND	ND	ND	Equipment rinsate	
QC	CNQCTB-W-27225	4/19/11	_	ND	ND	ND	Trip blank	
MW02	CNMW02-W-27227	9/29/11	49.5-59.5	ND	ND	ND	Primary sample	
MW02	CNMW02DUP-W-27251	9/29/11	49.5-59.5	ND	ND	ND	Replicate	
QC	CNQCTB-W-27256	9/29/11	_	ND	ND	ND	Trip blank	
PMP1	CNPMP1-W-27242	9/29/11	50-60	134	13	ND	Primary sample	
PMP1	CNPMP1-W-27242DUP	9/29/11	50-60	139	14	ND	Duplicate analysis	
QC	CNQCIR-W-27253	9/30/11	_	ND	ND	ND	Equipment rinsate	
SB05	CNSB05-W-27238	9/30/11	32-42	245	22	ND	Primary sample	
SB05	CNSB05-W-27238DUP	9/30/11	32-42	244	23	ND	Duplicate analysis	
SB04	CNSB04-W-27237	9/30/11	51-61	8.7	ND	ND	Primary sample	
SB04	CNSB04-W-27237DUP	9/30/11	51-61	8.8	ND	ND	Duplicate analysis	
SB04	CNSB04DUP-W-27252	9/30/11	51-61	8.4	ND	ND	Replicate	
QC	CNQCIR-W-27254	9/30/11	_	ND	ND	ND	Equipment rinsate	
QC	CNQCTB-W-27257	10/1/11	_	ND	ND	ND	Trip blank	

TABLE B.1 Analytical results from the AGEM Laboratory for quality control samples collected in 2011.

^a ND, not detected at an instrument detection limit of 0.1 μ g/L.

						Concentra	tion (μg/L)		
				AG	EM Laborato	у	1	TestAmerica	
Location	Sample	Sample Date	Depth (ft BGL)	Carbon Tetrachloride	Chloroform	Methylene Chloride	Carbon Tetrachloride	Chloroform	Methylene Chloride
MW02	CNMW02-W-27218	4/19/11	49.5-59.5	ND ^a	ND	ND	0.025 J ^b	ND	ND
PMP3	CNPMP3-W-27221	4/19/11	50-60	0.1 J	ND	ND	0.14 J	0.17 J	ND
PMP6	CNPMP6-W-27247	9/29/11	50-60	152	9.9	ND	120	7.3	0.13 J
MW04	CNMW04-W-27229	9/29/11	37.5-47.5	3.1	ND	ND	2.6	0.19 J	ND
PMP9	CNPMP9-W-27250	9/29/11	50-60	28	ND	ND	22	0.24 J	ND

TABLE B.2 Analytical results for verification groundwater samples from the AGEM Laboratory and TestAmerica.

^a ND, not detected at an instrument detection limit of 0.1 µg/L for analyses by the AGEM Laboratory or 0.01 µg/L for analyses by TestAmerica.

^b Qualifier J indicates an estimated concentration below the quantitation limit of 1.0 μg/L for modified EPA Method 524.2 at the AGEM Laboratory or 0.5 μg/L for EPA Method SOM01.2 at TestAmerica.

Appendix C:

Time Series Diagrams for Selected Parameters at IM Monitoring Points

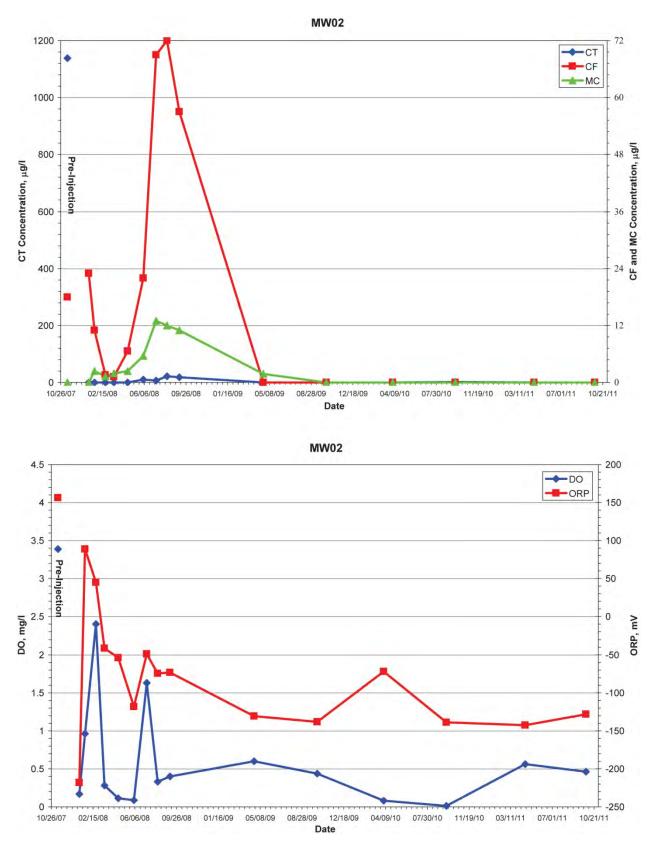


FIGURE C.1 Analytical results for VOCs, DO, and ORP in groundwater samples collected at location MW02, November 2007 to October 2011.

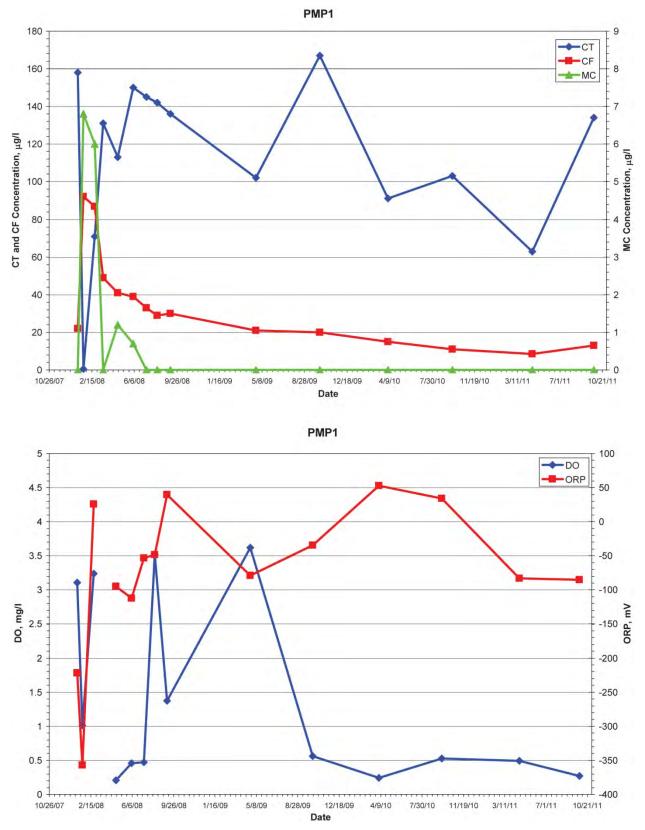


FIGURE C.2 Analytical results for VOCs, DO, and ORP in groundwater samples collected at location PMP1, January 2008 to October 2011.

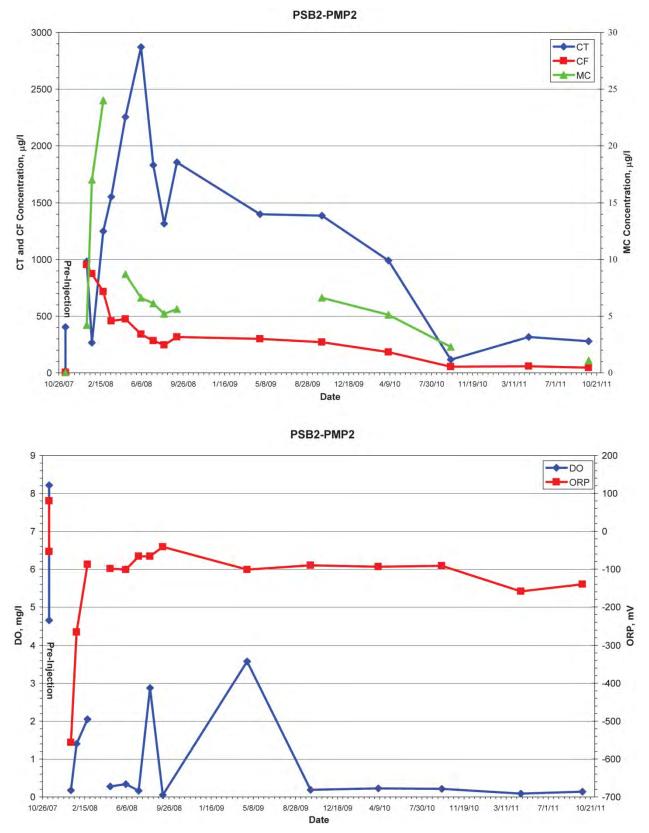


FIGURE C.3 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB2 and PMP2, November 2007 to October 2011.

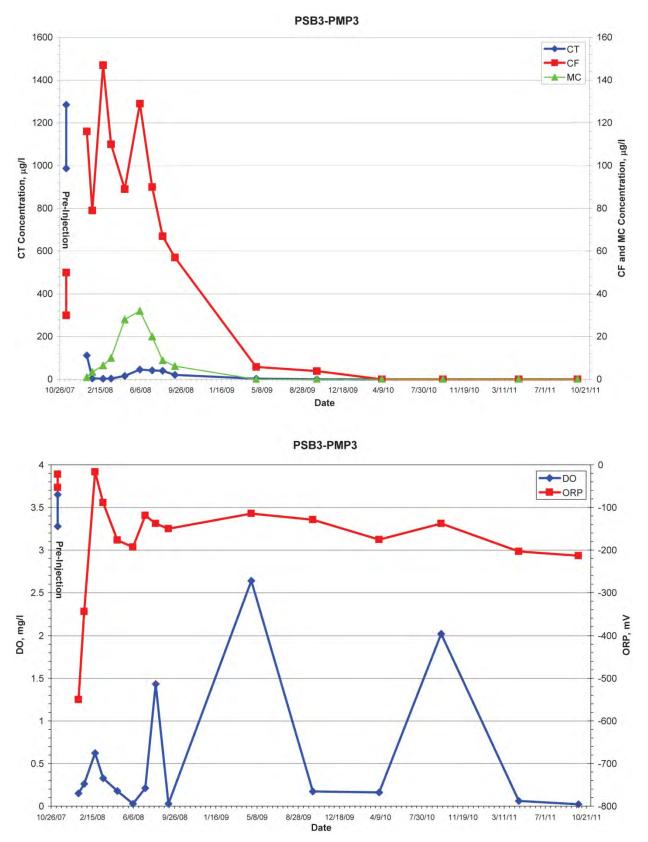


FIGURE C.4 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB3 and PMP3, November 2007 to October 2011.

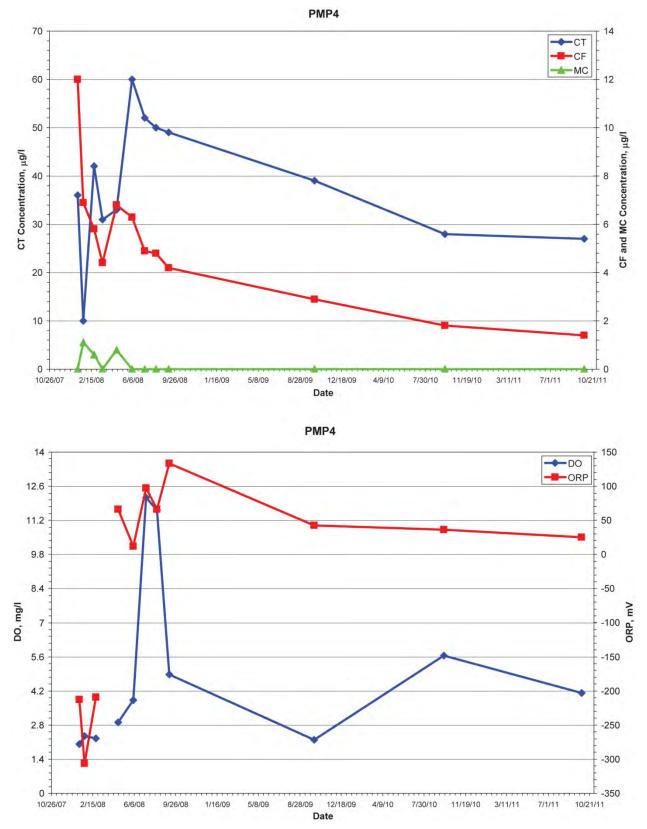
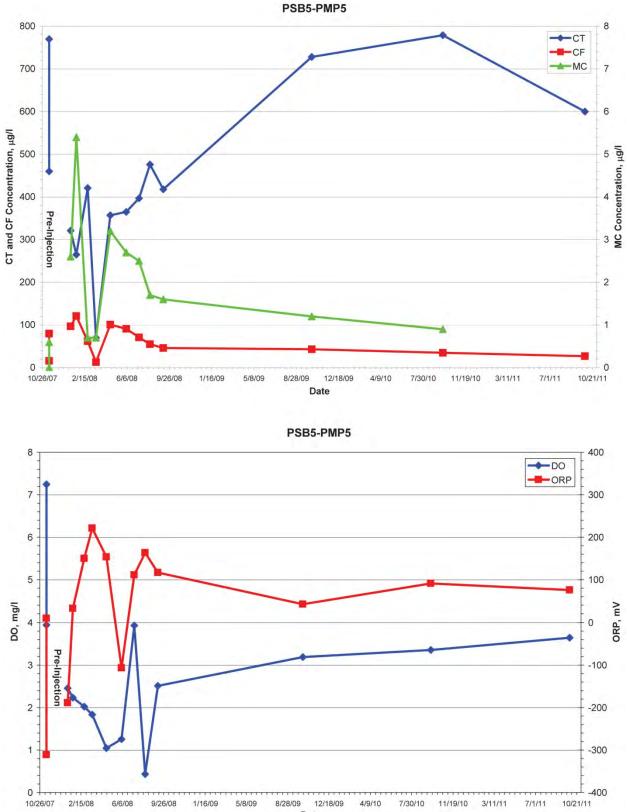



FIGURE C.5 Analytical results for VOCs, DO, and ORP in groundwater samples collected at location PMP4, January 2008 to October 2011.

Date

FIGURE C.6 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB5 and PMP5, November 2007 to October 2011.

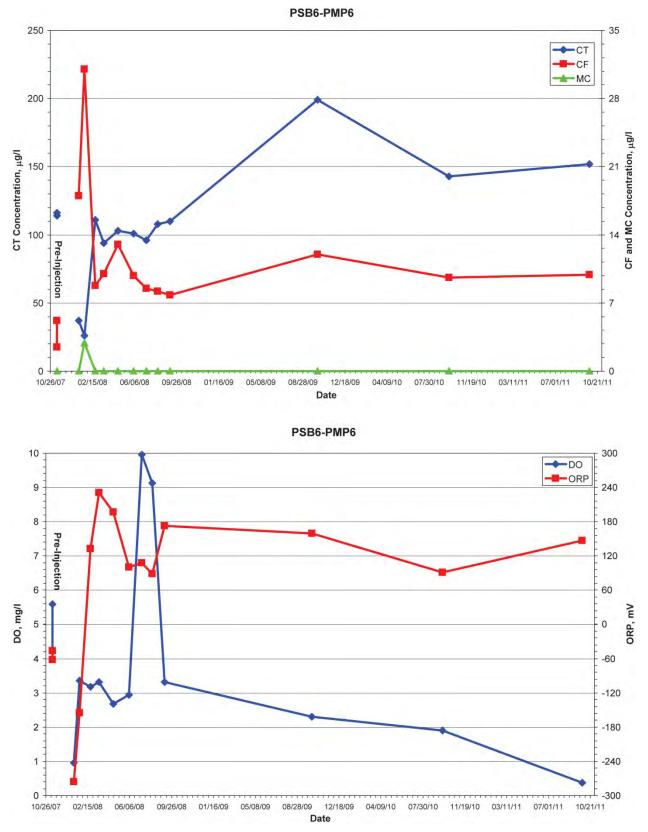


FIGURE C.7 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB6 and PMP6, November 2007 to October 2011.

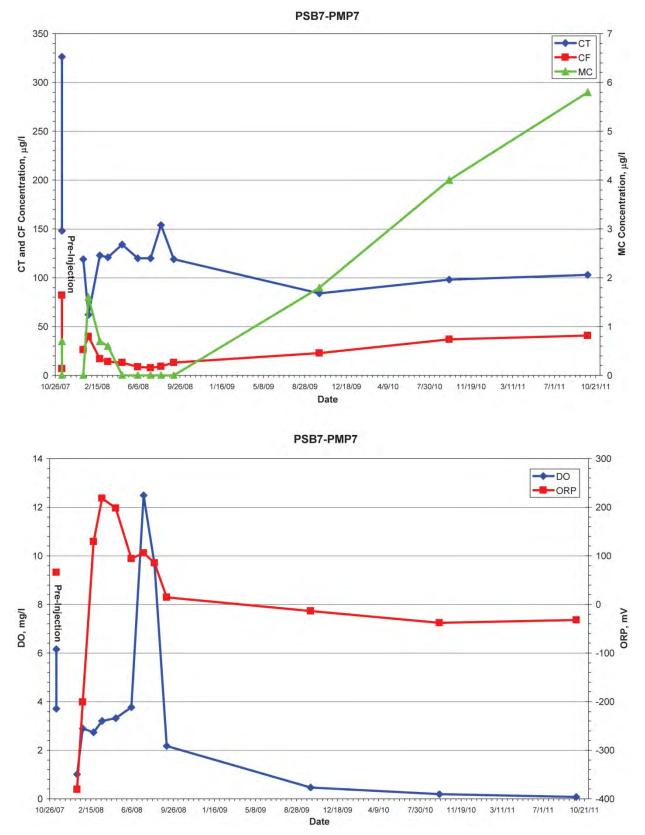


FIGURE C.8 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB7 and PMP7, November 2007 to October 2011.

FIGURE C.9 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB8 and PMP8, November 2007 to October 2011.

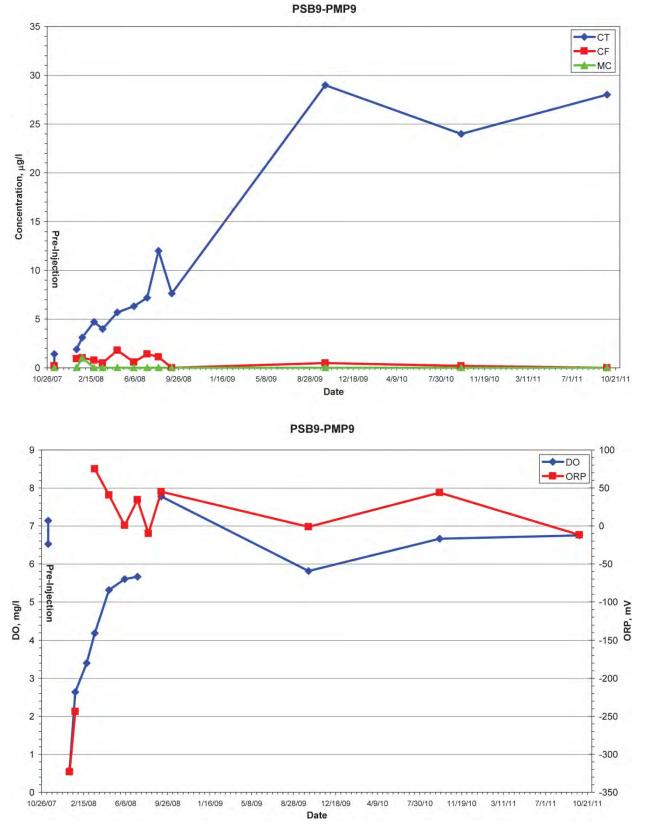


FIGURE C.10 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB9 and PMP9, November 2007 to October 2011.

Supplement 1:

Waste Characterization and Disposal Documentation

ce Analvtica www.pacelabs.con

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

November 11, 2011

Mr. Travis Kamler TCW Construction Inc 141 M Street Lincoln, NE 68508

RE: Project: KS/MO Waste Water Pace Project No.: 60109211

Dear Mr. Kamler:

Enclosed are the analytical results for sample(s) received by the laboratory on November 01, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sudy Sipson

Trudy Gipson

trudy.gipson@pacelabs.com Project Manager

Enclosures

cc: Mr. David Surgnier

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 1 of 26

ace Analytical www.pacelabs.com

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project:

KS/MO Waste Water 60109211

Pace Project No.: 60

Kansas Certification IDs 9608 Loiret Boulevard, Lenexa, KS 66219 A2LA Certification #: 2456.01 Arkansas Certification #: 05-008-0 Illinois Certification #: 001191 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-08-TX Utah Certification #: 9135995665

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 2 of 26

ace Analytical www.pacelabs.com

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

SAMPLE SUMMARY

Project:KS/MO Waste WaterPace Project No.:60109211

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60109211001	AGPURGE-W-10111	Water	10/31/11 09:00	11/01/11 09:20
60109211002	BAPURGE-W-10112	Water	10/31/11 12:55	11/01/11 09:20
60109211003	CNPURGE-W-10113	Water	10/31/11 14:02	11/01/11 09:20
60109211004	EUPURGE-W-10114	Water	10/31/11 15:52	11/01/11 09:20
60109211005	HAPURGE-W-10115	Water	10/31/11 12:27	11/01/11 09:20
60109211006	MRPURGE-W-10116	Water	10/31/11 14:42	11/01/11 09:20
60109211007	SVPURGE-W-10117	Water	10/31/11 18:30	11/01/11 09:20

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 3 of 26

Face Analytical www.pacelabs.com

SAMPLE ANALYTE COUNT

Project:	KS/MO Waste Water
Pace Project No.:	60109211

Lab ID	Sample ID		Method	Analysts	Analytes Reported
60109211001	AGPURGE-W-10111		EPA 504.1	NAW	1
			EPA 5030B/8260	HMW	70
			EPA 353.2	AJM	1
60109211002	BAPURGE-W-10112		EPA 504.1	NAW	1
			EPA 5030B/8260	HMW	70
			EPA 353.2	AJM	1
60109211003	CNPURGE-W-10113		EPA 504.1	NAW	1
			EPA 5030B/8260	HMW	70
			EPA 353.2	AJM	1
60109211004	EUPURGE-W-10114		EPA 504.1	NAW	1
			EPA 5030B/8260	HMW	70
(*)		4	EPA 353.2	AJM	1
60109211005	HAPURGE-W-10115		EPA 504.1	NAW	1
		1.4	EPA 5030B/8260	HMW	70
			EPA 353.2	AJM	1
60109211006	MRPURGE-W-10116		EPA 504.1	NAW	1
			EPA 5030B/8260	HMW	70
			EPA 353.2	AJM	1
60109211007	SVPURGE-W-10117		EPA 504.1	NAW	1
	-4		EPA 5030B/8260	HMW	70
			EPA 353.2	AJM	1

REPORT OF LABORATORY ANALYSIS

Page 4 of 26

ace Analytical www.pacelabs.com

.

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

•

ANALYTICAL RESULTS

Sample: AGPURGE-W-10111	Lab ID: 6010	9211001	Collected: 10/31/	11 09:00	Received: 11	/01/11 09:20	Vatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical Metho	od: EPA 50	04.1 Preparation Me	thod: EF	PA 504.1			
1,2-Dibromoethane (EDB)	ND ug/	L	0.028	1	11/07/11 00:00	11/08/11 00:52	106-93-4	
8260 MSV	Analytical Metho	od: EPA 50)30B/8260					
Acetone	ND ug/	L	10.0	1		11/04/11 20:18		
Benzene	ND ug/	L	1.0	1		11/04/11 20:18		
Bromobenzene	ND ug/	L	1.0	1		11/04/11 20:18		
Bromochloromethane	ND ug/	L	1.0	1		11/04/11 20:18	74-97-5	
Bromodichloromethane	ND ug/	L	1.0	1		11/04/11 20:18	75-27-4	
Bromoform	ND ug/	L	1.0	1		11/04/11 20:18	75-25-2	
Bromomethane	ND ug/	L	1.0	1		11/04/11 20:18	74-83-9	
2-Butanone (MEK)	ND ug/		10.0	1		11/04/11 20:18	78-93-3	
n-Butylbenzene	ND ug/		1.0	1		11/04/11 20:18	104-51-8	
sec-Butylbenzene	ND ug/		1.0	1 -		11/04/11 20:18	135-98-8	
tert-Butylbenzene	ND ug/		1.0	1		11/04/11 20:18	98-06-6	
Carbon disulfide	ND ug/		5.0	1		11/04/11 20:18	75-15-0	
Carbon tetrachloride	21.8 ug/		1.0	1		11/04/11 20:18	56-23-5	
Chlorobenzene	ND ug/		1.0			11/04/11 20:18		-
Chloroethane	ND ug/		1.0			11/04/11 20:18	75-00-3	
Chloroform	1.6 ug/		1.0			11/04/11 20:18		
Chloromethane	ND ug/		1.0	1		11/04/11 20:18		
2-Chlorotoluene	ND ug/		1.0	1		11/04/11 20:18		
	ND ug/		1.0			11/04/11 20:18		
4-Chlorotoluene	-		2.5			11/04/11 20:18		
1,2-Dibromo-3-chloropropane	ND ug/		1.0			11/04/11 20:18		
Dibromochloromethane	ND ug/		1.0			11/04/11 20:18		
1,2-Dibromoethane (EDB)	ND ug/		1.0			11/04/11 20:18		
Dibromomethane	ND ug/		1.0			11/04/11 20:18		
1,2-Dichlorobenzene	ND ug/					11/04/11 20:18		
1,3-Dichlorobenzene	ND ug/		1.0 1.0			11/04/11 20:18		
1,4-Dichlorobenzene	ND ug/					11/04/11 20:18		
Dichlorodifluoromethane	ND ug/		1.0					
1,1-Dichloroethane	ND ug/		1.0			11/04/11 20:18		
1,2-Dichloroethane	ND ug/		1.0			11/04/11 20:18		
1,2-Dichloroethene (Total)	ND ug/		1.0			11/04/11 20:18		
1,1-Dichloroethene	ND ug/		1.0			11/04/11 20:18		
cis-1,2-Dichloroethene	ND ug/		1.0			11/04/11 20:18		
trans-1,2-Dichloroethene	ND ug		1.0			11/04/11 20:10		
1,2-Dichloropropane	ND ug	/L	1.0			11/04/11 20:1		
1,3-Dichloropropane	ND ug	/L	1.0			11/04/11 20:18		
2,2-Dichloropropane	ND ug	/L	1.0			11/04/11 20:10		
1,1-Dichloropropene	ND ug		1.0			11/04/11 20:1		
cis-1,3-Dichloropropene	ND ug	/L	1.0				B 10061-01-5	
trans-1,3-Dichloropropene	ND ug	/L	1.0	1			8 10061-02-6	
Ethylbenzene	ND ug	/L	1.0	1		11/04/11 20:1		
Hexachloro-1,3-butadiene	ND ug	/L	1.0	1		11/04/11 20:1	8 87-68-3	
2-Hexanone	ND ug		10.0	1		11/04/11 20:1	8 591-78-6	
Isopropylbenzene (Cumene)	ND ug		1.0	1		11/04/11 20:1	8 98-82-8	
p-isopropyitoluene	ND ug		1.0	1		11/04/11 20:1	8 99-87-6	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 5 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: AGPURGE-W-10111	Lab ID: 60109211001	Collected: 10/31/	11 09:00	Received: 11	1/01/11 09:20	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 5	030B/8260					
Methylene chloride	ND ug/L	1.0	1		11/04/11 20:18		
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		11/04/11 20:18		
Methyl-tert-butyl ether	ND ug/L	1.0	1		11/04/11 20:18		
Naphthalene	ND ug/L	10.0	1		11/04/11 20:18		
n-Propylbenzene	ND ug/L	1.0	1		11/04/11 20:18		
Styrene	ND ug/L	1.0	1		11/04/11 20:18		
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 20:18		
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 20:18	3 79-34-5	
Tetrachloroelhene	ND ug/L	1.0	1		11/04/11 20:18	3 127-18-4	
Toluene	ND ug/L	1.0	1		11/04/11 20:18		
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 20:18	8 87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 20:18	3 120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		11/04/11 20:18	3 71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		11/04/11 20:18	3 79-00-5	
Trichloroethene	ND ug/L	1.0	1		11/04/11 20:18	8 79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		11/04/11 20:1	8 75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		11/04/11 20:1	3 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 20:1	8 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 20:1	8 108-67-8	
Vinyl chloride	ND ug/L	1.0	1		11/04/11 20:1	8 75-0 1- 4	
Xylene (Total)	ND ug/L	3.0	1		11/04/11 20:1	8 1330-20-7	
4-Bromofluorobenzene (S)	104 %	87-113	1		11/04/11 20:1	8 460-00-4	
Dibromofluoromethane (S)	103 %	86-112	1	100	11/04/11 20:1	8 1868-53-7	
1,2-Dichloroethane-d4 (S)	109 %	82-119	1		11/04/11 20:1	8 17060-07-0	
Toluene-d8 (S)	103 %	90-110	1		11/04/11 20:1	8 2037-26-5	
Preservation pH	7.0	0.10	1		11/04/11 20:1	8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA	353.2					
Nitrogen, Nitrate	14.6 mg/L	0.50	1		11/02/11 08:4	8	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 6 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: BAPURGE-W-10112	Lab ID: 6010921100	2 Collected: 10/31/	11 12:55	Received: 11	/01/11 09:20 N	latrix: Water	
Parameters	Results Units	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Method: EPA	504.1 Preparation Me	thod: El	PA 504.1			
1,2-Dibromoethane (EDB)	ND ug/L	0.029	1	11/07/11 00:00	11/08/11 01:04	106-93-4	
8260 MSV	Analytical Method: EPA	5030B/8260					
Acetone	ND ug/L	10.0	1		11/04/11 20:35		
Benzene	ND ug/L	1.0	1		11/04/11 20:35		
Bromobenzene	ND ug/L	1.0	1		11/04/11 20:35		
Bromochloromethane	ND ug/L	1.0	1		11/04/11 20:35		
Bromodichloromethane	ND ug/L	1.0	1		11/04/11 20:35		
Bromoform	ND ug/L	1.0			11/04/11 20:35		
Bromomethane	ND ug/L	1.0	1		11/04/11 20:35		
2-Butanone (MEK)	ND ug/L	10.0	1		11/04/11 20:35		
n-Butylbenzene	ND ug/L	1.0	1		11/04/11 20:35		
sec-Butylbenzene	ND ug/L	1.0	1		11/04/11 20:35		
tert-Butylbenzene	ND ug/L	1.0	1		11/04/11 20:35		
Carbon disulfide	ND ug/L	5.0	1		11/04/11 20:35		
Carbon tetrachloride	1.1 ug/L	1.0	1		11/04/11 20:35		
Chlorobenzene	ND ug/L	1.0	1		11/04/11 20:35	108-90-7	
Chloroethane	ND ug/L	1.0	1		11/04/11 20:35	75-00-3	
Chloroform	ND ug/L	1.0	1		11/04/11 20:35	67-66-3	
Chloromethane	ND ug/L	1.0	1		11/04/11 20:35	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		11/04/11 20:35	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		11/04/11 20:35	106-43-4	
1.2-Dibromo-3-chloropropane	ND ug/L	2.5	1		11/04/11 20:35	96-12-8	
Dibromochloromethane	ND ug/L	1.0	1		11/04/11 20:35	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		11/04/11 20:35	106-93-4	
Dibromomethane	ND ug/L	1.0			11/04/11 20:35	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0			11/04/11 20:35		
	ND ug/L	1.0			11/04/11 20:35		
1,3-Dichlorobenzene	ND ug/L	1.0			11/04/11 20:35		
1,4-Dichlorobenzene	ND ug/L	1.0			11/04/11 20:35		
Dichlorodifluoromethane	ND ug/L	1.0			11/04/11 20:35		
1,1-Dichloroethane	ND ug/L	1.0			11/04/11 20:35		
1,2-Dichloroethane	ND ug/L	1.0			11/04/11 20:35		
1,2-Dichloroethene (Total)	ND ug/L	1.0			11/04/11 20:35		
1,1-Dichloroethene	-	1.0			11/04/11 20:35		
cis-1,2-Dichloroethene	ND ug/L	1.0			11/04/11 20:3		
trans-1,2-Dichloroethene	ND ug/L	1.0			11/04/11 20:3		
1,2-Dichloropropane	ND ug/L	1.0			11/04/11 20:3		
1,3-Dichloropropane	ND ug/L	1.0			11/04/11 20:3		
2,2-Dichloropropane	ND ug/L				11/04/11 20:3		
1,1-Dichloropropene	ND ug/L	1.0				5 10061-01-5	
cis-1,3-Dichloropropene	ND ug/L					5 10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0			11/04/11 20:3		
Ethylbenzene	ND ug/L	1.0					
Hexachloro-1,3-butadiene	ND ug/L	1.0			11/04/11 20:3		
2-Hexanone	ND ug/L	10.0			11/04/11 20:3		
Isopropylbenzene (Cumene)	ND ug/L	1.1			11/04/11 20:3		
p-Isopropyltoluene	ND ug/L	1.0	0 1		11/04/11 20:3	5 99-87-6	

