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1 Introduction

Today’s scientific challenges such as routes to a sustainable energy future, materials
by design or biological and chemical environmental remediation methods, are
complex problems that require the integration of a wide range of complementary
expertise to be addressed successfully. Experimental and computational science
research methods can hereby offer fundamental insights for their solution. Exper-
imental facilities in particular can contribute through a large variety of investigative
methods, which can span length scales from millions of kilometers (radar) to the
sub-nucleus (LHC1). These methods are used to probe structure, properties, and
function of objects from single elements to whole communities. Hereby direct
imaging techniques are a powerful means to develop an atomistic understanding of
scientific issues [1,2]. For example, the identification of mechanisms associated with
chemical, material, and biological transformations requires the direct observation
of the reactions to build up an understanding of the atom-by-atom structural and
chemical changes. Computational science can aid the planning of such experiments,
correlate results, explain or predict the phenomena as they would be observed and

1http://public.web.cern.ch/public/en/lhc/lhc-en.html.
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thus aid their interpretation. Furthermore computational science can be essential
for the investigation of phenomena that are difficult to observe due to their scale,
reaction time or extreme conditions. Combining experimental and computational
techniques provides scientists with the ability to research structures and processes at
various levels of theory, e.g. providing molecular ‘movies’ of complex reactions that
show bond breaking and reforming in natural time scales, along with the intermedi-
ate states to understand the mechanisms that govern the chemical transformations.

Advances in experimental and computational technologies have lead to an
exponential growth in the volumes, variety and complexity of data derived from
such methodologies. For example the experimental data rates at Oak Ridge National
Laboratory (ORNL) Spallation Neutron Source (SNS) vary from around 200
MB/day to around 4.7 GB/day per instrument with an average of around 1.3
GB/day/instrument for its 23 instruments. The Advanced Photon Source (APS)
has almost 60 beamlines with one to three instruments per beamline and rapidly
produces copious amounts of data. Typical experiments will produce between a few
KB to 100 GB, while imaging experiments (such as tomography) produce more, on
the order of 1–10 TB of data per experiment. Data rates for some instruments, such
as X-ray Photon Correlation Spectroscopy and 3D X-ray Diffraction Microscopy
will approach 300 MB/s on a continuous basis. At the Linac Coherent Light Source
(LCLS) there will be six sets of versatile high data bandwidth instruments installed
in two hatches of the LCLS experimental area. Some instruments will be capable
of producing up to tens of GB/s of data in peak. In the final implementation of the
system up to two of those instruments can be used simultaneously. This will result
in multi-terabyte data volumes to be handled on daily basis. The data rate will ramp
up over the next several years. The first experiments will produce up to 1 TB of data
per day. In 3 years the amount of data to be stored per day will increase up to 15
TB from only one of the instruments, and that would correspond to nearly 2–3 PB
of data per year. Next generation facilities such as the X-Ray Free Electron Laser in
Germany (XFEL2) expect data rates of up to 3.5 PB a day, compressed and reduced
for long time storage to 1–4 PB a month [3], in comparison the much quoted LHC
particle physics experiment is expecting to store 5 PB a year. However it is not just
the large scale facilities that have experienced this increase in data rates, facilities
with laboratory based equipment such as the Environmental Molecular Sciences
Laboratory (EMSL) with over a hundred different instruments have seen similar
increases. A 2010 Ion Mobility Spectroscopy Time of Flight instruments produces
10x as much data as comparable systems in 2006 i.e., an increase from 1 to 10 TB
per day.

Similarly submission rates at leading community repositories for experimental
data results such as the European Molecular Biology Laboratory Nucleotide
Sequence Database (EMBL-Bank – comparable to the US GenBank) have strongly

2www.xfel.eu.
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increased. EMBL is currently growing at a rate of 200% per annum, requiring a
doubling in its storage capacity every year (5 PB in 2009). EMBL’s web pages,
which give access to 63 distinct databases, received �3:5 million hits per day in
2009, and programmatic access to their data via web services was at �1 million
requests per month and growing [4]. The number of databases reported in Nucleic
Acids Research jumped from 218 to 1,170 in the years 2001–2009 [5]. Overall
experimental data rates have significantly increased in line with the general trend
for new experimental instruments; as a consequence, whilst the data deluge might
not be happening everywhere in an absolute sense, it is in a relative one for
most research groups. However it is not only the volume that has increased it is
also the complexity of the data that is rapidly growing. Ever new investigative
methods are being developed, with each method and vendor of instruments for
such a method creating new data formats and results representations. Therefore
experimental science and its analysis is overall now a very data intensive field of
science.

This exceptional growth in data volumes and complexity has presented re-
searchers with significant challenges, foremost how to effectively analyze the results
of their research both for single experiments and increasingly across different
investigative methods. The availability of underpinning data management facilities
and tools play hereby a crucial role throughout the experimental and analysis
processes.

Data management challenges include issues such as data storage, access, and
movement. Ever growing volumes no longer allow facilities or researchers to store
all the collected raw and derived data in perpetuity and hard decisions might have
to be taken in terms of what is worthwhile retaining. Even when it is possible to
store the data collected, its volume and diversity requires expert management to
enable immediate and timely analysis as well as long term access and usability of
the data, this data management knowledge is not always available at the researcher
or even the facilities level, leaving large volumes of data destitute and inaccessible.
Similarly it can be quite difficult for scientists or facilities to support the basic
functions necessary for the correlation of research results. Data transfers between
organizations can be fraud with problems such as unreliability, speed and lack of
data integrity throughout the transfer, and so many facilities and their users still rely
on the shipping of hard drives for their data movement [6].

An even greater challenge however is the analysis of the data itself, with the
increasing variety of instruments used at experimental facilities; the variety of
(often proprietary) data formats and analysis software packages has increased
dramatically. This plethora of investigative methods and data formats has prevented
the community thus far form working collaboratively on advancing their analytical
methods. As a result traditional analysis methods are often not scalable enough
to deal with either the increasing volume or complexity of the results of both
experimental and computational research results. In response researchers often
either do not use the full capabilities of the instruments or only analyze a very
small subset of the data they collected. Where full analysis is possible it can take
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many hours or weeks for an experiment which might have only lasted minutes or
seconds. The lack of suitable tools, advanced computing techniques, and storage are
key limiting factors. Furthermore these hinder the progression of the field to address
one of the main requirements for the future of experimental science: the ability to
analyze experimental results in real time, and actively influence these. To achieve
this next level of experimental research, a new generation of analysis methods needs
to be developed.

Experimental science today is highly specialized on the individual level, driven
by ever more complex investigative methods, but very collaborative and interna-
tional in its project work [7], driven by the complexity of the scientific challenges.
It is therefore necessary to correlate, integrate, and synthesize local results with
other experimental and computational work world wide to improve the quality,
accuracy, and completeness of the analysis. Therefore a critical challenge for
experimental science is the need to empower the scientist with computational tools
to perform analysis across a high volume, diverse and complex set of experimental
and simulation data, to extract the desired knowledge and meaning that leads to
scientific discovery.

This chapter will discuss the critical data intensive analysis challenges faced by
the experimental science community at large scale and laboratory based facilities.
The chapter will highlight current solutions and lay out perspectives for the future,
such as methods to achieve real time analysis capabilities and the challenges and
opportunities of data integration across experimental scales, levels of theory, and
varying techniques.

2 Challenges

The experimental sciences community faces a wide range of challenges, both in their
day to day work, as well as in their endeavor to progress the scientific capabilities
of this domain in general. While many challenges are related to the instrumentation,
the specific science domains or physical research objects, an increasing number stem
from the data intensive nature of the processes involved in experimental analysis. In
the following we will elaborate further on the key challenges which include the
following principle areas:

• Metadata Generation and Association
• Data Formats
• Data Integrity
• Data Analysis of Single Experiments
• Co-analysis of the Collection
• Data Provenance, Collaboration, and Data Sharing
• Data Ownership and Data Citation
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2.1 Metadata Generation and Association

Often experiments require the use of specialized sample environment equipment
to control the conditions in which data are collected. The nature of the sample
environment equipment may vary widely though the most common equipment
controls temperature, pressure, or magnetic field, and sometimes a combination of
these. Other common types of sample environment equipment may include pulsed
lasers, vibrational stress to materials, dynamically mixing gases or chemicals at
varying ratios, and the sequencing of a number of samples to be studied. The timing
for when conditions change on the sample must be recorded in order to correlate
sample environment changes with those observed in the data, and are critical to
the reliable analysis of the results. The how precise the correlation needs to be
can depend upon the time scale for the rate of change anticipated. This being the
case, it is possible that the sample environment metadata can also be an appreciable
size.

