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Nonlinear effects are known to occur in Compton scattering light sources, when the laser normalized 4-
potential, A = e

√
−AµAµ/m0c approaches unity. In this letter, it is shown that nonlinear spectral features

can appear at arbitrarily low values of A, if the fractional bandwidth of the laser pulse, ∆φ−1, is sufficiently
small to satisfy A2∆φ ' 1. A three dimensional analysis, based on a local plane-wave, slow-varying envelope
approximation, enables the study of these effects for realistic interactions between an electron beam and a laser
pulse, and their influence on high-precision Compton scattering light sources.

PACS numbers: 07.85.-m, 41.60.Cr, 41.60-m, 42.72.-g

Rapid advances in terawatt–class laser technology [1] and
high-brightness, high-gradient electron accelerators [2] are
enabling the development of a new type of light source based
on Compton scattering [3], where relativistic electrons inter-
act with a coherent photon field to generate bright, ultrafast,
tunable x-rays and γ-rays [4, 5]. These compact sources are
a natural complement to larger-scale 3rd and 4th generation
light sources [6], and provide a mean to generate MeV-scale
photons with unprecedented spectral brightness.

Among other important features, such as wide tunability
and ultrashort pulse capability, Compton scattering x-ray and
γ-ray sources offer the potential of generating highly corre-
lated, narrow-band radiation in a very small solid angle. This
characteristic is desirable for a number applications, including
nuclear resonance fluorescence (NRF) [7] or protein cristal-
lography [8]. Therefore, the focus of this work is the physical
origin of spectral broadening mechanisms in Compton scat-
tering, with a special emphasis on nonlinear effects and re-
coil, and their influence on the performance of high-precision
Compton scattering light sources.

In this letter, four novel results are presented. 1) A new
derivation of the nonlinear electron dynamics in a plane-wave
is described. 2) A covariant form of the radiation formula
is given, including a quantum correction term shown to yield
the proper recoil for the interaction, along with a gauge in-
variant, covariant definition of the 4-polarization [9]. 3) We
demonstrate that, while nonlinear effects are known to occur
in light sources when the wiggler parameter, of normalized
4-potential A = e

√
−AµAµ/m0c, approaches unity, nonlinear

spectral features can also appear at arbitrarily low values of
A, if the fractional bandwidth of the laser pulse, ∆φ−1, is suf-
ficiently small and satisfies the condition A2∆φ ' 1. 4) A
fully three-dimensional (3D) analysis of nonlinear effects in
the long-pulse regime is given, based on a local plane-wave,
slow-varying envelope approximation.

The Lorentz force equation is: duµ/dτ = −(∂µAν−∂νAµ)uν;
uµ = dxµ/dτ is the electron 4-velocity, and Aµ is the radiation
4-potential. If

√
−AµAµ = A << 1, this equation can be solved

by perturbation: let uµ = u0
µ + u1

µ + ..., where un
µ ∝ An;

du1
µ

dτ
= −(∂µAν − ∂νAµ)uν0...,

dun+1
µ

dτ
= −(∂µAν − ∂νAµ)uνn. (1)

Here, u0
µ corresponds to ballistic electron trajectories, re-

flecting covariance. This system can be solved in momentum
space, where dynamical quantities are Fourier transformed as:
4π2 f (xν) =

∫
f̃ (kν)eikνxνd4k. Diagonalizing the system, the 1st

order yields [8]: ũ1
µikνdxν/dτ = −uν0i(kµÃν − kνÃµ). Approx-

imating dxν/dτ = uν by uν0 to balance the perturbation order,

one obtains: ũ1
µ = Ãµ − kµ

Ãµuν0
kνu0

.
In the case of a plane wave, let us show that the 2nd or-

der solution corresponds to the exact nonlinear solution [10],
while all other perturbation orders are null. In Fourier space,
u2
µi2kνdxν/dτ = −i(kµAν − kνAµ)[Aν − kν(Aλuλ0)/(kλuλ0)]. The

factor 2 on the left hand side corresponds to the 2nd harmonic.
To keep the order in An balanced, dxν/dτ ' uν0; contracting
terms, one obtains:

u2
µi2kνuν0 = −kµ

Aν

Aν + kν
Aλuλ0
kλuλ0

 + Aµ

kν Aν − kν
Aλuλ0
kλuλ0

 .
(2)