Dale: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 7 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: BAPURGE-W-10112	Lab ID: 60109211002	Collected: 10/31/11 12:	55 Received: 11/01/11 09:20 Matrix: Water
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. Qu
8260 MSV	Analytical Method: EPA 50	030B/8260	
Methylene chloride	ND ug/L	1.0 1	11/04/11 20:35 75-09-2
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0 1	11/04/11 20:35 108-10-1
Methyl-tert-bulyl ether	ND ug/L	1.0 1	11/04/11 20:35 1634-04-4
Naphthalene	ND ug/L	10.0 1	11/04/11 20:35 91-20-3
n-Propylbenzene	ND ug/L	1.0 1	11/04/11 20:35 103-65-1
Styrene	ND ug/L	. 1.0 1	11/04/11 20:35 100-42-5
1.1.1.2-Tetrachloroethane	ND ug/L	1.0 1	11/04/11 20:35 630-20-6
1,1,2,2-Tetrachloroethane	ND ug/L	1.0 1	11/04/11 20:35 79-34-5
Tetrachloroethene	ND ug/L	1.0 1	11/04/11 20:35 127-18-4
Toluene	ND ug/L	1.0 1	11/04/11 20:35 108-88-3
1,2,3-Trichlorobenzene	ND ug/L	1.0 1	11/04/11 20:35 87-61-6
1,2,4-Trichlorobenzene	ND ug/L	1.0 1	11/04/11 20:35 120-82-1
1,1,1-Trichloroethane	ND ug/L	1.0 1	11/04/11 20:35 71-55-6
1,1,2-Trichloroethane	ND ug/L	1.0 1	11/04/11 20:35 79-00-5
Trichloroethene	ND ug/L	1.0 1	11/04/11 20:35 79-01-6
Trichlorofluoromethane	ND ug/L	1.0 1	11/04/11 20:35 75-69-4
1,2,3-Trichloropropane	ND ug/L	2.5 1	11/04/11 20:35 96-18-4
1,2,4-Trimelhylbenzene	ND ug/L	1.0 1	11/04/11 20:35 95-63-6
1,3,5-Trimethylbenzene	ND ug/L	1.0 1	11/04/11 20:35 108-67-8
Vinyl chloride	ND ug/L	1.0 1	11/04/11 20:35 75-01-4
Xylene (Total)	ND ug/L	3.0 1	11/04/11 20:35 1330-20-7
4-Bromofluorobenzene (S)	102 %	87-113 1	11/04/11 20:35 460-00-4
Dibromofluoromethane (S)	98 %	86-112 1	11/04/11 20:35 1868-53-7
1,2-Dichloroethane-d4 (S)	101 %	82-119 1	11/04/11 20:35 17060-07-0
Toluene-d8 (S)	95 %	90-110 1	11/04/11 20:35 2037-26-5
Preservation pH	7.0	0.10 1	11/04/11 20:35
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 3	53.2	
Nitrogen, Nitrate	6.1 mg/L	0.20 1	11/02/11 09:17

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 8 of 26

Pace Analytical www.pecelabs.com

ANALYTICAL RESULTS

Sample: CNPURGE-W-10113	Lab ID: 60109	211003	Collected: 10/31/1	1 14:02	Received: 11	/01/11 09:20	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical Method	d: EPA 504.	1 Preparation Met	hod: EP	A 504.1		4	
1,2-Dibromoethane (EDB)	ND ug/L		0.028	1	11/07/11 00:00	11/08/11 01:17	106-93-4	
8260 MSV	Analytical Method	d: EPA 5030)B/8260		4			
Acetone	ND ug/L		10.0	1		11/04/11 20:51		
Benzene	ND ug/L		1.0	1		11/04/11 20:51	71-43-2	
Bromobenzene	ND ug/L		1.0	1		11/04/11 20:51		
Bromochloromethane	ND ug/L		1.0	1		11/04/11 20:51	74-97-5	
Bromodichloromethane	ND ug/L		1.0	1		11/04/11 20:51	75-27-4	
Bromoform	ND ug/L		1.0	1		11/04/11 20:51	75-25-2	
Bromomethane	ND ug/L		1.0	1		11/04/11 20:51	74-83-9	
2-Butanone (MEK)	ND ug/L		10.0	1		11/04/11 20:51	78-93-3	
n-Butylbenzene	ND ug/L		1.0	1		11/04/11 20:5	104-51-8	
sec-Butylbenzene	ND ug/L		1.0	1		11/04/11 20:51		
tert-Butylbenzene	ND ug/L		1.0	1		11/04/11 20:5	98-06-6	
Carbon disulfide	ND ug/L		5.0	1		11/04/11 20:5		
	1.3 ug/L		1.0	1		11/04/11 20:5		
Carbon telrachloride	ND ug/L		1.0	1		11/04/11 20:5		
Chlorobenzene	0		1.0	1		11/04/11 20:5		
Chloroethane	ND ug/L			1		11/04/11 20:5		
Chloroform	ND ug/L		1.0		241	11/04/11 20:5		
Chloromethane	ND ug/L		1.0	1				
2-Chlorotoluene	ND ug/L		1.0	1		11/04/11 20:5		
4-Chlorotoluene	ND ug/L		1.0	1		11/04/11 20:5		
1,2-Dibromo-3-chloropropane	ND ug/L		2.5	1		11/04/11 20:5		
Dibromochloromethane	ND ug/L		1.0	1		11/04/11 20:5		
1,2-Dibromoethane (EDB)	ND ug/L		1.0	1		11/04/11 20:5		
Dibromomethane	ND ug/L		1.0	1		11/04/11 20:5		
1,2-Dichlorobenzene	ND ug/L		1.0	1		11/04/11 20:5	1 95-50-1	
1,3-Dichlorobenzene	ND ug/L		1.0	1		11/04/11 20:5	1 541-73-1	
1,4-Dichlorobenzene	ND ug/L		1.0	1		11/04/11 20:5	1 106-46-7	
Dichlorodifluoromethane	ND ug/L		1.0	1		11/04/11 20:5	1 75-71-8	
1,1-Dichloroethane	ND ug/L		1.0	1		11/04/11 20:5	1 75-34-3	
1,2-Dichloroethane	ND ug/L		1.0	1		11/04/11 20:5	1 107-06-2	
1,2-Dichloroethene (Total)	ND ug/L		1.0	1		11/04/11 20:5	1 540-59-0	
1,1-Dichloroethene	ND ug/L		1.0	1		11/04/11 20:5	1 75-35-4	
cis-1,2-Dichloroethene	ND ug/L		1.0	1		11/04/11 20:5	1 156-59-2	
trans-1,2-Dichloroethene	ND ug/L		1.0	1		11/04/11 20:5		
1,2-Dichloropropane	ND ug/L		1.0	1		11/04/11 20:5		
	ND ug/L		1.0	1		11/04/11 20:5		
1,3-Dichloropropane	-		1.0	1		11/04/11 20:5		
2,2-Dichloropropane	ND ug/L		1.0	1		11/04/11 20:5		
1,1-Dichloropropene	ND ug/L					11/04/11 20:5		
cis-1,3-Dichloropropene	ND ug/L		1.0	1				
trans-1,3-Dichloropropene	ND ug/L		1.0	1		11/04/11 20:5		
Ethylbenzene	ND ug/L		1.0	1		11/04/11 20:5		
Hexachloro-1,3-butadiene	ND ug/L		1.0	1		11/04/11 20:5		
2-Hexanone	ND ug/L	-	10.0	1		11/04/11 20:5		
Isopropylbenzene (Cumene)	ND ug/L	-	1.0	1		11/04/11 20:5		
p-isopropyltoluene	ND ug/L	_	1.0	1		11/04/11 20:5	1 99-87-6	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 9 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: CNPURGE-W-10113	Lab ID: 60109211003	Collected: 10/31/1	1 14:02	Received: 1	1/01/11 09:20	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260 MSV	Analytical Method: EPA 50	30B/8260					
Methylene chloride	ND ug/L	1.0	1		11/04/11 20:51		
I-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		11/04/11 20:51		
Methyl-tert-butyl ether	ND ug/L	1.0	1		11/04/11 20:51		
Naphthalene	ND ug/L	10.0	1		11/04/11 20:51		
-Propylbenzene	ND ug/L	1.0	1		11/04/11 20:51		
Styrene	ND ug/L	1.0	1		11/04/11 20:51		
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 20:51		
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 20:51		
fetrachloroethene	ND ug/L	1.0	1		11/04/11 20:51		
Toluene	ND ug/L	1.0	1		11/04/11 20:51	108-88-3	
1.2.3-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 20:51		
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 20:51	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		11/04/11 20:51	1 71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		11/04/11 20:51	1 79-00-5	
Trichloroethene	ND ug/L	1.0	1		11/04/11 20:51	1 79-01-6	
Frichlorofluoromethane	ND ug/L	1.0	1		11/04/11 20:51	1 75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		11/04/11 20:5	1 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 20:5	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 20:5	1 108-67-8	
Vinyl chloride	ND ug/L	1.0	1		11/04/11 20:5	1 75-01-4	
Xylene (Total)	ND ug/L	3.0	1	141	11/04/11 20:5	1 1330-20-7	
4-Bromofluorobenzene (S)	107 %	87-113	1		11/04/11 20:5	1 460-00-4	
Dibromofluoromethane (S)	110 %	86-112	1		11/04/11 20:5	1 1868-53-7	
1,2-Dichloroethane-d4 (S)	114 %	82-119	1		11/04/11 20:5	1 17060-07-0	
Toluene-d8 (S)	108 %	90-110	1		11/04/11 20:5	1 2037-26-5	
Preservation pH	7.0	0.10	1		11/04/11 20:5	1	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 3	53.2					
Nitrogen, Nitrate	4.4 mg/L	0.10	1		11/02/11 09:0	6	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 10 of 26

Pace Analytical www.pacelabs.com

ANALYTICAL RESULTS

ample: EUPURGE-W-10114	Lab ID: 60109	9211004	Collected:	10/31/11	15:52	Received: 11	/01/11 09:20	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
04 GCS EDB and DBCP	Analytical Metho	od: EPA 50)4.1 Prepara	tion Meth	nod: EP	A 504.1		+	
,2-Dibromoelhane (EDB)	ND ug/L	-		0.029	1	11/07/11 00:00	11/08/11 01:30	106-93-4	
260 MSV	Analytical Metho	od: EPA 50	030B/8260						
cetone	ND ug/L	-		10.0	1		11/04/11 21:07		
enzene	ND ug/L	-		1.0	1		11/04/11 21:07		
Bromobenzene	ND ug/l	-		1.0	1		11/04/11 21:07		
Iromochloromethane	ND ug/l	-	- 1	1.0	1		11/04/11 21:07		
romodichloromethane	ND ug/l	-		1.0	1		11/04/11 21:07		
Bromoform	ND ug/l	_		1.0	1		11/04/11 21:07		
Bromomethane	ND ug/l	-		1.0	1		11/04/11 21:07	74-83-9	
-Butanone (MEK)	ND ug/l	-		10.0	1		11/04/11 21:07	78-93-3	
-Butylbenzene	ND ug/l			1.0	1		11/04/11 21:07	/ 104-51-8	
ec-Butylbenzene	ND ug/l			1.0	1		11/04/11 21:07	135-98-8	
ert-Butylbenzene	ND ug/l			1.0	1		11/04/11 21:07	98-06-6	
Carbon disulfide	ND ug/l			5.0	1		11/04/11 21:07	75-15-0	
Carbon tetrachloride	ND ug/			1.0	1		11/04/11 21:07	56-23-5	
	ND ug/			1.0	1		11/04/11 21:07		
Chlorobenzene	ND ug/			1.0	1		11/04/11 21:07		
Chloroethane	ND ug/			1.0	1		11/04/11 21:07		
Chloroform				1.0	1		11/04/11 21:07		
Chloromethane	ND ug/			1.0	1		11/04/11 21:07		
2-Chlorotoluene	ND ug/			1.0	1		11/04/11 21:07		
l-Chlorotoluene	ND ug/						11/04/11 21:07		
,2-Dibromo-3-chloropropane	ND ug/			2.5	1		11/04/11 21:07		
Dibromochloromethane	ND ug/			1.0	1				
I,2-Dibromoethane (EDB)	ND ug/			1.0	1		11/04/11 21:07		
Dibromomethane	ND ug/	L		1.0	1		11/04/11 21:0		
2-Dichlorobenzene	ND ug/	L		1.0	1		11/04/11 21:0		
,3-Dichlorobenzene	ND ug/	L		1.0	1		11/04/11 21:0		
,4-Dichlorobenzene	ND ug/	Ł		1.0	1		11/04/11 21:0		
Dichlorodifluoromethane	ND ug/	L		1.0	1		11/04/11 21:0		
I,1-Dichloroelhane	ND ug/	L		1.0	1		11/04/11 21:0		
,2-Dichloroethane	ND ug/	Ľ		1.0	1		11/04/11 21:0		
,2-Dichloroethene (Total)	ND ug/	Ľ		1.0	1		11/04/11 21:0		
1,1-Dichloroethene	ND ug/	Ľ		1.0	1		11/04/11 21:0	7 75-35-4	
cis-1,2-Dichloroethene	ND ug/	۲L		1.0	1		11/04/11 21:0		
rans-1,2-Dichloroethene	ND ug/			1.0	1		11/04/11 21:0	7 156-60-5	
1,2-Dichloropropane	ND ug/			1.0	1		11/04/11 21:0	7 78-87-5	
1,3-Dichloropropane	ND ug/			1.0	1		11/04/11 21:0	7 142-28-9	
2,2-Dichloropropane	ND ug/			1.0	1		11/04/11 21:0	7 594-20-7	
1,1-Dichloropropene	ND ug/			1.0	1		11/04/11 21:0	7 563-58-6	
cis-1,3-Dichloropropene	ND ug/			1.0	1	-		7 10061-01-5	
	ND ug/			1.0	1			7 10061-02-6	
rans-1,3-Dichloropropene	ND ug/			1.0	1		11/04/11 21:0		
Ethylbenzene	•			1.0	1		11/04/11 21:0		
Hexachloro-1,3-butadiene	ND ug/				1		11/04/11 21:0		
2-Hexanone	ND ug			10.0 1.0	1		11/04/11 21:0		
sopropylbenzene (Cumene)	ND ug								

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 11 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: EUPURGE-W-10114	Lab ID: 60109211004	Collected: 10/31/11	15:52	Received: 1	11/01/11 09:20 N	Aatrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Methylene chloride	ND ug/L	1.0	1		11/04/11 21:07		
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		11/04/11 21:07	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		11/04/11 21:07		
Naphthalene	ND ug/L	10.0	1		11/04/11 21:07		
n-Propylbenzene	ND ug/L	1.0	1		11/04/11 21:07		
Styrene	ND ug/L	1.0	1		11/04/11 21:07		
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 21:07	630-20-6	
1,1,2,2-Telrachloroethane	ND ug/L	1.0	1		11/04/11 21:07	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		11/04/11 21:07	127-18-4	
Toluene	ND ug/L	1.0	1		11/04/11 21:07	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 21:07	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 21:07	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		11/04/11 21:07	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		11/04/11 21:07	79-00-5	
Trichloroethene	ND ug/L	1.0	1		11/04/11 21:07	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		11/04/11 21:07	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		11/04/11 21:07	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 21:07	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 21:07	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		11/04/11 21:07	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		11/04/11 21:07	1330-20-7	
4-Bromofluorobenzene (S)	106 %	87-113	1		11/04/11 21:07	460-00-4	
Dibromofluoromethane (S)	108 %	86-112	-1		11/04/11 21:07	1868-53-7	
1,2-Dichloroethane-d4 (S)	113 %	82-119	1		11/04/11 21:07	17060-07-0	
Toluene-d8 (S)	105 %	90-110	1		11/04/11 21:07	2037-26-5	
Preservation pH	7.0	0.10	1		11/04/11 21:07		
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA	353.2					
Nitrogen, Nitrate	10.6 mg/L	0.50	1		11/02/11 09:21		

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 12 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project:	KS/MO Waste Water

.

Pace Project No.: 60109211

Sample: HAPURGE-W-10115	Lab ID: 60109211005	Collected: 10/31/1	1 12:27	Received: 11	/01/11 09:20 M	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Method: EPA 50	4.1 Preparation Met	hod: EF	PA 504.1			
1,2-Dibromoethane (EDB)	ND ug/L	0.028	1	11/07/11 00:00	11/08/11 01:43	106-93-4	
8260 MSV	Analytical Method: EPA 50	30B/8260					
Acetone	ND ug/L	10.0	1		11/04/11 21:24		
Benzene	ND ug/L	1.0	1		11/04/11 21:24		
Bromobenzene	ND ug/L	1.0	1		11/04/11 21:24		
Bromochloromethane	ND ug/L	1.0	1		11/04/11 21:24		
Bromodichloromethane	ND ug/L	1.0	1		11/04/11 21:24		
Bromoform	ND ug/L	1.0	1		11/04/11 21:24		
Bromomethane	ND ug/L	1.0	1		11/04/11 21:24		
2-Butanone (MEK)	ND ug/L	10.0	1		11/04/11 21:24		
n-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:24		
sec-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:24		
tert-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:24		
Carbon disulfide	ND ug/L	5.0	1		11/04/11 21:24		
Carbon tetrachloride	6.1 ug/L	1.0	1		11/04/11 21:24		
Chlorobenzene	ND ug/L	1.0	1		11/04/11 21:24		
Chloroethane	ND ug/L	1.0	1		11/04/11 21:24		
Chloroform	ND ug/L	1.0	1		11/04/11 21:24		
Chloromethane	ND ug/L	1.0	1		11/04/11 21:24		
2-Chlorotoluene	ND ug/L	1.0	1		11/04/11 21:24		
4-Chlorotoluene	ND ug/L	1.0	1		11/04/11 21:24		
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		11/04/11 21:24	96-12-8	
Dibromochloromelhane	ND ug/L	1.0	1		11/04/11 21:24	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		11/04/11 21:24	106-93-4	
Dibromomethane	ND ug/L	1.0	1		11/04/11 21:24	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:24	95-50 - 1	
1,3-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:24	541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:24	106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1		11/04/11 21:24		
1,1-Dichloroethane	ND ug/L	1.0	1		11/04/11 21:24	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		11/04/11 21:24	107-06-2	
1,2-Dichloroethene (Total)	ND ug/L	1.0	1		11/04/11 21:24	540-59 - 0	
1,1-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:24	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:24		
trans-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:24	156-60 - 5	
1,2-Dichloropropane	ND ug/L	1.0	1		11/04/11 21:24	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		11/04/11 21:24	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		11/04/11 21:24	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		11/04/11 21:24		
cis-1,3-Dichloropropene	ND ug/L	1.0	1		11/04/11 21:24	10061-01 - 5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1		11/04/11 21:24	10061-02-6	
Elhylbenzene	ND ug/L	1.0	1		11/04/11 21:24	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		11/04/11 21:24	87-68-3	
2-Hexanone	ND ug/L	10.0	1		11/04/11 21:24	591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		11/04/11 21:24		
p-Isopropyltoluene	ND ug/L	1.0	1		11/04/11 21:24	99-87-6	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

٢

Page 13 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: HAPURGE-W-10115	Lab ID: 60109211005	Collected: 10/31/1	1 12:27	Received: 11/01/11 09:20 M	latrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
8260 MSV	Analytical Method: EPA	5030B/8260			
Methylene chloride	ND ug/L	1.0	1	11/04/11 21:24	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1	11/04/11 21:24	
Methyl-tert-butyl ether	ND ug/L	1.0	1	11/04/11 21:24	
Naphthalene	ND ug/L	10.0	1	11/04/11 21:24	
n-Propylbenzene	ND ug/L	1.0	1	11/04/11 21:24	
Styrene	ND ug/L	1.0	1	11/04/11 21:24	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	11/04/11 21:24	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	11/04/11 21:24	
Tetrachloroethene	ND ug/L	1.0	1	11/04/11 21:24	127-18-4
Toluene	ND ug/L	1.0	1	11/04/11 21:24	108-88-3
1.2.3-Trichlorobenzene	ND ug/L	1.0	1	11/04/11 21:24	87-61-6
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	11/04/11 21:24	120-82-1
1,1,1-Trichloroethane	ND ug/L	1.0	1	11/04/11 21:24	71-55-6
1,1,2-Trichloroethane	ND ug/L	1.0	1	11/04/11 21:24	79-00-5
Trichloroethene	ND ug/L	1.0	1	11/04/11 21:24	79-01-6
Trichlorofluoromethane	ND ug/L	1.0	1	11/04/11 21:24	75-69-4
1,2,3-Trichloropropane	ND ug/L	2.5	1	11/04/11 21:24	96-18-4
1.2.4-Trimethylbenzene	ND ug/L	1.0	1	11/04/11 21:24	95-63-6
1,3,5-Trimethylbenzene	ND ug/L	1.0	1	11/04/11 21:24	108-67-8
Vinyl chloride	ND ug/L	1.0	1	11/04/11 21:24	75-01-4
Xylene (Total)	ND ug/L	3.0	1	11/04/11 21:24	1330-20-7
4-Bromofluorobenzene (S)	106 %	87-113	1	11/04/11 21:24	460-00-4
Dibromofluoromethane (S)	103 %	86-112	1	11/04/11 21:24	1868-53-7
1,2-Dichloroethane-d4 (S)	106 %	82-119	1	11/04/11 21:24	17060-07-0
Toluene-d8 (S)	100 %	90-110	1	11/04/11 21:24	2037-26-5
Preservation pH	7.0	0.10	1	11/04/11 21:24	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA	353.2			
Nitrogen, Nitrate	5.7 mg/L	0.20	1	11/02/11 09:16	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 14 of 26

ace Analytical "

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.:	60109211
-------------------	----------

Parameters	Results	Units	Report Limit		Prepared	A b d		
504 GCS EDB and DBCP		orne		DF	Prepared	Analyzed	CAS No.	Qual
	Analytical Meth	nod: EPA 50	04.1 Preparation Met	hod: El	PA 504.1			
1,2-Dibromoethane (EDB)	ND ug	/L	0.029	1	11/07/11 00:00	11/08/11 01:55	106-93-4	
3260 MSV	Analytical Meth	iod: EPA 50)30B/8260					
Acetone	ND ug	/L	10.0	1		11/04/11 21:40		
Benzene	ND ug	/L	1.0	1		11/04/11 21:40	71-43-2	
Bromobenzene	ND ug	/L	1.0	1		11/04/11 21:40	108-86-1	
Bromochloromethane	ND ug	/L	1.0	1		11/04/11 21:40		
Bromodichloromethane	ND ug	/L	1.0	1		11/04/11 21:40	75-27-4	
Bromoform	ND ug	/L	1.0	1		11/04/11 21:40	75-25-2	
Bromomethane	ND ug	/L	1.0	1		11/04/11 21:40	74-83-9	1.1
2-Butanone (MEK)	ND ug	/L	10.0	1		11/04/11 21:40	78-93-3	
n-Butylbenzene	ND ug		1.0	1		11/04/11 21:40	104-51-8	
sec-Butylbenzene	ND ug		1.0	1		11/04/11 21:40	135-98-8	
tert-Butylbenzene	ND ug		1.0	1		11/04/11 21:40	98-06-6	
Carbon disulfide	ND ug		5.0	1		11/04/11 21:40	75-15-0	
Carbon tetrachloride	3.4 ug		1.0	1		11/04/11 21:40	56-23-5	
Chlorobenzene	ND ug		1.0	1		11/04/11 21:40		
Chloroethane	ND ug		1.0	1		11/04/11 21:40		
	ND ug		1.0	1		11/04/11 21:40		
Chloroform	ND ug		1.0	1		11/04/11 21:40		
Chloromethane	ND ug		1.0	1		11/04/11 21:40		
2-Chlorotoluene	-		1.0	1		11/04/11 21:40		
4-Chlorotoluene	ND ug		2.5	1		11/04/11 21:40		
1,2-Dibromo-3-chloropropane	ND ug		2.5	1		11/04/11 21:40		
Dibromochloromethane	ND ug					11/04/11 21:40		
1,2-Dibromoethane (EDB)	ND ug		1.0	1				
Dibromomethane	ND ug		1.0	1		11/04/11 21:40		
1,2-Dichlorobenzene	ND ug		1.0	1		11/04/11 21:40		
1,3-Dichlorobenzene	ND ug		1.0	1		11/04/11 21:40		
1,4-Dichlorobenzene	ND uş		1.0	1		11/04/11 21:40		
Dichlorodifluoromethane	ND ug		1.0	1		11/04/11 21:40		
1,1-Dichloroethane	ND ug		1.0	1		11/04/11 21:40		
1,2-Dichloroethane	ND ug	J∕L	1.0	1		11/04/11 21:40		
1,2-Dichloroethene (Total)	ND uç	J/L	1.0	1		11/04/11 21:40		
1,1-Dichloroethene	ND ug	J/L	1.0	1		11/04/11 21:40		
cis-1,2-Dichloroethene	ND ug	g/L	1.0	1		11/04/11 21:40		
trans-1,2-Dichloroethene	ND uş	g/L	1.0	1		11/04/11 21:40		
1,2-Dichloropropane	ND ug	g/L	1.0	1		11/04/11 21:40		
1,3-Dichloropropane	ND ug	g/L	1.0	1		11/04/11 21:40	14 2- 28-9	
2,2-Dichloropropane	ND ug	g/L	1.0	1		11/04/11 21:40	594-20-7	
1,1-Dichloropropene	ND ug		1.0	1		11/04/11 21:40	563-58-6	
cis-1,3-Dichloropropene	ND ug		1,0	1		11/04/11 21:40	10061-01-5	
trans-1,3-Dichloropropene	ND ug	-	1.0	1		11/04/11 21:40	10061-02-6	
Ethylbenzene	ND ug	-	1.0	1		11/04/11 21:40		
Hexachloro-1,3-butadiene	ND u	-	1.0	1		11/04/11 21:40		
2-Hexanone	ND u	-	10.0	1		11/04/11 21:40		
Isopropylbenzene (Cumene)	ND u	-	1.0	1		11/04/11 21:40		
p-lsopropyltoluene	ND ug		1.0	1		11/04/11 21:40		