Similarly, sample positioning is another important piece of metadata which must
be recorded. The position information is necessary to have for experiments which
rely upon probing beam path lengths and angular relationships to detectors. The
position information is also necessary for classes of samples which have positional
information as part of their composition, such as crystalline materials. Often these
crystals must be oriented according to a known position so that structure can
be studied. Another class of experiments fall into the category of rotating the
sample such as in the case of tomography or neutron spectroscopy inelastic single
crystal energy transfer measurements. Moving or rotating the sample can create a
corresponding data file for each positional change, else the dynamic nature of the
repositioning must be indicated within the data.

There are a wide variety of other metadata which should also be associated
with the experiment and which metadata are recorded can be a function of
facility capabilities and data policies. Often one primary key is the experiment
proposal number. Along with this, associating the experiment team members can
be important. Other important metadata include: measurement start and end times,
instrument status and operating conditions, and data acquisition related metadata
used to properly identify and segment data such as measurement frame numbers or
experiment run numbers.

Many of these metadata are not only vital for the immediate analysis process,
but also support the long term exploitation of the results. The quality and com-
prehensiveness of the metadata will directly influence the accuracy and quality
of the analysis process. Due to the wide variety of metadata and its sources its
structured and quality controlled capture is a major challenge for any scientist or
facility.
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2.2 Data Formats

Data can appear in a wide variety of formats ranging from unformatted, proprietary,
to self-describing such as HDF53 or NetCDF4. Data management professionals
can be challenged to select the best data format to use for a number of reasons
ranging from ease of use to file format performance. Scientific communities can
engrain on particular data formats, which can cause challenges when data systems
professionals seek to use a new format. There can be little motivation to adapt
community developed legacy applications to utilize new file formats, particularly
if these new formats are not readily available via the software language used
by the legacy application. Scientists may be familiar with their own tools for
examining data and if new formats cause any additional burden, these will find low
acceptance.

However one should not give up on defining file formats, particularly in
scientific communities lacking data format standards. Moving the community
towards standards has the benefit of potentially opening up software development
to a broader segment of the community once data interchange formats have been
established. In some cases, it may be necessary to move the community to more
advanced data formats to address issues that might have already been solved by these
standard data formats. For example, if higher performance is needed, utilizing the
parallel access or inherent data compression/decompression capabilities may be of
benefit.

The longer term benefit of using a self-describing data formats are many, as the
file can collect and store metadata pertaining to the data which may otherwise be
lost over time if these are maintained as separate files. A self-describing format
also offers the potential to engage a larger community of researchers wishing to
collaborate on the data. Thus there are many advantages for defining data formats
for a scientific community.

Another challenge for establishing data formats may be to capture data with non-
traditional data formats. Typical data acquisition may utilize histogramming to bin
data. However, the binning process can reduce the resolution of the data. To avoid
this problem, some state of the art instruments are utilizing event mode data which
works by concatenating detected data to a growing list. One such example would
be an event data format which records detected events in position and time thus
providing the maximum possible resolution of the detection system. However some
data storage formats may not respond well to varying length data sets, especially if
data need to be appended during an acquisition.

3The HDF Group produces and maintains software for self-describing scientific data via the
Hierarchical Data Format. http://www.hdfgroup.org/.
4The Network Common Data Form (NetCDF) self-describing data format developed by the
University Corporation for Atmospheric Research (UCAR). http://en.wikipedia.org/wiki/Netcdf.

http://www.hdfgroup.org/
http://en.wikipedia.org/wiki/Netcdf
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2.3 Data Integrity

Ensuring the quality of the data is a challenge as part of the data acquisition process
for one primary reason – ensuring data integrity may take as much time as the
time required to produce the data, and the data acquisition system may not be
capable of performing this task during rapid data acquisition sequences. However
the challenge remains that data integrity must be ensured as close to the source as
possible.

There are a number of data integrity mechanisms that can be employed, some
implicit while others are explicit. Implicit mechanisms include computer memory
parity checking and correction, network handshaking protocols such as TCP/IP, and
data parity checking and correcting methods such as disk systems which utilize
RAID parity checking and correction, such as RAID 1, 5, 6, or 10. These methods
are commonly utilized today and are fairly reliable and robust enough that one
may take for granted that additional data integrity mechanisms may need to be
employed.

However if one does not explicitly determine the integrity of the data, one may
not know for sure the integrity of the data. Considering the vast sizes of data sets
today, the probability for some type of data corruption is on the increase. These
errors may arise from faulty memory, RAID system failures or single disks not
operating in RAID configuration, or faulty networking equipment that corrupts data
during transfer. In the case of an unnoticed error resulting in data corruption, the
corrupted data may be perpetuated into the future beyond a point where it can be
recovered.

To help explicitly identify data, methods for producing checksums have been
developed. A checksum is typically a fixed-size number computed from a data set
of interest that, to some high degree of certainty, uniquely identifies that particular
data set. Thus a change in one of the datum will result in a different checksum. A
variety of checksum methods are in use with the more common ones being MD55,
SHA6, and CRC7.

When examining the dataflow, ideally the checksum process must be performed
as early in the dataflow as possible and as previously mentioned ideally when the
data are created. To be useful, the checksum must be stored somewhere where it
can be referred to at a later time. Data production systems often employ catalogs to
store metadata for search, and the checksum value for the data should be stored in
this catalog. Though the challenge remains today, to create checksums in a timely
fashion for large files.

5http://en.wikipedia.org/wiki/MD5.
6http://en.wikipedia.org/wiki/Secure Hash Algorithm.
7http://en.wikipedia.org/wiki/Mathematics of CRC.

http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/Secure{_}Hash{_}Algorithm
http://en.wikipedia.org/wiki/Mathematics{_}of{_}CRC
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Fig. 10.1 Example crystallography analysis workflow [8]

2.4 Data Analysis of Single Experiments

The analysis of the raw data produced by single experiment is often a complex
process, incorporating many different steps, some of which will need to be repeated
several times over after review, to achieve the best possible results (see Fig. 10.1 for
an exemplary analysis workflow).

The steps taken can in general be classified as: data capture, calibration,
data compression, data reduction (Reduce noise and smooth data, reconstructions
will contain the most significant information, are feature-accentuated), image
reconstruction (Accurate re-construction of high volume data, combine correlation
functions with parallelized filtered back projection), segmentation and feature
association (identification of application-specific chemical signature and feature
recognition), visualization of results. Some of the analysis steps might be repeated
several times to identify all required features in the data and filter out enough
background information to make these clearly visible.

The increase in data and repetition rates on many instruments has caused severe
problems for the subsequent analysis. The analysis take much longer than before
e.g., up to 18 h for a basic analysis for a mass spectrometry experiment that takes
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itself under 1 h. But more importantly many of the existing tools are no longer able
to cope with the data volumes, requiring the scientists to collect data with less
precision than the instrument could offer or being able to examine only on small
subsets of the sample (i.e., 15 � 1;000 rather than 1;000 � 1;000) thus hampering
their scientific research significantly. The problem in the existing methods are
hereby not only the data throughput, but the mathematical methods used, many
of which do not scale or are not at the appropriate level of theory. An example
repetition rates at leading, large laser facilities have increased from one shot an
hour to one a second, whereas in the past direct analysis methods where appropriate
scientists now need to investigate much more complex methods, separating the
effects of different shots, but also consider more statistics based approaches to their
analysis. Later stages of the analysis such as segmentation and feature detection
face similar challenges due to the increased volumes and complexity of the results.
Current more interactive methods of feature identification need to be replaced by
automated ones. More importantly the representation of results has become more
challenging; high levels of details in single visualization (e.g., 3D volume rendering
of dense bio films) make it difficult for users to locate features of interest. The data
volumes are so big that only very advanced visualization tools can cope, however,
these are often difficult to handle and require specialist support, traditionally not
present at experimental facilities or the scientists home organization. Similarly if
the users want to interact with the visualization, the data volumes require significant
processing power to support this interaction. This processing power can no longer be
provided in the traditional analysis setting at the researcher’s desktop, but requires
dedicated visualization clusters and specialist software e.g. for remote visualization
back to the researchers desktop. While such methods exist, these tools are made for
visualization specialist in main and not for the use by scientific end users.

