First-principles investigations of Ni3Al(111) and NiAl(110) surfaces at metal dusting conditions

PDF Version Also Available for Download.

Description

We investigate the structure and surface composition of the {gamma}{prime}-Ni{sub 3}Al(111) and {beta}-NiAl(110) alloy surfaces at conditions relevant for metal dusting corrosion related to catalytic steam reforming of natural gas. In regular service as protective coatings, nickel-aluminum alloys are protected by an oxide scale, but in case of oxide scale spallation, the alloy surface may be directly exposed to the reactive gas environment and vulnerable to metal dusting. By means of density functional theory and thermochemical calculations for both the Ni{sub 3}Al and NiAl surfaces, the conditions under which CO and OH adsorption is to be expected and under which ... continued below

Physical Description

582

Creation Information

Saadi, Souheil March 1, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We investigate the structure and surface composition of the {gamma}{prime}-Ni{sub 3}Al(111) and {beta}-NiAl(110) alloy surfaces at conditions relevant for metal dusting corrosion related to catalytic steam reforming of natural gas. In regular service as protective coatings, nickel-aluminum alloys are protected by an oxide scale, but in case of oxide scale spallation, the alloy surface may be directly exposed to the reactive gas environment and vulnerable to metal dusting. By means of density functional theory and thermochemical calculations for both the Ni{sub 3}Al and NiAl surfaces, the conditions under which CO and OH adsorption is to be expected and under which it is inhibited, are mapped out. Because CO and OH are regarded as precursors for nucleating graphite or oxide on the surfaces, phase diagrams for the surfaces provide a simple description of their stability. Specifically, this study shows how the CO and OH coverages depend on the steam to carbon ratio (S/C) in the gas and thereby provide a ranking of the carbon limits on the different surface phases.

Physical Description

582

Source

  • Journal Name: Submitted to Surface Science; Journal Volume: 605; Journal Issue: 5-6

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-14366
  • Grant Number: AC02-76SF00515
  • DOI: 10.1016/j.susc.2010.12.023 | External Link
  • Office of Scientific & Technical Information Report Number: 1007545
  • Archival Resource Key: ark:/67531/metadc830432

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 28, 2016, 4:26 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Saadi, Souheil. First-principles investigations of Ni3Al(111) and NiAl(110) surfaces at metal dusting conditions, article, March 1, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc830432/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.