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 15 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: MRPURGE-W-10116	Lab ID: 60109211006	Collected: 10/31/11	14:42	Received: 11/01/11 09:20 Matri	ix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qual
8260 MSV	Analytical Method: EPA	5030B/8260			
Methylene chloride	ND ug/L	1.0	1	11/04/11 21:40 75	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		08-10-1
Methyl-tert-butyl ether	ND ug/L	1.0	1	11/04/11 21:40 16	
Naphthalene	ND ug/L	10.0	1	11/04/11 21:40 91	
n-Propylbenzene	ND ug/L	1.0	1		03-65-1
Styrene	ND ug/L	1.0	1		00-42-5
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	11/04/11 21:40 63	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	11/04/11 21:40 79	
Tetrachloroethene	ND ug/L	1.0	1	11/04/11 21:40 12	27-18-4
Toluene	ND ug/L	1.0	1	11/04/11 21:40 10	08-88-3
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	11/04/11 21:40 87	7-61-6
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	11/04/11 21:40 12	20-82-1
1,1,1-Trichloroethane	ND ug/L	1.0	1	11/04/11 21:40 71	1-55-6
1,1,2-Trichloroethane	ND ug/L	1.0	1	11/04/11 21:40 79	9-00-5
Trichloroethene	ND ug/L	1.0	1	11/04/11 21:40 79	9-01-6
Trichlorofluoromethane	ND ug/L	1.0	1	11/04/11 21:40 7	5-69-4
1,2,3-Trichloropropane	ND ug/L	2.5	1	11/04/11 21:40 96	6-18-4
1,2,4-Trimethylbenzene	ND ug/L	. 1.0	1	11/04/11 21:40 9	5-63 -6
1,3,5-Trimethylbenzene	ND ug/L	1.0	1	11/04/11 21:40 10	08-67-8
Vinyl chloride	ND ug/L	1.0	1	11/04/11 21:40 7	5-01-4
Xylene (Total)	ND ug/L	3.0	1	11/04/11 21:40 1	330-20-7
4-Bromofluorobenzene (S)	105 %	87-113	1	11/04/11 21:40 4	60-00-4
Dibromofluoromethane (S)	108 %	86-112	1	11/04/11 21:40 1	868-53-7
1,2-Dichloroethane-d4 (S)	114 %	82-119	1	11/04/11 21:40 1	7060- 07-0
Toluene-d8 (S)	109 %	90-110	1	11/04/11 21:40 2	037-26-5
Preservation pH	7.0	0.10	1	11/04/11 21:40	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA	353.2			
Nitrogen, Nitrate	13.8 mg/L	0.50	1	11/02/11 09:20	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 16 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Sample: SVPURGE-W-10117	Lab ID: 60109211007	Collected: 10/31/	11 18:30	Received: 11	/01/11 09:20	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Method: EPA	504.1 Preparation Me	thod: EF	A 504.1			
1,2-Dibromoethane (EDB)	ND ug/L	0.029	1	11/07/11 00:00	11/08/11 02:09	106-93-4	
8260 MSV	Analytical Method: EPA	5030B/8260					
Acetone	ND ug/L	10.0	1		11/04/11 21:56		
Benzene	ND ug/L	1.0	1		11/04/11 21:56		
Bromobenzene	ND ug/L	1.0	1		11/04/11 21:56		
Bromochloromethane	ND ug/L	1.0	1		11/04/11 21:56		
Bromodichloromethane	ND ug/L	1.0	1		11/04/11 21:56		
Bromoform	ND ug/L	1.0	1		11/04/11 21:56	3 75-25-2	
Bromomethane	ND ug/L	1.0	1		11/04/11 21:56	3 74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		11/04/11 21:56	3 78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:56	6 104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:56	6 135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:56	5 98-06-6	
Carbon disulfide	ND ug/L	5.0	1		11/04/11 21:50		
Carbon tetrachloride	6.9 ug/L	1.0	1		11/04/11 21:50		
	ND ug/L	1.0	1		11/04/11 21:50		
Chlorobenzene		1.0	1		11/04/11 21:50		
Chloroethane	ND ug/L	1.0	1		11/04/11 21:56		
Chloroform	3.3 ug/L	1.0	1		11/04/11 21:50		
Chloromethane	ND ug/L		1		11/04/11 21:50		
2-Chlorotoluene	ND ug/L	1.0			11/04/11 21:50		
4-Chlorotoluene	ND ug/L	1.0	1				
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		11/04/11 21:50		
Dibromochloromethane	ND ug/L	1.0	1		11/04/11 21:50		
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		11/04/11 21:50		
Dibromomethane	ND ug/L	1.0	1		11/04/11 21:5		
1,2-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:5		
1,3-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:5		
1,4-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:5		
Dichlorodifluoromethane	ND ug/L	1.0	1		11/04/11 21:5	6 75-71-8	
1,1-Dichloroethane	ND ug/L	1.0	1		11/04/11 21:5	6 75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		11/04/11 21:5	6 107-06-2	
1,2-Dichloroethene (Total)	ND ug/L	1.0	1		11/04/11 21:5	6 540-59-0	
1,1-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:5	6 75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:5	6 156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:5	6 156-60-5	
	ND ug/L	1.0			11/04/11 21:5		
1,2-Dichloropropane	ND ug/L	1.0			11/04/11 21:5	6 142-28-9	
1,3-Dichloropropane	ND ug/L	1.0			11/04/11 21:5		
2,2-Dichloropropane	-	1.0			11/04/11 21:5		
1,1-Dichloropropene	ND ug/L	1.0				6 10061-01-5	
cis-1,3-Dichloropropene	ND ug/L					6 10061-01-0	
trans-1,3-Dichloropropene	ND ug/L	1.0					
Ethylbenzene	ND ug/L	1.0			11/04/11 21:5		
Hexachloro-1,3-butadiene	ND ug/L	1.0			11/04/11 21:5		
2-Hexanone	ND ug/L	10.0			11/04/11 21:5		
Isopropylbenzene (Cumene)	ND ug/L	1.0) 1		11/04/11 21:5		
p-Isopropyltoluene	ND ug/L	. 1.0	1		11/04/11 21:5	6 99-87-6	

Date: 11/11/2011 11:15 AM

14

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 17 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: SVPURGE-W-10117	Lab ID: 60109211007	Collected: 10/31/11	18:30	Received: 11/01/11 09:20	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 50	30B/8260				
Methylene chloride	ND ug/L	1.0	1	11/04/11 21:		
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1	11/04/11 21 :		
Methyl-tert-butyl ether	ND ug/L	1.0	1	11/04/11 21:		
Naphthalene	ND ug/L	10.0	1	11/04/11 21:		
n-Propylbenzene	ND ug/L	1.0	1	11/04/11 21:	56 103-65-1	
Styrene	ND ug/L	1.0	1	11/04/11 21:		
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		56 630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	11/04/11 21:	56 79-34-5	
Tetrachloroethene	ND ug/L	1.0	1	11/04/11 21:	56 127-18-4	
Toluene	ND ug/L	1.0	1	11/04/11 21:	56 108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	11/04/11 21:	56 87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	11/04/11 21:	56 120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1	11/04/11 21:	56 71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1	11/04/11 21:	56 79-00-5	
Trichloroethene	ND ug/L	1.0	1	11/04/11 21:	56 79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1	11/04/11 21:	56 75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1	11/04/11 21:	56 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1	11/04/11 21:	56 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1	11/04/11 21:	56 108-67-8	
Vinyl chloride	ND ug/L	1.0	1	11/04/11 21:	56 75-01-4	
Xylene (Total)	ND ug/L	3.0	1	11/04/11 21:	56 1330-20-7	
4-Bromofluorobenzene (S)	90 %	87-113	1	11/04/11 21:	56 460-00-4	
Dibromofluoromethane (S)	106 %	86-112	1	11/04/11 21:	56 1868-53-7	
1,2-Dichloroethane-d4 (S)	111 %	82-119	1	11/04/11 21:	56 17060-07-0	
Toluene-d8 (S)	110 %	90-110	1	11/04/11 21:	56 2037-26-5	
Preservation pH	7.0	0.10	1	11/04/11 21:	56	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 3	53.2				
Nitrogen, Nitrate	0.41 mg/L	0.10	1	11/02/11 09:	11	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 18 of 26

ace Analytical www.pscelabs.com

QUALITY CONTROL DATA

Project:	KS/MO Waste Water									
Pace Project No.:	60109211									
QC Batch:	OEXT/31027	Analysi	s Method:	E	PA 504.1					
QC Batch Method:	EPA 504.1	Analysi	s Descriptio	n: G	CS 504 E	DB DBC	P			
Associated Lab Sam	ples: 60109211001, 60109211002	, 601092110	03, 601092	11004, 60	01092110	05, 6010	9211006, 6	0109211007	7	
METHOD BLANK:	906554	M	atrix: Water	r						
Associated Lab Sam	ples: 60109211001, 60109211002	, 601092110	03, 601092	11004, 60	01092110	05, 6010	9211006, 6	0109211007	7	
		Blank		porting						
Paran	neter Units	Result	L	imit	Ana	lyzed	Qualif	iers		
1,2-Dibromoethane	(EDB) ug/L		ND	0.030	11/07/	11 20:35				
1,2-Dibromoethane	(EDB) ug/L		ND	0.030	11/07/	11 20:35				
	(EDB) ug/L		3	0.030	11/07/ [,]	11 20:35				
		Spike	3		LCS	11 20:35 LCSD	% Rec		Мах	
	ITROL SAMPLE & LCSD: 906555	Spike Conc.	90	6556	LCS	_	% Rec Limits	RPD	Max RPD	Qualifiers

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 19 of 26

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA

EPA 5030B/8260

8260 MSV Water 7 day

Project:	KS/MO Waste Water
Pace Project No.:	60109211

QC Batch: MSV/41422 QC Batch Method: EPA 5030B/8260 Analysis Method: Analysis Description:

Associated Lab Samples: 60109211001, 60109211002, 60109211003, 60109211004, 60109211005, 60109211006, 60109211007

		-
METHOD BLANK:	905182	

Matrix: Water

Associated Lab Samples:	60109211001, 60109211002,	60109211003,	60109211004, 60109211005, 60109211006, 60109211007
		Blank	Reporting

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,1,1-Trichloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,1,2-Trichloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,1-Dichloroethane	ug/L	ND	1.0	11/04/11 17:52	
1.1-Dichloroethene	ug/L	ND	1.0	11/04/11 17:52	
1,1-Dichloropropene	ug/L	ND	1.0	11/04/11 17:52	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
1,2,3-Trichloropropane	ug/L	ND	2.5	11/04/11 17:52	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
1,2,4-Trimethylbenzene	ug/L	ND	1.0	11/04/11 17:52	
1,2-Dibromo-3-chloropropane	ug/L	ND	2.5	11/04/11 17:52	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	11/04/11 17:52	
1,2-Dichlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
1,2-Dichloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,2-Dichloroethene (Total)	ug/L	ND	1.0	11/04/11 17:52	
1,2-Dichloropropane	ug/L	ND	1.0	11/04/11 17:52	
1,3,5-Trimethylbenzene	ug/L	ND	1.0	11/04/11 17:52	
1,3-Dichlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
1,3-Dichloropropane	ug/L	ND	1.0	11/04/11 17:52	
1,4-Dichlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
2,2-Dichloropropane	ug/L	ND	1.0	11/04/11 17:52	
2-Butanone (MEK)	ug/L	ND	10.0	11/04/11 17:52	
2-Chlorotoluene	ug/L	ND	1.0	11/04/11 17:52	
2-Hexanone	ug/L	ND	10.0	11/04/11 17:52	
4-Chlorololuene	ug/L	ND	1.0	11/04/11 17:52	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	10.0	11/04/11 17:52	
Acetone	ug/L	ND	10.0	11/04/11 17:52	
Benzene	ug/L	ND	1.0	11/04/11 17:52	
Bromobenzene	ug/L	ND	1.0	11/04/11 17:52	
Bromochloromethane	ug/L	ND	1.0	11/04/11 17:52	
Bromodichloromethane	ug/L	ND	1.0	11/04/11 17:52	
Bromoform	ug/L	ND	1.0	11/04/11 17:52	
Bromomethane	ug/L	ND	1.0	11/04/11 17:52	
Carbon disulfide	ug/L	ND	5.0	11/04/11 17:52	
Carbon tetrachloride	ug/L	ND	1.0	11/04/11 17:52	
Chlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
Chloroethane	ug/L	ND	1.0	11/04/11 17:52	
Chloroform	ug/L	ND	1.0	11/04/11 17:52	
Chloromethane	ug/L	ND	1.0	11/04/11 17:52	
cis-1,2-Dichloroethene	ug/L	ND	1.0	11/04/11 17:52	
cis-1,3-Dichloropropene	ug/L	ND	1.0	11/04/11 17:52	
Dibromochloromelhane	ug/L	ND	1.0	11/04/11 17:52	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 20 of 26

QUALITY CONTROL DATA

Project: KS/MO Waste Water Pace Project No.: 60109211

 METHOD BLANK:
 905182
 Matrix:
 Water

 Associated Lab Samples:
 60109211001, 60109211002, 60109211003, 60109211004, 60109211005, 60109211006, 60109211007
 Blank
 Reporting

Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromomethane	ug/L	ND	1.0	11/04/11 17:52	
Dichlorodifluoromethane	ug/L	ND	1.0	11/04/11 17:52	
Ethylbenzene	ug/L.	ND	1.0	11/04/11 17:52	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	11/04/11 17:52	
Isopropylbenzene (Cumene)	ug/L	ND	1.0	11/04/11 17:52	
Methyl-tert-butyl ether	ug/L	ND	1.0	11/04/11 17:52	
Methylene chloride	ug/L	ND	1.0	11/04/11 17:52	
n-Butylbenzene	ug/L	ND	1.0	11/04/11 17:52	
n-Propylbenzene	ug/L	ND	1.0	11/04/11 17:52	
Naphthalene	ug/L	ND	10.0	11/04/11 17:52	
p-Isopropyltoluene	ug/L	ND	1.0	11/04/11 17:52	
sec-Butylbenzene	ug/L	ND	1.0	11/04/11 17:52	
Styrene	ug/L	ND	1.0	11/04/11 17:52	
tert-Butylbenzene	ug/L	ND	1.0	11/04/11 17:52	
Tetrachloroethene	ug/L	ND	1.0	11/04/11 17:52	
Toluene	ug/L	ND	1.0	11/04/11 17:52	
trans-1,2-Dichloroethene	ug/L	ND	1.0	11/04/11 17:52	
trans-1,3-Dichloropropene	ug/L	ND	1.0	11/04/11 17:52	
Trichloroethene	ug/L	ND	1.0	11/04/11 17:52	
Trichlorofluoromethane	ug/L	ND	1.0	11/04/11 17:52	
Vinyl chloride	ug/L	ND	1.0	11/04/11 17:52	
Xylene (Total)	ug/L	ND	3.0	11/04/11 17:52	
1,2-Dichloroethane-d4 (S)	%	107	82-119	11/04/11 17:52	
4-Bromofluorobenzene (S)	%	97	87-113	11/04/11 17:52	
Dibromofluoromethane (S)	%	105	86-112	11/04/11 17:52	
Toluene-d8 (S)	%	103	90-110	11/04/11 17:52	

LABORATORY CONTROL SAMPLE:	905183			-c		
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	17.3	86	81-121	
1,1,1-Trichloroethane	ug/L	20	17.6	88	82-119	
1,1,2,2-Tetrachloroethane	ug/L	20	18.1	91	78-124	
1,1,2-Trichloroethane	ug/L	20	20.3	102	79-121	
1,1-Dichloroethane	ug/L	20	18.3	91	73-119	
1,1-Dichloroethene	ug/L	20	17.7	89	75-120	
1,1-Dichloropropene	ug/L	20	18.5	93	79-123	
1,2,3-Trichlorobenzene	ug/L	20	17.8	89	73-122	
1,2,3-Trichloropropane	ug/L	20	18.1	91	77-124	
1,2,4-Trichlorobenzene	ug/L	20	17.4	87	75-120	
1,2,4-Trimethylbenzene	ug/L	20	18.7	94	77-120	
1,2-Dibromo-3-chloropropane	ug/L	20	16.7	84	69-125	
1,2-Dibromoethane (EDB)	ug/L	20	18.8	94	85-121	
1.2-Dichlorobenzene	ug/L	20	19.2	96	82-115	
1.2-Dichloroethane	ug/L	20	19.3	96	77-125	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 21 of 26

ice Analytical www.pacelabs.com

٠

QUALITY CONTROL DATA

Project: KS/MO Waste Water Pace Project No.: 60109211

LABORATORY CONTROL SAMPLE: 905183

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifier
1,2-Dichloroethene (Total)	ug/L	40	40.0	100	79-120	
1,2-Dichloropropane	ug/L	20	18.8	94	83-119	
1,3,5-Trimethylbenzene	ug/L	20	18.1	91	79-121	
1,3-Dichlorobenzene	ug/L	20	17.7	88	79-117	
1,3-Dichloropropane	ug/L	20	19.2	96	78-116	
1,4-Dichlorobenzene	ug/L	20	18.7	94	83-115	
2,2-Dichloropropane	ug/L	20	16.3	82	66-123	
2-Butanone (MEK)	ug/L	100	101	101	43-165	
2-Chlorotoluene	ug/L	20	18.6	93	81-117	
2-Hexanone	ug/L	100	98.3	98	47-159	
4-Chlorotoluene	ug/L	20	18.8	94	84-116	
4-Methyl-2-pentanone (MIBK)	ug/L	100	90.7	91	71-129	
Acetone	ug/L	100	111	111	18-192	
Benzene	ug/L	20	19.5	97	82-117	
Bromobenzene	ug/L	20	18.5	92	83-116	
Bromochloromelhane	ug/L	20	18.9	94	79-121	
Bromodichloromethane	ug/L	20	18.5	92	79-114	
	ug/L	20	17.8	89	78-121	
Bromoform	-	20	20.6	103	36-146	
Bromomethane	ug/L	20	20.6	103	75-138	
Carbon disulfide	ug/L	20	20.0 19.3	96	80-123	
Carbon tetrachloride	ug/L	20	18.2	90 91	83-121	
Chlorobenzene	ug/L			98	42-166	
Chloroethane	ug/L	20	19.6 20.1	100	42-100 82-116	
Chloroform	ug/L	20	17.7	88	32-110	
Chloromethane	ug/L	20		00 91		
cis-1,2-Dichloroethene	ug/L	20	18.2		80-119	
cis-1,3-Dichloropropene	ug/L	20	17.0	85	76-119	
Dibromochloromethane	ug/L	20	17.9	89	81-123	
Dibromomethane	ug/L	20	19.2	96	79-123	
Dichlorodifluoromethane	ug/L	20	15.2	76	10-163	
Ethylbenzene	ug/L	20	17.7	88	79-121	
Hexachloro-1,3-butadiene	ug/L	20	18.5	92	78-125	
isopropylbenzene (Cumene)	ug/L	20	18.7	93	80-120	
Methyl-tert-butyl ether	ug/L	20	18.1	91	78-119	
Methylene chloride	ug/L	20	19.6	98	75-118	
n-Butylbenzene	ug/L	20	18.2	91	80-126	
n-Propylbenzene	ug/L	20	18.3	91	83-116	
Naphthalene	ug/L	20	16.8	84	66-133	
p-Isopropyltoluene	ug/L	20	17.9	89	77-120	
sec-Butylbenzene	ug/L	20	17.8	89	81-120	
Styrene	ug/L	20	18.8	94	84-115	
tert-Butylbenzene	ug/L	20	18.0	90	80-117	
Tetrachloroethene	ug/L	20	19.8	99	80-124	
Toluene	ug/L	20	19.1	95	80-120	
trans-1,2-Dichloroethene	ug/L	20	21.8	109	79-120	
trans-1,3-Dichloropropene	ug/L	20	18.5	92	76-118	
Trichloroethene	ug/L	20	17.5	88	76-122	
Trichlorofluoromethane	ug/L	20	19.0	95	72-120	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 22 of 26

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA

Project: KS/MO Waste Water Pace Project No.: 60109211

LABORATORY CONTROL SAMPLE: 905183

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualiflers
Vinyl chloride	ug/L	20	17.5	88	57-163	
Xylene (Total)	ug/L	60	53.9	90	75-120	
1,2-Dichloroethane-d4 (S)	%			103	82-119	
4-Bromofluorobenzene (S)	%			104	87-113	
Dibromofluoromethane (S)	%			101	86-112	
Toluene-d8 (S)	%			99	90-110	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 23 of 26

ace Analytical

QUALITY CONTROL DATA

Project: KS/MO Waste V Pace Project No.: 60109211	Water						
QC Batch: WETA/18128		Analysis Method	l: E	EPA 353.2			
QC Batch Method: EPA 353.2		Analysis Descrip	otion: 3	53.2 Nitrate + Ni	trite, Unpres.		
Associated Lab Samples: 601092	11001						
METHOD BLANK: 903260		Matrix: Wa	ater				
Associated Lab Samples: 601092	11001						
Parameter	Units	Blank F Result	Reporting Limit	Analyzed	Qualifier	rs	
Nitrogen, Nitrate	mg/L	ND	0.10	0 11/02/11 08:3	9		
LABORATORY CONTROL SAMPLE	: 903261			1.00	% D		No.
Parameter	Units	Spike LC Conc. Res		LCS % Rec	% Rec Limits	Qualifiers	
Nitrogen, Nitrate	mg/L	1.6	1.6	97	90-110		
MATRIX SPIKE SAMPLE:	903262						
		60109214001	Spike	MS	MS	% Rec	0 115
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrogen, Nitrate	mg/L	ND	1.6	1.5	93	90-110	
MATRIX SPIKE SAMPLE:	903263						
		60109214002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrogen, Nitrate	mg/L	ND	1.6	1.6	102	90-110	
SAMPLE DUPLICATE: 903264							
		60109214008	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	

Nitrogen, Nitrate mg/L ND ND

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

1

Page 24 of 26

15

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA

	KS/MO Waste Wa 60109211	iter				40		
QC Batch:	WETA/18129	+	Analysis Met	hod:	EPA 353.2			
QC Batch Method:	EPA 353.2		Analysis Des	cription:	353.2 Nitrate + N	itrite, Unpres.		
Associated Lab Sam	ples: 60109211	002, 60109211003	, 60109211004, 60	0109211005, 6	30109211006, 60	109211007		
METHOD BLANK:	903266		Matrix:	Water			-	
Associated Lab Sam	ples: 60109211	002, 60109211003	, 60109211004, 60 Blank	0109211005, 6 Reporting	60109211006, 60	109211007		
Param	eter	Units	Result	Llmit	Analyzed	Qualif	iers	
Nitrogen, Nitrate		mg/L	ND	0.1	0 11/02/11 09:0	03		
			9					
LABORATORY CON	TROL SAMPLE:	903267						
Param	eter	Units		LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Nitrogen, Nitrate		mg/L	1.6	1.6	98	90-110		
MATRIX SPIKE SAM	IPLE:	903268						
			60109211007		MS	MS	% Rec	Our
Param	eter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrogen, Nitrate		mg/L	0.4	41 1.6	1.9	ę	90-110	
SAMPLE DUPLICAT	E: 903269							
Param	ieter	Units	60109238001 Result	Dup Result	RPD	Max RPD	Qualifiers	
Nitrogen, Nitrate		mg/L	6,8	6	.8	0	15	-

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 25 of 26

'ace Analytica www.pacelabs.com

QUALIFIERS

Project: KS/MO Waste Water Pace Project No.: 60109211

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

BATCH QUALIFIERS

Batch: MSV/41422

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 26 of 26

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

62 Soo as l ary all 62 (BP3N) 21/2014 20087) Pace Project No./ Lab I.D. Samples Intact (N/Y) DRINKING WATER オ 2 SAMPLE CONDITIONS 34694 H 100109211 (N/J) OTHER slooD balea2 フ Custody å, ∞ Received on Received on 1_ -X GROUND WATER H Residual Chlorine (Y/V) 2 KS/mo D. n qmat 4 Page: **REGULATORY AGENCY** RCRA Requested Analysis Filtered (Y/N) TIME arb DATE Signed 10-31-2011 Site Location STATE: NPDES DATE H/Id UST Construction ACCEPTED BY / AFFILIATION <u>ининин</u> <u>ининин</u> 207 WOA LANC 201 200 Gipson I teaT sizylenA TN /A Kamler Other Dellar Methanol Travis Kamler よって Na2S203 n n n n 3 Preservatives r 3 Iredy HOBN Allention: Travis HCI nvoice Information: ^CONH Company Name: Reference: Paca Project 7 Mariager: Paca Profile #: 18:45 POS²H Section C TIME Unpreserved n n n 3 m 3 m ace Quole Address! 5 5 5 6 5 h 5 # OF CONTAINERS 09 08:34 IE-01 SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: 14:02 60 10-31 15:52 60 12:55 60 10.31 12:2760 0.34 9:00 (2) SAMPLE TEMP AT COLLECTION 11-16-01 m241 DATE TIME Vater COMPOSITE END/GRAB 10-31 prodigy. net DATE COLLECTED RELINQUISHED BY / AFFILIATION roject Name: KS/MO Ucste 5 TIME COMPOSITE START WW C 4-19 tom Ram 3.18 WW C 4-20 W C 9-28 DATE W/C6-13 P-8 2 MM Surgnier @ Section B Required Project Information: J (G=GRAB C=COMP) SAMPLE TYPE urchase Order No.2 3 MATRIX CODE (see valid codes to left) Project Number ORIGINAL Matrix Codes MATRIX / CODE Drinking Water Water waste Water during Thealer @ tencorstration can drums holding parge water Product Soll/Solid Oil Wipe Air Tissue Other All samples collected from 10/13 10112 EUBURGE-W-10114 10115 MRP4RGE-W-1011G SUPURGE-W-10117 101 Con Struction 68508 ADDITIONAL COMMENTS Street at sites sampled (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE AGPURGE - W-CNP4RGE - W-HAPURGE-W-BAPURGE - W-Pace Analytical 2011 Year SAMPLE ID Fax: Required Client Information Section A Required Client Information: equested Due Date/TAT: 402 416 7255 N L L ς Company 141 Lincola Section D the Address: 10 5 3 4 5 9 ~ 00 ი ÷ 2 # WEL -

"mportant Note: By signing this form you are accepting Pace's NET 30 day payment lerms and agreeing to late charges of 1.5% per month for any involves not paid within 30 days

SIGNATURE of SAMPLER.

F-ALL-Q-020rev.07, 15-May-2007

Sa	mple Cond	lition	Upon Receipt			
Pace Analytical [®] Client Name	e:] (ianst.	Projec	ct # 60109	2-11
	e Shipping Labe	el Used	_	No No	Optional Proj. Due Date Proj. Name:	t1(y
Custody Seal on Cooler/Box Present: 🖉 Yes	∐ No	Seals	intact: 🔀 Yes	L No		
Packing Material: Subble Wrap Bubble Thermometer Used:	Bags Fo	\sim	None Dthe Blue None		on ice, cooling pro	cess has begun
Cooler Temperature: 4.2 Temperature should be above freezing to 6°C			Comments:		d Initials of perso s:	examining
Chain of Custody present:	Ø∕es □No		1.			
Chain of Custody filled out:	Vares ONo		2.			
Chain of Custody relinquished:	Yes DNo		2			
Sampler name & signature on COC:	Pres DNo		4.			
Samples arrived within holding time:	Yes ONo	DNA				- Hereiter
Short Hold Time analyses (<72hr):	Pares ONo		-			
Rush Turn Around Time requested:	Yes QNo					
Sufficient volume:	Yes No					1.1.7.2
Correct containers used:						
-Pace containers used:	ZYes DNo					
Containers intact:	Styes ONo		10			
Unpreserved 5035A soils frozen w/ln 48hrs?		ØN/A	1			
		DRN/A	12.			
Filtered volume received for dissolved tests	ZYes ONo		13.			
Sample labels match COC:	water		15.			
-Includes date/time/ID/analyses Matrix:						
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No □Yes □No	1911/A	14.			
Exceptions: VOA, coliform, TOC, O&G, WI-DRO (water), Phenolics	YZYes □No		Initial when completed And	Lot # of preserva		
Trip Blank present:	□Yes ⊠No		15.			
Pace Trip Blank lot # (if purchased):	•	_				
Headspace in VOA vials (>6mm):	□Yes ØNo	⊡n/a	16.		41	
Project sampled in USDA Regulated Area:	□Yes □No	· ØN/A	17. List State:			en
Client Notification/ Resolution: Cop Person Contacted:	y COC to Client?	Date/	Y / (N) Time:	Field Da	ala Required?	Y / N
		_				

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

F-KS-C-003-Rev.05, 19February2010

12/19/2011 11:37AM

AGEM OI L

CITY OF SABETHA Ca36 - Travis 805 MAIN PO BOX 187 SABETHA KS 66534 785-284-2158 Receipt No: 2.015320 Dec 19, 2011

TCW Const.

×.

i.

WASTEWATER FUND-MISC Purged Water 502-00.000-4632 MISCELLANEDUS INCOME	50,00
Total:	50,00
Cash Total Applied:	50,00 50,00
Change Tendered:	.00

Supplement 2:

Data Summaries for Verification VOCs Analyses by TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

Job Number: 200-4829-1 SDG Number: (200-4829) Job Description: Centralia (200-4829)

Contract Number: EP-W-09-044

For: Argonne National Laboratory 9700 South Cass Avenue Building 203 Office B-149 Argonne, IL 60439

Attention: Mr. Clyde Dennis

Kil

Approved for rainings, Kirk F Young Frisjaci Managar I 4/27/2011 5:48 PM

Kirk F Young Project Manager I kirk.young@testamericainc.com 04/27/2011

The test results in this report relate only to sample(s) as received by the laboratory. These test results were derived under a quality system that adheres to the requirements of NELAC. Pursuant to NELAC, this report may not be produced in full without written approval from the laboratory

TestAmerica Laboratories, Inc. TestAmerica Burlington 30 Community Drive, Suite 11, South Burlington, VT 05403 Tel (802) 660-1990 Fax (802) 660-1919 <u>www.testamericainc.com</u>

04/27/2011

Table of Contents

Cover Title Page	1
Report Narrative	4
Case Narrative	4
Qualifier Definition	6
External Chain of Custody	7
Internal Chain of Custody	8
Shipping Documentation	10
Airbills (if Applicable)	11
Sample Receipt and Log In Check List	12
Methodology Review	14
QC Summary - SOM01.2 Volatiles-Trace	15
QC Summary - SOM01.2 Volatiles-Trace	15
Deuterated Monitoring Compound Summary	15
Method Blank	17
GC/MS Instrument Performance Check	18
Internal Standard Area and RT Summary	20
Sample Data - SOM01.2 Volatiles-Trace	21
Sample Data - SOM01.2 Volatiles-Trace	21
CNMW02-W-27218	21
CNPMP3-W-27221	24
CNQCTB-W-27225	27
Standards - SOM01.2 Volatiles-Trace	30
Standards - SOM01.2 Volatiles-Trace	30
Initial Calibration Data	30
CCV Data, including closing CCV	33
Raw Qc Data - SOM01.2 Volatiles-Trace	39

Table of Contents

Raw Qc Data - SOM01.2 Volatiles-Trace	39
Raw Qc Data - SOM01.2 Volatiles-Trace, , , , , , , , , , , , , , , , ,	39
Blank Data	39

CASE NARRATIVE

Client: Argonne National Laboratory

Project: Centralia (200-4829)

Report Number: 200-4829-1

Enclosed is the data set for the referenced project work. With the exceptions noted as flags or footnotes, standard analytical protocols were followed in performing the analytical work and the applied control limits were met.

Calculations were performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

Receipt

The samples were received on 04/22/2011. Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal. The samples, as received, were not acid preserved. On that basis, the laboratory did provide for the analytical work to be performed within seven days of sample collection.

SOM01.2 Volatile Organics (Trace Level Water)

A storage blank was prepared for volatile organics analysis, and stored in association with the storage of the samples. That storage blank, identified as VHBLK01, was carried through the holding period with the samples, and analyzed.

Each sample was analyzed without a dilution. Each of the analyses associated with the sample set exhibited an acceptable internal standard performance. There was an acceptable recovery of each deuterated monitoring compound (DMC) in the analysis of the method blank associated with the analytical work, and in the analysis of the storage blank associated with the sample set. The analysis of the samples in this sample set did meet the technical acceptance criteria specific to DMC recoveries, although not all DMC recoveries were within the control range in each analysis. The technical acceptance criteria does provide for the recovery of up to three DMCs to fall outside of the control range in the analysis of field samples. Matrix spike and matrix spike duplicate analyses were not performed on samples in this sample set. Trace concentrations of chloromethane, acetone, carbon disulfide, methylene chloride, trichloroethene, toluene, 1,2,4-trichlorobenzene, and 1,2,3-trichlorobenzene were identified in the analysis of the method blank associated with the analytical work. The concentration of each compound in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant method blank analysis. Trace concentrations of acetone, carbon disulfide, and carbon tetrachloride were identified in the analysis of the storage blank associated with the sample set. The concentration of each compound in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant storage blank analysis. Present in the method blank and storage blank analyses was a non-target constituent that represents a compound that is related to the DMC formulation. The fact that the presence of this compound is not within the laboratory's control is at issue. The derived results

for that compound have been qualified with an "X" qualifier to reflect the source of the contamination.