Driven by the need for science-enabling tools and technologies, researcher are
increasingly interested in real-time analysis and visualization e.g. of protein crystal
and enzyme structures and functions to enable intelligent instrument and experiment
control. It has proven particularly successful to pair researchers with computer
and computational scientists. These can guide researchers through structured re-
quirement gathering exercises, to identify enabling technologies that would address
their needs and provide a real step change in the possible scientific analysis. In
the recent commissioning of the neutron science instruments at ORNL’s SNS the
computing team heard questions like the following that could be answered by the
right computational infrastructure:

• If I could plot in real time R-factors and observations-to-parameters ratios, they
should asymptotically approach values limited by the sample. I could then see
when the best time is to stop the data collection and move to the next temperature
or the next sample.

• Say I want to know the O � H; O hydrogen bond distances with a precision of
0.01 Å. If I could evaluate bond distances their esd’s in real time, I could see if
and when this is achievable.
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• Parametric studies with single crystals – observing the dependence of a structural
parameter versus time, temperature, pressure, magnetic field, electric potential,
laser excitation, and gas diffusion.

• Observe Fourier density maps in real time.
• Follow an order parameter in an order-disorder phase transition in real time.
• Follow the intensities of superlattice and satellite peaks and diffuse scattering in

real time (reciprocal space).

However, the understanding of how to use leadership computing facilities as part
of such a computational infrastructure can be extremely time consuming for the
scientists to learn. Moreover, the access to these world-class resources is highly
dependent on the physical location, network connectivity, local computer resources,
or other resource-limited device availability. Leading community support facilities
now provide scalable user access through thin- and thick-client computing models.
Thin-client access is generally suitable for handheld resource-limited devices and/or
local computer resources where it is advantageous for the application software,
data, and CPU power to reside on the network server rather than the local client.
In most cases this will require that the scientist has network access and can
access a web browser, and no further application software installation or support
is required. Conversely, thick-client access is highly desirable when application
software, data, and CPU power is provided by the local resources that are able
to function independently from the network server. Portals and Science Gateways
can supply a robust support infrastructure for clients of this type by providing
resource and application availability dependent on the user requirements and level
of sophistication.

There exist several neutron instrument simulation packages such as MCSTAS,
IDEAS, NISP, and VITESS, which are used by instrument scientists to develop
detailed simulations of their beamlines. While in some cases several man-years of
effort are invested into these simulations, these valuable models are not routinely
being used by the neutron scientists for virtual experiment optimization and
planning due to computational and data workflow complexities. Furthermore, a
current bottleneck of efficient data collection is the lack of software allowing
for real-time tracking of diffraction patterns as they are being collected in an
integrated manner. Current single crystal diffraction instrumentation designs will
be able to survey a vast amount of reciprocal space within a short time period. The
data produced, composed of short Bragg reflections and diffuse scattering, carry
important information on static and dynamic interactions of molecules and atoms
in the crystalline state. Computer programs such as GSAS, Fullprof, and SHELXL
are readily available for post-mortem data analysis interpreting Bragg diffraction
data and refining ordered structures. However, a real-time system would enable
biomedical structure refinement to occur while samples are still in the instrument.
This would provide a real-time determination of experiment duration based on
refinement criteria provided by the scientist and verified by the real-time analysis
of live experimental data, which has never before been attainable. Enabling a real-
time decision support system for neutron beam experiment users has the potential
to dramatically advance the state-of-the-art and lead to not only the more efficient
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use of facility resources but may also lead to a better understanding to the dynamics
of data collection within an instrument.

2.5 Co-analysis of the Data Collection

As in the medical field where a doctor may order a number of tests and scans to
examine and diagnose a patient, so do scientists and researchers utilize a number
of experimental techniques to study objects. In the case of large experimental user
facilities, it is quite common for scientists to perform complementary experiments
at both X-ray and neutron scattering user facilities, or combine laboratory based
experiments with X-ray experiments. Often the X-ray data can give good informa-
tion regarding the structure of a material, while the neutron scattering data can give
valuable information on the placement of hydrogen atoms within this structure that
X-rays see quite poorly. Laboratory based instruments might give more information
on the chemical composition of the object or its functions. In other imaging
technique combinations one technique might provide a cost effective first quick look
at an object, whereas another one is used to examine objects of interest identified in
the initial quick look in much more detail with a higher precision method. Therefore
these techniques can complement each other quite well in providing different pieces
to the puzzle much like the various tests that a medical doctor would have performed
for a patient. Furthermore the results of one experiment might not only inform the
planning of another experiment, but can help in its direction and analysis.

While a few software programs are emerging for specific imaging technique
combinations e.g., to co-analyze some X-Ray and Neutron experiments, most of
the co-analysis is currently carried out in an ad-hoc fashion by the researchers and
thus is very time consuming and error prone. The challenges in this type of co-
analysis do not only lie in the analysis algorithms, but equally in the vital logistics
support for this type of analysis, with data often residing in different institutes and
potentially owned by different users.

The required data management of such complementary data sets are typically
left completely to the user. Often these experimentalists must manage copying data
to portable disk drives while they continue to acquire more experiment data. The
portable disks tend to be low performing and may be the only copy of the data
resulting from the experiment as facilities typically have a short time on the order of
two weeks when they will keep data available for the facility users. Some facilities
have developed more mature data management practices and systems, and retain
data for longer periods of time to better facilitate the data reduction and analyses
processes inherent in the publications process.

Thus the experimentalist must deal with a variety of factors including:

• Different or no data management systems at one or both user facilities
• Different computing access mechanisms for each facility perhaps resulting in

multiple passwords to manage
• Managing where data reside
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• Single copies of data are vulnerable to errors and loss
• Resource limitations for slow performing data systems and computers

Once the results of all experiments are available, the real analysis challenges start,
as there are hundreds of different investigative methods, the user has to determine
how the different imaging techniques relate to each other and thus how they need
to be treated. Do the results need to be integrated, compared, correlated etc. The
representation of the results from different techniques varies significantly, as does
their scale, accuracy, and measured property. To compare two experimental results,
experts in both techniques need to be present to determine the relationship and
necessary analysis steps for their co-analysis, giving the lack of available tools, they
would then need to develop the algorithms to carry out the analysis and evaluation
of the results. Increasing data volumes and experimental complexity have made this
type of co-analysis ever more challenging and thus deterring many. Where scientists
embark on this journey, it will take them many weeks or months to complete. Given
that their foremost interest is the scientific outcome, the tools produced are ad-hoc
solutions, usually fit only for this specific analysis and not ready to be shared with
others. More importantly, most of the time they will have no means or interest to
share their methods, thus other researchers will have to start again from scratch,
would they decide to follow in a similar direction.

Thus it is evident that there are many barriers to multi-facility data collection
and analyses. However, the rewards for improving inter-facility data management
and co-analysis software tools may likely yield an accelerated pace for scientific
discovery for many science areas. Though this has been an area which has been
slow to advance due to the complexity of coordination required for inter-facility
data management, and in some cases, it is more a matter of policy than technology
which may impede this integration.