Using kνAν = 0 (Lorentz gauge), and kνkν = 0 (dispersion
relation), u2

µ = −kµ
AνAν

2kνuv
0
. Using the same approach for higher

order terms, we have un
µnikνuν0 = −i(kµAν − kνAµ)uv

n−1; in par-
ticular,

u3
µ3ikνuν0 = −i(kνAν−kνAµuν2) = i(kνAν−kνAµuν2)kµ

AνAν

2kνuv
0

= 0,

(3)
for the 3rd order. All perturbation orders are null beyond

n = 2, and we recover the exact nonlinear plane wave solution
[10]: uµ = u0

µ + Aµ − kµ[Aν(Aν + 2uν0)/2kνuν0].
Nonlinear spectra can be derived from this result: the co-

variant radiation formula describes the number of photons
scattered per unit frequency and solid angle:

d2N
dqdΩ

=
α

4π2 q

∣∣∣∣∣∣
∫ +∞

−∞

πµuµe−iqνxνdτ

∣∣∣∣∣∣2 . (4)

α is the fine structure constant; πµ and qµ are the 4-
polarization and the 4-wavenumber of the scattered radiation;
xµ(τ) is the electron 4-trajectory. For an incident plane wave,
it is useful to use the electron phase, φ = kµxµ, as the indepen-
dent variable. Contracting uµ by kµ, the incident light cone
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variable [11], κ = dφ/dτ, is shown to be constant: κ = kµuµ0.
Eq. 4 now reads:

d2N
dqdΩ

=
α

4π2

q
κ2

∣∣∣∣∣∣πµ
∫ +∞

−∞

uµ(φ)e−iqν
∫

uν
κ dψdφ

∣∣∣∣∣∣2 . (5)

To account for recoil, consider a monochromatic incident
plane wave with vanishingly small amplitude aµA0eiφ; adding
the quantum correction okµ yields uµ = κdxµ/dφ = u0

µ + Aµ −

kµ
Aνuν0
kνuν0

+ okµ, which integrates to xµ − x0
µ = κ−1(u0

µ + okµ)φ.
Here, o = ~/m0c is the reduced Compton wavelength of the
electron. Defining the incident 4-polarization in a covariant,
gauge invariant manner [9], as εµ = 1

√
−AνAν

(Aµ − kµ
Aνuν0
kνuν0

), the
scattered radiation spectral density is:

d2N
dqdΩ

=
α

4π2

q
κ2 A2

0

∣∣∣e−iqνxν0
∣∣∣2 ∣∣∣πµεµ∣∣∣2 ∣∣∣∣∣∣

∫ +∞

−∞

eiφ(1− λ+oqνkν

κ )dφ

∣∣∣∣∣∣2 .
(6)

Eq. 6 contains the coherence factor [12], the dipole radia-
tion pattern, and a Dirac delta function spectrum centered at
a frequency satisfying the condition: κ − λ = oqµkµ, where
λ = qµuµ0 is the scattered light cone variable [11]. Importantly,
this condition satisfies the Compton formula [3]: considering
energy-momentum conservation, we have: u0

µ+okµ = vµ+oqµ,
where vµ is the electron 4-velocity after the interaction. Since
vµvµ = 1, [u0

µ + o(kµ − qµ)][uµ0 + o(kµ − qµ)] = 1, the sought
after result is obtained using u0

µuµ0 = 1, kµkµ = 0 and qµqµ = 0.
Moreover, in the classical limit where o → 0, the Thomson
scattering formula is recovered. Eq. 5 can now be used to
study nonlinear spectra. First, let Aµ = A0(aµ sin φ+σbµ cos φ)
with aµaµ = bµbµ = −1 and aµbµ = aµkµ = bµkµ = 0;
σ = 0,±1 correspond to linear or circular polarization states.
Contracting the 4-trajectory with the scattered 4-wavenumber
leads to the nonlinear phase in the radiation formula:

qµxµ = qµx0
µ +

1
κ
φ

[
λ + kµqµ

(
on +

〈−AνAν〉

2κ

)]
(7)

+
1
κ

cos φA0

(
u0
νa

ν

κ
kµ − aµ

)
qµ

+
1
κ

sin φA0σ

(
u0
νb

ν

κ
kµ − bµ

)
qµ

+ sin 2φ
kµqµ

2κ2

σ2 − 1
4

.