The responses for each of the target analytes met the relative standard deviation criterion in the initial calibration. The response for each target analyte met the percent difference criterion in the opening/continuing calibration check acquisition. The response for each target analyte met the 50.0 percent difference criterion in the closing calibration check acquisition.

The primary quantitation mass for methylcyclohexane that is specified in the Statement of Work is mass 83. The laboratory did identify a contribution to mass 83 from 1,2-dichloropropane- d_6 , one of the deuterated monitoring compounds (DMCs). The laboratory did change the primary quantitation mass assignment to mass 55 for the quantification of methylcyclohexane.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports. Extracted ion current profiles for each manual integration are included in the data package, and further documented at the end of this submittal.

DATA REPORTING QUALIFIERS

Client: Argonne National Laboratory

Job Number: 200-4829-1 Sdg Number: (200-4829)

Lab Section	Qualifier	Description	
GC/MS VOA			
	U	Analyzed for but not detected.	
	J	Indicates an Estimated Value for TICs	
	J	Indicates an estimated value.	
	х	See case narrative notes for explanation of the 'X' flag	
	*	Surrogate exceeds the control limit	
	В	The analyte was found in an associated blank, as well as in the sample.	
	Ν	This flag indicates the presumptive evidence of a compound.	

4822

PROJECT/SITE: Centralia KS SAMPLER(S) (Signature) Centralia KS DATE OF COLLECTION SAMPLE ID NUMBER(S) tainers	CHAIN OF CUSTODY RECORD*	Shipping Info: ANL Field Contact (Name & Temporary Phone): Dave Sarsnier 630 408 7114 BEMARKS
CNMW02-W-27218 2 CNPMP3-W-27221 1 CNOCTB-W-27225 2		2 × 40 mL for VOC 1×40mL for VOC - 1 back in Packing 2 v 40 - 1 - 5 - 1301
		'S Via
Relinquished by (Signature) Date Time Received by (Signature) $\frac{1}{12}$, $\frac{1}{12}$, $\frac{1}{12}$, $\frac{1}{11}$, $\frac{1}{10}$, \frac	d by (Signature) Relinquished by (Signature) $\frac{1}{\sqrt{22}/t_1}$ 1030 d for Laboratory by Date Time	Date Time Received by (Signature) Remarks
FOR LAB USE ONLY Custody seal was intact when shipment received. Sample containers were intact when received. Shipment was at required temperature when received. Sample labels, Tags and COC agree.	*A sample is under custody if: *d. * A sample is under custody if: 1. It is in your possession; or, 2. It is in your view, after having been in your possession; or, 3. It was in your possession and you locked it up; or, 4. It is in a designated secure area.	h your possession; or, ocked it up: or,

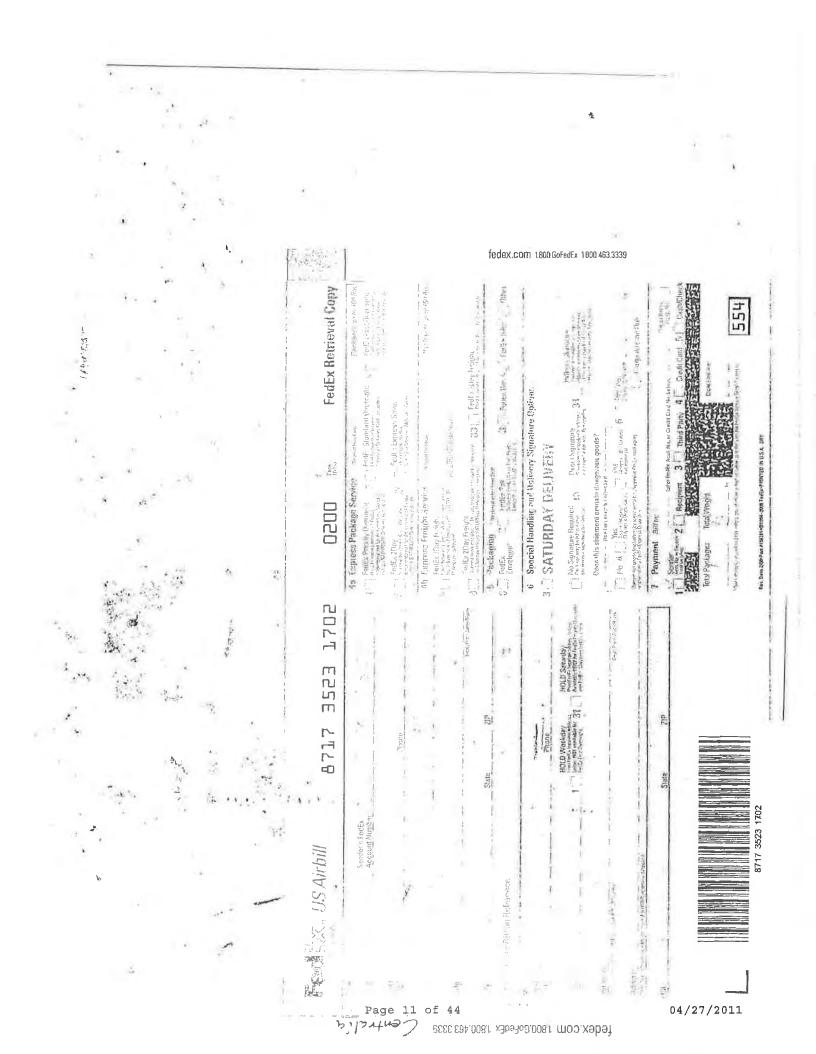
)11

Project Information:									
Login # 200-4829		Methad:	SOM01.2 VOA:ANW		1R				
Client: ARGLAB		LAB IDs:	200-4829-1 thru 4829-3	ru 4829-3				C	
								14	
Samples associated	Samples associated with this login were placed into storage on	laced into stc	rage on	4/22/2011	2011	1350	py:	4	
				(Date)	(e)	(Time ²)	/	Sample Custodian Signature	nature
Storage Location:	VOA A, Shelf 6			Specify :	storage locati	on (refrigerati	Specify storage location (refrigerator, freezer ID or lab location) for original sample containers) for original sample cor	ntainers
Storage Condition:	X Refrigeration	Frozen		Ambient	-				
Internal Transfer Information	lation								
Sample Type Original Prepared ¹	Lab ID(s)	Transfer Date	Transfer Time ²	Prep	Purpose of Transfer Analysis St	isfer Storage	Relinquished Bv:	Received Bv:	Storage Location Prepared Sample ¹
	4829-1-3	4/25/11	0130	7			200	くお	Andre Stee
2	-	4/25/11	0400			7	141	SAC	
7	11	4/25/10	040		1		TH T	6	Avalues
7	2	4/25/11	450			7	in the	570	erere f
				THE THE					
				1,000					
				-					

TestAmerica

Page 8 of 44

04/27/2011


² Military Time

Project Information:									
Login # 200-4829		Method:	SOMD1.2_VOA:ANW	DA:ANW					
Client: ARGLAB		LAB IDs:	200-4829-4					2	
								111	
Samples associated with this login were placed into storage on	with this login were	placed into st	orage on	4/22/2011 (Date)	2011	1350 (Time ²)	by:	Sector Contractor	
Storage Location:	VOA A, Shelf 6			Specify :	storage locati	on frefrioerate	Specify storage location (refrigerator, freezer ID or lah location) for or and service control or or and service or and	of for other semale co	lature
Storage Condition:	X Refrigeration	Frozen		Ambient	, ,	-			naile S
Internal Transfer Information	ation			tribilities					
at	Lab ID(s)	Transfer	Transfer	Pur	Purpose of Transfer	Ister	Relinquished	Received	Storage Location
Uriginal Prepared	1. 2603	Date	Time	Prep	Analysis	Storage	By:	By:	Prepared Sample ¹
2	41 49 -4	412514	0830	7			1 H	4 PD	Sarey
7	11	ylzsly	cop			7	S P.	Y A L	ara-of?
7		11/2/11	Obel		7		A PL	F	10-10-10-10-10-10-10-10-10-10-10-10-10-1
7	11	Hoch				1	5 75		20.01
		E							
		-							
						111			
		-							

TestAmerica

² Military Time

Shipping and Receiving Documents

Login Sample Receipt Checklist

Client: Argonne National Laboratory

Login Number: 4829 List Number: 2 Creator: Keeton, Jamie

Job Number: 200-4829-1 SDG Number: (200-4829)

List Source: TestAmerica Burlington

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.8 ºC, IR gun ID 96, CF= 0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC,	False	Minor Discrepancies
Samples are received within Holding Time:	True	
Sample containers have legible labels.	Тле	
Containers are not broken or leaking.	True	
Sample collection date/times are provided,	True	
Appropriate sample containers are used,	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	Sample volumes received unpreserved.
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.

05/05/10 rev 2 0

Sample Login Acknowledgement

Job 200-4829-1

Client Job Description: Purchase Order #: Work Order #: Project Manager: Job Due Date: Job TAT:	Centralia (200-4829) 8E-00302 8E-00302 Kirk F Young 5/6/2011 14 Days	Report		Argonne Nationa Jorge Alvarado 9700 South Cas Building 203 Office B-149 Argonne, IL 6043	s Avenue		
Max Deliverable Level: IV		BIII To:		Argonne National Laboratory Accounts Payable			
Earliest Dellverable Due:	5/6/2011		1	Chief Financial Offices 9700 S. Cass Ave. Building 201 Argonne, IL 60439			
Login 200-4829							
Sample Receipt: Method of Delivery:	4/22/2011 10:30:00 AM FedEx Priority Overnight	Number of Coolers: Cooler Temperature(s) (C°):	1 1.8;			
Lab Sample # Client	Sample ID	Date Sampled	Matri	x			
	lethod Description / Work Location /02-W-27218	4/19/2011 12:00:00 AM	Wate	Rpt Basis r	Dry / Wet **		
	OM01.2 Trace Volatile Organics / In-Lab P3-W-27221	4/19/2011 12:00:00 AM	Wate	Total	Wet		
	OM01.2 Trace Voiatile Organics / In-Lab	4/13/2011 12:00,00 AM	TTale.	Total	Wet		
	TB-W-27225	4/19/2011 12:00:00 AM	Wate	r			
SOM01.2_Vol_Tr S	OM01.2 Trace Volatile Organics / In-Lab			Total	Wet		
200-4829-4 VHBL	K01	4/22/2011 1:40:00 PM	Wate	r			
SOM01.2_Vol_Tr S	OM01.2 Trace Volatile Organics / In-Lab			Total	Wet		

* Method on-hold

METHODOLOGY SUMMARY

Laboratory: TestAmerica Laboratories

Project No:

Location: South Burlington, Vermont

SDG No: (200-4829)

VOA

Volatlle Organics Trace - USEPA CLP SOM01.2

2A - FORM II VOA-1 WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: TESTAMERICA BURLINGTON

Contract: 8E-00302

Lab Code: STLV Case No.: CENTRA Mod. Ref No.: SDG No.: (200-4829)

Level: (TRACE or LOW) TRACE

	EPA SAMPLE NO.	·VDMC1 (VCL) #	VDMC2 (CLA) #	VDMC3 (DCE) #	VDMC4 (BUT) #	VDMC5 (CLF) #	VDMC6 (DCA) #	VDMC7 (BEN) #
1	VBLKJZ	90	90	75	105	102	114	102
2	CNMW02-W-27218	79	77	68	144	91	103	90
3	CNPMP3-W-27221	76	75	67	141	88	98	87
4	CNQCTB-W-27225	82	85	69	153	94	107	95
5	VHBLK01	81	81	69	86	92	107	92

			QC LIMITS
VDMC1	(VCL)	= Vinyl Chloride-d3	(65-131)
VDMC2	(CLA)	= Chloroethane-d5	(71-131)
VDMC3	(DCE)	= 1,1-Dichloroethene-d2	(55-104)
VDMC4	(BUT)	= 2-Butanone-d5	(49-155)
VDMC5	(CLF)	= Chloroform-d	(78-121)
VDMC6	(DCA)	= 1,2-Dichloroethane-d4	(78-129)
VDMC7	(BEN)	= Benzene-d6	(77-124)

Column to be used to flag recovery values
* Values outside of contract required QC limits

Page 15 of 44

2B - FORM II VOA-2 WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: TESTAMERICA BURLINGTON

Contract: 8E-00302

Lab Code: STLV Case No.: CENTRA Mod. Ref No.: SDG No.: (200-4829)

Level: (TRACE or LOW) TRACE

	EFA	VDMC8	VDMC9	VDMC10	VDMC11	VDMC12	VDMC13	OTHER	TOT
	SAMPLE NO.	(DPA) #	(TOL) #	(TDP) #	(HEX) #	(TCA) #	(DCZ) #	1	OUT
01	VBLKJZ	92	106	110	111	104	114	1	0
02	CNMW02-W-27218	81	91	98	168 *	96	97		1
03	CNPMP3-W-27221	78 *	90	95	159 *	96	95	1	2
04	CNQCTB-W-27225	85	100	105	174 *	98	105		1
05	VHBLK01	82	97	100	96	91	106		0

4

		QC LIMITS
VDMC8	(DPA) = 1,2-Dichloropropane-d6	(79-124)
VDMC9	(TOL) = Toluene-d8	(77-121)
VDMC10	(TDP) = trans-1,3-Dichloropropene-d4	(73-121)
VDMC11	(HEX) = 2-Hexanone-d5	(28-135)
VDMC12	(TCA) = 1,1,2,2-Tetrachloroethane-d2	(73 - 125)
VDMC13	(DCZ) = 1,2-Dichlorobenzene-d4	(80-131)

Column to be used to flag recovery values

* Values outside of contract required QC limits

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

Page 1 of 1

Page 16 of 44

4A	-	FORM	IV	VO.	A
VOLATILE	ME	THÔD	BLA	NK	SUMMARY

EPA SAMPLE NO.

 VOLATILE METHOD BLANK SUMMART
 VBLKJZ

 Lab Name: TESTAMERICA BURLINGTON
 Contract: 8E-00302

 Lab Code: STLV
 Case No.: CENTRA Mod. Ref No.: SDG No.: (200-4929)

 Lab File ID: JCUH03.D
 Lab Sample ID: MB 200-16989/3

 Instrument ID: J.i
 Matrix: (SOIL/SED/WATER) Water
 Date Analyzed: 04/25/2011

 Level: (TRACE or LOW/MED)
 TRACE
 Time Analyzed: 1013

 GC Column:
 DB-624
 ID: 0.20 (mm)
 Heated Purge: (Y/N) N

	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	CNMW02-W-272 18	200-4829-1	JCUH10.D	1323
02	CNPMP3-W-272 21	200-4829-2	JCUH11.D	1349
03	CNQCTB-W-272 25	200-4829-3	JCUH12.D	1414
04	VHBLK01	200-4829-4	JCUH13.D	1439

COMMENTS:

5A - FORM V VOA VOLATILE ORGANICS INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFBJR

Lab Name:	TESTAMER	TESTAMERICA BURLINGTON				Contract:		8E-00302			
Lab Code:	STLV	Case No.:	CENTRA	Mod.	Ref	No,;			SDG	No.:	(200-4829)
Lab File I	d: JCU01	. D				BFB	Inject	ion	Date:	03,	/24/2011
Instrument	Id: J.i					BFB	Inject	ion	Time	132	24
GC Column:	DB-624	ID:	0.20		(mm)						

m/e	ION ABUNDANCE CRITERIA	<pre>% RELATIVE ABUNDANCE</pre>					
50	15.0 - 40.0% of mass 95	17.7					
75	30.0 - 80.0% of mass 95	52.9					
95	Base peak, 100% relative abundance	100					
96	5.0 - 9.0% of mass 95	7.3					
173	Less than 2.0% of mass 174	0.4 (0.5)1					
174	50.0 - 120% of mass 95	81.4					
175	5.0 - 9.0% of mass 174	7.0 (8.6)1					
176	95.0 - 101% of mass 174	81.7 (100)1					
177	5.0 - 9.0% of mass 176	4.6 (5.7)2					

1 - Value is %mass 174 2 - Value is %mass 176

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	VSTD0.5JR	IC 200-15618/3	JCU03.D	03/24/2011	1408
02	VSTD001JR	IC 200-15618/4	JCU04.D	03/24/2011	1433
03	VSTD005JR	ICIS 200-15618/5	JCU05.D	03/24/2011	1459
)4	VSTD010JR	IC 200-15618/6	JCU06.D	03/24/2011	1524
05	VSTD020JR	IC 200-15618/7	JCU07.D	03/24/2011	1549

1.1

5A ~ FORM V VOA VOLATILE ORGANICS INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFBJZ

Lab	Name:	TEST	AMERICA	BURLING	RLINGTON			Contract:		8E-00302			
Lab	Code:	STLV	Ca	se No.:	CENTRA	Mod.	Ref	No.:			SDG	No.:	(200-4829)
Lab	File I	d: J	CUH01.D					BFB	Inject:	ion	Date	04	/25/2011
Inst	rument	Id:	J.i					BFB	Inject	ion	Time	09	28
GC (column:	DB-	624	ID:	0.20	(mm)						

m/e	ION ABUNDANCE CRITERIA	<pre>% RELATIVE ABUNDANCE</pre>
50	15.0 - 40.0% of mass 95	16.6
75	30.0 - 80.0% of mass 95	44.6
95	Base peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.9
173	Less than 2.0% of mass 174	0.3 (0.4)]
174	50.0 - 120% of mass 95	92.3
175	5.0 - 9.0% of mass 174	7.5 (8.1)1
176	95.0 - 101% of mass 174	89.1 (96.6)1
177	5.0 - 9.0% of mass 176	6.4 (7.1)2

1 - Value is %mass 174 2 - Value is %mass 176

1	EPA SAMPLE NO,	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	VSTD005JZ	CCVIS 200-16989/2	JCUH02.D	04/25/2011	0948
2	VBLKJZ	MB 200-16989/3	JCUH03.D	04/25/2011	1013
3	CNMW02-W-2 7218	200-4829-1	JCUH10.D	04/25/2011	1323
	CNPMP3-W-2 7221	200-4829-2	JCUH11.D	04/25/2011	1349
,	CNQCTB-W-2 7225	200-4829-3	JCUH12.D	04/25/2011	1414
5	VHBLK01	200-4829-4	JCUH13.D	04/25/2011	1439
1	VSTD005ZJ	CCVC 200-16989/14	JCUH14.D	04/25/2011	1507

8A - FORM VIII VOA VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name:	TESTAMERICA BURL	INGTON	Contract: BE	5-00302		
Lab Code:	STLV Case No	CENTRA Mod.	Ref No.:	SDG No	o.: (200-4	829)
GC Column:	DB-624	ID: 0.20 (mm) Init, Calib. Date	e(s):	03/24/2011	03/24/2011
EPA Sample	No. (VSTD#####) :	VSTD005JZ	Date Analyzed	3: 04/	25/2011	
Lab File I	D (Standard): J	CUH02.D	Time Analyzed	1: 094	8	*
Instrument	ID: J.i		Heated Purge	(Y/N)	N'	

		IS1 (CBZ)	1	IS2 (DFB)		IS3 (DCB)	
		AREA #	RT #	AREA #	RT #	AREA #	RT
	12 HOUR STD	866768	8.93	1088686	5.58	411838	11.76
	UPPER LIMIT	1213475	9.26	1524160	5.91	576573	12.09
	LOWER LIMIT	520061	8.60	653212	5.25	247103	11,43
	EPA SAMPLE NO.						
)1	VBLKJZ	739387	8.93	913933	5.58	343521	11.76
2	CNMW02-W-27218	729224	8.93	905748	5.58	359727	11.76
)3	CNPMP3-W-27221	728728	8.93	907113	5.58	352439	11.76
)4	CNQCTB-W-27225	699424	8.93	871886	5.58	330429	11.76
05	VHBLK01	753039	8.93	934560	5.58	337497	11.76

IS1 (CBZ) = Chlorobenzene-d5
IS2 (DFB) = 1,4-Difluorobenzene
IS3 (DCB) = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 140% (Trace Volatiles) of internal standard area AREA LOWER LIMIT = 60% (Trace Volatiles) of internal standard area RT UPPER LIMIT = + 0.33 (Trace Volatiles) minutes of internal standard RT RT LOWER LIMIT = - 0.33 (Trace Volatiles) minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

SOM01.2 (4/2007) 04/27/2011

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNMW02-W-27218

Lab Name:	TESTAMERICA	BURLINGT	ON		Con	tract: 8E	-00302	
Lab Code:	STLV Ca	se No.:	CENTRA	Mod. Re	ef No.:		SDG No.:	(200-4829)
Matrix: (Se	OIL/SED/WATER	R) Water	5		Lab	Sample II	200-482	29-1
Sample wt/	vol: 25.0	(g/ml) mL		Lab	File ID:	JCUH10.D	
Level: (TRA	ACE/LOW/MED)	TRACE			Date	e Received	1: 04/22/2	2011
% Moisture	: not dec.				Date	e Analyzed	04/25/2	2011
GC Column:	DB-624	ID	0.20	(mm)	Dil	ution Fact	or: 1.0	
Soil Extra	ct Volume:			(uJ.)	Soi	l Aliquot	Volume:	(uL)
Purge Volu	me: 25.0			(mL)				Canadian

CAS NO,	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	1.9	JB
75-15-0	Carbon disulfide	0.074	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	υ
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloròform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	υ
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.025	J
71-43-2	Benzene	0.11	J
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

18 - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNMW02-W-27218

Lab Name:	TESTAMERICA B	JRLINGTO	N			Contract:	8E-0	0302	
Lab Code:	STLV Case	No.: C	ENTRA	Mod.	Ref	No.:	5	DG No.:	(200-4829)
Matrix: (S	OIL/SED/WATER)	Water				Lab Sample	ID:	200-482	9-1
Sample wt/	vol: 25.0	(g/mL) mL			Lab File II	D: J	CUH10.D	
Level: (TR	ACE/LOW/MED)	TRACE				Date Receiv	ved:	04/22/2	011
% Moisture	: not dec.					Date Analy:	zed;	04/25/2	011
GC Column:	DB-624	ID:	0.20	(mn	n)	Dilution Fa	actor	: 1.0	
Soil Extra	ct Volume:			(ul	-)	Soil Alique	ot Ve	lume:	(uL)
Purge Volu	me: 25.0			(mI	_)				9

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	σ
78-87-5	1,2-Dichloropropane	0.50	υ
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	0
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	υ
124-48-1	Dibromochloromethane	0.50	υ
106-93-4	1,2-Dibromoethane	0.50	υ
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	12	
95-47-6	o-Xylene	0.13	J
179601-23-1	m,p-Xylene	0.094	J
100-42-5	Styrene	0,50	υ
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	υ
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CNMW02-W-27218

Lab Name: TESTAMER	RICA BURLINGTON		Contract: 8E-	00302	
Lab Code: STLV	Case No.: CENTRA N	Mod. Ref	No.;	SDG No.: (200-	4829)
Matrix: (SOIL/SED/W	WATER) Water	_	Lab Sample ID:	200-4829-1	
Sample wt/vol: 25	.0 (g/mL) mL		Lab File ID:	JCUH10.D	
Level: (TRACE or LO	OW/MED) TRACE	_	Date Received:	04/22/2011	
% Moisture: not dec			Date Analyzed;	04/25/2011	
GC Column: DB-624	ID: 0.20	(mm)	Dilution Facto	or: 1.0	
Soil Extract Volume	3:	(uL)	Soil Aliquot V	'olume:	(uL)
CONCENTRATION UNITS	S: (ug/L or ug/kg)	lg/L	Purge Volume:	25.0	(mL)
CAS NUMBER	COMPOUND NA	AME	RT	EST. CONC.	Q
Unl	nown		6.90	3.1	BXJ

	Cho Horsbish	CONFOORD MAIL	IVI	1901. CONG.	× .
01		Unknown	6.90	3.1	BXJ
02	541-05-9	Cyclotrisiloxane, hexamethyl-	7.85	1.5	BJN
03		Unknown siloxane derivative	10.69	1.3	ВЛ
04	E9667961	Total Alkanes	N/A		

JEPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNPMP3-W-27221

Lab Name: TESTAMERICA BU	RLINGTON		Contract: 8E-00	0302
Lab Code: STLV Case	No.: CENTRA MO	od. Ref N	lo.:\$	DG No.: (200-4829)
Matrix: (SOIL/SED/WATER)	Water	_	Lab Sample ID:	200-4829-2
Sample wt/vol: 25.0	(g/mL) mL		Lab File ID: JO	CUH11.D
Level: (TRACE/LOW/MED)	TRACE	_	Date Received:	04/22/2011
% Moisture: not dec.		_	Date Analyzed:	04/25/2011
GC Column: DB-624	ID: 0.20	(mm)	Dilution Factor	: 1.1
Soil Extract Volume:		(uL)	Soil Aliquot Vo	lume: (uL)
Purge Volume: 25.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.55	U
74-87-3	Chloromethane	0.55	U
75-01-4	Vinyl chloride	0.55	U
74-83-9	Bromomethane	0.55	U
75-00-3	Chloroethane	0.55	U
75-69-4	Trichlorofluoromethane	0.55	U
75-35-4	1,1-Dichloroethene	0.55	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.55	U
67-64-1	Acetone	1.9	JB
75-15-0	Carbon disulfide	0.16	JB
79-20-9	Methyl acetate	0.55	U
75-09-2	Methylene Chloride	0.55	U
156-60-5	trans-1,2-Dichloroethene	0.55	U
1634-04-4	Methyl tert-butyl ether	0.55	U
75-34-3	1,1-Dichloroethane	0,55	U
156-59-2	cis-1,2-Dichloroethene	0.55	U
78-93-3	2-Butanone	5.5	U
74-97-5	Bromochloromethane	0.55	U
67-66-3	Chloroform	0.17	Ĵ
71-55-6	1,1,1-Trichloroethane	0.55	υ
110-82-7	Cyclohexane	0.55	U
56-23-5	Carbon tetrachloride	0.14	J
71-43-2	Benzene	0.051	J
107-06-2	1,2-Dichloroethane	0.55	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO,

CNPMP3-W-27221

Lab Name:	TESTAMERICA BURLINGTON							Contract:		8E-00302		1
Lab Code:	STLV	Case	No.:	CENTRA	Mod.	Ref	No	:		SDG	No.:	(200-4829)
Matrix: (S	OIL/SED/WA	TER)	Wate	er				Lab Sam	ple ID:	: 2	00-482	9-2
Sample wt/	vol: 25.0)	(g/r	nL) mL				Lab Fil	e ID:	JCU	H11.D	
Level: (TR	ACE/LOW/ME	D)	TRACE					Date Re	ceived:	: 0	4/22/2	011
% Moisture	: not dec.							Date An	alyzed:	: 0	4/25/2	011
GC Column:	DB-624		I	0.20	(m	m)		Dilutio	n Facto	or;	1.1	
Soil Extra	ct Volume:				(น	L)		Soil Al	iquot \	Volu	me:	(uL)
Purge Volu	me: 25.0				(m	L)						

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.55	U
108-87-2	Methylcyclohexane	0.55	U
78-87-5	1,2-Dichloropropane	0.55	U
75-27-4	Bromodichloromethane	0.55	U
10061-01-5	cis-1,3-Dichloropropene	0.55	U
108-10-1	4-Methyl-2-pentanone	5.5	U
108-88-3	Toluene	0.17	JB
10061-02-6	trans-1,3-Dichloropropene	0.55	U
79-00-5	1,1,2-Trichloroethane	0.55	U
127-18-4	Tetrachloroethene	0.55	U
591-78-6	2-Hexanone	5.5	U
124-48-1	Dibromochloromethane	0.55	U
106-93-4	1,2-Dibromoethane	0.55	U
108-90-7	Chlorobenzene	0.55	U
100-41-4	Ethylbenzene	0.15	J
95-47-6	o-Xylene	0.078	J
179601-23-1	'm,p-Xylene	0.27	J
100-42-5	Styrene	0.55	υ
75-25-2	Bromoform	0.55	U
98-82-8	Isopropylbenzene	0.55	U
79-34-5	1,1,2,2-Tetrachloroethane	0.55	U
541-73-1	1,3-Dichlorobenzene	0.55	U
106-46-7	1,4-Dichlorobenzene	0.55	U
95-50-1	1,2-Dichlorobenzene	0.55	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.55	U
120-82-1	1,2,4-Trichlorobenzene	0.55	U
87-61-6	1,2,3-Trichlorobenzene	0.55	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.,

CNPMP3-W-27221

Lab Name: TEST	AMERICA BURLINGTON	Contract:	8E-	00302		
Lab Code: STLV	Case No.: CENTRA Mod. Ro	ef No.:		SDG No.:	(200-	4829)
Matrix: (SOIL/S	ED/WATER) Water	Lab Sample	ID:	200-482	9-2	
Sample wt/vol:	25.0 (g/mL) mL	Lab File I	D:	JCUH11.D		
Level: (TRACE o	r LOW/MED) TRACE	Date Recei	ved:	04/22/2	011	
<pre>% Moisture: not</pre>	dec.	Date Analy	zed:	04/25/2	011	
GC Column: DB-	624 ID: 0.20 (mm)	Dilution F	acto	or: 1.1		
Soil Extract Vo	lume: (uL)	Soil Aliqu	ot V	/olume:	_	(uL
CONCENTRATION U	NITS: (ug/L or ug/kg) ug/L	Purge Volu	me:	25.0		(mL)
CAS NUMBER	COMPOUND NAME	R	г	EST. CO	DNC.	Q
	Unknown	6	.90		3.3	BXJ
E9667961	Total Alkanes	N/A				

JEPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNQCTB-W-27225

Lab Name: TESTAMERICA B	URLINGTON		Contract: 8E-00	0302
Lab Code: STLV Case	e No.: CENTRA M	od. Ref	No.:S	DG No.: (200-4829)
Matrix: (SOIL/SED/WATER)	Water		Lab Sample ID:	200-4829-3
Sample wt/vol: 25.0	(g/mL) mL		Lab File ID: J	CUH12.D
Level: (TRACE/LOW/MED)	TRACE	_	Date Received:	04/22/2011
% Moisture: not dec.			Date Analyzed:	04/25/2011
GC Column: DB-624	ID: 0.20	(mm)	Dilution Factor	: 1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vo	lume: (uL)
Purge Volume: 25.0		(mL)		

CAS NO.,	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	υ
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	Ü
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	3.9	JB
75-15-0	Carbon disulfide	0.070	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	υ
74-97-5	Bromochloromethane	0.50	Ü
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.022	J
71-43-2	Benzene	0.50	υ
107-06-2	1,2-Dichloroethane	0.50	υ

