ALEGRA-HEDP simulations of the dense plasma focus.

PDF Version Also Available for Download.

Description

We have carried out 2D simulations of three dense plasma focus (DPF) devices using the ALEGRA-HEDP code and validated the results against experiments. The three devices included two Mather-type machines described by Bernard et. al. and the Tallboy device currently in operation at NSTec in North Las Vegas. We present simulation results and compare to detailed plasma measurements for one Bernard device and to current and neutron yields for all three. We also describe a new ALEGRA capability to import data from particle-in-cell calculations of initial gas breakdown, which will allow the first ever simulations of DPF operation from the ... continued below

Physical Description

28 p.

Creation Information

Flicker, Dawn G.; Kueny, Christopher S. (Hewlett-Packard Company) & Rose, David V. September 1, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We have carried out 2D simulations of three dense plasma focus (DPF) devices using the ALEGRA-HEDP code and validated the results against experiments. The three devices included two Mather-type machines described by Bernard et. al. and the Tallboy device currently in operation at NSTec in North Las Vegas. We present simulation results and compare to detailed plasma measurements for one Bernard device and to current and neutron yields for all three. We also describe a new ALEGRA capability to import data from particle-in-cell calculations of initial gas breakdown, which will allow the first ever simulations of DPF operation from the beginning of the voltage discharge to the pinch phase for arbitrary operating conditions and without assumptions about the early sheath structure. The next step in understanding DPF pinch physics must be three-dimensional modeling of conditions going into the pinch, and we have just launched our first 3D simulation of the best-diagnosed Bernard device.

Physical Description

28 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2009-6373
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/1000284 | External Link
  • Office of Scientific & Technical Information Report Number: 1000284
  • Archival Resource Key: ark:/67531/metadc830499

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2009

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 2, 2016, 7:14 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Flicker, Dawn G.; Kueny, Christopher S. (Hewlett-Packard Company) & Rose, David V. ALEGRA-HEDP simulations of the dense plasma focus., report, September 1, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc830499/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.