The average is over a cycle; the non-zero average of the 2nd

harmonic motion corresponds to the dressed electron mass.
Eq. 7 can be understood by examining its periodicity: the
first and second terms are periodic in φ; the linear term in φ
becomes periodic if the resonance condition κ−1qµn(u0

µ+onkµ+
1
2κ
−1kµ〈−AνAν〉) = n ∈ N is satisfied. This defines a series of

harmonics: nκ − λ = kµqµn(no + 1
2κ
−1kµ〈−AνAν〉). For head-on

collisions, kµ = (k, 0, 0, k), uµ = (cosh ρ, 0, 0,− sinh ρ); and on
axis radiation, qn

µ = (qn, 0, 0, qn), one finds: qn = nke2ρ/(1 +

〈−AνAν〉+ 2eρnok), where e2ρ is the Doppler upshift; 〈−AνAν〉

is the radiation pressure; and 2eρnok is the recoil term.
It is well worth comparing this result with the nonlinear

multi-photon Compton formula. 4-momentum conservation
yields: uµ + o(k1

µ + k2
µ + ...kn

µ) = vµ + oqn
µ. For coherent plane

waves, k1
µ = ....kn

µ, which leads to considerable simplification:
vµ = uµ+o(nkµ−qn

µ). Taking the square of this expression, and
assuming the fact that uµuµ = vµvµ = 1 and kµkµ = qn

µqµn = 0,
we first have uµ(nkµ − qn

µ). Now replacing uµ by the nonlinear
solution derived earlier:

(
u0
µ + Aµ − kµ

AνAν + 2u0
νAν

2u0
νkν

)
(nkµ − qµn) = onkµqµn; (8)

nu0
µkµ −

(
u0
µ −

kµ
2u0

νkν〈AνAν〉

)
qµn = onkµqµn.

Comparing this result to the previous resonance condi-
tion clearly establishes the connection between harmonics and
multi-photon interactions.

In the case of a plane wave with an envelope, g(φ) , it can
be shown that for on-axis radiation, the linear transverse os-
cillations do not contribute to the radiation phase if the wave
is counter-propagating with respect to the electron. The total
phase is:

Φ = qµ(xµ − xµ0) =
φ

κ
(qµuµ0 + oqµkµ) (9)

+
qµkµ

2κ2 A2
0

∫
g2(φ)(sin2 φ + σ2 cos2 φ)dφ.

Furthermore, an exact analytical result can be obtained for
a circularly polarized hyperbolic secant pulse, where g(φ) =

sech
(
φ

∆φ

)
:

Φ −
qµ
κ

(uµ0 + okµ)φ =
qµkµ

2κ2 A2
0

∫ φ

−∞

sech2
(
ψ

∆φ

)
dψ (10)

=
qµkµ

2κ2 A2
0∆φ

[
1 + tanh

(
φ

∆φ

)]
This clearly shows the A2

0∆φ scaling of the nonlinear phase.
Choosing the interaction region so that kµ = (k, 0, 0, k), uµ =

(cosh ρ, 0, 0,− sinh ρ) and qµ = (q, 0, 0,−q), the radiation in-
tegral reads:

d2N
dqdΩ

=
α

4π2

χ

k
(11)

×

∣∣∣∣∣∣A0eiχA2
0∆φ

∫ ∞

−∞

x sin φ + y cos φ
cosh(φ/∆φ)

exp
{

iχ
[
φ(1 + r) + A2

0∆φtanh
φ

∆φ

]}
dφ

∣∣∣∣∣∣2
(12)

Here, χ = qe2ρ/k is the normalized Doppler-shifter (Thom-
son scattering) frequency, and r = 2okeρ is the recoil. we note
that for linear polarization, A2