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

CNQCTB-W-27225

Lab Name:	TESTAMERICA BURLINGTON					Contra	act: 8E-	8E-00302		
Lab Code:	STLV C	ase No.: C	ENTRA	Mod.	Ref	No.:		SDG No.:	(200-4829)	
Matrix: (S	OIL/SED/WATE	CR) Water				Lab Sa	ample ID	200-482	9-3	
Sample wt/	vol: 25.0	(g/mL)	mL			Lab Fi	le ID:	JCUH12.D		
Level: (TR	ACE/LOW/MED)	TRACE				Date R	Received	04/22/2	011	
% Moisture	: not dec.					Date A	analyzed:	04/25/2	011	
GC Column:	DB-624	ID:	0.20	(m	m)	Diluti	on Facto	or: 1.0		
Soil Extra	ct Volume:			(u	L)	Soil A	liquot N	/olume:	(uL)	
Purge Volu	me: 25.0			(m.	L)					

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.53	В
10061-02-6	trans-1,3-Dichloropropene	0.50	υ
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	υ
591-78-6	2-Hexanone	5.0	υ
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	υ
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.055	J
95-47-6	o-Xylene	0.13	J
179601-23-1	m,p-Xylene	0.22	J
100-42-5	Styrene	0.50	υ
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	Ŭ
95-50-1	1,2-Dichlorobenzene	0,50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CNQCTB-W-27225

Lab Name: TESI	AMERICA BURLINGTON	Cont	ract: 8E-	ract: 8E-00302				
Lab Code: STLV	Case No.: CENTRA Mo	d. Ref No.:		SDG No.: (200-	4829)			
Matrix: (SOIL/S	SED/WATER) Water	Lab	Sample ID:	200-4829-3				
Sample wt/vol:	25.0 (g/mL) mL	Lab	File ID:	JCUH12.D				
Level: (TRACE of	or LOW/MED) TRACE	Date	e Received:	04/22/2011				
% Moisture: not	dec.	Date	Analyzed:	04/25/2011				
GC Column: DB-	624 ID: 0.20	(mm) Dilu	Dilution Factor: 1.0					
Soil Extract Vo	olume:	(uL) Soil	L Aliquot V	Volume:	(uL)			
CONCENTRATION U	JNITS: (ug/L or ug/kg) ug	/L Purg	je Volume:	25.0	(mL)			
CAS NUMBER	COMPOUND NAM	E	RT	EST. CONC.	Q			
4	Unknown		6.90	3.2	BXJ			
E9667961	Total Alkanes	.*	N/A	39	J			

01 02

1EPA-designated Registry Number,

6A - FORM VI VOA-1 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURL	INGTON		Contrac	t; 8E-0	0302			
Lab Code: STLV Case No	.: CENTRA Mo	d. Ref N	0.:	S	SDG No.: (200-4829)			
Instrument ID: J.i		Calibra	tion Date	(s): 0	3/24/2011	03/24/2011		
Heated Purge: (Y/N) N		Calibra	tion Time	(s): 1	408	1549		
Purge Volume: 25.0		(mL)						
GC Column: DB-624	ID: 0.20	(mm)	Length:	25	(m)			
LAB FILE ID:	RRF0.5 = J	CU03.D		RRF1	.0 = JCU0	4.D		
RRF5.0 = JCU05.D	RRF10 = JCU06.D $RRF20 = JCU07.D$							
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	&RSD	
Dichlorodifluoromethane	0.544	0.601	0.553	0.532	0.488	0.544	7.4	
Chloromethane	0.438	0.442	0.422	0.410	0.366	0.416	7.4	
Vinyl chloride	0.429	0.440	0.423	0.405	0.362	0.412	7.5	
Bromomethane	0.233	0.236	0.233	0.204	0.180	0.217	11.2	
Chloroethane	0.222	0.244	0.222	0,213	0.190	0.218	8.9	
Trichlorofluoromethane	0.644	0.635	0.621	0.602	0.549	0.610	6.2	
1,1-Dichloroethene	0.286	0.304	0.308	0.289	0.255	0.288	7.3	
1,1,2-Trichloro- 1,2,2-trifluoroethane	0.345	0.374	0.349	0.334	0.301	0.341	7.8	
Acetone	0.018	0.015	0.015	0.016	0.014	0.016	10.8	
Carbon disulfide	0.991	0.897	0.906	0.850	0.813	0.891	7.5	
Methyl acetate	0.041	0.052	0.045	0.046	0.044	0.046	9.0	
Methylene Chloride	0.277	0.265	0.272	0.261	0.246	0.264	4.5	
trans-1,2-Dichloroethene	0.336	0.336	0.349	0.338	0.315	0.335	3.7	
Methyl tert-butyl ether	0.361	0.385	0.390	0.394	0.382	0.382	3.3	
1,1-Dichloroethane	0.577	0.568	0.566	0.558	0.520	0.558	3.9	
cis-1,2-Dichloroethene	0.306	0.331	0.326	0.325	0.307	0.319	3.6	
2-Butanone	0.020	0.025	0.026	0.026	0.026	0.024	11.2	
Bromochloromethane	0.107	0.109	0.108	0.104	0.101	0.106	2.8	
Chloroform	0.528	0.560	0.559	0.537		0.539	4.0	
1,1,1-Trichloroethane	0.679	0.694	0.719	0.682		0.689	2.6	
Cyclohexane	0.603	0.630	0.720	0.698		0.670	7.5	
Carbon tetrachloride	0.610	0.622	0.658	0.634		0.631	2.8	
Benzene	1.466	1.610	1.649	1.624		1.592	4.5	
1,2-Dichloroethane	0.210	0.221	0.217	0.226		0.216	3.7	
Trichloroethene	0.384	0.414	0.421	0.408	a contract of the second se	0.407	3.4	
Methylcyclohexane	0.464	0.484	0.516	0.519	0.515	0.500	4.9	

Report 1,4-Dioxane for Low-Medium VOA analysis only

6B - FORM VI VOA-2 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLING	GTON	Contract: 8E-00302									
Lab Code: STLV Case No.:	CENTRA MC	d. Ref No	o.:	S	DG No.:	200-482)-4829)				
Instrument ID: J.1		Calibra	tion Date	(s): 03/24/2011		03/24/	03/24/2011				
Heated Purge: (Y/N) N		Calibra	tion Time	(s): 1	408	1549					
		(mL)									
Purge Volume: 25.0		(1111)									
GC Column: DB-624	ID: 0.20	(mm)	Length:	25	(m)						
LAB FILE ID:	RRF0.5 = 0	CU03.D		RRF1	.0 = JCU0	4.D	_				
RRF5.0 = JCU05.D	RRF10 = J	CU06.D		RRF2	0 = JCU0	07.D					
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	*RSD				
1,2-Dichloropropane	0.311	0.297	0.328	0.313	0.308	0.311	315				
Bromodichloromethane	0.380	0.377	0.389	0.382	0.376	0.381	1.3				
cis-1,3-Dichloropropene	0.396	0.377	0.465	0.457	0.460	0.431	9.				
4-Methyl-2-pentanone	0.060	0.070	0.079	0.079	0.079	0.073	11.				
Toluene	1.553	1.602	1.797	1.747	1.684	1.677	6.0				
trans-1,3-Dichloropropene	0.271	0.277	0.331	0.328	0.324	0.306	9.1				
1,1,2-Trichloroethane	0.138	0.168	0.170	0.159	0.157	0.158	8.0				
Tetrachloroethene	0.348	0.346	0.376	0.362	0.352	0.357	3.				
2-Hexanone	0.034	0.041	0.054	0.053	0.054	0.047	19.3				
Dibromochloromethane	0.203	0.209	0.221	0.223	0.222	0.216	4.2				
1,2-Dibromoethane	0.122	0.143	0.143	0.147		0.140	7.:				
Chlorobenzene	0.996	1.039	1.018	1.004		1.008	2.1				
Ethylbenzene	1.586	1.771	1.977	1.974	1.971	1.856	9.4				
o-Xylene	0.596	0.606	0.702	0.705	0.706	0.663	8.5				
m,p-Xylene	0.579	0.651	0.782	0.774	1	0.713	13.0				
Styrene	0.706	0.892	1.074	1.093		0.969	17.4				
Bromoform	0.232	0.195	0.213	0,201		0.211	6.7				
Isopropylbenzene	1.462	1,631	2.003	2.029	the second second second	1.828	14.4				
1,1,2,2-Tetrachloroethane	0.131	0.153	0.146	0.144		0.144	5.4				
1,3-Dichlorobenzene	1.461	1.504	1.618	1,535	and the second se	1.528	3.8				
1,4-Dichlorobenzene	1.511	1.553	1.598	1.527		1.542	2.:				
1,2-Dichlorobenzene	1.169	1.252	1.285	1.245		1.240	3.5				
1,2-Dibromo-3-Chloropropane	0.044	0.042	,0.037	0.043		0.042	6.2				
1,2,4-Trichlorobenzene	0.604	0.690	0.758	0.740		0,712	9.5				
1,2,3-Trichlorobenzene	0.457	0.508	0.543	0.537	0.545	0.518	7.2				

6C - FORM VI VOA-3 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLIN	GTON		Contrac	t: 8E-0	0302		
Lab Code: STLV Case No.	CENTRA MC	d. Ref No	0.:	S	DG No.: (200-4829)	
Instrument ID: J.i		Calibra	Calibration Date(s):			03/24/2011	
Heated Purge: (Y/N) N		Calibra	tion Time	(s): 1	408	1549	
Purge Volume: 25.0		(mL)					
GC Column: DB-624	ID: 0.20	(mm)	Length:	25	(m)		
LAB FILE ID:	RRF0.5 = J	CU03.D		RRF1	.0 = JCU0	4.D	-
RRF5.0 = JCU05.D	RRF10 = J	CU06.D		RRF2	0 = JCU0	7.D	
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
Vinyl Chloride-d3	0.390	0.401	0.373	0.356	0.320	0.368	8.7
Chloroethane-d5	0.310	0.310	0.285	0.263	0.228	0.279	12.5
1,1-Dichloroethene-d2	0.600	0.671	0.636	0.611	0.555	0.615	7.0
2-Bütanone-d5	0.025	0.025	0.026	0,027	0.026	0.026	4.1
Chloroform-d	0.587	0.591	0.583	0.565	0.535	0.572	4.0
1,2-Dichloroethane-d4	0.183	0.182	0.183	0.182	0,172	0.180	2.7
Benzene-d6	1.411	1.574	1.642	1.613	1.586	1.565	5.8
1,2-Dichloropropane-d6	0.419	0.358	0.427	0.419	0.359	0.396	8.8
Toluene-d8	1.263	1.374	1,546	1.505	1.445	1.427	7.8
trans-1,3-Dichloropropene-d4	0.238	0:255	0.297	0.300	0.296	0.277	10.3
2-Hexanone-d5	0.018	0.023	0.029	0.030	0.030	0.026	20.3
1,1,2,2-Tetrachloroethane-d2	0.140	0.151	0.154	0.151	0.147	0.149	3.7
1,2-Dichlorobenzene-d4	0.772	0.792	0.822	0.775	0.779	0.788	2.6

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERICA	BURLING	ON		Contract: 8E			-00302			
Lab Code:	STLV Case No.: CENT			A Mod. Ref No.:			SDG No.:		(200-4829)		
Instrument	ID: J.i			Cal	ibrati	on Date	: 04/	25/2011	Time:	0948	
Lab File I	d: JCUH02.D)		Init.	Calib.	Date(s)	: 03/	24/2011	03/24/	/2011	
EPA Sample	No. (VSTD###	#): VS1	D005JZ	Ini	t. Cal	ib. Tim	e(s);	1408	154	9	
Heated Pur	ge: (Y/N) 1	N GO	Column	: DB-624	ID:	0.20 (1	mm) Le	ngth: 2	25 (m)		
Purge Volu	me: 25.0			(mL)					a.		

COMPOUND	RRF	RRF5.0	MIN RRF	&D	MAX %D
Dichlorodifluoromethane	0.544	0.479	0.010	-12.0	40.0
Chloromethane	0.416	0.327	0.010	-21.4	40.0
Vinyl chloride	0.412	0.349	0.010	-15.3	30.0
Bromomethane	0.217	0.192	0.100	-11.8	30.0
Chloroethane	0.218	0.192	0.010	-12.0	40.0
Trichlorofluoromethane	0.610	0.598	0.010	-2.0	40.0
1,1-Dichloroethene	0,288	0.291	0.100	1.2	30.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.341	0.340	0.010	-0.2	40.0
Acetone	0.016	0.016	0.010	0.1	40.0
Carbon disulfide	0.891	0.913	0.010	2.5	40.0
Methyl acetate	0.046	0.046	0.010	0.7	40.0
Methylene Chloride	0.264	0.274	0.010	3.6	40.0
trans-1,2-Dichloroethene	0.335	0.361	0.010	7.7	40.0
Methyl tert-butyl ether	0.382	0.411	0.010	7.6	40.0
1,1-Dichloroethane	0.558	0.556	0.200	-0.4	30.0
cis-1,2-Dichloroethene	0.319	0.347	0.010	8.9	40.0
2-Butanone	0.024	0.025	0.010	4.2	40.0
Bromochloromethane	0.106	0.121	0.050	14.8	30.0
Chloroform	0.539	0,567	0.200	5.2	30.0
1,1,1-Trichloroethane	0.689	0.753	0.100	9.2	30.0
Cyclohexane	0.670	0.702	0.010	4.8	40.0
Carbon tetrachloride	0.631	0.724	0.100	14.8	30.0
Benzene	1.592	1.677	0.400	5.3	30.0
1,2-Dichloroethane	0.216	0.237	0.100	9.3	30.0
Trichloroethene	0.407	0.455	0.300	11.6	30.0
Methylcyclohexane	0.500	0.526	0.010	5.4	40.0

Report 1,4-Dioxane for Low/Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERICA E	URLINGTON	Contract: 8E	2-00302	
Lab Code:	STLV Cas	NO.: CENTRA	Mod. Ref No.:	SDG No.: (200-4829)
Instrument	ID: J.i		Calibration Date:	04/25/2011	Time: 0948
Lab File I	d: JCUH02.D		Init. Calib. Date(s):	03/24/2011	03/24/2011
EPA Sample	No. (VSTD####)	: VSTD005JZ	Init. Calib. Time(s): 1408	1549
Heated Pur	ge: (Y/N) N	GC Column:	DB-624 ID: 0,20 (mm) Length: 2	5 (m)
Purge Volu	me: 25.0		(mL)		

COMPOUND	RRF	RRF5.0	MIN RRF	۶D	MAX &D
1,2-Dichloropropane	0.311	0.325	0.010	4.3	40.0
Bromodichloromethane	0.381	0.420	0.200	10.4	30.0
cis-1,3-Dichloropropene	0.431	0.496	0,200	15.1	30.0
4-Methyl-2-pentanone	0.073	0.077	0.010	5.5	40.0
Toluene	1.677	1.885	0.400	12.4	30.0
trans-1,3-Dichloropropene	0.306	0.349	0.100	14.1	30.0
1,1,2-Trichloroethane	0.158	0.178	0.100	12.8	30.0
Tetrachloroethene	0.357	0.418	0.100	17.1	30.0
2-Hexanone	0.047	0.051	0.010	8.7	40.0
Dibromochloromethane	0,216	0.250	0.100	16.0	30.0
1,2-Dibromoethane	0.140	0.164	0.010	17.6	40.0
Chlorobenzene	1.008	1.119	0.500	10.9	30.0
Ethylbenzene	1.856	2.076	0.100	11.9	30.0
o-Xylene	0.663	0.763	0.300	15.1	30.0
m,p-Xylene	0.713	0.826	0.300	15.9	30.0
Styrene	0.969	1.156	0.300	19.4	30.0
Bromoform	0.211	0.246	0.050	16.6	30.0
Isopropylbenzene	1.828	2.153	0.010	17.8	40.0
1,1,2,2-Tetrachloroethane	0.144	0.156	0.100	8.6	30.0
1,3-Dichlorobenzene	1.528	1.791	0.400	17.2	30.0
1,4-Dichlorobenzene	1.542	1.747	0.400	13.3	30.0
1,2-Dichlorobenzene	1.240	1.405	0.400	13.4	30.0
1,2-Dibromo-3-Chloropropane	0.042	0.044	0.010	5.8	40.0
1,2,4-Trichlorobenzene	0.712	0.830	0.200	16.5	30.0
1,2,3-Trichlorobenzene	0.518	0.560	0.200	8.1	30.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERIC	TON	_	Cont	ract: 8E	-00302		
Lab Code:	STLV	Case No.:	CENTRA M	lod. Ref	No:,:		SDG No.:	(200-4829)
Instrument	ID: J.i			Cal	Librati	on Date:	04/25/2011	1 Time: 0948
Lab File I	d: JCUH02.	D		Init.	Calib.	Date(s):	03/24/2013	1 03/24/2011
EPA Sample	No. (VSTD#	###): VS	TD005JZ	Int	it. Cal	ib. Time(:	s): 1408	1549
Heated Pur	ge: (Y/N)	N G	C Column:	DB-624	ID:	0.20 (mm)) Length:	25 (m)
Purge Volu	me: 25.0			(mL)				

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D	
Vinyl Chloride-d3	0.368	0.301	0.010	-18.3	30.0	
Chloroethane-d5	0.279	0.236	0.010	-15.4	40.0	
1,1-Dichloroethene-d2	0.615	0.577	0.010	-6.1	30.0	
2-Butanone-d5	0.026	0.025	0.010	-2.0	40.0	
Chloroform-d	0.572	0.590	0.010	3.1	30.0	
1,2-Dichloroethane-d4	0.180	0.195	0.010	8.3	30.0	
Benzene-d6	1.565	1.602	0.010	2.4	30.0	
1,2-Dichloropropane-d6	0.396	0.412	0.010	3.9	40.0	
Toluene-d8	1.427	1.546	0.010	8.4	30.0	
trans-1, 3-Dichloropropene-d4	0.277	0.313	0.010	13.0	30.0	
2-Hexanone-d5	0.026	0.028	0.010	9.0	40.0	
1,1,2,2-Tetrachloroethane-d2	0.149	0.154	0.010	3.5	30.0	
1,2-Dichlorobenzene-d4	0.788	0.840	0.010	6.5	30.0	

Report 1,4-Dioxane-d8 for Low/Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BU	RLINGTON	Contract: 8E	E-00302			
Lab Code: STLV Case	No.: CENTRA M	lod. Ref No.:	SDG No.: (200-4829)		
Instrument ID: J.i		Calibration Date:	04/25/2011	Time: 1507		
Lab File Id: JCUH14.D		Init. Calib. Date(s):	03/24/2011	03/24/2011		
EPA Sample No.(VSTD####)	VSTD005ZJ	Init, Calib. Time(s): 1408	1549		
Heated Purge: (Y/N) N	GC Column:	DB-624 ID: 0.20 (mm) Length: 2	5 (m)		
Purge Volume: 25.0		(mL)				

COMPOUND	RRF	RRF5.0	MIN RRF	۶D	MAX %D
Dichlorodifluoromethane	0.544	0.489	0.010	-10.0	50.0
Chloromethane	0.416	0.315	0.010	-24.2	50.0
Vinyl chloride	0.412	0.347	0.010	-15.7	50.0
Bromomethane	0.217	0.189	0.010	-13.1	50.0
Chloroethane	0.218	0.191	0.010	-12.6	50.0
Trichlorofluoromethane	0.610	0.639	0.010	4.6	50.0
1,1-Dichloroethene	0.288	0.297	0.010	3.0	50.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.341	0.352	0.010	3.4	50.0
Acetone	0.016	0.016	0.010	1.5	50.0
Carbon disulfide	0.891	0.882	0.010	-1.1	50.0
Methyl acetate	0.046	0.046	0.010	0.6	50.0
Methylene Chloride	0.264	0.283	0.010	7.1	50.0
trans-1,2-Dichloroethene	0.335	0.364	0.010	8.6	50.0
Methyl tert-butyl, ether	0.382	0.433	0.010	13.4	50.0
1,1-Dichloroethane	0.558	0.552	0.010	-1.0	50.0
cis-1,2-Dichloroethene	0.319	0.353	0.010	10.7	50.0
2-Butanone	0.024	0.026	0.010	6.7	50.0
Bromochloromethane	0.106	0.123	0.010	16.6	50.0
Chloroform	0.539	0.597	0.010	10.7	50.0
1,1,1-Trichloroethane	0.689	0.767	0.010	11.2	50.0
Cyclohexane	0.670	0.670	0.010	0.0	50.0
Carbon tetrachloride	0.631	0.731	0.010	15.8	50.0
Benzene	1.592	1.671	0.010	4.9	50.0
1,2-Dichloroethane	0.216	0.249	0.010	14.9	50.0
Trichloroethene	0.407	0.456	0.010	12.1	50.0
Methylcyclohexane	0.500	0.512	0.010	2.5	50.0

Report 1,4-Dioxane for Low/Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	e: TESTAMERICA BURLINGTON				Cont	ract: 8E	8E-00302			
Lab Code:	STLV	Case No.:	CENTRA	Mod. Ref	No.:		SDG No.:	(200-4829)		
Instrument	ID: J.i			Ca	librati	on Date:	04/25/2011	1 Time: 1507		
Lab File I	d: JCUH14	.D		Init.	Calib.	Date(s):	03/24/2011	03/24/2011		
EPA Sample	No; (VSTD#	###): V	STD005ZJ	In	it. Cal	ib. Time(:	s): 1408	1549		
Heated Pure	ge: (Y/N)	N	GC Column	: DB-624	ID:	0.20 (mm)	} Length:	25 (m)		
Purge Volum	me; 25.0			(mL)						

COMPOUND	RRF	RRF5.0	MIN RRF	۶D	MAX %I
1,2-Dichloropropane	0.311	0.309	0.010	-0,9	50.
Bromodichloromethane	0.381	0.432	0.010	13.4	50.
cis-1,3-Dichloropropene	0.431	0.493	0.010	14.4	50.
4-Methyl-2-pentanone	0.073	0.080	0.010	9.7	50.
Toluene	1.677	1.863	0.010	11.1	50.
trans-1,3-Dichloropropene	0.306	0.371	0.010	21.2	50.
1,1,2-Trichloroethane	0.158	0.185	0.010	16.7	50.
Tetrachloroethene	0.357	0.404	0.010	13.1	50.
2-Hexanone	0.047	0.053	0.010	12.1	50.
Dibromochloromethane	0.216	0.273	0.010	26.5	50.
1,2-Dibromoethane	0.140	0.167	0.010	19.7	50.
Chlorobenzene	1.008	1.139	0.010	13.0	50.
Ethylbenzene	1.856	2.074	0.010	11.8	50.
o-Xylene	0.663	0.775	0.010	16.9	50.
m,p-Xylene	0.713	0.830	0.010	16.4	50.
Styrene	0.969	1.187	0.010	22.5	50.
Bromoform	0.211	0.261	0.010	23.4	50.
Isopropylbenzene	1.828	2.117	0.010	15.8	50.
1,1,2,2-Tetrachloroethane	0.144	0.160	0.010	11.8	50.
1,3-Dichlorobenzene	1.528	1.755	0.010	14.9	50.
1,4-Dichlorobenzene	1.542	1.764	0.010	14.4	50.
1,2-Dichlorobenzene	1,240	1.455	0.010	17.4	50.
1,2-Dibromo-3-Chloropropane	0.042	0.053	0.010	26.3	50.
1,2,4-Trichlorobenzene	0.712	0.869	0.010	22.0	50.
1,2,3-Trichlorobenzene	0.518	0.620	0.010	19.7	50.

ŝ,

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BUR	LINGTON	Contract: 8E	-00302	
Lab Code: STLV Case M	No.: CENTRA M	od. Ref No.:	SDG No.: (200-4829)
Instrument ID: J.i		Calibration Date:	04/25/2011	Time: 1507
Lab File Id: JCUH14.D		Init. Calib. Date(s):	03/24/2011	03/24/2011
EPA Sample No.(VSTD####):	VSTD005ZJ	Init. Calib. Time(s): 1408	1549
Heated Purge: (Y/N) N	GC Column:	DB-624 ID: 0.20 (mm) Length: 2	5 (m)
Purge Volume: 25.0		(mL)		

COMPOUND	RRF	RRF5.0	MIN RRF	₹D	MAX &D	
Vinyl Chloride-d3	0.368	0.302	0.010	-18.0	50.0	
Chloroethane-d5	0.279	0.233	0.010	-16.4	50.0	
1,1-Dichloroethene-d2	0.615	0.586	0.010	-4.7	50.0	
2-Butanone-d5	0.026	0.025	0.010	-3.0	50.0	
Chloroform-d	0.572	0.609	0.010	6.4	50.0	
1,2-Dichloroethane-d4	0.180	0.203	0.010	12.5	50.0	
Benzene-d6	1.565	1.588	0.010	1.5	50.0	
1,2-Dichloropropane-d6	0.396	0.418	0.010	5.4	50.0	
Toluene-d8	1.427	1.570	0.010	10.1	50.0	
trans-1,3-Dichloropropene-d4	0.277	0.315	0.010	13.6	50.0	
2-Hexanone-d5	0.026	0.030	0.010	16.2	50.0	
1,1,2,2-Tetrachloroethane-d2	0.149	0.162	0.010	9.1	50.0	
1,2-Dichlorobenzene-d4	0.788	0.881	0.010	11.8	50.0	

Report 1,4-Dioxane-d8 for Low/Medium VOA analysis only

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLKJZ

Lab Name: TESTAMERICA BURLINGTON					Contract: 8	8E-00302	
Lab Code:	STLV	Case No.:	CENTRA	Mod. Re:	f No.:	SDG No.:	(200-4829)
Matrix: (S	SOIL/SED/WA	ATER) Wat	er		Lab Sample	ID: MB 200	-16989/3
Sample wt/	vol: 25.0) (g/	mL) mL		Lab File I	D: JCUH03.D	
Level: (TR	ACE/LOW/ME	D) TRACE			Date Recei	.ved:	
<pre>% Moisture</pre>	: not dec.				Date Analy	zed: 04/25/	2011
GC Column:	DB-624	1	D: 0.20	(mm)	Dilution F	actor: 1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliqu	ot Volume:	(uL)
Purge Volu	me: 25.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS; (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.047	J
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	υ
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	1.6	J
75-15-0	Carbon disulfide	0.20	J
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.047	J
156-60-5	trans-1, 2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	υ
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLKJZ

Lab Name: TESTAMERICA BURLINGTON				Contract:	8E-00302			
Lab Code:	STLV Case	No.: C	ENTRA	Mod. Ref	No.:	SE	G No.:	(200-4829)
Matrix: (S	OIL/SED/WATER)	Water			Lab Sample	ID:	MB 200-	-16989/3
Sample wt/	vol: 25.0	(g/mL)	mL		Lab File I	D: JC	CUH03.D	
Level: (TR	ACE/LOW/MED)	TRACE			Date Recei	ved:	_	
% Moisture	: not dec.				Date Analy	zed:	04/25/2	2011
GC Column:	DB-624	ID:	0.20	(mm)	Dilution F	actor:	1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliqu	ot Vol	ume:	(uL)
Purge Volu	me: 25.0			(mL)				

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q	
79-01-6	Trichloroethene	0.049	J	
108-87-2	Methylcyclohexane	0.50	U	
78-87-5	1,2-Dichloropropane	0.50	U	
75-27-4	Bromodichloromethane	0.50	U	
10061-01-5	cis-1,3-Dichloropropene	0.50	U	
108-10-1	4-Methyl-2-pentanone	5.0	U	
108-88-3	Toluene	0.013	J	
10061-02-6	trans-1, 3-Dichloropropene	0.50	U	
79-00-5	1,1,2-Trichloroethane	0.50	U	
127-18-4	Tetrachloroethene	0.50	U	
591-78-6	2-Hexanone	5.0	U	
124-48-1	Dibromochloromethane	0.50	U	
106-93-4	1,2-Dibromoethane	0.50	U	
108-90-7	Chlorobenzene	0.50	U	
100-41-4	Ethylbenzene	0.50	U	
95-47-6	o-Xylene	0.50	U	
179601-23-1	m,p-Xylene	0.50	U	
100-42-5	Styrene	0.50	U	
75-25-2	Bromoform	0.50	U	
98-82-8	Isopropylbenzene	0.50	U	
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	
541-73-1	1,3-Dichlorobenzene	0.50	U	
106-46-7	1,4-Dichlorobenzene	0.50		
95-50-1	1,2-Dichlorobenzene	0.50		
96-12-8	1,2-Dibromo-3-Chloropropane	0.50		
120-82-1	1,2,4-Trichlorobenzene	. 0.083	J	
87-61-6	1,2,3-Trichlorobenzene	0.15	J	

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VBLKJZ

Lab Name: TESTAMERICA	BURLINGTON		Contract:	8E-00302			
Lab Code: STLV C	as'e No.: CENTRA M	lod. Ref	No.:	SDG No.:	(200-4829)		
Matrix: (SOIL/SED/WAT)	ER) Water		Lab Sample	ID: MB 200-	-16989/3		
Sample wt/vol: 25.0	(g/mL) mL		Lab File II	D: JCUH03.D			
Level: (TRACE or LOW/N	MED) TRACE		Date Receiv	ved:			
% Moisture: not dec.			Date Analy:	zed: 04/25/:	2011		
GC Column: DB-624	ID: 0.20	(mm)	Dilution Fa	actor: 1.0			
Soil Extract Volume:		(uL)	Soil Alique	ot Volume:	(uL)		
CONCENTRATION UNITS: (ıg/L or ug/kg) u	g/L	Purge Volum	ne: 25.0	(mL)		

CAS NUMBER	COMPOUND NAME	RT .	EST. CONC.	Q
	Unknown	4.13	2.8	J
	Unknown	6.90	3.5	XJ
541-05-9	Cyclotrisiloxane, hexamethyl-	7.85	1.8	JN
	Unknown siloxane derivative	10.69	1.9	J
	Unknown	12.88	0.50	J
E9667961	Total Alkanes	N/A		

1EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

VHBLK01

Lab Name:	ab Name: TESTAMERICA BURLINGTON				Contract			8E-00302			
Lab Code:	STLV	Case	No.:	CENTRA	Mod.	Ref	No.:		SDG No.:	(200-4829)	
Matrix: (So	OIL/SED/WA	TER)	Wate	r			Lab Sample	ID:	200-482	9-4	
Sample wt/	vol: 25.0		(g/m	L) mL			Lab File I	D:	JCUH13.D		
Level: (TRA	ACE/LOW/ME	D) 7	FRACE				Date Recei	ved:			
% Moisture	: not dec.						Date Analy	zed:	04/25/2	011	
GC Column:	DB-624		ID	0.20	(10)	m)	Dilution F	'acto	r: 1.0		
Soil Extrac	ct Volume:	-	-		(u.	L)	Soil Aliqu	ot V	olume:	(uL)	
Purge Volum	me: 25.0				(m)	L)					

