Final Report Summary of DM1200 Operation at VSL VSL-06R6710-2, Rev. 0, 9/7/06

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

Office of River Protection

P.O. Box 450 Richland, Washington 99352

> Approved for Public Release; Further Dissemination Unlimited

Final Report Summary of DM1200 Operation at VSL

VSL-06R6710-2, Rev. 0, 9/7/06

K. S. Matlack Vitreous State Laboratory, The Catholic University of America

A. A. Kruger Department of Energy - Office of River Protection G. Diener T. Bardakci I. L. Pegg Vitreous State Laboratory, The Catholic University of America

Date Published December 2011

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

Office of River Protection

P.O. Box 450 Richland, Washington 99352

Release Approval Date 12/29/2011

Approved for Public Release; Further Dissemination Unlimited

TRADEMARK DISCLAIMER

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy.

Printed in the United States of America

VSL-06R6710-2

Final Report

Summary of DM1200 Operation at VSL

prepared by

Keith S. Matlack, Glenn Diener, Tevfik Bardakci, and Ian L. Pegg

Vitreous State Laboratory The Catholic University of America Washington, DC 20064

for

Duratek, Inc.

>10/10/06 tar W. Tomoscitu ACCEPTED FOR

WTP PROJECT USE

and

Bechtel National, Inc.

July 10, 2006

Rev. 0, 9/7/06

1

The Catholic University of America Vitreous State Laboratory

Summary of DM1200 Operation at VSL Final Report, VSL-06R6710-2, Rev. 0

Document Title:

Summary of DM1200 Operation at VSL

Document Number and Revision:VSL-06R6710-2, Rev. 0Issue Date:9/7/06Performing Organization:Vitreous State Laboratory, The Catholic University of America

Test Specifications:Various, as listed in the primary test reports referenced herein.Test Plans:Various, as listed in the primary test reports referenced herein.R&T Focus Area(s):HLW Vitrification, HLW Off-Gas, LAW Off-GasTest Scoping Statement(s):VH-4, VHO-3, VHO-1, VLO-5, VLO-1

Completeness of Testing:

This report describes the results of work and testing specified by the above-referenced Test Specifications, Test Plans, and Test Exceptions. The work and any associated testing followed established quality assurance requirements and were conducted as authorized. The descriptions provided in this report are an accurate account of both the conduct of the work and the data collected. Results required by the Test Plans are reported. Also reported are any unusual or anomalous occurrences that are different from the starting hypotheses. The test results and this report have been reviewed and verified.

I.L. Pegg: **VSL Program Director/Principal** estigator

Date:

I. Joseph: Duratek Sub-Contract Mana

06 Date:

2

Table of Contents

List of Tables		4
List of Figures		5
List of Abbrev	riations	9
SUMMARY (DF TESTING	10
SECTION 1.0	INTRODUCTION	16
SECTION 2.0	DM1200 SYSTEM DESCRIPTION AND MAINTENANCE	18
2.1 Melt	er System Description	18
2.2 Land	e Bubblers	19
2.3 DM	1200 Maintenance History	20
2.3.1	Thermocouples	20
2.3.2	Thermowells	21
2.3.3	Level Detector	21
2.3.4	Discharge Air Lance	22
2.3.5	Discharge Heaters	22
2.4 Curr	ent State of the DM1200 Melter	23
2.4.1	DM1200 Construction Details	23
2.4.2	DM1200 Inspection	23
SECTION 3.0	DM1200 GLASS PRODUCTION RATES	26
SECTION 4.0	DM1200 FILM COOLER AND TRANSITION LINE	31
4.1 Film	Cooler Operation	31
4.2 Film	Cooler and Transition Line Inspections	34
4.2.1	Inspection After LAW Sub-Envelope C1 Test [10]	34
4.2.2	Inspection After LAW Sub-Envelope A1 Test [14]	35
4.2.3	Inspection After HLW C-104/AY-101 Test [28]	36
4.2.4	Inspection During and After HLW Configuration Tests [30]	36
4.2.5	Inspection After LAW Production Rate and Foaming Tests [31]	39
4.2.6	Inspection After MACT Tests [41]	39
SECTION 5.0	DM1200 EMISSIONS	41
SECTION 6.0	SUMMARY AND CONCLUSIONS	45
SECTION 7.0	REFERENCES	48