0 can be replaced by < A2
0 >=

1
2 A2

0. Two changes of variable lead to an analytically tractable
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integral [13]; first, let x = eφ/∆φ; next, set z = (x2−1)/(x2 +1),
to obtain:

d2N
dqdΩ

=
α

4π2

χ

k
(13)∣∣∣∣∣∣

∫ +1

−1
(1 + z)−

1
2−

i
2 ∆φ[χ(1+r)±1](1 − z)−

1
2 + i

2 ∆φ[χ(1+r)±1](y ± ix)eiA2
0∆φχzdz

∣∣∣∣∣∣2
=
α

2
χ

k
A2

0

×
∑∣∣∣∣L i

2 ∆φ[χ(1+r)±1]− 1
2
(2iA2

0∆φχ)
∣∣∣∣2 sech2

{
π∆φ

2
[χ(1 + r) ± 1]

}
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FIG. 1. Scale invariant nonlinear spectrum

Here, Ln(x) is the nth Laguerre polynomial [14]. The be-
havior of this solution is shown in Fig. 1, where the scale-
invariant nonlinear spectrum is plotted as a function of < A2

0 >
∆φ/π , and ∆φ[χ(1 + r) ± 1] . The downshifting due to ra-
diation pressure is evident, and the number of spectral lines
is equal to the nonlinear phase accumulated over the pulse,
A2

0∆φ[limφ→+∞ tanh(φ/∆φ− [limφ→−∞ tanh(φ/∆φ)] = 2A2
0∆φ ,

divided by 2π . In addition, the amplitude of the main spectral
line first scales quadratically with A0 , then reaches a maxi-
mum, and slowly decays, as the scattered energy is distributed
over an increasing number of spectral lines. The underlying
physics can be understood as follows: the inhomogeneous ra-
diation pressure leads to a slow dephasing between the elec-
tron and the scattered radiation that accumulates over the en-
tire interaction; if the nonlinear phase integral is large enough,
interference effects result in discrete anharmonic lines. Alter-
natively, one can think of this process as a competition be-
tween the bandwidth of the laser and nonlinear dephasing: if
the laser spectrum is narrow enough, one can resolve increas-
ingly small nonlinear effects.

We now focus on the interplay between 3D effects, the
electron phase space, and the nonlinear inhomogeneous ra-

diation pressure. To accurately simulate realistic interactions
between a high brightness electron beam and a laser pulse, and
study their influence on high-precision Compton scattering
light sources, a fully 3D code is required. For long, narrow-
band laser pulses, a direct approach, accounting for fine de-
tails in the correlated electron beam phase space [15], is com-
putationally intensive. Instead, one can take advantage of the
slow-varying pulse envelope, paraxial, and weakly nonlinear
approximations to develop a local plane-wave model leading
to analytical expressions for the electron 4-trajectory. The cor-
responding three small parameters are: ∆φ−1 ,ε = (k0w0)−1 ,
and A0 , respectively. For large Doppler upshifts, these condi-
tions ensure that the particle excursions from ballistic trajecto-
ries are very small compared to all other scales characterizing
the system. In turn, this allows the use of a local plane wave
model, where all dynamical variables become functions of φ
: the 6-dimensional input phase space specifies a ballistic tra-
jectory for a given electron,xi

µ(φ) = x0i
µ + φ(u0i

µ /κi) ; all other
dynamical quantities are evaluated along this 4-trajectory.

A Fourier transform-limited Gaussian laser pulse and a 6-
dimensional uncorrelated Gaussian electron beam phase space
are modeled here to provide a baseline example; the gen-
eral method will be the object of another paper. The three-
dimensional electromagnetic fields are generated from the
vector G, by taking A = ∇ ×G , thus ensuring a divergence-
free potential vector satisfying the Coulomb gauge. The elec-
tric field is given by E = −∂tA , while the magnetic induction
is B = ∇ × A . In the case of a Gaussian pulse propagating
paraxially along the positive z-axis, focused cylindrically, and
polarized along the x-axis, the generating function is [16]:

Gy = A0e−
φ2

∆φ2 −
r2

1+z2 cos
[
−φ − z

r2

1 + z2 − atan(z)
]
/k0

√
1 + z2.