2.6 Data Provenance, Collaboration, and Data Sharing

Research projects are increasingly looking for ways to effectively keep abreast with
everyone’s progress, discuss findings, share data, applications and workflows and
manage the documents that are exchanged, before publishing their results to a wider
community. Tools like dropbox, Google groups, Google docs, megaloader, etc., do
allow exchange of data, but they fall short in the following areas:

• Limited space with paying a subscription fee. This becomes difficult when team
members all need to subscribe.

• These tools do not provide the version control and tracking capabilities that are
needed.

• These tools do not allow you to annotate the data files and attach discussion
threads to datasets.
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Wiki’s, another popular choice, become unwieldy very quickly and are not suitable
for large data exchange. Existing repositories at experimental or computational
facilities or community archives, provide access to data, but offer no support for
wider reaching scholarly exchanges and collaboration. There are only a few notable
exceptions where this kind of project based management, exchange and sharing of
data is supported by a community wide infrastructure, these are: the long standing
Earth Systems Grid (ESG8) offering data exchange and sharing for climate simula-
tion data worldwide, the relatively new NFS funded I-Plant9 Infrastructure’s project
and community based collaborative data sharing environment and the planned DOE
Systems Biology Knowledgebase.10 Therefore at present most research groups have
to rely on ad-hoc solutions, which are often difficult to maintain and not efficient.

A further challenge in collaborating both within research projects and across
projects is the lack of ability to transfer the increasing amounts of data produced
at experimental facilities. Due to the complexity of the network infrastructure, ad
hoc nature of the transfers, data sizes and the interaction of end user applications
and networking are all contributing factors to this situation. The severity of the
networking challenges faced by the users varies depending on the size and rate of the
data to be transferred and the regularity of the transfer. Small scale transfers (MBs to
a few GBs) are relatively well supported today, although data collection in the ‘field’
is still a challenge. Medium range transfers (few tens of GBs) can be unreliable (e.g.
lost connection), even more so when these are used for data streaming (sequence
of experimental or observational measurements). For large-scale data transfers it
can be very difficult and time consuming to resolve network problems between any
two sites. There are usually multiple carriers that are participating in the end-to-
end network path, and it is difficult to get any one carrier to take ownership of the
problem. Experiences have shown that to “clean-up” a connection can take in the
worst case several months. So if a connection is not of useful quality, it is usually
going to take days if not weeks to resolve the problem. In this case the researcher
would probably either find a work-around (i.e. send it in the post) long before the
problem was resolved or give up, if this was an ad hoc requirement [6]. Therefore
new means would be required to co-analyze the results, without the need to move
the data.

When data finally ends up in a publication perhaps as a chart, graph, or image,
the researcher needs to feel a high degree of confidence in being able to reproduce
the results. To do so, the researcher not only needs to be able to refer back from the
publication data to the analysis data, to the reduced data, and finally to the acquired
data, but also to the processes used to derive the different results – thus the researcher
needs access to the provenance of any published data. This is quite a complex chain
once one takes into consideration that a large number of separate data products that
may have been used in conjunction with the experiment dataflow. Facilities can help

8www.earthsystemgrid.org.
9http://www.iplantcollaborative.org/.
10http://genomicscience.energy.gov/compbio/#page=news.

www.earthsystemgrid.org
http://www.iplantcollaborative.org/
http://genomicscience.energy.gov/compbio/{#}page = news
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with the cataloging of acquired data and accompanying provenance information, and
possibly with the cataloging of reduced data if this data was reduced using facility
resources on-site. However data analysis is typically on the leading edge of scientific
discovery and often this is where scientist and researchers utilize a wide variety of
tools including software they produce for themselves which is almost impossible to
keep track of.

2.7 Data Ownership and Data Citation

So who owns the data? This is a commonly asked, and sometimes hotly debated
question. In the case of national user facilities, the government funded the operation
of the facilities and one may think that this makes a clear case for data ownership.
However oftentimes the people performing the experiments also apply significant
skill, labor, and expertise to produce the sample they place in the beam in order
to produce their data. Thus making the data openly available immediately could
be a significant demotivating factor perhaps fostering a counter-culture of parasitic
research.

The case of data ownership and access typically needs to be established by
the facility via the data practices and policies which they assert. A one-size-fits-
all policy across user facilities may not be appropriate as there may be different
factors to consider such as the reproducibility of the experiment and the data, the
data volumes produced, the longevity of usefulness of the data, and the typical
publication lifecycle for a particular technique – there are many more considerations
here. However it is typically agreed upon that at some point experimental data
should become publicly available after some predetermined amount of time, though
this means for opening data to the public is not universally applied.

Should these data become public, there typically are no standards pertaining to
how to cite this data. One means has been to keep the data closed and perhaps
only provide it to collaborators who agreed to include the experiment team or the
Principal Investigator on the resulting paper. This method has its merits for ensuring
data citation, however working this way could also impede the scientific discovery
process by not allowing broader access to the data. Data ownership and data citation
become most contentious when “hot topics” in science emerge. For example,
in the current situation of working to find high temperature superconductors,
competing research teams do not want to give away their advantages – or their
data.

Stepping back and surveying the scientific data management community, there
are emerging standards called a Digital Object Identifier11 (DOIs) which is a
character string that is used to identify a data product. The DOI and its metadata
may also include the data URL where a researcher may locate the data. The DOI

11http://en.wikipedia.org/wiki/Digital object identifier.

http://en.wikipedia.org/wiki/Digital{_}object{_}identifier
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system is implemented via federated agencies coordinated by the International
DOI Foundation12. Some thought needs to be given for how to define DOIs for
data products as one may easily define the DOIs either as too fine grained or too
coarse grained. Other complications are what to do with DOIs in the case where
data are adapted from the original – should a new DOI be defined or should the
original DOI stand? The answer depends upon the context of the data situation.
However there is a well-established method via DOIs that could be employed to
help with data citation, though it is far from being universally adopted amongst user
facilities.

2.8 Summary

Data intensive analysis at experimental facilities faces a wide array of challenges,
chief amongst them:

• Current algorithms are often unable to handle the increasing volumes and
diversity of the data either at all or in a timely fashion.

• The community requirement for real time analysis cannot be met with present
solutions.

In addition experimental analysis relies heavily on the integration, correlation, com-
parison and synthesize of the single experimental results with other experimental
and computational efforts, requiring not only multi-modal analysis and visualization
solutions that can span scales, levels of theory, and investigative methods, but also a
supporting eco-system of data management, movement, security, and collaboration
services to enable this type of co-analysis.

3 Current Solutions and Standardization Efforts

Many of the challenges described in the previous section have been known to the
community for a considerable time; however the pressure to address them has only
increased in recent years due to the exponential increase in data volumes and the
drive for co-analysis of results. Community efforts so far have largely concentrated
on the improvement of data management support at experimental facilities and the
optimization of single experiment analysis. A few small developments are emerging
at present in the field of collaboration support for experimental sciences. In this
section we will describe some key developments in these areas, exemplary for
the field.

12http://www.doi.org/index.html.

http://www.doi.org/index.html
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3.1 Data Management Practices and Policies

As data are a fundamental product of the user facilities, by default de facto
data management practices will evolve, but in more deliberate and formalized
situations, data policies are defined and put into practice. In surveying a number
of DOE user facilities, it quickly became apparent that as of this writing the data
practices and policies vary widely. Generalizing across the big data producing
facilities, the newer facilities appear to be taking on some form of data management
for their facility users while the more established facilities (over 10 years in
operation), tend to provide less data management resources. It is important to
keep in mind that data storage capacity and network bandwidth has increased
dramatically over the past 10 years, and this increased value per unit capacity
allows facilities to consider providing more services to users, with the goal being
to accelerate the rate of user produced publications via data management and
data analysis services. To this end, some of the newer facilities have created data
centers for their storage needs. The Linac Coherent Light Source (LCLS) at the
SLAC National Accelerator Laboratory13 has a 2 PB parallel file system in their
instrument hall [9]. Similarly, the NSLS-II data facility once fully built estimates
that aggregating across its 58 beamlines that the facility could produce up to
500 TB per day which via the technologies available today would be completely
impractical to utilize data practices based upon portable media for dissemination
of experimental data. The Spallation Neutron Source14 at Oak Ridge National
Laboratory has had a functioning data portal coupled with computing infrastructure
since 2006 which utilizes a data management system layered upon centralized data
storage [10].