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q	
75-71-8	Dichlorodifluoromethane	0.50	U	
74-87-3	Chloromethane	0.50	U	
75-01-4	Vinyl chloride	0,50	U	
74-83-9	Bromomethane	0.50	U	
75-00-3	Chloroethane	0.50	U	
75-69-4	Trichlorofluoromethane	0.50	U	
75-35-4	1,1-Dichloroethene	0.50	U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U	
67-64-1	Acetone	0.65	JB	
75-15-0	Carbon disulfide	0.070	JB	
79-20-9	Methyl acetate	0.50	U	
75-09-2	Methylene Chloride	0.50	υ	
156-60-5	trans-1,2-Dichloroethene	0.50	U	
1634-04-4	Methyl tert-butyl ether	0.50	U	
75-34-3	1,1-Dichloroethane	0.50	U	
156-59-2	cis-1,2-Dichloroethene	0.50	U	
78-93-3	2-Butanone	5.0	U	
74-97-5	Bromochloromethane	0.50	U	
67-66-3	Chloroform	0.50	U	
71-55-6	1,1,1-Trichloroethane	0.50	υ	
110-82-7	Cyclohexane	0.50	U	
56-23-5	Carbon tetrachloride	0.020	J	
71-43-2	Benzene	0.50	U	
107-06-2	1,2-Dichloroethane	0.50	U	

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VHBLK01

Lab Name: TESTAMERICA BURLINGTON		3		Contract:	8E-00302		
Lab Code:	STLV (Case No.: C	ENTRA	Mod. Ref	No.:	SDG No.:	(200-4829)
Matrix: (S	OIL/SED/WAT	'ER) Water			Lab Sample	ID: 200-48	29-4
Sample wt/	vol: 25.0	(g/mL)	mL		Lab File I	D: JCUH13.D	
Level: (TR	ACE/LOW/MED) TRACE			Date Recei	ved:	
% Moisture	: not dec.				Date Analy	zed: 04/25/	2011
GC Column:	DB-624	ID;	0.20	(mm)	Dilution F	actor: 1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliqu	ot Volume:	(uL)
Purge Volu	me: 25.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	υ
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	. 0.50	U
10061-02-6	trans-1, 3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	υ
124-48-1	Dibromochloromethane	0.50	υ.
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VHBLK01

Lab Name: TES	STAMERICA BURL	INGTON		Cont	ract: 8E	-00302		
Lab Code: STL	V Case No	o.: CENTRA	Mod. Ref	No.:		SDG No.:	(200-	4829)
Matrix: (SOIL,	/SED/WATER)	Water		Lab .	Sample ID	200-482	29-4	
Sample wt/vol:	25.0	(g/mL) mL		Lab 1	File ID:	JCUH13.D		
Level: (TRACE	or LOW/MED)	TRACE		Date	Received	1:		
% Moisture: no	ot déc.			Date	Analyzed	1: 04/25/2	2011	
GC Column: DE	3-624	ID: 0.20	(mm)	Dilut	tion Fact	or: 1.0		
Soil Extract V	/olume:		(uL)	Soil	Aliquot	Volume:		(uL)
CONCENTRATION	UNITS: (ug/L o	or ug/kg)	ug/L	Purge	e Volume:	25.0		(mL)
CAS NUMBER	1	COMPOUND	NAME		RT	EST. CO	ONC.	Q
1	Unknown				6.90		3.1	BXJ
E9667961	Total Alkan	leş			N/A			

1.1

1EPA-designated Registry Number,

ANALYTICAL REPORT

Job Number: 200-7267-1 SDG Number: 200-7267 Job Description: Centralia (200-7267) Contract Number: 1E-30401

> For: Argonne National Laboratory 9700 South Cass Avenue Building 203 Office B-149 Argonne, IL 60439

Attention: Mr. Clyde Dennis

Kil

Approved for release, KEK F Young Project Manager I 10/12/2011 10:48 AM

Kirk F Young Project Manager I kirk.young@testamericainc.com 10/12/2011

The test results in this report relate only to sample(s) as received by the laboratory. These test results were derived under a quality system that adheres to the requirements of NELAC. Pursuant to NELAC, this report may not be produced in full without written approval from the laboratory

TestAmerica Laboratories, Inc. TestAmerica Burlington 30 Community Drive, Suite 11, South Burlington, VT 05403 Tel (802) 660-1990 Fax (802) 660-1919 www.testamericainc.com

10/12/2011

Table of Contents

Cover Title Page	1
Report Narrative	4
Case Narrative	4
Qualifier Definition	6
External Chain of Custody	7
Internal Chain of Custody	8
Shipping Documentation	9
Airbills (if Applicable)	10
Sample Receipt and Log In Check List	11
Methodology Review	13
QC Summary - SOM01.2 Volatiles-Trace	14
QC Summary - SOM01.2 Volatiles-Trace	14
Deuterated Monitoring Compound Summary	14
Method Blank	16
GC/MS Instrument Performance Check	17
Internal Standard Area and RT Summary	19
Sample Data - SOM01.2 Volatiles-Trace	20
Sample Data - SOM01.2 Volatiles-Trace	20
CNMW04-W-27229	20
CNPMP6-W-27247	23
СNPMP9-W-27250	29
CNQCTB-W-27256	35
Standards - SOM01.2 Volatiles-Trace	38
Standards - SOM01.2 Volatiles-Trace	38
Initial Calibration Data	38
CCV Data, including closing CCV	41

Table of Contents

Raw Qc Data - SOM01.2 Volatiles-Trace	47
Raw Qc Data - SOM01.2 Volatiles-Trace	47
Raw Qc Data - SOM01.2 Volatiles-Trace	47
Blank Data	47

CASE NARRATIVE

Client: Argonne National Laboratory

Project: Centralia (200-7267)

Report Number: 200-7267-1

Enclosed is the data set for the referenced project work. With the exceptions noted as flags or footnotes, standard analytical protocols were followed in performing the analytical work and the applied control limits were met.

Calculations were performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

Receipt

The samples were received on 09/30/2011. Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Shipping and Receiving section of this submittal. The samples, as received, were not acid preserved. On that basis, the laboratory did provide for the analytical work to be performed within seven days of sample collection.

SOM01.2 Volatile Organics (Trace Level Water)

A storage blank was prepared for volatile organics analysis, and stored in association with the storage of the samples. That storage blank, identified as VHBLK01, was carried through the holding period with the samples, and analyzed.

Each sample in the sample set was analyzed without a dilution. An additional, dilution analysis was performed on samples CNPMP6-W-27247 and CNPMP9-W-27250 in order to provide quantification within the range of calibrated instrument response. Both sets of results for the analysis of samples CNPMP6-W-27247 and CNPMP9-W-27250 are included in this submittal.

Each of the analyses associated with the sample set exhibited an acceptable internal standard performance. There was an acceptable recovery of each deuterated monitoring compound (DMC) in the analysis of the method blank associated with the analytical work, and in the analysis of the storage blank associated with the sample set. The analysis of the samples in this sample set did meet the technical acceptance criteria specific to DMC recoveries, although not all DMC recoveries were within the control range in each analysis. The technical acceptance criteria does provide for the recovery of up to three DMCs to fall outside of the control range in the analysis of field samples. Matrix spike and matrix spike duplicate analyses were not performed on samples in this sample set. Trace concentrations of chloromethane, acetone, carbon disulfide, benzene, toluene, and 1,2,4-trichlorobenzene were identified in the analysis of the method blank associated with the analytical work. The concentration of each analyte in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant method blank analysis. A trace concentration of acetone was identified in the analysis of the storage blank associated with the sample set. The concentration of acetone in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant storage blank analysis. A trace concentration of carbon

tetrachloride was identified in the analysis of one of the instrument blanks associated with the analytical work, and a trace concentration of acetone was identified in the analysis of the second instrument blank. The concentration of each analyte in each analysis was below the established reporting limit, and each analysis did meet the technical acceptance criteria for a compliant instrument blank analysis. Present in the method blank, instrument blank, and storage blank analyses was a non-target constituent that represents a compound that is related to the DMC formulation. The fact that the presence of this compound is not within the laboratory's control is at issue. The derived results for that compound have been qualified with an "X" qualifier to reflect the source of the contamination.

The responses for each of the target analytes met the relative standard deviation criterion in the initial calibration. The response for each target analyte met the percent difference criterion in the opening/continuing calibration check acquisition. The response for each target analyte met the 50.0 percent difference criterion in the closing calibration check acquisition.

The primary quantitation mass for methylcyclohexane that is specified in the Statement of Work is mass 83. The laboratory did identify a contribution to mass 83 from 1,2-dichloropropane- d_6 , one of the deuterated monitoring compounds (DMCs). The laboratory did change the primary quantitation mass assignment to mass 55 for the quantification of methylcyclohexane.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports. Extracted ion current profiles for each manual integration are included in the data package, and further documented at the end of this submittal.

DATA REPORTING QUALIFIERS

Client: Argonne National Laboratory

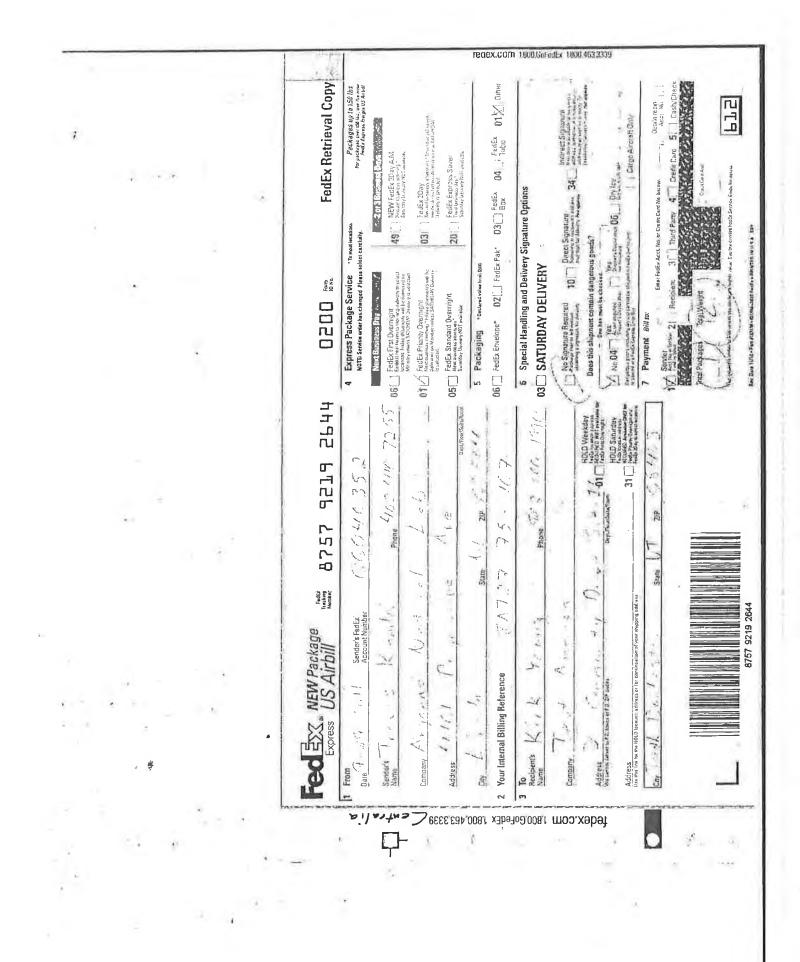
Job Number: 200-7267-1 Sdg Number: 200-7267

Lab Section	Qualifier	Description
GC/MS VOA		
	U	Analyzed for but not detected.
	E	Compound concentration exceeds the upper level of the calibration range of the instrument for that specific analysis.
	J	Indicates an Estimated Value for TICs
	J	Indicates an estimated value.
	D	Sample was analyzed at a higher dilution factor.
	х	See case narrative notes for explanation of the 'X' flag
	*	Surrogate exceeds the control limit
	В	The analyte was found in an associated blank, as well as in the sample.

A	ARGONNE NAT	AFGONNE NATIONAL LABORATORY	Shipping Container No.	
START LON - 1	O LO NIRUO	הסוסחו אברסאם	:oiui Buiddiuc	
PROJECT/SITE: Cent ralia KS		ANALYSIS	ANL Field Contact (Name &	& Temporary Phone):
SAMPLER(S) (Signature)) ravis Kanlar /	b		\$	
DATE OF COLLECTION SAMPLE ID NUMBER(S)	s) con- tainers		REW	REMARKS
Sept 29, 2011 CNPMP6-W-27	247 2		2×40ml for	voc
) CNMW04-W-27	20		\ \ \	(
ert 29, 2011 CNQCTB-W- 27256	-		ZX HOML For	VOC
Pay				
1 e				
7				
de la construction de la constru				
50				
Relinquished by (Signature) Date Time	Received by (Signature)	Relinquished by (Signature)) Date Time	Received by (Signature)
Relinquished by (Signature) Date Time	Received the Laboratory by	Date Time 9 20 11 1020	Remarks	
Y N FOR LAB USE ONLY		*A sample is under custody if:		
Custody seal was intact when shipment received.		 It is in your possession; or, 		
Sample containers were intact when received.		2. It is in your view, after having been in your possession; or,	n your possession; or,	
Simpriment was at required temperature when received Samole labels. Taos and COC agree.		 It was in your possession and you locked it up, or, It is in a designated secure area. 	ocked it up; or,	

3183

0/12/2011


t- 102 :# ul Boy	7.92	Method: <	12 WOS	21/01	In II CONTRACTOR			State State of the State of State of State	
		LAB IDs:	t-002	1-692	+. 20	325-0	7- 24 Carlan		
Samples associated	Samples associated with this log-in were placed into storage on	ced into storag		(150/11 (Date)	/40S (Time ²)		S. A. M.		
Storage Location:	VorFridreg S	lathal		Specify stor	age location	(refrigerator.	Specify storage location (refrigerator, freazer ID or lab location) for ondrinal samule containers	re for original sample contai	SJOD
Storage Condition:	Refrigeration	D Frozen	100 100 - 100 - 100	D Ambient	ent	100 P. 100 P. 100 P.			
e a	nation Lab ID(s)	Transfer	Transfer	Purp	Purpose of Transfer	sfer	Relinquished	Received	Storage Location
Original Prepared ¹		Date	Time ²	Prep	Analysis	Storage	By:	By:	Prepared Sample
~	7167 14	10/4/11	0635	7			74		Saveey
7	11	11/201	0645			7	SAC	5 PC	Storage
7	11	iolylu	chlo		7		16-	The y	Arecel 517
7	(L	יסואווי	5420			7	- ne	LA L	Storecia
of									
58									
10									

a)

BRFSR012:07.09,10:2 TestAmerica

52 10² Military Time

Shipping and Receiving Documents

10/12/2011

Login Sample Receipt Checklist

Client: Argonne National Laboratory

Login Number: 7267 List Number: 1 Creator: Marion, Greg T

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	Lab does not accept radioactive samples,
The cooler's custody seal, if present, is intact.	True	NO SEAL NUMBERS
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.5 °C, IR GUN ID 96/CF=0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time,	True	
Sample containers have legible labels.	Тгле	
Containers are not broken or leaking.	False	Sample CNMW04-W-27229 - One of two vials broken in transit.
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	Sample volumes received unpreserved,
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

Job Number: 200-7267-1 SDG Number: 200-7267

List Source: TestAmerica Burlington

05/05/10 rev 2,0

Sample Login Acknowledgement

Job 200-7267-1

Client Job Description:	Centralia (200-7267)	Repo	ort To:	Argonne Nationa	al Laboratory	
Purchase Order #:	1E-30401			Jorge Alvarado		
Work Order #:	1E-30401			9700 South Cas Building 203	s Avenue	
Project Manager:	Kirk F Young			Office B-149		
Job Due Date:	10/14/2011	3		Argonne, IL 604	39	
Job TAT:	14 Days					
Max Deliverable Level:	IV	Bill T	o:	Argonne Nationa		
				Accounts Payab		
Earliest Deliverable Due:	10/14/2011			Chief Financial C 9700 S. Cass Av Building 201 Argonne, IL 6043	/e.	
Login 200-7267						
Sample Receipt:	9/30/2011 10:20:00 AM	Number of Coolers:	;	1		
Method of Delivery:	FedEx Priority Overnight	Cooler Temperature	∋(s) (C°):	4.5;		
Lab Sample # Clier	nt Sample ID	Date Sampled	Mat	rix		
Method	Method Description / Work Location			Rpt Basis	Dry / Wet **	
200-7267-1 CNP	MP6-W-27247	9/29/2011 12:00:00 A	M Wat	er		
SOM01.2_Vol_Tr	SOM01.2 Trace Volatile Organics / In-Lab			Total	Wet	
200-7267-2 CNP	MP9-W-27250	9/29/2011 12:00:00 A	M Wat	er		
SOM01.2_Vol_Tr	SOM01.2 Trace Volatile Organics / In-Lab			Total	Wet	
200-7267-3 CNM	W04-W-27229	9/29/2011 12:00:00 A	M Wat	er		
SOM01.2_Vol_Tr	SOM01.2 Trace Volatile Organics / In-Lab			Tolal	Wet	
200-7267-4 CNQ	CTB-W-27256	9/29/2011 12:00:00 A	M Wat	er		
SOM01.2_Vol_Tr	SOM01.2 Trace Volatile Organics / In-Lab			Total	Wet	
200-7267-5 VHB	LK01	9/30/2011 2:05:00 PM	M Wat	er		
SOM01.2_Vol_Tr	SOM01.2 Trace Volatile Organics / In-Lab			Total	Wet	

•2

METHODOLOGY SUMMARY

Laboratory: TestAmerica Laboratories

Project No:

Location: South Burlington, Vermont

SDG No: 200-7267

VOA

Volatile Organics Trace - USEPA CLP SOM01.2

2A - FORM II VOA-1 WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

	Lab Name: TESTA	MERICA BURL	INGTON		Contract:	8E-00302		
	Lab Code: <u>STLV</u> Level: (TRACE or	Case No LOW) TRA	-	Mod. Ref N	10.:	SDG No	D.: <u>200-72</u>	67
	EPA SAMPLE NO.	VDMC1 (VCL) #	VDMC2 (CLA) #	VDMC3 (DCE) #	VDMC4 (BUT) #	VDMC5 (CLF) #	VDMC6 (DCA) #	VDMC7 (BEN) #
01	VBLKDH	107	116	84	105	88	96	90
02	CNMW04-W-27229	111	122	90	199 *	94	101	95
03	CNQC'TB-W-27256	102	112	82	173 *	86	90	84
04	CNPMP6-W-27247	104	117	85	168 *	92	88	89
05	CNPMP9-W-27250	101	114	83	176 *	88	90	88
06	CNPMP6-W-27247 DL	105	112	84	137	86	87	85
07	CNPMP9-W-27250 DL	105	115	83	193 *	88	97	86
08	VHBLK01	103	117	86	103	91	96	87

			QC LIMITS
VDMC1	(VCL)	= Vinyl Chloride-d3	(65-131)
VDMC2	(CLA)	= Chloroethane-d5	(71-131)
VDMC3	(DCE)	= 1,1-Dichloroethene-d2	(55-104)
VDMC4	(BUT)	= 2-Butanone-d5	(49-155)
VDMC5	(CLF)	= Chloroform-d	(78-121)
VDMC6	(DCA)	= 1,2-Dichloroethane-d4	(78-129)
VDMC7	(BEN)	= Benzene-d6	(77-124)

Column to be used to flag recovery values

* Values outside of contract required QC limits

2B - FORM II VOA-2 WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

	Lab Name: TESTA	MERICA BUR	LINGTON		Cont	ract: 8E-	00302		
	Lab Code: STLV	Case 1	No.: CENT	RA Mod. Re	ef No.:		SDG No.:	200-7267	
	Level: (TRACE or	LOW) TR	ACE						
	EPA SAMPLE NO.	VDMC8 (DPA) #	VDMC9 (TOL) #	VDMC10 (TDP) #	VDMC11 (HEX) #	VDMC12 (TCA) #	VDMC13 (DCZ) #	OTHER	TOT OUT
01	VBLKDH	94	87	82	90	91	99		0
02	CNMW04-W-27229	9.9	90	84	177 *	94	98		2
03	CNQCTB-W-27256	88	83	76	154 *	88	88		2
04	CNPMP6-W-27247	90	86	77	161 *	83	82		2
05	CNPMP9-W-27250	90	84	77	157 *	85	84		2
06	CNPMP6-W-27247 DL	86	82	70 *	121	77	86		1
07	CNPMP9-W-27250 DL	89	83	80	173 *	89	87		2

80

88

93

96

0

				QC LIMITS
VDMC8	(DPA)		1,2-Dichloropropane-d6	(79-124)
VDMC9	(TOL)	<u></u>	Toluene-d8	(77-121)
VDMC10	(TDP)	=	trans-1,3-Dichloropropene-d4	(73-121)
VDMC11	(HEX)		2-Hexanone-d5	(28-135)
VDMC12	(TCA)		1,1,2,2-Tetrachloroethane-d2	(73-125)
VDMC13	(DCZ)	-	1,2-Dichlorobenzene-d4	(80-131)

Column to be used to flag recovery values

93

85

* Values outside of contract required QC limits

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

Page 1 of 1

08 VHBLK01

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKDH

Lab Name	: TESTAMERICA	BURLINGTON	Contract: 8	BE-00302
Lab Code	: STLV Cas	se No.: CENTRA Mod.	Ref No. 🤶	SDG No.: 200-7267
Lab File	ID: DHSE03.D		Lab Sample	ID: MB 200-26173/3
Instrume	nt ID: D.i			
Matrix:	(SOIL/SED/WATER) Water	Date Analyze	ed: 10/04/2011
Level: (TRACE or LOW/ME	D) TRACE	Time Analyze	ed: 0703
GC Colum	n: DB-624	TD: 0.20 (num) Heated Purge	e: (Y/N) N
	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
01	CNMW04-W-272 29	200-7267-3	DHSE05.D	0756
02	CNQCTB-W-272	200-7267-4	DHSE06.D	0820

DHSE07.D

DHSE08.D

DHSE09.D

DHSE10.D

DHSE11.D

DHSE12.D

DHSE14.D

0855

0920

0944

1009

1120

1144

1234

COMMENTS:

Page 1 of 1

56

47

50

47DL

50DL

VHBLK01

VIBLKDJ

VIBLKDK

03

04

05

06

07

08

09

CNPMP6-W-272

CNPMP9-W-272

CNPMP6-W-272

CNPMP9-W-272

200-7267-1

200-7267-2

200-7267-1

200-7267-2

200-7267-5

VIBLK 200-26173/8

VIBLK 200-26173/10

SOM01.2 (4/2007) 10/12/2011

5A - FORM V VOA VOLATILE ORGANICS INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFBDB

Lab Name:	TESTAMERI	CA BURLING	TON			Cont	tract:	8E-	00302	
Lab Code:	STLV	Case No.:	CENTRA	Mod.	Ref	No.;	_		SDG No	.: 200-7267
Lab File I	d: DHS02.	D				BFB	Inject	ion	Date:	09/22/2011
Instrument	Id: D.i					BFB	Inject	i.on	Time:	0751
GC Column:	DB-624	ID:	0.20	(mm)					

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	20.6
75	30.0 - 80.0% of mass 95	43.2
95	Base peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	7.1
173	Less than 2.0% of mass 174	0.4 (0.6)1
174	50.0 - 120% of mass 95	71.4
175	5.0 - 9.0% of mass 174	5.1 (7.1)1
176	95.0 - 101% of mass 174	69.8 (97.7)1
177	5.0 - 9.0% of mass 176	4.5 (6.4)2

2 - Value is %mass 176 1 - Value is %mass 174

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIMÉ ANALYZED
1	VSTD0.5DB	IC 200-25802/5	DHS05.D	09/22/2011	0848
	VSTD001DB	IC 200-25802/6	DHS06.D	09/22/2011	0913
	VSTD005DB	ICIS 200-25802/7	DHS07.D	09/22/2011	0938
1	VSTD010DB	IC 200-25802/8	DHS08.D	09/22/2011	1002
	VSTD020DB	IC 200-25802/9	DHS09.D	09/22/2011	1038

5A - FORM V VOA VOLATILE ORGANICS INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFBDH

 Lab Name:
 TESTAMERICA BURLINGTON
 Contract:
 8E-00302

 Lab Code:
 STLV
 Case No.:
 CENTRA
 Mod. Ref No.:
 SDG No.:
 200-7267

 Lab File Id:
 DHSE01.D
 BFB Injection Date:
 10/04/2011

 Instrument Id:
 D.i
 BFB Injection Time:
 0625

 GC Column:
 DB-624
 ID:
 0.20

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	29.0
75	30.0 - 80.0% of mass 95	46.8
95	Base peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	7.2
173	Less than 2.0% of mass 174	0 (0)1
174	50.0 - 120% of mass 95	78.9
175	5.0 - 9.0% of mass 174	6.5 (8.3)1
176	95.0 - 101% of mass 174	79.3 (101)1
177	5.0 - 9.0% of mass 176	5.7 (7.2)2

1 - Value is %mass 174 2 - Value is %mass 176

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1.	VSTD005DH	CCVIS 200-26173/2	DHSE02.D	10/04/2011	0639
2	VBLKDH	MB 200-26173/3	DHSE03.D	10/04/2011	0703
3	CNMW04-W-2 7229	200-7267-3	DHSE05.D	10/04/2011	0756
4	CNQCTB-W-2 7256	200-7267-4	DHSE06.D	10/04/2011	0820
5	CNPMP6-W-2 7247	200-7267-1	DHSE07.D	10/04/2011	0855
6	VIBLKDJ	VIBLK 200-26173/8	DHSE08.D	10/04/2011	0920
7	CNPMP9-W-2 7250	200-7267-2	DHSE09.D	10/04/2011	0944
8	VIBLKDK	VIBLK 200-26173/10	DHSE10.D	10/04/2011	1009
9	CNPMP6-W-2 7247DL	200-7267-1	DHSE11.D	10/04/2011	1120
0	CNPMP9-W-2 7250DL	200-7267-2	DHSE12.D	10/04/2011	1144
1.	VHBLK01	200-7267-5	DHSE14.D	10/04/2011	1234
2	VSTD005HD	CCVC 200-26173/15	DHSE15.D	10/04/2011	1259

8A - FORM VIII VOA VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name:	TESTAMERI	CA BUR	LINGTO	N		Co	ontract	: 8E-0	00302			
Lab Code:	STLV	Case	No.:	CENTRA	Mod. R	ef No.:		_	SDG N	o.:	200-726	57
GC Column	DB-624		I	0.20	(mm)	Init	Calib.	Date(:	s):	09/:	22/2011	09/22/2011
EPA Sample	No. (VSTD#	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	vs	D005DH		Da	ite Ana	lyzed;	10/	04/2	2011	
Lab File I) (Standar	:(b:	DHSE02	D		Ti	.me Ana	lyzed:	063	9	_	
Instrument	ID: D.i			-	2	He	ated P	urge:	(Y/N)	N	_	

		IS1 (CBZ) AREA #	RT #	IS2 (DFB) AREA #	RT #	IS3 (DCB) AREA #	RT #
	12 HOUR STD	177557	8.73	199443	5.37	85835	11.56
	UPPER LIMIT	248580	9.06	279220	5.70	120169	11.89
	LOWER LIMIT	106534	8.40	119666	5.04	51501	11.23
	EPA SAMPLE NO.						
01	VBLKDH	157535	8.73	183026	5.37	65493	11.56
02	CNMW04-W-27229	138813	8.73	160097	5.37	55394	11.56
03	CNQCTB-W-27256	158432	8.73	180222	5.37	65696	11.56
04	CNPMP6-W-27247	166531	8.73	1.971.39	5.37	75254	11.56
05	VIBLKDJ	149005	8.73	173126	5.37	61284	11.56
06	CNPMP9-W-27250	152932	8.73	176264	5.37	68257	11.56
07	VIBLKDK	148650	8.73	167702	5.37	58785	11.56
80	CNPMP6-W-27247 DL	160508	8.73	186565	5.37	65213	11.56
09	CNPMP9-W-27250 DL	148930	8.73	168095	5.37	63714	11.56
10	VHBLK01	142029	8.73	161617	5.37	57953	11.56

IS2 (DFB) = 1,4-Difluorobenzene
IS3 (DCB) = 1,4-Dichlorobenzene-d4
AREA UPPER LIMIT = 140% (Trace Volatiles) of internal standard area
AREA LOWER LIMIT = 60% (Trace Volatiles) of internal standard area
RT UPPER LIMIT = + 0.33 (Trace Volatiles) minutes of internal standard RT
RT LOWER LIMIT = - 0.33 (Trace Volatiles) minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

IS1 (CBZ) = Chlorobenzene-d5

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNMW04-W-27229

Lab Name:	TESTAMERI	CA BURLING	TON		Contract:			8E-00302		
Lab Code:	STLV	Case No.:	CENTRA	Mod.	Ref	No.:	S	SDG No.:	200-7267	
Matrix: (S	DIL/SED/WA	ATER) Wat	er			Lab Sampl	e ID:	200-726	57-3	
Sample wt/	vol: 25.0) (g,	mL) mL			Lab File	ID: U	DHSE05.D		
Level: (TR	ACE/LOW/ME	ED) TRACE				Date Rece	ived:	09/30/2	2011	
% Moisture	: not dec.			-		Date Anal	yzed:	10/04/2	2011	
GC Column:	DB-624		D: 0.20	(n	un)	Dilution	Factor	c: 1.0		
Soil Extra	ct Volume:			(u	ıL)	Soil Aliq	uot Vo	olume:		(uL)
Purge Volu	ne: 25.0			(11	ıL)					

CAS NO. COMPOUND		CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	0.050	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.19	J
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	2.6	
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNMW04-W-27229

Lab Name: TESTAMERICA BU			NGTON		Contract: 8E-00302				
Lab Code:	STLV	Case No.	: CENT	RA Mod	. Ref	No,:	SI	DG No.:	200-7267
Matrix: (S	OIL/SED/WA	TER) W	ater			Lab Sample	ID:	200-726	57-3
Sample wt/	vol: 25.0	(g/mL) m	ıL		Lab File I	D: DI	HSE05.D	
Level: (TR	ACE/LOW/ME	D) TRA	CE			Date Recei	ved:	09/30/2	2011
% Moisture	: not dec.	XIII				Date Analy	zed:	10/04/2	2011
GC Column:	DB-624		ID: 0.	20 (1	nom)	Dilution F	actor	: 1.0	
Soil Extra	ct Volume:			(1	uL)	Soil Aliqu	ot Vo	lume:	(uL)
Purge Volu	me: 25.0			(1	nL)				

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	υ
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.014	JB
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	υ
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO,

CNMW04-W-27229

Lab Name: TES	TAMERICA BURLINGTON	Contract:	8E-	00302	1000
Lab Code: STL	Case No.: CENTRA Mod. Ref M	10.2		SDG No.; 200-7	267
Matrix: (SOIL/	SED/WATER) Water	Lab Sampl	e ID:	200-7267-3	
Sample wt/vol:	25.0 (g/mL) mL	Lab File	ID:	DHSE05.D	
Level: (TRACE	or LOW/MED) TRACE	Date Rece	ived:	09/30/2011	
<pre>% Moisture: no</pre>	t dec*	Date Anal	yzed:	10/04/2011	
GC Column: DB.	-624 * ID: 0.20 (mm)	Dilution	Facto	or: 1.0	
Soil Extract V	olume # (uL)	Soil Alig	uot V	olume:	(uL)
CONCENTRATION	JNITS; (ug/L or ug/kg) ug/L	Purge Vol	ume:	25.0	(mL)
CAS NUMBER	COMPOUND NAME		RT	EST. CONC.	Q
1	Unknown		6.69	3.1	BXJ
2 E9667961	Total Alkanes	N/1	4		10 million

1EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNPMP6-W-27247

Lab Name: TESTAMERICA BURLINGTON				Contract: 8E-00302			
Lab Code:	STLV Cas	e No.:	CENTRA	Mod. Re:	É No.;	SDG No.: 200-7267	
Matrix: (S	OIL/SED/WATER) Wate	er		Lab Sample ID	200-7267-1	
Sample wt/	vol: 25.0	(g/n	nL) mL	an depen	Lab File ID:	DHSE07.D	
Level: (TR	ACE/LOW/MED)	TRACE			Date Received	09/30/2011	
% Moisture	: not dec.				Date Analyzed:	10/04/2011	
GC Column:	DB-624	ŤI	0.20	(mm)	Dilution Facto	or: 1.0	
Soil Extra	ct Volume:		(alas)	(uL)	Soil Aliquot V	/olume: (uL)	
Purge Volu	me: 25.0			(mL)			

CAS NO,	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	υ
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	0.049	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.13	J
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	σ
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	7.3	
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	130	E
71-43-2	Benzene	0.0097	JB
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM J VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNPMP6-W-27247

Lab Name:	TESTAMERIC.	A BURLINGI	ON		Contract:	8E-003	02	
Lab Code:	STLV (Case No.:	CENTRA	Mod. Re	ef No.:	SDG	No.: 200-72	267
Matrix: (S	OIL/SED/WAT	ER) Wate	r	_	Lab Sample	e ID: 2	200-7267-1	
Sample wt/	vol: 25.0	(g/m	L) mL		Lab File 1	ID: DHS	E07.D	
Level: (TR	ACE/LOW/MED) TRACE			Date Recei	ived: 0	9/30/2011	
8 Moisture	: not dec.				Date Analy	yzed: 1	.0/04/2011	
GC Column:	DB-624	II	0.20	(mm)	Dilution H	Factor:	1.0	
Soil Extract Volume: (u				(uL)	Soil Aliqu	uot Volu	me:	(uL)
Purge Volu	me: 25.0			(mL)				

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	υ
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methy1-2-pentanone	5.0	U
108-88-3	Toluene	0.017	JB
10061-02-6	trans-1, 3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	IJ
179601-23-1	m,p-Xylene	0.0070	J
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	υ
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO,

CNPMP6-W-27247

Lab Name: TE	STAMERICA BURLINGTON		Contract: 8E-0	8E-00302		
Lab Code: STI	LV Case No.: CENTI	RA Mod. Ref N	D.:	SDG No.: 200-7	267	
Matrix: (SOIL	/SED/WATER) Water		Lab Sample ID:	200-7267-1		
Sample wt/vol	: 25.0 (g/mL) mi	G.	Lab File ID:	DHSE07.D		
Level: (TRACE	or LOW/MED) TRACE		Date Received:			
% Moisture: n	ot dec:		Date Analyzed:	10/04/2011		
GC Column: Di	B-624 ID: 0.:	20 (mm.)	Dilution Facto	r: 1.0		
Soil Extract	Volume:	(uL)	Soil Aliquot V	olume:	(uL)	
CONCENTRATION	UNITS: (ug/L or ug/kg)	ug/L	Purge Volume:	25.0	(mL)	
CAS NUMBER	COMPOUN	D NAME	RT	EST. CONC.	Q	
	Unknown		6.69	2.8	BXJ	
	Unknown	AHGII:	11.40	0.68	J	

N/A

E9667961

Total Alkanes,

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNPMP6=W-27247DL

Lab Name:	TESTAMERICA BUI	-	Contract: 8	
Lab Code:	STLV Case	No.: CENTRA M	od. Ref N	0 * *
Matrix: (S	OIL/SED/WATER)	Water		Lab Sample I
Sample wt/	vol: 25.0	(g/mL) mL	~	Lab File ID:
Level: (TR	ACE/LOW/MED)	TRACE	_	Date Receive
<pre>% Moisture</pre>	: not dec.			Date Analyze
GC Column:	DB-624	ID: 0.20	(mm)	Dilution Fac
Soil Extra	ct Volume:		(uL)	Soil Aliquot
Purge Volu	me: 25.0		(mL)	

Contract:	8E-00302						
No.; :	SDG No.	200-7267					
Lab Sample	ID: 200-7	267-1					
Lab File I	Lab File ID: DHSE11.D						
Date Recei	ved: 09/30	/2011					
Date Analy	zed: 10/04	/2011					
Dilution F	actor: 9.7						
Soil Aliqu	ot Volume:	(uL)					

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	4.9	U
74-87-3	Chloromethane	4.9	U
75-01-4	Vinyl chloride	4.9	U
74-83-9	Bromomethañe	4.9	U
75-00-3	Chloroethane	4.9	U
75-69-4	Trichlorofluoromethane	4.9	U
75-35-4	1,1-Dichloroethene	4.9	υ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	4.9	U
67-64-1	Acetone	49	U
75-15-0	Carbon disulfide	4.9	U
79-20-9	Methyl acetate	4.9	Ŭ
75-09-2	Methylene Chloride	1.0	JD
156-60-5	trans-1,2-Dichloroethene	4.9	U
1634-04-1	Methyl tert-butyl ether	4.9	U
75-34-3	1,1-Dichloroethane	4.9	Ü
156-59-2	cis-1,2-Dichloroethene	4.9	U
78-93-3	2-Butanone	49	U
74-97-5	Bromochloromethane	4.9	U
67-66-3	Chloroform	7.5	D
71-55-6	1,1,1-Trichloroethane	4.9	U
110-82-7	Cyclohexane	4.9	υ
56-23-5	Carbon tetrachloride	120	D
71-43-2	Benzene	0.048	JBD
107-06-2	1,2-Dichloroethane	4.9	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

18 - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNPMP6-W-27247DL

Lab Name:	TESTAMERIC	A BURLINGT	ON		Contract: 8E-00302				
Lab Code:	STLV	Case No.:	CENTRA	Mod.	Ref	No.:	SI	DG No.:	200-7267
Matrix: (S	OIL/SED/WAT	TER) Wate	er			Lab Sample	e ID:	200-720	57-1
Sample wt/	vol: 25.0	(g/n	nL) mL			Lab File	ID: DI	HSE11.D	
Level: (TR	ACE/LOW/MED)) TRACE		_		Date Rece	ived:	09/30/2	2011
% Moisture	: not dec.					Date Anal	yzed:	10/04/2	2011
GC Column:	DB-624	II	0.20	(m	n)	Dilution	Factor	: 9.7	
Soil Extra	ct Volume:			(u)	հ)	Soil Aliq	uot Vo	lume:	(uL)
Purge Volu	me: 25.0			(m)	L)				

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q		
79-01-6	Trichloroethene	4.9	U		
108-87-2	Methylcyclohexane	4.9	U		
78-87-5	1,2-Dichloropropane	4.9	U		
75-27-4	Bromodichloromethane	4.9	Ű		
10061-01-5	cis-1, 3-Dichloropropene	4.9	0		
108-10-1	4-Methy1-2-pentanone	49	U		
108-88-3	Toluene	4.9	U		
10061-02-6	trans-1,3-Dichloropropene	4.9	U		
79-00-5	1,1,2-Trichloroethane	4.9	U		
127-18-4	Tetrachloroethene	4.9	U		
591-78-6	2-Hexanone	49			
124-48-1	Dibromochloromethane	4.9	U		
106-93-4	1,2-Dibromoethane	4.9	U		
108-90-7	Chlorobenzene	4.9			
100-41-4	Ethylbenzene	4.9	U		
95-47-6	o-Xylene	4.9	U		
179601-23-1	m,p-Xylene	4.9	U		
100-42-5	Styrene	4.9	U		
75-25-2	Bromoform	4.9	U		
98-82-8	Isopropylbenzene	4.9	U		
79-34-5	1,1,2,2-Tetrachloroethane	4.9	U		
541-73-1	1,3-Dichlorobenzene	4.9	U		
106-46-7	1,4-Dichlorobenzene	4.9	U		
95-50-1	1,2-Dichlorobenzene	0.23	JD		
96-12-8	1,2-Dibromo-3-Chloropropane	4.9	U		
120-82-1	1,2,4-Trichlorobenzene	4.9	U		
87-61-6	1,2,3-Trichlorobenzene	4.9	U		

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CNPMP6-W-27247DL

J

Lab Name: TESTAMERICA BURLINGTON					Contract:	8E-	8E-00302		
	Lab Code: STL	V Case	No.: CENTRA	Mod. Ref	No.:		SDG No.: 200-7	267	
35	Matrix: (SOIL/	SED/WATER)	Water		Lab Sampl	e ID:	200-7267-1		
	Sample wt/vol:	25.0	(g/mL) mL		Lab File	ID:	DHSE11,D		
	Level: (TRACE	or LOW/MED)	TRACE		Date Rece	ived:	09/30/2011		
	% Moisture: no	t dec.			Date Anal	yzed:	10/04/2011		
	GC Column: DB-	-624	ID: 0.20	(mm)	Dilution	Facto	or: 9.7		
	Soil Extract V	olume:		(uL)	Soil Aliq	uot V	olume:	(uL)	
	CONCENTRATION	UNITS:(ug/L	or ug/kg)	ug/L	Purge Vol	ume:	25.0	(mL)	
	CAS NUMBER	1	COMPOUND	NAME	H	RT	EST. CONC,	Q	
01		Unknown				6.69	25	BXD	

N/A

1 EPA-designated Registry Number.

02 E9667961

Total Alkanes

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNPMP9-W-27250

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CENTRA Mod	A. Ref No.: 200-7267
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 200-7267-2
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: DHSE09.D
Level: (TRACE/LOW/MED) TRACE	Date Received: 09/30/2011
% Moisture: not dec.	Date Analyzed: 10/04/2011
GC Column: DB-624 ID: 0.20 ((mm) Dilution Factor: 1.0
Soil Extract Volume: ((uL) Soil Aliquot Volume: (uL)
Purge Volume: 25.0 ((mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	υ
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.24	J
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	24	Е
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNPMP9-W-27250

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-	00302
Lab Code: STLV Case No.: CENTRA	Mod. Ref N	0.:	SDG No.: 200-7267
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID:	200-7267-2
Sample wt/vol: 25.0 (g/mL) mL	nar ambasak annua 1 at	Lab File ID:	DHSE09.D
Level: (TRACE/LOW/MED) TRACE		Date Received:	09/30/2011
% Moisture: not dec.		Date Analyzed:	10/04/2011
GC Column: DB-624 ID: 0.20	(mm)	Dilution Facto	or: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot V	olume: (uL)
Purge Volume: 25.0	(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	Ū
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	Ŭ
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.026	JB
10061-02-6	trans-1, 3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.014	J
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichloröbenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CNPMP9-W-27250

Lab Name: TEST	FAMERICA BURLINGTON	Contract:	8E-(00302		
Lab Code: STL	Case No.: CENTRA Mod. Ref M	10.:		SDG No.:	200-73	267
Matrix: (SOIL/	SED/WATER) Water	Lab Sample	e ID:	200-7267	-2	
Sample wt/vol:	25.0 (g/mL) mL	Lab File 1	D:	DHSE09.D		
Level: (TRACE (or LOW/MED) TRACE	Date Recei	ved;	09/30/20)11	
% Moisture: no	t dec.	Date Analy	zed:	10/04/20)11	
GC Column: DB-	-624 ID: 0.20 (mm)	Dilution H	acto	r: 1.0	_	
Soil Extract Vo	olume: (uL)	Soil Aliqu	ot V	olume:		(uL)
CONCENTRATION	UNITS: (ug/L or ug/kg) ug/L	Purge Volu	ıme:	25.0		(mL)
CAS NUMBER	COMPOUND NAME	R	T	EST. CON	NC.	Q
01	Unknown	6	. 69		2.8	BXJ
02 E9667961	Total Alkanes	N/A				

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNPMP9-W-27250DL

Lab Name:	TESTAMERICA H	BURLINGTON	4		Contract: 8	E-00302	
Lab Code:	STLV Cas	e No.: C	ENTRA	Mod. Ref	No.:	SDG No	.: 200-7267
Matrix: (S	OIL/SED/WATER) Water			Lab Sample I	ID: 200-	-7267-2
Sample wt/	vol: 25.0	(g/mL)	mL		Lab File ID:	DHSE12	. D
Level: (TR	ACE/LOW/MED)	TRACE			Date Receive	ed: 09/3	0/2011
% Moisture	: not dec.				Date Analyze	ed: 10/0	4/2011
GC Column:	DB-624	ID:	0.20	(mm)	Dilution Fac	ctor: 1.	8
Soil Extra	ct Volume:			(uL)	Soil Aliquot	Volume:	(uL)
Purge Volu	me: 25.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0:90	U
74-87-3	Chloromethane	0.90	U
75-01-4	Vinyl chloride	0.90	U
74-83-9	Bromomethane	0:90	U
75-00-3	Chloroethane	0.90	U
75-69-4	Trichlorofluoromethane	0.90	Ū
75-35-4	1,1-Dichloroethene	0.90	Ü
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.90	ប
67-64-1	Acetone	9.0	U
75-15-0	Carbon disulfide	0.90	υ
79-20-9	Methyl acetate	0.90	U
75-09-2	Methylene Chloride	0.90	U
156-60-5	trans-1,2-Dichloroethene	0.90	σ
1634-04-4	Methyl tert-butyl ether	0.90	U
75-34-3	1,1-Dichloroethane	0.90	U
156-59-2	cis-1,2-Dichloroethene	0.90	U
78-93-3	2-Butanone	9.0	U
74-97-5	Bromochloromethane	0,90	U
67-66-3	Chloroform	0.25	JD
71-55-6	1,1,1-Trichloroethane	0.90	U
110-82-7	Cyclohexane	0.90	υ
56-23-5	Carbon tetrachloride	22	D
71-43-2	Benzene	0.90	υ
107-06-2	1,2-Dichloroethane	0.90	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNPMP9-W-27250DL

Lab Name:	TESTAMERI	CA BURLI	NGTON			Contract:	8E-0	0302		
Lab Code:	STLV	Case No	.: CENTRA	Mod.	Ref	No.:	5	SDG No.;	200-7	1267
Matrix: (S	OIL/SED/WA	ATER) W	ater			Lab Sample	ID:	200-726	72	
Sample wt/	vol: 25.0) (g/mL) mL			Lab File I	D: [DHSE12.D		
Level: (TR	ACE/LOW/ME	ED) TRA	CE			Date Recei	ved;	09/30/2	011	1
% Moisture	: not dec.					Date Analy	zed;	10/04/2	011	
GC Column:	DB-624		ID: 0.20	(m	m)	Dilution F	actor	:: 1.8		
Soil Extra	ct Volume:			(u	L)	Soil Aliqu	ot Vo	lume:		(uL)
Purge Volu	me: 25.0			(m	L)					

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.90	U
108-87-2	Methylcyclohexane	0.90	U
78-87-5	1,2-Dichloropropane	0.90	IJ
75-27-4	Bromodichloromethane	0.90	U
10061-01-5	cís-1,3-Dichloropropene	0.90	U
108-10-1	4-Methyl-2-pentanone	9.0	U
108-88-3	Toluene	0.027	JDB
10061-02-6	trans-1,3-Dichloropropene	0.90	U
79-00-5	1,1,2-Trichloroethane	0.90	U
127-18-4	Tetrachloroethene	0.90	U
591-78-6	2-Hexanone	9.0	U
124-48-1	Dibromochloromethane	0.90	U
106-93-4	1,2-Dibromoethane	0.90	υ
108-90-7	Chlorobenzene	0.90	U
100-41-4	Ethylbenzene	0.90	U
95-47-6	o-Xylene	0.90	U
179601-23-1	m,p-Xylene	0.0099	JD
100-42-5	Styrene	0.90	U
75-25-2	Bromoform	0.90	U
98-82-8	Isopropylbenzene	0.90	U
79-34-5	1,1,2,2-Tetrachloroethane	0.90	Ŭ
541-73-1	1,3-Dichlorobenzene	0.90	U
106-46-7	1,4-Dichlorobenzene	0.90	U
95-50-1	1,2-Dichlorobenzene	0.90	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.90	U
120-82-1	1,2,4-Trichlorobenzene	0.90	Ŭ
87-61-6	1,2,3-Trichlorobenzene	0.90	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CNPMP9-W-27250DL

Lab	Name:	TESTAME	RICA BUR	LINGTON			Contr	act: 8E-	00302	ann sam saadhaas	10000 gamma (1000 - 10 - 10 - 10 - 10 - 10 - 10 - 1
Lab	Code:	STLV	Case N	IO.: CENTE	A Mod.	Ref No	D. č	4	SDG No.: 20	0-7	267
Mat	rix: (S	OIL/SED/	WATER)	Water			Lab S	Sample ID	200-7267-	2	
Samj	ple wt/	vol: 25	.0	(g/mL) ml	,		Lab H	File ID:	DHSE12.D	_	
Leve	el: (TR	ACE or L	OW/MED)	TRACE			Date	Received	09/30/201	1	
% M	oisture	: not de	c.				Date	Analyzed:	10/04/201	1,	
GC (Column:	DB-624		ID: 0.2	0 (m	m)	Dilut	ion Facto	or: 1.8		
Soi.	l Extra	ct Volum	e:		(u	L)	Soil	Aliquot V	/olume:		(uL)
CON	CENTRAT	ION UNIT	S:(ug/L	or ug/kg)	ug/L		Purg€	e Volume:	25.0		(mL)
C	AS NUM	BER		COMPOUN	D NAME			RT	EST. CONC		Q
01		Un	known					6.69	<u> </u>	5.2	B X D J
02 E9	667961	То	tal Alka	nes				N/A			

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNQCTB-W-27256

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CENTRA M	Dd. Ref No.: SDG No.: 200-7267
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 200-7267-4
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: DHSE06.D
Level: (TRACE/LOW/MED) TRACE	Date Received: 09/30/2011
% Moisture: not dec.	Date Analyzed: 10/04/2011
GC Column: DB-624 ID: 0.20	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume: (uL)
Purge Volume: 25.0	(mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
	The state of the s	0.50	U
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane		
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	σ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	σ
67-64-1	Acetone	4.3	JB
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	υ
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0,50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	υ
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	υ
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNQCTB-W-27256

Lab Name: TESTAMERICA BURLINGTON	11 11 111 1 bo / / / / /	Contract: 8E-00302	
Lab Code: STLV Case No.: CE	ENTRA Mod. Ref	No.: SDG No	200-7267
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 200	-7267-4
Sample wt/vol: 25.0 (g/mL)	mL	Lab File ID: DHSE00	5.D
Level: (TRACE/LOW/MED) TRACE		Date Received; 09/	30/2011
% Moisture: not dec.		Date Analyzed: 10/0	04/2011
GC Column: DB-624 ID:	0.20 (mm)	Dilution Factor: 1	.0
Soil Extract Volume:	(uL)	Soil Aliquot Volume	(uL)
Purge Volume: 25.0	(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q		
79-01-6	Trichloroethene	0.50			
108-87-2	Methylcyclohexane	0.50	U		
78-87-5	1,2-Dichloropropane	0.50	U		
75-27-4	Bromodichloromethane	0.50	U		
10061-01-5	cis-1,3-Dichloropropene	0.50	U		
108-10-1	4-Methyl-2-pentanone	5.0	U		
108-88-3	Toluene	0.075			
10061-02-6	trans-1,3-Dichloropropene		υ		
79-00-5	1,1,2-Trichloroethane	0.50			
127-18-4	Tetrachloroethene 0.50		U		
591-78-6	2-llexanone	5.0	U		
124-48-1	Dibromochloromethane	bromochloromethane 0.50			
106-93-4	1,2-Dibromoethane		U		
108-90-7	Chlorobenzene	0.50	U		
100-41-4	Ethylbenzene	0.50	U		
95-47-6	o-Xylene	0.045	J		
179601-23-1	m,p-Xylene	0.044	J		
100-42-5	Styrene	0.50	U		
75-25-2	Bromoform	0.50	U		
98-82-8	Isopropylbenzene	0.50	U		
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U		
541-73-1	1,3-Dichlorobenzene	0.50	U		
106-46-7	1,4-Dichlorobenzene	0.50	U		
95-50-1	1,2-Dichlorobenzene	0.50	U		
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U		
120-82-1	1,2,4-Trichlorobenzene	0.50	U		
87-61-6	1,2,3-Trichlorobenzene	0.50	U		

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CNQCTB-W-27256

0.52 J

Lab Name: TES	TESTAMERICA BURLINGTON STLV Case No.: CEN'TRA Mod. Ref No			Contract:	8E-00302			
Lab Code: STI					SDG No.: 200-7267			
Matrix: (SOIL	Lab Sample ID: 200-7267-4							
Sample wt/vol	: 25.0 (g/mL) mL		Lab File I	D: D	HSE06.D		
Level: (TRACE or LOW/MED) TRACE				Date Received: 09/30/2011				
% Moisture: not dec,				Date Analyzed: 10/04/2011				
GC Column: DE	3-624 ID:	0.20	(mm)	Dilution F	actor	: 1.0		
Soil Extract	Soil Aliquot Volume: (uL)							
CONCENTRATION	UNITS: (ug/L or ug/	kg) ug	/L	Purge Volu	me:	25.0		(mL)
CAS NUMBER	СОМ	POUND NAM	E	R	r T	EST. CC	NC.	Q
	Unknown			6	. 69		2.8	ВХЈ

8.02

N/A

01 02

03

E9667961

¹EPA-designated Registry Number.

Unknown

Total Alkanes

,

6A - FORM VI VOA-1 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLI	NGTON		Contract	E: 8E-0	0302		
Lab Code: STLV Case No	d. Ref No	D.:	S	DG No.: 2	00-7267		
Instrument ID: D.i		Calibra	tion Date	(s): 0	9/22/2011	09/22/2011	
Heated Purge: (Y/N) N		Calibra	tion Time	(s): 0	848	1038	
Purge Volume: 25.0		(mL)		_			
			×	05	()		
GC Column: DB-624	ID: 0-20	(mm)	Length:	25	(m)		
LAB FILE ID:	HS05.D		RRF1	.0 = DHSO	6.D		
RRF5.0 = DHS07.D	RRF10 = D	HS08.D		RRF 2	0 = DHSO	9.D	
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
Dichlorodifluoromethane	0.507	0.475	0.480	0.489	0.487	0.488	2.5
Chloromethane	0.801	0.648	0.594	0.593	0.584	0.644	14.2
Vinyl chloride	0.452	0.427	0.424	0.442	0.437	0.436	2.6
Bromomethane	0.206	0.200	0.187	0.193	0.193	0.196	3.7
Chloroethane	0.267	0.214	0.205	0.221	0.215	0.224	11.0
Trichlorofluoromethane	0.542	0.522	0.528	0.542	0.542	0.535	1.7
1,1-Dichloroethene	0.257	0.254	0.260	0.261	0.253	0.257	1.3
1,1,2-Trichloro-	0.304	0.307	0.305	0.308	0.299	0.305	1.2
1,2,2-trifluoroethane						-	+
Acetone	0.029	0.026	0.022	0.023		0.024	13.5
Carbon disulfide	0.758	0.658	0.663	0.696	the second se	0.697	5.8
Methyl acetate	0.066	0.060	0.057	0.062		0.060	5.5
Methylene Chloride	0.226	0.213	0.209	0.221		0.216	3.5
trans-1,2-Dichloroethene	0.305	0.308	0.304	0.321		0.311	2.3
Methyl tert-butyl ether	0.373	0.361	0.364	0.385		0.367	3.3
1,1-Dichloroethane	0.600	0.585	0.592	0.617		0.600	2.1
cis-1,2-Dichloroethene	0.330	0.299	0.305	0.317	and the second s	0.313	3.7
2-Butanone	0.040	0.040	0.039	0.042		0.040	3.7
Bromochloromethane	0,113	0.103	0.103	0.107		0.106	4.1
Chloroform	0.500	0.463	0.480	0.502	and the second se	0.487	3.3
1,1,1-Trichloroethane	0.547	0.528	0.530	0.567		0.550	4.0
Cyclohexane	0.846	0.839		0.918	1.000	0.878	4.3
Carbon tetrachloride	0.509	0.475	0.509	0.535		0.515	5.4
Benzene	1.568	1.515	1.482	1.544		1.525	2.2
1,2-Dichloroethane	0.272	0.252		0.279		0.268	3.7
Trichloroethene	0.394	0.385		0.396	- A State St		2.2
Methylcyclohexane	0.721	0.692	0.715	0.753	0.755	0.727	3.7

6B - FORM VI VOA-2 VOLATILE ORGANICS INITLAL CALIBRATION DATA

= I F0.5 .366 .299 .383 .104 .677 .266 .169 .322 .072 .170	Calibra (mL) (mm) DHS05.D DHS08.D RRF1.0 0.346 0.296 0.394 0.106 1.641 0.275 0.158 0.307	tion Date tion Time Length: RRF5.0 0.353 0.319 0.423 0.116 1.626 0.304 0.162 0.308	(s): 08 25	(m) 0 = DHSO	1038 6.D	<pre>%RSD 3.0 7.2 7.6 7.8 2.1 9.1 3.2</pre>
5 = I = I 70.5 .366 .299 .383 .104 .677 .266 .169 .322 .072 .170	(mL) (mm) DHS05.D DHS08.D RRF1.0 0.346 0.296 0.394 0.106 1.641 0.275 0.158 0.307	Length: RRF5.0 0.353 0.319 0.423 0.116 1.626 0.304 0.162	25 RRF1. RRF20 RRF10 0.373 0.345 0.461 0.125 1.715 0.330 0.169	(m) 0 = DHSO = DHSO RRF20 0.363 0.342 0.445 0.116 1.684 0.317 0.158	6.D 9.D RRF 0.360 0.320 0.421 0.113 1.669 0.298 0.163	3.0 7.2 7.8 7.8 2.1 9.1 3.2
5 = I = I 70.5 .366 .299 .383 .104 .677 .266 .169 .322 .072 .170	(mL) (mm) DHS05.D DHS08.D RRF1.0 0.346 0.296 0.394 0.106 1.641 0.275 0.158 0.307	Length: RRF5.0 0.353 0.319 0.423 0.116 1.626 0.304 0.162	25 RRF1. RRF20 RRF10 0.373 0.345 0.461 0.125 1.715 0.330 0.169	(m) 0 = DHSO = DHSO RRF20 0.363 0.342 0.445 0.116 1.684 0.317 0.158	6.D 9.D RRF 0.360 0.320 0.421 0.113 1.669 0.298 0.163	3.0 7.2 7.8 7.8 2.1 9.1 3.2
5 = I = I 70.5 .366 .299 .383 .104 .677 .266 .169 .322 .072 .170	(mm) DHS05.D DHS08.D RRF1.0 0.346 0.296 0.394 0.106 1.641 0.275 0.158 0.307	RRF5.0 0.353 0.319 0.423 0.116 1.626 0.304 0.162	RRF1. RRF20 RRF10 0.373 0.345 0.461 0.125 1.715 0.330 0.169	0 = DHS0 = DHS0 RRF20 0.363 0.342 0.445 0.116 1.684 0.317 0.158	9.D RRF 0.360 0.320 0.421 0.113 1.669 0.298 0.163	3.0 7.2 7.6 7.6 2.1 9.1 3.2
5 = I = I 70.5 .366 .299 .383 .104 .677 .266 .169 .322 .072 .170	DHS05.D DHS08.D RRF1.0 0.346 0.296 0.394 0.106 1.641 0.275 0.158 0.307	RRF5.0 0.353 0.319 0.423 0.116 1.626 0.304 0.162	RRF1. RRF20 RRF10 0.373 0.345 0.461 0.125 1.715 0.330 0.169	0 = DHS0 = DHS0 RRF20 0.363 0.342 0.445 0.116 1.684 0.317 0.158	9.D RRF 0.360 0.320 0.421 0.113 1.669 0.298 0.163	3.1 7.2 7.8 7.8 2.2 9.2 3.2
= I F0.5 .366 .299 .383 .104 .677 .266 .169 .322 .072 .170	DHS08.D RRF1.0 0.346 0.296 0.394 0.106 1.641 0.275 0.158 0.307	0.353 0.319 0.423 0.116 1.626 0.304 0.162	RRF20 RRF10 0.373 0.345 0.461 0.125 1.715 0.330 0.169	<pre>= DHS0 RRF20 0.363 0.342 0.445 0.116 1.684 0.317 0.158</pre>	9.D RRF 0.360 0.320 0.421 0.113 1.669 0.298 0.163	3.1 7.2 7.1 7.1 2.2 9.2 3.2
70.5 .366 .299 .383 .104 .677 .266 .169 .322 .072 .170	RRF1.0 0.346 0.296 0.394 0.106 1.641 0.275 0.158 0.307	0.353 0.319 0.423 0.116 1.626 0.304 0.162	RRF10 0.373 0.345 0.461 0.125 1.715 0.330 0.169	RRF20 0.363 0.342 0.445 0.116 1.684 0.317 0.158	RRF 0.360 0.320 0.421 0.113 1.669 0.298 0.163	3. 7. 7. 7. 7. 9. 3.
.366 .299 .383 .104 .677 .266 .169 .322 .072 .170	0.346 0.296 0.394 0.106 1.641 0.275 0.158 0.307	0.353 0.319 0.423 0.116 1.626 0.304 0.162	0.373 0.345 0.461 0.125 1.715 0.330 0.169	0.363 0.342 0.445 0.116 1.684 0.317 0.158	0.360 0.320 0.421 0.113 1.669 0.298 0.163	3. 7. 7. 7. 2. 9. 3.
.299 .383 .104 .677 .266 .169 .322 .072 .170	0.296 0.394 0.106 1.641 0.275 0.158 0.307	0.319 0.423 0.116 1.626 0.304 0.162	0.345 0.461 0.125 1.715 0.330 0.169	0.342 0.445 0.116 1.684 0.317 0.158	0.320 0.421 0.113 1.669 0.298 0.163	7.: 7.: 7.: 2.: 9.: 3.:
.299 .383 .104 .677 .266 .169 .322 .072 .170	0.394 0.106 1.641 0.275 0.158 0.307	0.423 0.116 1.626 0.304 0.162	0.461 0.125 1.715 0.330 0.169	0.445 0.116 1.684 0.317 0.158	0.421 0.113 1.669 0.298 0.163	7. 7. 2. 9. 3.
.104 .677 .266 .169 .322 .072 .170	0.106 1.641 0.275 0.158 0.307	0.116 1.626 0.304 0.162	0.125 1.715 0.330 0.169	0.116 1.684 0.317 0.158	0.113 1.669 0.298 0.163	7. 2. 9. 3.
.677 .266 .169 .322 .072 .170	1.641 0.275 0.158 0.307	1.626 0.304 0.162	1.715 0.330 0.169	1.684 0.317 0.158	1.669 0.298 0.163	2. 9. 3.
.266 .169 .322 .072 .170	0.275 0.158 0.307	0.304 0.162	0.330 0.169	0.317 0.158	0.298	9. 3.
.169 .322 .072 .170	0.158 0.307	0.162	0.169	0.158	0.163	3.
.322 .072 .170	0.307					
.072	Common Research and Advances of the	0.308	0.321	0 319	0 315	
.170	0 004					2.
	0.074	0.081	0.086 0.07		0.078	6.
215	0.166	0.183	0.206 0.203		0.186	10.
.146	0.143	0.146	0.157	0.149	0.148	3.
.087	1.060	1.019	1.063	1.036	1.053	2,
.819	1.784	1.862	1.965	1,939	1.874	4.
.675	0.660	0.704	0.746	0.721	0.701	4.
.741	0.722	0.754	0.796	0.782	0.759	3.
.934	0.954	1.052	1.115	1.078	1.027	7.
						14.
			11			6.
		the second se	1			4.
- Contraction -	1	the second se	A	the second se		3.
				11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		5.
	the second se		1	2		3.
				1		8.
.793		0.756	0.806	0.785		6,
	.105 .782 .150 .703 .858 .450 .043	.1050.123.7821.820.1500.146.7031.573.8581.629.4501.3310.0430.036	1050.1230.136.7821.8201.941.1500.1460.151.7031.5731.651.8581.6291.627.4501.3311.370	1.1050.1230.1360.150.7821.8201.9412.045.1500.1460.1510.164.7031.5731.6511.731.8581.6291.6271.691.4501.3311.3701.4170.0430.0360.0380.043	1.1050.1230.1360.1500.153.7821.8201.9412.0452.033.1500.1460.1510.1640.149.7031.5731.6511.7311.687.8581.6291.6271.6911.626.4501.3311.3701.4171.3520.0430.0360.0380.0430.042.7930.6880.7560.8060.785	1.1050.1230.1360.1500.1530.1337821.8201.9412.0452.0331.924.1500.1460.1510.1640.1490.152.7031.5731.6511.7311.6871.669.8581.6291.6271.6911.6261.686.4501.3311.3701.4171.3521.3840.0430.0360.0380.0430.0420.040

.