List of Tables

Table 1.1.	Summary of Melter Tests Conducted on the DM1200 at VSL. Test Summary for DuroMelter 1200 HI W A7, 101 Commissioning Tests	T-1
14010 1.2.	(VSL-01R0100-2) [3].	T-3
Table 1.3.	Summary of Test Conditions and Results for HLW AZ-101 Tests 1-9	т 4
Table 1.4.	Summary of Test Conditions and Results using LAW Sub-Envelope C1	1-4
	Feed with Iodine (VSL-02R8800-1) [10]. (Process Engineering Data)	T-7
Table 1.5.	Summary of Test Conditions and Results using LAW Sub-Envelope A1	
Tabla 1 6	with Iodine (VSL-02R8800-2) [14]. (Process Engineering Data)	T-8
1 able 1.0.	Variable Amounts of Water and Noble Metals (VSL -03R 3800-4) [17]	Т_9
Table 1.7.	Summary of Test Conditions and Results Using LAW Sub-Envelope B1 Feed	1-2
	with Iodine (VSL-03R3851-1) [21].	T-12
Table 1.8.	Summary of DM1200 Test Conditions and Results Using HLW AZ-102 Feed	
	with Iodine (VSL-03R3800-2) [23].	T-13
Table 1.9.	Summary of Test Conditions and Results Using HLW C-106/AY-102 Feed	
T-1-1 1 10	with Cesium and Iodine (VSL-03R3800-1) [26].	T-14
Table 1.10.	Summary of DM1200 Test Conditions and Results Using HL w C-104/AY-101 Feed with Cesium and Iodine (VSL 03P3800 3) [28]	Т 15
Table 1 11	Summary of DM1200 Test Conditions and Results Using HLW C-106/AY-102	1-15
	Feed (VSL-04R3800-1) [29].	T-16
Table 1.12.	Summary of DM1200 AZ-101 Feed Test Conditions and Results (VSL-04R4800-4) [30].	T-19
Table 1.13.	Summary of Test Conditions and Results for Turnover Tests using LAW	
	Sub-Envelope C1 and LAW Envelope A (VSL-04R4851-1) [31].	T-25
Table 1.14.	Summary of Test Conditions and Results for LAW Envelope C Rate Test	т ос
Table 1 15	(VSL-04K4651-1)[51]. Summary of DM1200 Test Conditions and Results Using I AW Envelopes	1-20
14010 1.15.	A and C and Various HLW Feeds (VSL-03L4850-1) [34]	T-27
Table 1.16.	Summary of DM1200 AZ-102 and C-106/AY-102 Test Conditions and Results	12,
	(VSL-05R5800-1)[35].	T-28
Table 1.17.	Summary of HLW MACT Test Conditions and Results (VSL-05R5830-1) [41].	T-29
Table 1.18.	Summary of LAW MACT Test Conditions and Results (VSL-05R5830-1) [41].	T-30
Table 2.1.	Chronology of the DMI200 Melter Maintenance and Inspections.	T-31
Table 2.2. Table 2.3	Summary of Thermocouple Replacements on the DM1200.	1-83
1 aute 2.3.	Replacements on the DM1200	Т-84
Table 2.4.	Summary of Discharge Heater Replacements on the DM1200.	T-85
Table 3.1.	Tests Performed with Final HLW Bubbler Configuration.	T-86
Table 3.2.	Rate Increase from Improved Bubbler Configuration.	T-87
Table 4.1.	Summary of Manual Cleanings of the DM1200 Film Cooler.	T-88
Table 4.2.	Summary of DM1200 Transition Line Blockages.	T-89
Table 4.3.	Solid Deposits Removed During DM1200 Tests. DCD Applyzad Composition of Solid Deposits Collected Dyring DM1200	1-90
18010 4.4.	Tests (wt%)	T_91
Table 5.1.	Melter Emission Rates.	T-92