Also important to consider are country specific guidelines and policies such as
the US Federal guidelines and standards on information management as put forth in
FIPS Publication 199 [11]. The security objectives which are of concern:

• Confidentiality – “Preserving authorized restrictions on information access and
disclosure, including means for protecting personal privacy and proprietary
information: : :”

• Integrity – “Guarding against improper information modification or destruction,
and includes ensuring information non-repudiation and authenticity: : :”

• Availability – “Ensuring timely and reliable access to and use of information: : :”

The impact of a breach of confidentiality, integrity, or availability is assessed to
be either: low, moderate, or high, depending upon the level of adverse affect on
the organizations operations, assets, or individuals. Typically in the case of open
research, the impact is assessed as low impact.

13SLAC: http://slac.stanford.edu/.
14SNS: http://neutrons.ornl.gov/facilities/SNS/.

http://slac.stanford.edu/
http://neutrons.ornl.gov/facilities/SNS/
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Standards to define harmonized data policies across user facilities are forming in
Europe via the PaN-data a Photon and Neutron Data Infrastructure collaboration.15

Currently there are 11 partners in the PaN-data collaboration from across Europe.
The PaN-data collaboration strives to produce a sustainable data infrastructure for
European Neutron and Photon laboratories with goals to produce a common data
infrastructure across the large European user facilities that supports the scientific
communities in utilizing these facilities. The work being done by PaN-data includes
standardization activities in the areas of: data policy, information exchange, data
formats, interoperability of data analysis software, and science lifecycle integration
of publications and data.

The PaN-data policy document,16 under development for approximately 18
months, was finalized in December of 2010. The document standardized upon
NeXus/HDF5 for data formats. The document also strives to strike a balance
between the competitive and collaborative nature of scientific discovery. The open
access data policy is intended to provide raw data for use and scrutiny by other
researchers, enable data re-use without the need (and additional cost) for re-
measuring, and facilitate data mining to facilitate new research.

Examining key PaN-data policy elements:

• Data produced at publicly funded facilities are open access with the facility acting
as the custodian.

• Data are to be curated in well-defined formats.
• Automatically captured metadata shall be stored and utilized to form a data

catalog which will be on-line searchable.
• Data are provided as read-only.
• Ideally each data set will have a unique identifier.
• Access to raw data and associated metadata becomes open access after 3 years

from the end of the experiment.
• Appropriate facility staff will have access to the data.
• The Principal Investigator has the right to copy and distribute the raw data and

can grant access to others.
• Ownership of results from the analysis of the raw data depends upon the

contractual obligations of the researchers who performed the analysis.
• The facility will provide the ability for users to upload associated results and

metadata.
• The facility cannot be made liable in the event of data loss or unavailability.
• Publications related to experiments performed at these facilities are to be made

known to the facility within 3 months of the publication date.

In the case of proprietary data where the user does not wish for the data to be made
publicly available, beam time is to be purchased at a rate to be determined by the
facility. One could expect such fees to be on the order of some number of thousands

15PaN-data: http://www.pan-data.eu/PaN-data Europe.
16PaN-data Data Policy: http://www.pan-data.eu/imagesGHD/0/08/PaN-data-D2--1.pdf.

http://www.pan-data.eu/PaN-data{_}Europe
http://www.pan-data.eu/imagesGHD/0/08/PaN-data-D2--1.pdf
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of dollars per hour keeping in mind that an experiment typically lasts from 1 to
3 days.

To support operations, US user facilities either formally or informally have
developed data management practices and policies. Typically the biggest difference
from the PaN-data policy has been in the areas of data ownership and access, as the
raw data are not obliged to become openly available. However advancements are
being made in the area of Scientific Data Management (SDM) as an inter-agency
working group has been producing recommendations and guidelines [12]. Outcomes
from this working group include:

• Agencies should stimulate cultural change through a system of incentives to
stakeholders. SDM policy should motivate agency researchers to move from the
ownership mindset of data hoarding to a data sharing approach.

• Each agency should develop a data policy within a federal policy context.
• Agencies should manage scientific data for appropriate control while ensuring

appropriate access.
• Agencies should establish the roles of chief data officer and should clarify roles

and responsibilities.

3.2 Data Management Infrastructures

Experimental facilities support a significant stretch of the experimental research
process (see Fig. 10.2).

After a successful proposal for experimental time, the researcher will work
with the facility on the experimental design, including instrument configuration
and mode of experimental work. For more standardized measurements such as
crystallography or proteomics, samples are usually sent to the facility, experimental
data is collected, raw data analyzed, and processed data is returned to the user.
The majority of experimental work however requires the presence of the scientists
at the facility, working hand in hand with the local instrument expert on the
experimental set-up, data taking and analysis. Key to the effective support of these
processes is the easy availability of information, tools, and data that are required
for each step. This required information can include not only data and metadata
generated at the facility itself, but also other resources such as data from previous
experiments at other facilities, new tools or discussions about experimental set up.
The increasing complexity of the processes, and a drive to higher efficiency in
the facilities operation lead in the early part of this century to the development
of concepts for integrated infrastructures to support the full experimental research
cycle at experimental facilities.

Metadata is hereby seen as the key integrating factor for the different processes
and data products, allowing for the easy management, discovery and access of data
and tools. The Core Scientific Meta-Data Model (CSMD) developed by the Science
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Fig. 10.2 Life cycle support at experimental facilities

and Technology Facilities Council (STFC) in the UK has hereby emerged as a de-
facto standard [13–16]. CSMD is a study based metadata model, capturing high
level information about experiments, instruments, samples and their resulting raw
and derived data incl. the analysis process (see Fig. 10.3).

Its flexible structure of property lists, allows the model to be customized for any
instrument type. It provides the necessary integration across investigative methods
at a particular institute to support discovery and access, as well as co-analysis tasks.
Scientists have furthermore the ability to link in material from related activities,
which can incorporate other experiments as well as publications and presentations
about the experiment. CSMD is currently used by a wide range of experimental
facilities worldwide to capture and manage their scientific metadata.

Many of these institutes have developed customized infrastructure solutions for
their particular facility or laboratory based around the core CSMD model. One well
known example is the STFC developed integrated infrastructure for its Neutron
Source ISIS, Central Laser Facility and DIAMOND Lightsource, based around the
Information Catalogue (ICAT17). The software was made open source in 200818 and
was the only one available for distribution and usage by others in this field. Since its
release it has been adopted by a range of other facilities in Europe, Australia, and
the US. The complete infrastructure supports all process from proposal submission

17http://www.icatproject.org/.
18http://code.google.com/p/icatproject/wiki/IcatMain.

http://www.icatproject.org/
http://code.google.com/p/icatproject/wiki/IcatMain
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Fig. 10.3 CSMD general structure [17]

to data acquisition and distribution. A 2010 funded UK effort ‘Infrastructure for
Integration in Structural Sciences’19 extended the infrastructure to support and
manage the creation of derived data.

ICAT provides however only the central component of a much more complex
network of services required to support the experimental process, as Fig. 10.4 below
of the infrastructure set up at the UK DIAMOND facility shows.

Key challenges in such infrastructure developments are the integration of the
different components, in this case facilitated through the central ICAT system and
the monitoring of the correct operation and interoperation of the many different
tasks. Newer infrastructure development efforts such as those at the Pacific North-
west National Laboratory (PNNL) Environmental Molecular Sciences Laboratory20

have started to explore the usage of high performance workflow systems such as
MeDICi21. Other infrastructure developments based around the CSMD model are
found at the US ORNL Spallation Neutron Source (SNS), the Australian CIMA

19http://www.ukoln.ac.uk/projects/I2S2/.
20http://www.emsl.pnl.gov/emslweb/.
21http://dicomputing.pnnl.gov/demonstrations/medici/.

http://www.ukoln.ac.uk/projects/I2S2/
http://www.emsl.pnl.gov/emslweb/
http://dicomputing.pnnl.gov/demonstrations/medici/
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Fig. 10.4 Core data management infrastructure components

[18], Archer,22 and eCrystals (UK).23 All of these infrastructures aim to provide
an improved support for their users throughout the experimental process, delivering
improved access to information and data, as well as supporting long term access and
sharing of results.

