Energy Saving Glass Lamination via Selective Radio Frequency Heating Metadata

Metadata describes a digital item, providing (if known) such information as creator, publisher, contents, size, relationship to other resources, and more. Metadata may also contain "preservation" components that help us to maintain the integrity of digital files over time.

Title

  • Main Title Energy Saving Glass Lamination via Selective Radio Frequency Heating

Creator

  • Author: Allan, Shawn M.
    Creator Type: Personal

Contributor

  • Sponsor: United States. Department of Energy.
    Contributor Type: Organization
  • Sponsor: United States. Department of Energy. Office of Energy Efficiency and Renewable Energy.
    Contributor Type: Organization
    Contributor Info: USDOE Office of Energy Efficiency and Renewable Energy (EERE)

Publisher

  • Name: Ceralink Inc., Troy, NY
    Place of Publication: United States

Date

  • Creation: 2012-02-27

Language

  • English

Description

  • Content Description: This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for prototyping were developed, which allowed Ceralink to obtain commitment to begin curved tooling development. The project significantly helped to advance RF lamination past the feasibility and novelty stage and into the realm of commercial acceptance as a viable alternative to autoclaves. The demonstration of autoclave-quality autoglass produced in just 1 minute with RF lamination, with validation by Pilkington, has fueled industry motivation to seriously consider RF lamination. The industry and other contacts and outreach made in the study of laminate markets (including 3 technical publications and 5 conference presentations), has resulted in a recent surge in RF lamination activity.

Subject

  • Keyword: Glass
  • STI Subject Categories: 36 Materials Science
  • Keyword: Capitalized Cost
  • Keyword: Glass
  • Keyword: Autoclaves
  • Keyword: Manufacturing
  • Keyword: Encapsulation
  • Keyword: Lamination
  • Keyword: Adhesion
  • Keyword: Heating
  • Keyword: Windows
  • Keyword: Positioning
  • Keyword: Commercialization
  • Keyword: Humidity
  • STI Subject Categories: 42 Engineering
  • Keyword: Urethane
  • Keyword: Energy Efficiency Glass
  • Keyword: Autoclave
  • Keyword: Defects
  • Keyword: Radio Frequency Heating
  • Keyword: Storage
  • Keyword: Implementation
  • STI Subject Categories: 32 Energy Conservation, Consumption, And Utilization
  • Keyword: Safety

Collection

  • Name: Office of Scientific & Technical Information Technical Reports
    Code: OSTI

Institution

  • Name: UNT Libraries Government Documents Department
    Code: UNTGD

Resource Type

  • Report

Format

  • Text

Identifier

  • Report No.: DOE/EE/0003453
  • Grant Number: EE0003453
  • DOI: 10.2172/1035513
  • Office of Scientific & Technical Information Report Number: 1035513
  • Archival Resource Key: ark:/67531/metadc830665
Back to Top of Screen