List of Figures

Figure 2.1.	Cross-section of the DM1200 melter through the discharge chamber.	F-1
Figure 2.2.	Cross-section through the DM1200 melter showing electrodes.	F-2
Figure 2.3.	Single Outlet "J" Bubbler.	F-3
Figure 2.4.	Single Outlet "L" Bubbler.	F-4
Figure 2.5.	Double Outlet "J" Bubbler.	F-5
Figure 2.6.	Placement of 4 single outlet bubblers simulating 2 double outlet bubblers;	
U	8" separation between outlets on each side of the melter.	F-6
Figure 2.7.	Placement of 4 single outlet bubblers simulating 2 double outlet bubblers;	
C	14" separation between outlets on each side of the melter.	F-7
Figure 2.8.	Double Outlet "J" Bubbler.	F-8
Figure 2.9.	Placement of double outlet bubblers.	F-9
Figure 2.10.	Schematic of the DM1200 discharge chamber showing the location and	
0	numbering of heaters.	F-10
Figure 2.11.	Typical discharge heater in the modified ceramic isolator. This assembly	
- 0	was installed in metal sheathed located in the discharge chamber.	F-11
Figure 2.12.	View of the south and east DM1200 K-3 refractory (north and west	
8	walls removed for clarity)	F-12
Figure 2.13.	View of the north and east walls of the DM1200 plenum refractory	
8	(south and west walls removed for clarity)	F-13
Figure 2.14.	View of the south and west walls of the DM1200 plenum refractory	1 10
8	(north and east walls removed for clarity)	F-14
Figure 2.15	View of the south wall plenum refractory in the DM1200	F-15
Figure 2.16	View of the plenum refractory on the east wall of the DM1200	F-16
Figure 2.17	View of the plenum refractory on the north wall of the DM1200	F-17
Figure 2.18	View of the plenum refractory on the west wall of the DM1200	F-18
Figure 2.10	View of the plenum refractory in the southwest corner of the DM1200	F-19
Figure 2.20	View of the inside of the DM1200 discharge chamber showing the	1 17
1 igure 2.20.	fiberboard walls and the end of the discharge trough	F- 20
Figure 2.21	View of the bottom of the discharge trough through the view port on the	1 20
1 19010 2.21.	south wall of the discharge chamber	F-21
Figure 2.22	View up the discharge trough showing the top edge of trough	F-22
Figure 3.1	Schematic representation of the variation over time of the required HLW	1 22
1 igure 5.1.	glass production rates for the DM1200 and the projected solids content	
	of the HI W feed from pretreatment	F-23
Figure 3.2	Comparison of steady state glass production rates for HI W $\Delta 7_{-101}$	1-25
1 igure 5.2.	melter tests without hubbling and with hubbling using two single	
	outlet hubblers [3, 9]	F-24
Figure 3.3	Glass production rates for HI W A7-101 waste simulants with hubbling	1-2-1
i iguit 5.5.	using two single outlet hubblers [17]	F-25
Figure 3.4	Comparison of steady state glass production rates for HI W A7-101	1-25
Figure 5.4.	melter tests using two single outlet bubblers [17]	F-26
Figure 3.5	Comparison of steady state glass production rates for 20% IDS HI W	1-20
i iguie 5.5.	waste simulants using two single outlet hubblers [17, 23, 26, 28]	F-27
Figure 3.6	Comparison of steady state glass production rates for HI W waste	1-27
- igure 5.0.	simulants of varying viscosities using two single outlet hubblers	
	at 65 lpm [23, 26, 35]	ር ንዩ
Figure 2.7	ar 05 ipin [25, 20, 55]. Steady state class production rates for HI W A7, 101 worth simulants	r-20
rigure 5.7.	obtained during hubbler configuration texts [20]	E 20
	ootamee eering bubbler configuration tests [50].	г-29