3.3 Standardization Efforts

Within the X-ray and Neutron scattering communities, there is an emerging data
format standard named NeXus24 which is based upon the HDF5 self-describing data
format. This is a community lead collaboration to define a suitable data standard
commensurate with the needs of experimental user facilities. Undertaking such an
initiative is no small task as the experimental techniques vary widely across the
user facilities. Some considerations include accommodating the large variations
in detector technologies and geometries, the wide variety of sample environment

22http://archer.edu.au/about/.
23http://ecrystals.chem.soton.ac.uk/.
24http://www.nexusformat.org/Main Page.

http://archer.edu.au/about/
http://ecrystals.chem.soton.ac.uk/
http://www.nexusformat.org/Main{_}Page
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data to associate with the experiment data, as well as the variety of beam spectrum
monitor information and beam power information. Initially the NeXus format only
supported the histogram data format. NeXus was well suited to this as the data
were written as a final step of creating the file. The intrinsic compress capabilities
of HDF5 were employed which could result in significantly reduced file sizes.
However with the advent of event based data acquisition, it was necessary to extend
the NeXus format to support a list based, or streaming data format. Initially NeXus
was not well suited to supporting arbitrary length data sets, though significant effort
was expended to adapt NeXus to better accommodate the intrinsic unformatted
nature of event data.

The data file creation occurs via a process which has been named data translation
which takes raw input data files from various sources, massages, and produces a
NeXus file. The granularity of the data contained within the NeXus file can be
somewhat arbitrary, however for the sake of convenience; a file typically will contain
the results from one data acquisition start/stop interval which is often called a “run.”
The raw input data produced during a run are typically comprised of the event data
list, the event pulse information (for pulsed sources such as a spallation neutron
source), or the histogram data in the case of X-ray instruments where individual
X-ray photons occur too rapidly to be counted individually via today’s detector
technology.

The construction of the NeXus file must take into consideration the mapping
of the pixel information as detector pixel locations may need to be abstracted
to represent a uniform ordering rather than the order which may have resulted
from producing the detector. For example, the lower left corner of the detector
as viewed from the sample may be defined as the origin, however the detector
as created may not define these pixels in a similar fashion. In these cases, it
is necessary to re-map the pixels to a desired orientation. The mapping process
places the pixels in a relative space, however it is also necessary to locate these
pixels in an absolute space. To do so requires applying instrument geometry
information such as path lengths, orientation angles, and measured information
such as pixel spacing within the detector. Standard samples (such as silicon,
diamond, or other material) can be used to fine-tune the instrument geometry
information.

Experiment related metadata must also be captured and incorporated within
the NeXus files. There is a wide variety of metadata to consider here and in-
corporate properly. The most important information pertains to the parametric
conditions which the test subject, or sample, was under and called the sample
environment metadata. In some cases, the sample environment data can be con-
siderably large itself. Pressure, temperature, and magnetic field are the primary
sample environment data collected. These data must be time-correlated with the
measurements, particularly for event data, to best take advantage of the experiment
information.
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Fig. 10.5 Proteomics mass spectrometry pipeline at PNNL

3.4 Optimization of Single Experiment Analysis

The challenges in chemical imaging analysis stem from large data sets and fast
data generation rates, as well as the drive to faster processing to move from
post analysis to real time analysis and experimental steering. To achieve this
goal the community has principally concentrated on two separate approaches, the
optimization of specific analysis steps or software systems and the automation of
process chains to support smother turn around.

PNNL developed for example a componentized pipeline for the control and
real time analysis of proteomics mass spectrometry experiments (Fig. 10.5), using
its MEDICi workflow system [19]. This is a highly standardized process at the
laboratory and thus lends itself to automation via scientific workflows. The pipeline
combines data intensive analytical software modules, visualization software and
very large databases within a single integration framework (MeDICi). Incoming
spectra from a simulated mass spectrometer are analyzed in real time to determine
the course of processing for individual samples based on comparing them to an
existing results and updating the database of observed mass and time values.
The same spectra are visualized within a central software component along with
additional results of analytical processing. A feedback based on the results of the
analytical processing is initiated back to the instrument which decides whether the
samples have been fragmented already.

This capability provides a spectrum of benefits:

• Processing of already analyzed features is avoided, which allows more efficient
instrument usage and reduces the amount of redundant data generation. This has
positive impact in data richness and speeds the results to the end user.
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• Without the smart instrument control method, experimental results of interest are
usually the hardest to acquire. The described method will lead to more intelligent
data gathering, which will improve analysis quality, reduce costs, and increase
knowledge of the biological systems being studied.

Similarly the Medical College of Wisconsin25 created e.g. an open-source cloud
based environment for the analysis of proteomics results, as their own computing
capacity was insufficient to serve all their users.

Complementary to these automation approaches the community has started to
develop more sophisticated tools for core analysis functions. The US–UK collab-
oration Mantid26 is working for example to consolidate the data analysis software
for neutron scattering experiments by creating a flexible framework that provides a
set of common services, algorithms and data objects. For robustness, the software
aims to be experiment technique independent and supported on Windows, Linux,
and Mac OS platforms. The goal is to provide essential functionality combined with
an easy to use scripting interface, to allow scientists the ability to extend and create
applications. The software is open source and the project currently has 24 active
contributors with almost 600,000 lines of code written. For performance, the data
objects and computation are implemented via the CCC while a python scripting
interface is provided for ease of use and integration. A key feature of Mantid is its
ability to read and process HDF5 based NeXus files which contain event data while
heavily utilizing multi-threading to accelerate performance.

Other efforts focus on the optimization of specific analysis methods. Hereby data
reduction methods can expedite the processing and subsequent feature based anal-
ysis [20, 21], including fusion, segmentation, and visualization. Similarly effective
data compression at different levels of image analysis can aid the faster extraction
of useful information and transfer of data to next analysis step. Segmentation
algorithms must be general and intuitive for the non-expert to utilize, and to
be effective in the field, the algorithms must also exhibit real-time performance.
Current approaches include e.g. advanced suites of tools for segmentation based on
energy minimization with Graph Cuts, Random Walks, and the Power Watershed
frameworks. More work remains to be done to decrease both the computational
complexity and the memory footprint of these approaches. Feature detection is
another critical component in the analysis process, allowing to emphasize feature of
interest by removing disturbing artifacts and background noise [22, 23]. In general,
much effort still needs to be expended to address the efficiency of the analysis
algorithms themselves, many of which remain to date sequential algorithms,
which are not adapted to meet the needs of the data intensive requirements of
experimental analysis. Parallelized algorithms are crucial to real time measurement,
analysis, and control of scientific experiments. Initial efforts at e.g., Lawrence

25http://www.genomeweb.com/informatics/mcw-insilicos-enable-open-source-proteomics-tools-
data-analysis-cloud.
26Mantid Project home page: http://www.mantidproject.org/Main Page.

http://www.genomeweb.com/informatics/mcw-insilicos-enable-open-source-proteomics-tools-data-analysis-cloud
http://www.genomeweb.com/informatics/mcw-insilicos-enable-open-source-proteomics-tools-data-analysis-cloud
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Berkley National Laboratory and ORNL are focusing on the usage of parallel
algorithms and high performance computing to speed up the analysis algorithms
themselves [24].

