Effect of Centrifugal Transverse Wakefield for Microbunch in Bend

PDF Version Also Available for Download.

Description

We calculate centrifugal force for a short bunch in vacuum moving in a circular orbit and estimate the emittance growth of the beam in a bend due to this force. Many of the basic features of the coherent synchrotron radiation (CSR) of short bunches and its effect on beam dynamics in accelerators are now well established. The effect is usually described in terms of the longitudinal force, or wakefield, that causes the energy loss in the beam, and also redistributes the energy between the particles by accelerating the head and decelerating the tail of the bunch. Coherent radiation becomes most ... continued below

Physical Description

16 pages

Creation Information

Stupakov, G. V. March 22, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We calculate centrifugal force for a short bunch in vacuum moving in a circular orbit and estimate the emittance growth of the beam in a bend due to this force. Many of the basic features of the coherent synchrotron radiation (CSR) of short bunches and its effect on beam dynamics in accelerators are now well established. The effect is usually described in terms of the longitudinal force, or wakefield, that causes the energy loss in the beam, and also redistributes the energy between the particles by accelerating the head and decelerating the tail of the bunch. Coherent radiation becomes most important for short bunches and high currents. More subtle features of CSR such as transition effect due to the entrance to and exit from the bend, CSR force in the undulator, and shielding due to the close metallic boundaries have been also studied. Much less is known about the transverse force in a short bunch moving on a circular orbit. The problem has been treated in several papers beginning from R. Talman's work, who pointed out that the centrifugal force of a rotating bunch can result in a noticeable tune shift of betatron oscillations. Later, an important correction to the Talman paper has been added, where it was shown that due to the energy variation in the bunch, the effect of the transverse force proportional to R{sup -1} is canceled, and the residual effect is of the order of R{sup -2}, that is much smaller than originally predicted. Recently, however, Derbenev and Shiltsev found the centrifugal force of the order of R{sup -1} that differs from Talman's result by a logarithmic factor only. Taking into account the existing controversy in the literature, in this paper, we consider the transverse force in a bunch based on simple physical arguments, starting from a dc beam. We will derive the centrifugal force for a relativistic coasting beam in vacuum, and then generalize the result for a short bunch, and estimate its effect on the emittance growth in a bend. Throughout this paper we assume ultrarelativistic beam, v = c, moving on a circular orbit of radius R.

Physical Description

16 pages

Source

  • Journal Name: AIP Conf.Proc.468:334-347,1999; Conference: Presented at 16th ICFA Beam Dynamics Workshop on Nonlinear and Collective Phenomena in Beam Physics, Arcidosso, Italy, 1-5 Sep 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-8028
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 1035133
  • Archival Resource Key: ark:/67531/metadc830482

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 22, 2006

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Sept. 26, 2017, 1:33 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Stupakov, G. V. Effect of Centrifugal Transverse Wakefield for Microbunch in Bend, article, March 22, 2006; United States. (digital.library.unt.edu/ark:/67531/metadc830482/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.