Figure 3.8.	Comparison of steady state glass production rates for HLW AZ-101	
e	melter tests using two single outlet bubblers [30].	F- 3 0
Figure 4.1.	Schematic of the DM1200 film cooler.	F-31
Figure 4.2	Typical views of particulate buildup/plugging of the film cooler	F-32
Figure 43	Glass pool hubbling rate versus film cooler DP for the HLW A7-102 tests [35]	F-33
Figure 4.4	Glass pool bubbling rate versus film cooler DP from Test 9 employing the optimum	1-55
riguit 4.4.	bubbler configuration [30]	F 34
Eigura 45	Close need bubbling rate versus film ecoler DD from Test 8 of the entimum	1-34
Figure 4.5.	bubbler configuration tests [20]	E 25
Electric A.C.	Classical bubble configuration tests [50].	г-ээ г эс
Figure 4.6. Γ	Glass pool bubbling rates from 1 est 1 of the bubbler configuration tests [30].	F-30
Figure 4.7.	Layout of film cooler and transition line sections.	F-37
Figure 4.8.	View of top of the installed film cooler after tests (pre-cleaning) with LAW	T 20
T ' 10	Sub-Envelope Al simulants.	F-38
Figure 4.9.	View of top of the removed film cooler after tests (pre-cleaning) with LAW	
	Sub-Envelope A1 simulants.	F-38
Figure 4.10.	View of bottom of the removed film cooler (pre-cleaning) after tests	
	with LAW Sub-Envelope A1 simulants.	F-39
Figure 4.11.	Close-up view of bottom of the removed film cooler (pre-cleaning) after	
	tests with LAW Sub-Envelope A1 simulants.	F -3 9
Figure 4.12.	View of fractured bottom ring of the film cooler (pre-cleaning) after tests	
	with LAW Sub-Envelope A1 simulants.	F-40
Figure 4.13.	View of the bottom ring and throat of the film cooler (pre-cleaning) after	
	tests with LAW Sub-Envelope A1 simulants.	F-40
Figure 4.14.	Another bottom view of the film cooler (pre-cleaning) after tests with	
C	LAW Sub-Envelope A1 simulants.	F-41
Figure 4.15.	View of detachment of the film cooler bottom ring (pre-cleaning) after	
e	tests with LAW Sub-Envelope A1 simulants.	F-41
Figure 4 16	View of glass and weld beneath the failed region of film cooler	
8	(pre-cleaning) after tests with LAW Sub-Envelope A1 simulants	F-42
Figure 4 17	View of louvers of the film cooler (pre-cleaning) after tests with LAW	1 12
ingate	Sub-Envelope A1 simulants	F-42
Figure 4 18	View of louvers of the film cooler (pre-cleaning) after tests	1 12
inguie 1.10.	with I AW Sub-Envelope A1 simulants	F_43
Figure 4 10	Side view of the film cooler (pre. cleaning) after tests with LAW	1 15
Figure 4.17.	Sub Envelope A1 simulants	E /3
Figure 4.20	View of demoge to the bottom ring of film cooler (post cleaning) ofter	1-43
Figure 4.20.	tests with LAW Sub Envalore. A1 simulants	E 44
Eigura 4 21	View of lowers of the film ecolor (next electring) ofter tests with LAW	г-44
Figure 4.21.	Sub Envalore A1 simulanta	E 44
Firm 4.22	Sub-Envelope AT simularis.	r-44
Figure 4.22.	view of exit end of the film cooler (post cleaning) after tests with LAW	T 46
T. 100	Sub-Envelope AT simulants.	F-45
Figure 4.23.	Close-up view of exit end of the film cooler (post cleaning) after tests	
	with LAW Sub-Envelope AI simulants.	F-45
Figure 4.24.	SEM micrograph of a sample removed from the film cooler bottom ring	
	after tests with LAW Sub-Envelope A1 simulants.	F-46
Figure 4.25.	View of flexible bellows (pre-cleaning) during tests with LAW	
	Sub-Envelope A1 simulants VSL-02R8800-2 [14].	F-47
Figure 4.26.	Inside view of the SBS-side of the flexible bellows (pre-cleaning)	
	after 121.6 hours of operations during tests with LAW Sub-Envelope	
	A1 simulants VSL-02R8800-2 [14].	F-47
Figure 4.27.	Film cooler inlet after tests with HLW C-104/AY-101 simulants [28].	F-48
Figure 4.28.	Film cooler inlet close-up after tests with HLW C-104/AY-101 simulants [28].	F-49