3.5 Data Exchange, Sharing, and Publication

At the same time that technology transformed how we do research and anal-
ysis, science also transformed with whom we work, research today is much
more collaborative, international and interdisciplinary than it was 50 years ago.
Geographically dispersed collaborations are common practice today, even across
several continents and the single researcher or closed local collaborations are
a rarity nowadays [25, 26]. It is clear that with the advent of a much deeper
understanding of scientific subjects and increasingly complex experimental and
computational technologies a strong individual specialization, not only along the
lines of scientific topics but also research methodologies has taken place [27,28]. On
the other hand societal problems drive funders to encourage science to help with the
solution for much more complex challenges requiring interdisciplinary (integration
of different science domains) and multidisciplinary (several disciplines make a
separate contribution) projects or borrowing (usage of technologies from a different
discipline), thus a much broader, non domain specific scientific knowledge and
information exchange [29]. This exchange forms the basis for the more important
collaborative tasks of co-analysis and visualization of results across techniques and
disciplines.

The general working practices around the sharing of research results have
however not changed much over the past centuries, research publications are still
the main sources of information exchange. Unfortunately publications have certain
limitations in conveying comprehensive information on a particular subject, there
is the restriction in length and thus detail, as well as that its main purpose is
to convey ones point of view rather than necessarily a comprehensive, objective
representation of all facts [30–33]. Publications thus provide at best a very coarse
and high level summary of the research work undertaken by the authors, but are
not suitable in supporting co-analysis tasks. The associated raw and derived data
would be rich source of supporting information, in particular if coupled with the
appropriate metadata and documented scientific workflows [34].

In recognition of the desire by the research community to get access not
only to the summary of a research project, but also the underpinning data, more
publishers today require from their authors that they share their raw and derived
data by depositing it into publicly accessible archives or by providing it on request.
However, recent studies have shown [35, 36] that few authors comply with the
latter requirement, and only the enforced deposition before publication seems to
work. This seems to indicate a continued reluctance to share in-depth research
results with the general research community. Nevertheless a growing awareness
of the value of the produced data as research record in its own right has given
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rise to the creation of a large number of new institutional and community data
collections [37] and an exponential growth of the existing ones [38]. The drivers
for the creation of these collections are usually organizations and funders, rather
than researchers themselves, this is demonstrated by the low data deposition rates
even in highly regulated data publication subjects such as Crystallography were only
around 20% of all determined structures are publicly accessible, a mere 1.3% of all
know Chemical compounds [39].

The advent of citable data publications is however slowly turning the tide in
a number of research communities, in particular organizations such as DataCite27

work to increase the acceptance of research data as legitimate, citable contributions
to the scientific record. The ORCID28 collaboration on the other hand, works on
removing the ambiguity in attributing such research records reliably to specific
scientists.

While researchers may still be reluctant in many fields to share their data
more globally, it is a core necessity for them to share their data and progress
with their fellow collaborators. In 2008 a NSF workshop on “New Models for
scholarly Communication in Chemistry” investigated the merits of introducing new
web based methods of collaboration and communication into chemistry and thus
experimental sciences. Whilst methods such as semantic web, semantic publishing,
open notebook science and data publishing were seen as embryonic at the time
and had not yet found a broader user base, their undoubted potential to enhance
scientific communication was clearly identified [40]. Since then technology has
progressed and a number of interesting developments have emerged in particular
from the former e-Science community. The international LabTrove29 development
combines integrated data management infrastructures for experimental sciences
with online blogging to create a smart research framework. LabTrove integrates
a number of key developments: Electronic Laboratory Notebook, Collaborative
research support through MyExperiment,30 an experimental ontology and a blog
factory [41]. Similarly the PNNL development Velo [42] combines a classical
content management system (Alfresco) with a semantic media Wicki and the
collaborative analytical toolbox (CAT)31 to provide project based collaborative
environment for discussions, data sharing and co-analysis. Velo is currently used
by a wide range of different communities including a number of experimental
groups.

27http://www.datacite.org/.
28http://www.orcid.org/.
29http://www.labtrove.org/.
30http://www.myexperiment.org/.
31http://omics.pnl.gov/software/CAT.php.
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4 Future Directions

A key medium term challenge is the routine co-analysis of scientific results and
the improvement of analysis tools in general to move towards more sophisticated
community tools that are suitable for both high data volumes and real or near-
real time analysis. Initial efforts are emerging to build the necessary infrastructure
and tools that would offer such capabilities. In the longer term data intensive
analysis for experimental facilities should become an integral part of a more general
data intensive environment that combines both experimental and computational
approaches.

4.1 Co-Analysis Across Different Investigative Methods

Today’s scientific challenges are complex and usually require the integration of
a wide range of complementary expertise to be addressed successfully. Research
results from a wide range of experimental imaging technologies, ranging from
nano to macroscale, need to be brought together to form a coherent synergistic
picture. At present, however, scientists are usually only familiar with a very limited
range of experimental technologies. Each of these different technologies currently
requires in-depth domain knowledge to enable the user to use the technique correctly
and to be able to interpret the results correctly. Each scientist can therefore only
make use of a very limited palette of experimental technologies. They are thus
limited in their ability to synthesize and connect their own research with the work
of others, who are investigating the same or related topics, but with different
experimental technologies. The ability to go beyond such limitations through a clear
understanding of what each of these technologies delivers in terms of scientific
insights, and the ability to synthesize results across a wide spectrum of imaging
technologies would be a powerful catalyst for the quality and pace at which scientific
research and discovery can be carried out. In addition, it would be crucial for the
faster exploitation of those results by industry and academics.

Image informatics is a developing interdisciplinary field of research that encom-
passes computer science, statistics, engineering, mathematics, information science,
as well as the natural sciences. The primary challenge is to maximize experimental
outcomes by enabling the correct end to end analysis. If an important bit of data
or metadata is lost or converted into the wrong form for preservation, it is gone
and expensive experiments do not reach their potential or have to be repeated.
The focus of current research in PNNL’s Chemical Imaging Initiative32 is to
define a framework for chemical imaging co-analysis (Fig. 10.6). This framework

32http://www.pnl.gov/science/research/chemicalimaging/.

http://www.pnl.gov/science/research/chemicalimaging/
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Fig. 10.6 High level framework overview

will necessarily include capabilities for data preservation, data description, data
management, and data analysis. There is currently no suitable framework available
or under development worldwide that the authors are aware of that appropriately
handles the multitude of chemical imaging methodologies and the petabytes of
data expected to be generated. The routine co-analysis of experimental results
from different imaging technologies has so far not been addressed. The proposed
framework will bring together a range of existing research concepts in the areas
of semantic mapping and rules, workflows, and core technologies for the capture,
analysis and integration of experimental data, integrate and develop these further to
create this unique capability.

The workflow architecture and the semantic framework will ensure the coherence
of the knowledge capture, exploitation and usage by the different components. The
framework raises the integration needs with emerging requirements on functions,
data types, semantics and real-time properties of the workflow to be addressed at
an overarching level. The group anticipates that the data exchange between imaging
technologies will be complex and intensive (petabytes of data to be generated), with
the rapid growths of data sets spanning different spatial and temporal scales. In
response to the challenges of data intensive integration of imaging technologies,
this architecture is being built by leveraging PNNL’s MeDICi (Middleware for Data
Intensive Computing). MeDICi is a middleware platform for building complex, high
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performance analytical applications. It has been proven efficient and successful
as the communication backbone and execution environment for scientific and
analytic domain applications. Leveraging MeDICi, the group aims to explore the
transformations needed to take data from one technique, tool, or application and feed
it into another during the workflow execution. The project focuses on identifying the
intrinsic linkage of the imaging technologies and understanding data characteristics.

The semantic component of the framework will consist of four components:
Characterization, Relation, Analysis, and Representation. Basic concepts for these
areas have been developed and tested for a range of projects [43–45]. However,
these were never applied collectively, nor integrated to capture domain knowledge
in an easily usable form.

Starting with six key imaging technologies initially chosen for the initiative, the
group will develop formal characterizations of the methods, instruments, samples,
analysis processes, and data products associated with each of these, detailing
in particular what each method contributes to the overall domain knowledge
Furthermore, they will determine how each of these methodologies relates to the
others (for example A refines B, A complements B by adding X), thus building a
formalized topology of the methods, their contribution, and constraints. Based on
these initial characterizations they formalize their functionalities, so that it can be
extended to other techniques and utilized by a wider community.