(14)

Here, A0 is the amplitude of the vector potential; k0 = ω0/c
is the central wavenumber of the pulse. Space-time coor-
dinates are normalized as follows: r → r/w0, z → z/z0,
t → ct/z0, z0 = 1

2 k0w2
0 is the Rayleigh range, w0 is the fo-

cal waist, φ = ω0t − k0z is the phase, and ∆φ = ω0t . Using
both the slow-varying envelope and the paraxial approxima-
tions, and systematically neglecting higher order terms, the
4-potential is derived. Replacing all space-time coordinates
by their values along ballistic trajectories, the local 4-velocity
can be evaluated by keeping terms of order A0, A0ε, ε, and A2

0;
for example, the component parallel to the polarization is:

ux(φ) = ux0+A0

exp
[
−

φ2

∆φ2 −
r(φ)2

1+z(φ)2

]
√

1 + z(φ)2
(15)

×

[
1 + 4ε

ux0

γ0 − uz0

x(φ)z(φ)
1 + z(φ)2

]
sin[−φ − ψ(φ)],

where ψ = −z[r2/(1 + z2)] + atan(z).
Fig. 2 shows typical trajectories and radiation pressure inte-

grals obtained using this approach. Beyond this point, the flow
of the 3D code can be summarized as follows. All dynamical
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FIG. 2. Top: transverse electron momentum as a function of phase.
Simulation parameters: γ0 = 100, A0 = 0.01, ∆φ = 200, xi = yi = 0,
zi = −2, ux0 = uy0 = 0.01, ε = 0.01(blue), ε = 0.025(red). Bottom:
corresponding non linear radiation pressure integrals.
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FIG. 3. Top: (blue) laser pulse seen by the electron and (red) non-
linear radiation pressure. Bottom: corresponding linear (blue) and
nonlinear (red) spectra. Parameters are the same unless noted. Left:
γ0 = 500, A0 = 0.05, ∆φ = 20000, xi = yi = ux0 = uy0 = 0, zi = 2,
ε = 1/500; right: ε = 1/50.

quantities are separated into slow-varying components and pe-
riodic functions; integrals over the phase are performed using
the approximation:

∫
f pdφ ' 〈p〉

∫
f dφ + f

∫
(p − 〈p〉)dφ,

where p(φ + 2π) = p(φ), and where the average is defined as
〈p〉 = 1

2π

∫ π

−π
pdφ . For harmonic functions,

∫
(p−〈p〉)dφ is an-

alytical, while the integral over f can be performed efficiently
because it is a slow-varying function. This approximation is
used to evaluate the 4-trajectory and the radiation integral. For
situations dominated by diffraction (Fig. 3 left), the Fourier
transform of the asymmetric Lorentzian envelope yields com-
plex nonlinear spectra. Finally, for a 6N-dimensional distribu-
tion of input particles in phase space, the radiation is obtained
by incoherent summation; linear (blue) and nonlinear (red)
spectra are shown in Fig. 4. Full 3D trajectories are used for
all cases, the linear spectra are calculated from the ballistic
phase qµ

κ
(uµ0 + okµ)φ only. Even for A2

0 = 2.5 × 103 << 1,
the difference between linear and nonlinear spectra is clearly
established, both for for an idealized electron beam and for a
realistic case.
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FIG. 4. From top left, clockwise. All parameters are the same unless
specified: Benchmark case: A2

0 = 10−6, ∆φ = 10000, ε = 1/2000,
λ0 = 532 nm, ∆τ = 2.5 ps, γ0 = 500, ∆γ/γ0=0.01%, εn = 10−7, rb =

20 µm. idealized case: A2
0 = 2.5 × 10−3. Realistic case: A2

0 = 2.5 ×
10−3, ε = 1/250, ∆γ/γ0=0.1%, εn = 10−6. Diffraction dominated
case: A2

0 = 2.5 × 10−3, ε = 1/20, ∆γ/γ0=0.1%, εn = 10−6.
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