Figure 4.29.	Transition line section #2 inlet after tests with HLW C-104/AY-101 simulants [28].	F-50
Figure 4.30.	Transition line section #2 outlet after tests with HLW C-104/AY-101	
	simulants [28].	F-51
Figure 4.31.	Transition line section #3 inlet after tests with HLW C-104/AY-101	
2	simulants [28].	F-52
Figure 4.32.	View of transition line section #3 inlet after tests with HLW	
	C-104/AY-101 simulants [28]	F-53
Figure 4.33	Transition line bellows outlet after tests with HI W $C_{-104/AV_{-101}}$	1 55
1 igure 4.55.	simulanta [28]	E 54
Eigene 4.24	Simulative [20]. SDS transition line in late often tests with III W C $104/\Lambda$ V 101 simulants [20]	F-34 E-55
Figure 4.34. E_{1}^{1}	SBS transition line inlet after tests with HLW C-104/A1-101 simulants [28].	F-33
Figure 4.55. Γ^{2}	Film cooler inter after Configuration Test 2 [30].	F-30
Figure 4.36 .	Transition line section #1 outlet after Configuration Test 2 [30].	F-57
Figure 4.37.	Transition line section #2 inlet after Configuration Test 2 [30].	F-58
Figure 4.38.	Transition line section #3 inlet after Configuration Test 2 [30].	F-59
Figure 4.39.	Transition line bellows inlet after Configuration Test 2 [30].	F-60
Figure 4.40.	Transition line bellows outlet after Configuration Test 2 [30].	F-61
Figure 4.41.	Outlet of transition line section in between bellows and SBS inlet after	
	Configuration Test 2 [30].	F-62
Figure 4.42.	Transition line bellows inlet after Configuration Test 1 [30].	F-63
Figure 4.43a	View of large debris removed from transition line bellows inlet during	
8	Configuration Test 3 [30]	F-64
Figure 4 43h	Macro image of sample removed from the transition line during	2 0 .
118010 11120	Configuration Test 3 [30] (Sample # 1D2-0-25A)	F-65
Figure 4 43c	EDS spectrum of the transition line sample (Sample $\# 1D2_{-}O_{-}25A$)	F-66
Figure 4.44	Close up of clogged perforation of film cooler inlet after Configuration Test 3 [30]	F 67
Figure 4.45	Film cooler inlet after Configuration Test 10 [30]	I-07 E 68
Figure 4.46	Close up of film ocoler inlat offer Configuration Test 10 [20]	F 60
Figure 4.40.	Transition line section #1 outlet after Configuration Test 10 [30].	F-09
Figure 4.47.	Transition line section #2 inlat after Configuration Test 10 [30].	F-70 E 71
Figure 4.46.	Transition line section #2 inlet after Configuration Test 10 [50].	Г-/I Е 72
Figure 4.49.	Transition line section #5 infet after Configuration Test 10 [50].	F-72
Figure 4.50 .	Transition line section #3 outlet after Configuration Test 10 [30].	F-73
Figure 4.51.	Transition line bellows inlet after Configuration Test 10 [30].	F-/4
Figure 4.52.	Transition line bellows outlet after Configuration Test 10 [30].	F-75
Figure 4.53.	Inlet of transition line section in between bellows and SBS inlet after	
	Configuration Test 10 [30].	F- 7 6
Figure 4.54.	Film cooler inlet (post-cleaning) after Configuration Test 10 [30].	F-77
Figure 4.55.	Film cooler inlet and internals after Configuration Test 9 [30].	F-78
Figure 4.56.	Inlet of transition line section in between bellows and SBS inlet (on bellows side)	
	after Configuration Test 9 [30].	F -7 9
Figure 4.57.	View of film cooler inlet and internals (partial post-cleaning) after	
U	Configuration Test 9 [30].	F-80
Figure 4.58.	Transition line section #2 outlet after Foaming Test [31].	F-81
Figure 4 59	Close-up of transition line section #2 inlet after Foaming Test [31]	F-82
Figure 4.60	Transition line section #3 inlet after Foaming Test [31]	F-83
Figure 4.61	Transition line bellows at 26.9 hours of HI W Turnover Test following	1-05
Figure 4.01.	the MACT tests [41]	E 94
Figure 4.60	un march usis [41]. Inlat of transition line gention in between bellows and SDS inlat at 26.0 hours of	г-04
Figure 4.02.	III W Turneyer Test following the MACT tests [41]	T 05
E 4.62	In the rest of the second sec	C6-1
Figure 4.63 .	Film cooler milet after HL w Turnover Test following the MACT tests [41].	F-80
r 1gure 4.64.	1 Ip of the film cooler inlet showing damage after HLW Turnover Test	T 07
	Ionowing the MAC1 tests [41].	F-87