6C - FORM VI VOA-3 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLING	GTON		Contract	:: 8E-00	302		
Lab Code: STLV Case No.:	d, Ref No	D.;	SI	G No.: 2	00-7267		
Instrument ID: D.i		Calibra	Calibration Date(s):			09/22/2011	
Heated Purge: (Y/N) N		Calibration Time(s):			148	1038	
Purge Volume: 25.0		(mL)					
GC Column: DB-624	ID: 0.20	(mm)	Length:	25	(m)		
LAB FILE ID:	RRF0.5 = D	HS05.D		RRF1.	0 = DHS0	6.D	
RRF5.0 = DHS07.D	RRF10 = D	HS08.D		RRF20	D = DHSO	9.D	
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
Vinyl Chloride-d3	0.431	0.382	0.368	0.377	0.370	0.385	6.8
Chloroethane-d5	0.247	0.237	0.229	0.231	0.225	0.234	3.6
1,1-Dichloroethene-d2	0.649	0.614	0.609	0.633	0.620	0.625	2.6
2-Butanone-d5	0.040	0.037	0.039	0.041	0.036	0.039	5.0
Chloroform-d	0.505	0.487	0.489	0.507	0,495	0.497	1.0
1,2-Dichloroethane-d4	0.210	0.195	0.193	0.197	0.188	0.196	4.1
Benzene-d6	1.524	1.480	1.440	1.494	1.481	1.484	2.0
1,2-Dichloropropane-d6	0.379	0.352	0.354	0.379	0.368	0.366	3.6
Toluene-d8	1.466	1.376	1.393	1.459	1.434	1.426	2.8
trans-1,3-Dichloropropene-d4	0.266	0.247	0.262	0.287	0.281	0.269	5.9
2-Hexanone-d5	0.031	0.034	0.038	0.042	0.038	0.037	11.1
1,1,2,2-Tetrachloroethane-d2	0.156	0.149	0.151	0.161	0.149	0.153	3.6
1,2-Dichlorobenzene-d4	0.910	0.811	0.804	0.833	0.798	0.831	5.5

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TE	STAMERICA	A BURLING	TON	Contract: 8	E-00302	
Lab Code: ST	LA C	ase No.:	CENTRA	Mod. Ref No.:	SDG No.: 2	200-7267
Instrument ID): D.i			Calibration Date:	10/04/2011	Time: 0639
Lab File Id:	DHSE02.I	C		Init. Calib. Date(s)	: 09/22/2011	09/22/2011
EPA Sample No	. (VSTD###	##): VS	rd005DH	Init. Calib. Time	(s): 0848	1038
Heated Purge:	(Y/N)	N G	C Column	DB-624 ID: 0.20 (m	m) Length: 2	25 (m)
Purge Volume:	25.0			(mL)		

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX &D
Dichlorodifluoromethane	0.488	0.456	0.010	-6.5	40.0
Chloromethane	0.644	0.697	0.010	8.2	40.0
Vinyl chloride	0.436	0.512	0.010	17.2	30.0
Bromomethane	0.196	0.201	0.010	2.6	30.0
Chloroethane	0.224	0.251	0.010	11.7	40.0
Trichlorofluoromethane	0.535	0.551	0.010	2.9	40.0
1,1-Dichloroethene	0.257	0.282	0.010	9.6	30.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.305	0.331	0.010	8.7	40.0
Acetone	0.024	0.025	0.010	3.1	40.0
Carbon disulfide	0.697	0.766	0.010	9.9	40.0
Methyl acetate	0.060	0.066	0.010	9.6	40.0
Methylene Chloride	0.216	0.220	0.010	2.3	40.0
trans-1,2-Dichloroethene	0.311	0.288	0.010	-7.2	40.0
Methyl tert-butyl ether	0.367	0.280	0.010	-23.9	40.0
1,1-Dichloroethane	0.600	0.575	0.010	-4.3	30.0
cis-1,2-Dichloroethene	0.313	0.276	0.010	-11.7	40.0
2-Butanone	0.040	0.038	0.010	-5.9	40.0
Bromochloromethane	0.106	0.092	0.010	-13.0	30.0
Chloroform	0.487	0.436	0.010	-10.4	30.0
1,1,1-Trichloroethane	0.550	0.456	0.010	-17.1	30.0
Cyclohexane	0.878	0.825	0.010	-6.0	40.0
Carbon tetrachloride	0.515	0.427	0.010	-17.1	30.0
Benzene	1.525	1.334	0.010	-12.5	30.0
1,2-Dichloroethane	0.268	0.242	0.010	-9.6	30.0
Trichloroethene	0.390	0.312	0.010	-20.1	30.0
Methylcyclohexane	0.727	0.673	0.010	-7.4	40.0

7B - FORM VII VOA+2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERI	CA BURI	INGTON	Contract:	BE-00302	
Lab Code:	STLV	Case N	o.: CENTRA M	lod. Ref No.:	SDG No.: 2	200-7267
Instrument	ID: D.i			Calibration Date:	: 10/04/2011	Time: 0639
Lab File I	d: DHSE02	2.D		Init. Calib. Date(s)	: 09/22/2011	09/22/2011
EPA Sample	No. (VSTD	###):	VSTD005DH	Init. Calib. Time	e(s): 0848	1038
Heated Pur	ge: (Y/N)	N	GC Column:	DB-624 ID: 0.20 (n	nm) Length: 2	:5 (m)
Purge Volu	me: 25.0			(mL)		

COMPOUND	RRF	RRF5.0	MIN RRF	ਝD	MAX %D
1,2-Dichloropropane	0.360	0.337	0.010	-6.5	40.0
Bromodichloromethane	0.320	0.264	0.010	-17.7	30.0
cis-1,3-Dichloropropene	0.421	0.348	0.010	-17.4	30.0
4-Methyl-2-pentanone	0.113	0.103	0.010	-8.7	40.0
Toluene	1.669	1,483	0.010	-11.1	30.0
trans-1,3-Dichloropropene	0.298	0.247	0.010	-17.3	30.0
1,1,2-Trichloroethane	0.163	0.136	0.010	-16.7	30.0
Tetrachloroethene	0.315	0.271	0.010	-14.0	30.0
2-Hexanone	0.078	0.071	0.010	-9.6	40.0
Dibromochloromethane	0.186	0.158	0.010	-14.9	30.0
1,2-Dibromoethane	0.148	0.114	0.010	-22.7	40.0
Chlorobenzene	1.053	0.928	0.010	-11.9	30.0
Ethylbenzene	1.874	1.668	0.010	-11.0	30.0
o-Xylene	0.701	0.647	0.010	-7.8	30.0
m,p-Xylene	0.759	0.693	0.010	-8.7	30.0
Styrene	1.027	0.925	0.010	-9.9	30.0
Bromoform	0.133	0.111	0.010	-16.5	30.0
Isopropylbenzene	1.924	1.784	0.010	-7.3	40.0
1,1,2,2-Tetrachloroethane	0.152	0.132	0.010	-13.2	30.0
1,3-Dichlorobenzene	1.669	1.369	0.010	-18.0	30.0
1,4-Dichlorobenzene	1.686	1.431	0.010	-15.1	30.0
1,2-Dichlorobenzene	1.384	1.168	0.010	-15.6	30.0
1,2-Dibromo-3-Chloropropane	0.040	0.028	0.010	-29.3	40.0
1,2,4-Trichlorobenzene	0.766	0.563	0.010	-26.4	30.0
1,2,3-Trichlorobenzene	0.573	0.426	0.010	-25.7	30.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERI	CA BURLIN	GTON		Contract: 8	E-00302	
Lab Code:	STLV	Case No.:	CENTRA I	Mod. Ref No		SDG No.:	200-7267
Instrument				Calib	ration Date:	10/04/201	1 Tíme: 0639
Lab File I	d: DHSE02	. D		Init. Ca	lib. Date(s)	: 09/22/201	1 09/22/2011
EPA Sample	No. (VSTD#	###): V	STD005DR	Init.	Calib. Time	(s) \$ 0848	1038
Heated Pur	ge: (Y/N)	N	GC Column:	DB-624	ID: 0.20 (m	m) Length:	25 (m)
Purge Volu	me: 25.0			(mL)			

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX &D
Vinyl Chloride-d3	0.385	0.423	0.010	9.7	30.0
Chloroethane-d5	0.234	0.270	0.010	15.6	40.0
1,1-Dichloroethene-d2	0.625	0.681	0.010	8.9	30.0
2-Butanone-d5	0.039	0.034	0.010	-10.7	40.0
Chloroform-d	0,497	0.438	0.010	-11.9	30.0
1,2-Dichloroethane-d4	0.196	0.174	0.010	-11.6	30.0
Benzene-d6	1.484	1.270	0.010	-14.4	30.0
1,2-Dichloropropane-d6	0.366	0.315	0.010	-14.0	40.0
Toluene-d8	1.426	1,238	0.010	-13.2	30.0
trans-1,3-Dichloropropene-d4	0.269	0.203	0.010	-24.5	30.0
2-Hexanone-d5	0.037	0.028	0.010	-22,4	40.0
1,1,2,2-Tetrachloroethane-d2	0.153	0.134	0.010	-12.5	30.0
1,2-Dichlorobenzene-d4	0.831	0.671	0.010	-19.3	30.0

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERI	CA BURI	LINGTON		Contract	8E-00	302		
Lab Code;	STLV	Case N	Io.: CENTRA	Mod. Ref No	. :	SE	G No.: 2	200-7267	
Instrument	ID: D.i			Calib	mation Da	te: 10	/04/2011	Time:	1259
Lab File I	d: DHSE15	.D		Init. Ca	lib. Date	(s): 09	/22/2011	09/22/2	011
EPA Sample	No. (VSTD	###):	VSTD005HD	Init.	Calib. T	ime(s):	0848	1038	
Heated Pur	ge: (Y/N)	N	GC Column	n: DB-624	ID: 0.20	I (mm) I	ength: 2	25 (m)	
Purge Volu	me: 25.0			(mL)					

COMPOUND	RRE	RRF5.0	MIN RRF	۶D	MAX %D
Dichlorodifluoromethane	0.488	0.489	0.010	0.3	50.0
Chloromethane	0.644	0.742	0.010	15.2	50.0
Vinyl chloride	0.436	0.527	0.100	20.8	50.0
Bromomethane	0.196	0.211	0.100	7.7	50.0
Chloroethane	0.224	0.261	0.010	16.5	50.0
Trichlorofluoromethane	0.535	0.626	0.010	16.9	50.0
1,1-Dichloroethene	0.257	0.306	0.100	19.1	50.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.305	0.364	0.010	19.4	50.0
Acetone	0.024	0.034	0.010	42.5	50.0
Carbon disulfide	0.697	0.803	0.010	15.2	50.0
Methyl acetate	0.060	0.089	0.010	46.4	50.0
Methylene Chloride	0.216	0.258	0.010	19.6	50.0
trans-1,2-Dichloroethene	0.311	0.309	0.010	-0.5	50.0
Methyl tert-butyl ether	0.367	0.365	0.010	-0.5	50.0
1,1-Dichloroethane	0.600	0.634	0.200	5.6	50.0
cis-1,2-Dichloroethene	0.313	0.297	0.010	-4.9	50.0
2-Butanone	0.040	0.054	0.010	35.4	50.0
Bromochloromethane	0.106	0.102	0.050	-3.9	50.0
Chloroform	0.487	0.512	0.200	5.2	50.0
1,1,1-Trichloroethane	0.550	0.574	0.100	4.3	50.0
Cyclohexane	0.878	0.848	0.010	-3.4	50.0
Carbon tetrachloride	0.515	0.526	0.100	2.3	50.0
Benzene	1,525	1.442	0.400	-5.4	50.0
1,2-Dichloroethane	0.268	0.324	0.100	20.7	50.0
Trichloroethene	0.390	0.350	0.300	-10.2	50.0
Methylcyclohexane	0.727	0.727	0.010	0.0	50.0

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERI	CA BURLING	TON	Contract: 8E-00302
Lab Code:	STLV	Case No.:	CENTRA	Mod. Ref No.: SDG No.; 200-7267
Instrument	ID: D.i			Calibration Date: 10/04/2011 Time: 125
Lab File I	d: DHSE15	i.D		Init. Calib. Date(s): 09/22/2011 09/22/2011
EPA Sample	No. (VSTD	####): VS	TD005HD	Init. Calib. Time(s): 0848 1038
Heated Pur	ge: (Y/N)	N G	C Column	n: DB-624 ID: 0.20 (mm) Length: 25 (m)
Purge Volu	me: 25.0			(mL)

COMPOUND	RRF	RRF5.0	MIN RRF	۶D	MAX &D
1,2-Dichloropropane	0.360	0.347	0.010	-3.8	50.0
Bromodichloromethane	0.320	0.326	0.200	1.8	50.0
cis-1,3-Dichloropropene	0.421	0.391	0.200	-7.1	50.0
4-Methyl-2-pentanone	0.113	0.142	0.010	25.2	50.0
Toluene	1.669	1.522	0.400	-8.8	50.0
trans-1,3-Dichloropropene	0.298	0.279	0.100	-6.3	50.0
1,1,2-Trichloroethane	0.163	0.149	0.100	-8.5	50.0
Tetrachloroethene	0.315	0.272	0.100	-13.8	50.0
2-Hexanone	0.078	0.093	0.010	18.9	50.0
Dibromochloromethane	0.186	0.173	0.100	-6.7	50.0
1,2-Dibromoethane	0.148	0.133	0.010	-10.1	50.0
Chlorobenzene	1.053	0.944	0.500	-10.3	50.0
Ethylbenzene	1.874	1.687	0.100	-10.0	50.0
o-Xylene	0.701	0.671	0.300	-4.3	50.0
m,p-Xylene	0.759	0.695	0.300	-8.4	50.0
Styrene	1.027	1.043	0.300	1.6	50.0
Bromoform	0.133	0.152	0.050	13.9	50.0
Isopropylbenzene	1.924	1.754	0.010	-8.9	50.0
1,1,2,2-Tetrachloroethane	0.152	0.152	0.100	-0.2	50.0
1,3-Dichlorobenzene	1.669	1.530	0.400	-8.3	50.0
1,4-Dichlorobenzene	1.686	1.571	0.400	-6.9	50.0
1,2-Dichlorobenzene	1.384	1.303	0.400	-5.9	50.0
1,2-Dibromo-3-Chloropropane	0.040	0.038	0.010	-5.2	50.0
1,2,4-Trichlorobenzene	0.766	0.598	0.200	-21.9	50.0
1,2,3-Trichlorobenzene	0.573	0.442	0.200	-22.9	50.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERI	CA BURLI	NGTON		Contra	ct: 8E-	00302	
Lab Code:	STLV	Case No	.: CENTRA	Mod. Ref No	÷		SDG No.:	200-7267
Instrument	ID: D.i			Cali	oration	Date:	10/04/2011	Time: 1259
Lab File Id	I: DHSE15	.D		Init. Ca	alib. Da	te(s):	09/22/2011	09/22/2011
EPA Sample	No, (VSTD	;###):	VSTD005HD	Init	. Calib.	Time(s	;); 0848	1038
Heated Purg	re: (Y/N)	N	GC Column:	: DB-624	ID: 0	.20 (mm)	Length:	25 (m)
Purge Volum	ie: 25.0			(mL)				
							MINI	-1

COMPOUND	RRF	RRF5.0	MIN RRF	¥D	MAX %D
VinvI Chloride-d3	0.385	0.441	0.010	14.5	50.0
Chloroethane-d5	0.234	0.281	0.010	20.3	50.0
1,1-Dichloroethene-d2	0.625	0.747	0.010	19.4	50.0
2-Butanone-d5	0.039	0.053	0.010	37.7	50.0
Chloroform-d	0.497	0.527	0.010	6.1	50.0
1,2-Dichloroethane-d4	0.196	0.227	0.010	15.7	50.0
Benzene-d6	1.484	1.382	0.010	-6.9	50.0
1,2-Dichloropropane-d6	0.366	0.345	0.010	-5.7	50.0
Toluene-d8	1,426	1.277	0.010	-10.4	50.0
trans-1,3-Dichloropropene-d4	0.269	0.249	0.010	-7.4	50.0
2-Hexanone-d5	0.037	0.036	0.010	-2.1	50.0
1,1,2,2-Tetrachloroethane-d2	0.153	0.154	0.010	0.4	50.0
1,2-Dichlorobenzene-d4	0.831	0.731	0.010	-12.1	50.0

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLKDH

Lab Name:	TESTAMERICA	BURLINGTON	1		Contract:	8E-00302	
Lab Code:	STLV Ca	se No.: Cl	ENTRA	Mod. Ref	No. :	SDG No.:	200-7267
Matrix: (S	OIL/SED/WATE	R) Water			Lab Sample	ID: MB 200-	-26173/3
Sample wt/	vol: 25.0	(g/mL)	mL		Lab File I	D: DHSE03.D	
Level: (TR	ACE/LOW/MED)	TRACE			Date Recei	ved:	
% Moisture	: not dec.				Date Analy	zed: 10/04/2	2011
GC Column:	DB-624	ID:	0.20	(mm)	Dilution F	actor: 1.0	
Soil Extra	ct Volume;			(uL)	Soil Aliqu	ot Volume:	(ul ₁)
Purge Volu	me: 25.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	0
74-87-3	Chloromethane	0.045	J
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
7500-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	2.3	J
75-15-0	Carbon disulfide	0.097	J
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0:50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethanë	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.0040	J
107-06-2	1,2-Dichloroethane	0.50	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO,

VBLKDH

Lab Name:	TESTAMERIC	CA BU	RLINGI	ON			Con	tract:	8E-0	0302		666 U.S. & UNIVERSITY
Lab Code:	STLV	Case	No.:	CENTRA	A Mod	d. Ref	No.:		S	DG No.:	200-726	7
Matrix: (S	OIL/SED/WA	rer)	Wate	er			Lab	Sample	ID:	MB 200-	26173/3	
Sample wt/	vol: 25.0		(g/n	nL) mL			Lab	File I	D: D	HSE03.D		
Level: (TR	ACE/LOW/MEI	D)	TRACE				Date	e Recei	ved:		-411-	
% Moisture	; not dec.						Date	e Analy	zed:	10/04/2	2011	
GC Column:	DB-624		II	0.2)	(mm)	Dil	ution F	actor	: 1.0		
Soil Extra	ct Volume:					(uL)	Soi	l Aliqu	ot Vo	lume:		(uL)
Purge Volu	me: 25.0					(mL)						

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methy1-2-pentanone	5.0	U
108-88-3	Toluene	0.010	J
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	Ŭ
591-78-6	2-Hexanone	5.0	υ
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50'	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	Ŭ
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	υ
120-82-1	1,2,4-Trichlorobenzene	0.062	J
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VBLKDH

Lab Name:	TESTAMERICA BUR	LINGTON		Contract:	8E-0	00302	
Lab Code:	STLV Case I	Io.: CENTRA M	lod. Ref N	D. *		SDG No.: 200-7	267
Matrix: (S	OIL/SED/WATER)	Water	_	Lab Sampl	e ID:	MB 200-26173	/3
Sample wt/	vol: 25.0	(g/mL) mL		Lab File	ID:	DHSE03.D	
Level: (TR	ACE or LOW/MED)	TRACE		Date Rece	ived:		
% Moisture	: not dec.			Date Anal	yzed:	10/04/2011	
GC Column:	DB-624	ID: 0.20	(mm)	Dilution	Facto	r: 1.0	
Soil Extra	ct Volume:		(uL)	Soil Aliq	uot V	olume	(uL)
CONCENTRAT	ION UNITS: (ug/L		g/L	Purge Vol	ume:	25.0	(mL)
CAS NUME	BER	COMPOUND NF	ME		RT	EST. CONC.	Q
in the second seco	Unknown				6.69	3.0	XJ

N/A

7

01 02 E9667961

1EPA-designated Registry Number,

Total Alkanes

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VHBLK01

Lab Name:	TESTAMERICA BU	PRLINGTO	N			Contract:	8E-0	00302	_	2.5
Lab Code:	STLV Case	No.: C	ENTRA	Mod.	Ref	No.:	_	SDG No.:	200-72	67
Matrix: (S	OIL/SED/WATER)	Water				Lab Sample	ID:	200-726	57-5	
Sample wt/	vol: 25.0	(g/mL) mL			Lab File I	D:	DHSE14.D		
Level: (TR	ACE/LOW/MED)	TRACE				Date Recei	ved:			angen formal annihologing
% Moisture	: not dec.					Date Analy	zed:	10/04/2	011	
GC Column:	DB-624	ID:	0.20	(1111	n)	Dilution F	acto	r: 1.0		
Soíl Extra	ct Volume:		_	(uI	,	Soil Aliqu	not V	olume:		(uL)
Purge Volu	me: 25.0			(mI	,)					

CAS NO;	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	1.9	JB
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	13
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VHBLK01

Lab Name:	TESTAMERICA B	URLINGTON			Contract:	8E-00	302		
Lab Code:	STLV Case	No.: CENTI	RA Mod	Ref.	No.:	SD	G No.:	200-726	7
Matrix: (S	OIL/SED/WATER)	Water			Lab Sample	e ID¢	200-726	7-5	
Sample wt/	vol: 25.0	(g/mL) m	L		Lab File I	D: DH	SE14.D		
Level: (TR	ACE/LOW/MED)	TRACE			Date Recei	ved;			
% Moisture	: not dec.				Date Analy	zed:	10/04/2	011	
GC Column:	DB-624	ID: 0.1	20 ()	mm)	Dilution F	actor;	1.0		-
Soil Extra	ct Volume:		(*	uL)	Soil Aliqu	ot Vol	ume:		(uL)
Purge Volu	me: 25.0		(1	nL)					

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	0
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	σ
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1, 3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	0.50	σ
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0:50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	u
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	D
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VHBLK01

Lab Name: TH	STAMERICA BURLI	NGTON		Cont	ract: 8E-	-00302		
	Case No	.: CENTRA	Mod. Re	ef No.r		SDG No.:	200-7	267
Matrix: (SOI)		later		Lab ;	Sample ID	s. 200-72	67-5	
Sample wt/vo	1: 25.0	g/mL) mL	<u> </u>	Lab	File ID:	DHSE14.D		
Level: (TRAC	E or LOW/MED)	TRACE		Date	Received			
<pre>% Moisture: 1</pre>	not dec.			Date	Analyzed	: 10/04/2	2011	
GC Column: I)B-624	ID: 0.20	(mm)	Dilu	tion Fact	or: 1.0		
Soil Extract	Volume:		(uL)	Soil	Aliquot	Volume		(uL)
CONCENTRATION	N UNITS: (ug/L o)	r ug/kg)	ug/L	Purg	e Volume:	25.0		(mL)
CAS NUMBER		COMPOUND	NAME		RT	EST. C	ÓNC.	2
01	Unknown				6.69		2.9	BXJ
02 E9667961	Total Alkane	98			N/A			

1EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VIBLKDJ

Lab Name: TESTAMERICA	BURLINGTON		Contract: 8E-00302
Lab Code: STLV Cas	e No.: CENTRA	Mod. Ref	No.: SDG No.: 200-7267
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: VIBLK 200-26173/8
Sample wt/vol: 25.0	(g/mL) mL		Lab File ID: DHSE08.D
Level: (TRACE/LOW/MED)	TRACE		Date Received:
% Moisture: not dec.		_	Date Analyzed: 10/04/2011
GC Column: DB-624	ID: 0.20	(mm)	Dilution Factor: 1.0
Soil Extract Volume:		(uL)	Soil Aliquot Volume: (uL)
Purge Volume: 25.0		(mL)	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	υ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	Ü
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0,50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.034	J
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO,

VIBLKDJ

Lab Name:	TESTAMERICA BU	IRLINGTON		Contract: 8E-00302
Lab Code:	STLV Case	No.: CENTRA	Mod. Ref M	No.: SDG No.: 200-7267
Matrix: (S	OIL/SED/WATER)	Water		Lab Sample ID: VIBLK 200-26173/8
Sample wt/	vol: 25.0	(g/mL) mL		Lab File ID: DHSE08.D
Level: (TR	ACE/LOW/MED)	TRACE		Date Received:
% Moisture	: not dec.			Date Analyzed: 10/04/2011
GC Column:	DB-624	ID: 0.20	(mm)	Dilution Factor: 1.0
Soil Extra	ct Volume:		(uL)	Soil Aliquot Volume (uL)
Purge Volu	me: 25.0		(mL)	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	Ū
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	Ū
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Нехалопе	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VIBLKDJ

Lab Name: TEST	AMERICA BURLINGTON	Contrac	t: 8E-	00302		
Lab Code: STLV	Case No.: CENTRA Mod. Ref M	lo.:		SDG No.:	200-7	267
Matrix: (SOIL/S	ED/WATER) Water	Lab Sam	ple ID:	VIBLK 2	00-261	73/8
Sample wt/vol:	25.0 (g/mL) mL	Lab Fil	e ID:	DHSE08.D		
Level: (TRACE of	r LOW/MED) TRACE	Date Re	ceived	;		
% Moisture: not	dec.	Date An	alyzed:	10/04/2	011	
GC Column: DB-6	524 ID: 0.20 (mm)	Dilutio	n Facto	or: 1.0		
Soil Extract Vo	lume: (uL)	Soil Al	iquot N	/olume:		(uL)
CONCENTRATION U	NITS: (ug/L or ug/kg) ug/L	Purge V	olume:	25.0		(mL)
CAS NUMBER	COMPOUND NAME		RT	EST. CO	DNC.	Q
1	Unknown		6.69		3.0	ВХЈ
2 E9667961	Total Alkanes	N	I/A			

JEPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VIBLKDK

Lab Name:	TESTAMERICA	BURLINGTO	N		Contract: 8E	00302	
Lab Code:	STLV Ca	se No.: (CENTRA	Mod. Ref	No.;	SDG No.:	200-7267
Matrix: (S	OIL/SED/WATER	() Water			Lab Sample II	D: VIBLK	200-26173/10
Sample wt/	vol: 25.0	(g/mI	.) mL	addd ewi	Lab File ID:	DHSE10.D	
Level: (TR	ACE/LOW/MED)	TRACE			Date Received	1:	
% Moisture	: not dec.				Date Analyzed	1: 10/04/	2011
GC Column:	DB-624	ID:	0.20	(mm)	Dilution Fact	tor: 1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliquot	Volume:	(uL)
Purge Volu	me: 25.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	υ
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	1.7	JB
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	υ
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VIBLKDK

Lab Name:	TESTAMERI	CA BURL	INGTON		Contract:	8E-00302	
Lab Code:	STLV	Case No	D.: CENTRA	Mod. Re	f No.:	SDG No.:	200-7267
Matrix: (S	OIL/SED/WF	TER)	Water		Lab Sample	ID: VIBLK	200-26173/10
Sample wt/)	(g/mL) mL		Lab File II	D: DHSE10.D	
Level: (TR			ACE		Date Receiv	ved:	
<pre>% Moisture</pre>	: not dec.				Date Analy:	zed: 10/04/2	2011
GC Column:	DB-624		ID: 0.20	(mm)	Dilution Fa	actor: 1.0	
Soil Extra	ct Volume:		2	(uL)	Soil Alique	ot Volume:	(uL)
Purge Volu	me: 25.0			(mL)			

CAS NO,	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1, 3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	υ
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzenè	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzenë	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	11
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VIBLKDK

Lab Name: TEST	AMERICA BURLINGTON	Contrac	t: 8E-	00302	
Lab Code: STL	Case No.; CENTRA Mod. Ref No.	D, I	XI-10	SDG No.: 200-7	267
Matrix: (SOIL/	SED/WATER) Water	Lab Sam	ple ID:	VIBLK 200-261	73/10
Sample wt/vol:	25.0 (g/mL) mL	Lab Fil	e ID:	DHSE10.D	
Level: (TRACE (or LOW/MED) TRACE	Date Re	ceived:		
% Moisture: no:	t dec.	Date An	alyzed:	10/04/2011	
GC Column: DB-	-624 ID: 0.20 (mm)	Dilutio	n Facto	or: 1.0	
Soil Extract Vo	olume: (uL)	Soil Al	iquot V	/olume:	(uL
CONCENTRATION V	UNITS: (ug/L or ug/kg) ug/L	Purge V	olume:	25.0	(mL)
CAS NUMBER	COMPOUND NAME	1	RT	EST. CONC.	Q
	Unknown		6.69	2.9	BXJ
E9667961	Total Alkanes	T	V/A		

1EPA-designated Registry Number.