Methods for Optical Calibration of the BigBite Hadron Spectrometer

PDF Version Also Available for Download.

Description

The techniques for optical calibration of Jefferson Lab's large-acceptance magnetic hadron spectrometer, BigBite, have been examined. The most consistent and stable results were obtained by using a method based on singular value decomposition. In spite of the complexity of the optics, the particles positions and momenta at the target have been precisely reconstructed from the coordinates measured in the detectors by means of a single back-tracing matrix. The technique is applicable to any similar magnetic spectrometer and any particle type. For 0.55 GeV/c protons, we have established the vertex resolution of 1.2 cm, angular resolutions of 7 mrad and 16 ... continued below

Physical Description

20-30

Creation Information

M. Mihovilovic, K. Allada, B.D. Anderson, J.R.M. Annand, T. Averett, A. Camsonne, R.W. Chan, J.-P. Chen, K. Chirapatpimol, C.W. de Jager, S. Gilad, D.J. Hamilton, J.-O. Hansen, D.W. Higinbotham, J. Juang, X. Jiang, G. Jin, W. Korsch, J.J. LeRose, R.A. Lindgren, N. Liyanage, E. Long, R. Michaels, B. Moffit, P. Monaghan, V. Nelyubin, B.E. Norum, E. Piasetzky, X. Qian, Y. Qiang, S. Riordan, G. Ron, G. Rosner, B. Sawatzky, M. Shabestari, A. Shahinyan, R. Shneor, S. Sirca, R. Subedi, V. Sulkosky, J.W. Watson, B. Wojtsekhowski, Y.-W. Zhang September 1, 2012.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The techniques for optical calibration of Jefferson Lab's large-acceptance magnetic hadron spectrometer, BigBite, have been examined. The most consistent and stable results were obtained by using a method based on singular value decomposition. In spite of the complexity of the optics, the particles positions and momenta at the target have been precisely reconstructed from the coordinates measured in the detectors by means of a single back-tracing matrix. The technique is applicable to any similar magnetic spectrometer and any particle type. For 0.55 GeV/c protons, we have established the vertex resolution of 1.2 cm, angular resolutions of 7 mrad and 16 mrad (in-plane and out-of-plane, respectively), and a relative momentum resolution of 1.6%.

Physical Description

20-30

Source

  • Journal Name: Nuclear Instruments and Methods in Physics Research, Section A; Journal Volume: 686

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-PHY-12-1410
  • Report No.: DOE/OR/23177-1973
  • Report No.: arXiv:1201.1442
  • Grant Number: AC05-06OR23177
  • DOI: 10.1016/j.nima.2012.04.085 | External Link
  • Office of Scientific & Technical Information Report Number: 1043258
  • Archival Resource Key: ark:/67531/metadc830476

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 3, 2016, 6:36 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

M. Mihovilovic, K. Allada, B.D. Anderson, J.R.M. Annand, T. Averett, A. Camsonne, R.W. Chan, J.-P. Chen, K. Chirapatpimol, C.W. de Jager, S. Gilad, D.J. Hamilton, J.-O. Hansen, D.W. Higinbotham, J. Juang, X. Jiang, G. Jin, W. Korsch, J.J. LeRose, R.A. Lindgren, N. Liyanage, E. Long, R. Michaels, B. Moffit, P. Monaghan, V. Nelyubin, B.E. Norum, E. Piasetzky, X. Qian, Y. Qiang, S. Riordan, G. Ron, G. Rosner, B. Sawatzky, M. Shabestari, A. Shahinyan, R. Shneor, S. Sirca, R. Subedi, V. Sulkosky, J.W. Watson, B. Wojtsekhowski, Y.-W. Zhang. Methods for Optical Calibration of the BigBite Hadron Spectrometer, article, September 1, 2012; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc830476/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.