Figure 4.65.	Close-up view of inlet and louvers of the film cooler after HLW	
C	Turnover Test following the MACT tests [41].	F-88
Figure 4.66.	Film cooler outlet after HLW Turnover Test following the MACT tests [41].	F-89
Figure 4.67.	View of bottom end of film cooler (post-cleaning) after Configuration	
e	Tests [30] (bottom) and HLW Turnover Test following the MACT tests [41] (top).	F-90
Figure 4.68.	Close-up view of bottom end of film cooler (post-cleaning) after	
e	HLW Turnover Test following the MACT tests [41].	F-91
Figure 4.69.	Transition line section #1 inlet after HLW Turnover Test following the	
U	MACT tests [41].	F-92
Figure 4.70.	Transition line section #1 outlet after HLW Turnover Test following the	
0	MACT tests [41].	F-93
Figure 4.71.	Transition line section #2 outlet after HLW Turnover Test following the	
	MACT tests [41].	F-94
Figure 4.72.	Transition line section #3 inlet after HLW Turnover Test following the	
_	MACT tests [41].	F-95
Figure 4.73.	Solids that fell out of Transition line section #3 after HLW Turnover Test	
	following the MACT tests [41].	F-96
Figure 4.74.	Transition line bellows outlet after HLW Turnover Test following	
	the MACT tests [41].	F-97
Figure 4.75.	Inlet of transition line section in between bellows and SBS inlet after HLW Turnover	
	Test following the MACT tests [41].	F-98
Figure 4.76.	Outlet of transition line section in between bellows and SBS inlet after HLW Turnover	
	Test following the MACT tests [41].	F-99
Figure 5.1.	Carryover from the DM1200 during initial HLW AZ-101 tests [3, 9].	F-100
Figure 5.2.	DM1200 emissions during HLW AZ-101 tests [17] conducted with feed	
	at 530 g glass per liter and two single outlet bubblers.	F-101
Figure 5.3.	DM1200 emissions during HLW AZ-101 tests [17] conducted with	
	two single outlet bubblers at a total constant flow of 65 lpm.	F-102
Figure 5.4.	Carryover from the DM1200 during HLW AZ-101 tests [17, 29, 30] conducted	
	with a total constant flow of 65 lpm.	F-103
Figure 5.5.	Carryover from the DM1200 during HLW C-106/AY-102 tests [17, 29, 35, 41].	F-104
Figure 5.6.	Carryover from the DM1200 during HLW tests [17, 26, 28, 29] conducted	
	with two single outlet bubblers at a total constant flow of 65 lpm. F-105	
Figure 5.7.	Carryover from the DM1200 during HLW AZ-101 Configuration Tests [30].	F-106
Figure 5.8.	Carryover from the DM1200 during LAW tests [10, 14, 21, 31, 41].	F-107
Figure 5.9.	DM1200 emissions during LAW Sub-Envelope A1 tests [14].	F-108
Figure 5.10.	DM1200 emissions during LAW Sub-Envelope B1 tests [21].	F-109