A further enabling technology identified for the success of the framework is the
ability for distributed analysis. The instrumentation used to collect experimental
data is expected to continue to improve in resolution and size, thus resultant data
sets can grow into the multi petabyte range. Furthermore the facilities housing these
results will be geographically distributed. While it is possible today to transfer a
few terabytes of data across thousands of miles in a day, poor and unpredictable
data transfer rates are the norm over long distances on wide area networks. If the
performance of long-distance file transfers cannot be assured, the best alternative
is to minimize the quantity of data that must be transferred. Failing that, the
computation must be brought to the data. The initiative will therefore investigate
new analysis methods that can work across distributed data sets.

In this light there has also been a recent proposal to establish a user facility
network (UFnet) which would facilitate inter-facility data movement and manage-
ment [46]. An initial focus would be the routine integration of multi-technique data
from X-ray and neutron sources. Tech-X Corporation’s open source tool Orbiter33

provides in this context for example:

• Secure User and Management Interface: Users, managers, and resource providers
demand a rich environment of tools, tutorials, documentation, and customizable
interfaces that can be accessed from Internet capable mobile phones, laptops, and
workstations.

33https://orbiter.txcorp.com.

https://orbiter.txcorp.com
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• Scalable Virtual Organization and Community Management: We envision not
only capitalizing on role-based infrastructures but also providing federated
community identity management capabilities. It is essential that a scalable
management infrastructure provide the ability for DOE stakeholders to audit and
organize their personnel usage by project, department, or service type.

• Dynamic User-Centric Compute and Storage Resource Status: Up-to-date re-
source status, state, and load is required to dynamically scale enterprise service
infrastructures to meet the stake holder throughput, storage, and bandwidth
requirements for all resources.

• Reliable Resource Configuration and Management: Efficient and reliable in-
frastructure application deployment and configuration management provides
the feedback necessary for optimizing the deployed applications and services
required to differentiate the Orbiter UFnet production and productivity systems.

• Easy to use access to HPC mechanisms, via thick and thin clients supporting
Service Oriented Architecture (SOA) based services consist of standards-based
components that are reusable and extensible for accessing high performance
computing, data and computational grid infrastructure, and cluster-based re-
sources easily from a user configurable interface.

• A prototype network node services to enable off-line and online simultaneous
multi-technique experiment and analysis for X-ray scattering at APS and neutron
scattering at SNS is shown in Fig. 10.7.

4.2 Long Term Perspective

For the future it is hoped that data will work for scientists rather than scientists
working for their data – network, data, computing infrastructure, and software will
be synergistically integrated to better enable collaborative pursuit of scientific dis-
coveries resulting from experiments performed at user facilities. Data management
and analysis would hereby be a central component of any such solution and data
issues would be considered as an integral component of any system design [47].
A range of forward looking white papers on data intensive science have discussed
the issues involved in establishing such wide reaching infrastructures and proposed
options for the way forward [48–52]. Each of these is focused on seamless access
to research data and the provision of advanced analysis capabilities.

Open Access and Data Curation (long term preservation for reuse) issues have
long driven the development of standards, methods and infrastructures for data
intensive science in Europe. The 2008 update to the roadmap of the European
Strategy Forum on Research Infrastructures (ESFRI) lists for the first time the
need not only for leading edge experimental and computational facilities to drive
future scientific progress, but also adds the importance of an underpinning e-
infrastructure consisting of integrated communication networks, distributed grids,
high performance computing, and digital repositories components. ESFRI states
further that data in their various forms (from raw data to scientific publications)



10 Challenges in Data Intensive Analysis at Scientific Experimental User Facilities 279

Fig. 10.7 User facility network prototype science case study features and functionality

will need to be stored, maintained and made available and openly accessible to all
scientific communities. They are placing a new emphasize on digital repositories
as places to capture and curate the scientific data both for the good of science and
the economy. Intellectual and Technological progress in these areas has particularly
been driven by centers of excellence, large scale long term infrastructure projects
and organizations with visionary leadership and an in-depth understanding of data
intensive sciences. Key examples for international centre’s and projects are: UK
Data Curation Centre,34 US SciDAC SDM centre, the Earth Systems Grid35 and its
international Partners, e-Infrastructure for Large Scale Experimental Facilities [13]
and the Biomedical Informatics Research Network (BIRN36). These projects have
clearly demonstrated the potential of data intensive science technologies; however
as the report ‘Data-Intensive Research Theme’ [49] notes ‘Current strategies for
supporting it demonstrate the power and potential of the new methods. However,
they are not a sustainable strategy as they demand far too much expertise and help in
addressing each new data-intensive task’. This and other recent publication [48,51]
clearly show the community consensus that more generalized, easy to use solutions

34http://www.dcc.ac.uk/.
35http://www.earthsystemgrid.org/.
36http://www.birncommunity.org/.

http://www.dcc.ac.uk/
http://www.earthsystemgrid.org/
http://www.birncommunity.org/
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need to be developed to make a more wide spread use of these basic data intensive
technologies possible. Thought leaders are also pointing out, that while the current
developments of infrastructure surrounding the management of data continue to be
important, it is time to go beyond these basic approaches and focus on the data
itself – developing the means to transform data into an infrastructure in its own
right. In response the European Union announced in 2010 a high level funding
opportunity to develop new seamless infrastructure demonstrators across a wide
range of computational and experimental resources, with the first projects set to
start in late 2011.

In the US the National Science Foundation has proved to be a driving force for
change, by requiring structured data management plans from all grant applicants.
Furthermore the NSF is in regular discussions with its European counter parts to
explore the potential for a harmonization of policies and infrastructures. A recent
NSF-OCI Task Force on Data and Visualization recommended to [53]:

• Identify and share best-practices for the critical areas of data management
• Effectively and securely offer data services/access to various stakeholder com-

munities
• Associate scientific publications with the underlying data and software assets (to

improve the reproducibility of science)

5 Conclusions

Experimental research methods can offer fundamental insights, gained through
a large variety of investigative methods, to help address pressing, complex sci-
entific challenges. Hereby direct imaging methods are used to probe structure,
properties, and function of objects from single elements to whole communities,
helping to develop an atomistic understanding of scientific issues. Advances in
the underlying experimental technologies have lead to an exponential growth in
the volumes, variety and complexity of data derived from such methodologies,
making experimental science a very data intensive field of science. This exceptional
growth in data volumes and complexity has presented researchers with significant
challenges, foremost how to effectively analyze the results of their research both
for single experiments and increasingly across different investigative methods. Key
issues are:

• Algorithms are often unable to handle the increasing volumes and diversity of
the data either at all or in a timely fashion

• The community requirement for real time analysis cannot be met with present
solutions

• While it has been acknowledged that scientific discovery, like medical diagnosis
of a patient’s condition, require integration of inputs and findings from a number
of sources there are no routine co-analysis techniques available to the community
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Furthermore experimental analysis relies heavily on the availability of a support-
ing eco-system of data management, movement, security, and collaboration services
to be successful.

Community efforts so far have largely concentrated on the improvement of
data management eco-system at experimental facilities by developing policies,
standards, and integrated infrastructures. The optimization of single experiment
analysis through improved methods and automated analysis pipelines has been a
more recent focus of the community’s research efforts, with a number of exemplary
successes in the area of automation. Only a few small developments are currently
emerging in the field of collaboration support for experimental sciences. Initial
research work is emerging focused on building the necessary infrastructure and tools
to support routine co-analysis of scientific results; however, these projects are still in
their infancy and so this domain is seen as a fertile growth area with many research
challenges still ahead.

Overall, while progress is being made on the development of supportive data
management eco-systems, the key data intensive analysis challenges for experi-
mental facilities remain. There is a critical lack of analytical methods that can
routinely and reliably handle the growing volume and diversity of data, support real
time and co-analysis. Image informatics the interdisciplinary field of research that
encompasses computer science, statistics, engineering, mathematics, information
science and natural sciences, as well as data intensive science research itself would
seem to offer the most promising approaches to solving these analysis challenges
and enable the crucial progress for experimental sciences.
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