List of Abbreviations

ADS	Air Displacement Slurry
BSE	Back-Scattered Electron
CFR	Code of Federal Regulation
CUA	Catholic University of America
DCP	Direct Current Plasma Emission Spectroscopy
DF	Decontamination Factor
DM	DuraMelter®
DM1200	DuraMelter 1200
DOE	Department Of Energy
EDS	Energy Dispersive X-Ray Spectroscopy
HEME	High-Efficiency Mist Eliminator
HEPA	High-Efficiency Particulate Air Filter
HLW	High Level Waste
LAW	Low Activity Waste
NQA	Nuclear Quality Assurance
PBS	Packed Bed Scrubber
QAPjP	Quality Assurance Project Plan for Testing Programs Generating Environmental
	Regulatory Data
RPP	River Protection Project
SBS	Submerged Bed Scrubber
SCR	Selective Catalytic Reduction
SEM	Scanning Electron Microscopy
TCO	Thermal Catalytic Oxidizer
VSL	Vitreous State Laboratory
WESP	Wet Electrostatic Precipitator
WTP	Hanford Tank Waste Treatment and Immobilization Plant

SUMMARY OF TESTING

A) Objectives

The principal objective of this report was to summarize the testing experience on the DuraMelter 1200 (DM1200), which is the High Level Waste (HLW) Pilot Melter located at the Vitreous State Laboratory (VSL). Further objectives were to provide descriptions of the history of all modifications and maintenance, methods of operation, problems and unit failures, and melter emissions and performance while processing a variety of simulated HLW and low activity waste (LAW) feeds for the Hanford Waste Treatment and Immobilization Plant (WTP) and employing a variety of operating methods. All of these objectives were met.

B) Test Exceptions

This report is a summary of previously reported test results. While the source reports were subject to various Test Exceptions, there were no Test Exceptions specific to this report.

C) R&T Testing Conditions

Several tests have been conducted with simulants of WTP HLW and LAW streams on the DM1200 melter and prototypical off-gas system since its installation in early 2001. Throughout these tests, the off-gas system components were operated under conditions intended to mimic WTP operating conditions, as known at the time, in order to permit the expected performance of each unit to be assessed. The melter and off-gas system were evaluated over the course of producing over 180 metric tons of glass from HLW feed simulants and 83 metric tons of glass from LAW feed simulants.

All of the tests were performed on the DM1200 HLW Pilot Melter which is a Jouleheated melter with Inconel 690 electrodes. The melter shell is water-cooled and incorporates a jack-bolt thermal expansion system. The footprint of the melter is approximately 8 ft by 6.5 ft with a 4 ft by 2.3 ft air-lift discharge chamber appended to one end; the melter shell is almost 8 ft tall. The melt surface area and the melt pool height are approximately 32 percent and 57 percent, respectively, of the corresponding values for the full-scale HLW melter. The discharge riser and trough are full-scale to verify pouring performance. The surface area of the glass pool is about 1.2 m², and the volume is about 849 liters, corresponding to about 2 metric tons of glass. The feed system consists of a mix tank and a feed tank, both of which are 750-gallon polyethylene tanks with conical bottoms that are fitted with mechanical agitators. The feed tank is also fitted with baffles to improve mixing and calibrated load cells that are electronically monitored to determine the feed rate to the melter. The feed is introduced into the melter using an airdisplacement-slurry (ADS) pump, which is the present River Protection Project – Hanford Waste Treatment and Immobilization Plant (RPP-WTP) baseline. Feed from the ADS pump flows into the melter through a prototypic un-cooled feed nozzle that is located above the center of the glass pool. The melter and entire off-gas treatment system are maintained under negative pressure by two Paxton external induced draft blowers. This negative pressure is necessary to direct the gases from the melter to the prototypical off-gas system. The off-gas treatment system consists (listed in the process flow sequence, from the melter transition line to the end of the off-gas system) of a submerged bed scrubber (SBS); a wet electrostatic precipitator (WESP); a high-efficiency mist eliminator (HEME, for HLW only), a high-efficiency particulate air (HEPA) filter; a thermal catalytic oxidation unit (TCO); a selective catalytic reduction (SCR) system for NO_x removal; a packed-bed caustic scrubber (PBS); and a second HEME. A sulfur impregnated activated carbon column was installed between the HEPA and the TCO for the later tests. The second HEME is used to limit entrained particle carryover into the balance of the VSL ventilation system; the PBS and the second HEME are not part of the WTP HLW off-gas train, which effectively ends at the SCR. The WTP LAW off-gas train terminates with a PBS that contains an internal HEME filter.

Specific testing conditions varied according to the specific Test Plans; these are listed in each of the referenced reports and are summarized in the body of this report.

D) Results and Performance Against Objectives

The DM1200 melter at VSL has been operated for over five years, during which time, over a million and a half pounds of feed was processed to produce over half a million pounds of glass. A wide range of simulated HLW and LAW streams were treated under a variety of melter and off-gas system operating conditions. From these tests, a large body of data has been collected on melter performance, maintenance, post test inspections, and potential failure modes. This includes the operation of the film cooler as well as plugging and corrosion of both the film cooler and transition line.

Recent inspections show that, overall, the DM1200 melter is in excellent condition after five years of being at its operating temperature. The plenum bricks appear to be structurally sound with some surface cracking. All of the seams between the bricks are tight with no evidence of any significant gaps. The tuckstone is showing some minor wear and cracking on the brick faces nearest the glass pool. Some small areas of spalling were also noted, but overall the tuckstone is in good condition. The lid of the melter is in excellent condition; no spalling or cracking was noted. Finally, the discharge chamber is in excellent condition. No significant wear of the trough was noted.

One aspect of the present review was to determine the frequency that various melter components were replaced, including thermocouples, thermowells, level detectors, discharge air lances, and discharge heaters. Detailed information for these components is provided.

One of the primary objectives of DM1200 testing was to determine the maximum production rates feasible for various feeds containing simulated HLW. This objective was addressed, over time, as the production rate requirement was increased and the projected solids content of the waste was decreased. Initial tests showed that melt pool bubbling was required to produce glass at a rate of 400 kg/m²/day. Subsequently, tests with two single outlet bubblers demonstrated that production rates of 800 kg/m²/day could be obtained for HLW with greater than 17 wt% undissolved solids. Significant further improvements in glass production rates (up to 1400 kg/m²/day) were achieved with feeds corresponding to 15 wt% undissolved solids in the HLW from pretreatment by employing optimized bubbler configurations. These improvements appear to be sufficient to more than make up for the production rate short-fall brought about by the reduction in the solids content in the feed from pretreatment from 20 wt% to 15 wt% undissolved solids. However, attainment of the target rate was not possible for all HLW simulants after yet further reductions in solids content. Attempts to achieve the target rate with low solids content feed resulted in unstable melter conditions and frequent blockages of the film cooler. Further optimization, including adding more bubbling outlets and employing automated bubbler flow rate skewing, would result in additional production rate enhancements.

Throughout testing on the DM1200, plugging of the film cooler and transition line occurred, particularly in tests with higher bubbling rates. On several occasions, feeding was interrupted in order to manually rod out the film cooler and, less frequently, a portion of the transition line had to be disassembled for cleaning. A thorough review of operational data indicated that the film cooler occlusions were directly related to the higher bubbling rates used to maximize glass production rates. Analysis of the deposits removed from the film cooler indicate that their composition is very similar to the composition of particulate melter emissions in that they are close to the feed composition and enriched in volatile constituents. Film cooler plugging can be limited by reducing the bubbling rate, which has the undesirable effect of reducing the glass production rate, or by increasing the number of bubbling outlets, which permits the use of greater amounts of bubbler air without concentrating the air flow in a limited number of locations. However, a mechanical means to remove blockages needs to be developed and tested to ensure that it is reliable and will remove blockages without damaging the delicate film cooler louvers.

The three film coolers used over the five years of DM1200 operation experienced severe corrosion on the inlet, and glassy deposits occluded the air outlet holes on the leading edge. Much of the corrosion on the film cooler inlet may be due to exposure to higher temperatures during extended idling periods and therefore this may be less of an issue for a continuously operated melter.

Melter emissions were sampled throughout the DM1200 tests to provide data for off-gas system design, to determine the effect of feed composition and melter operation on melter emissions, and to provide data for system mass balance calculations. Analysis of the samples shows that melter emissions increase with increasing melt pool bubbling, feed water content, feed volatile content, and glass pool temperature. The effect of bubbling can be mitigated by distributing the bubbler flow through more bubbling outlets. The composition of the particulate emissions reflects the major feed components, indicating entrainment of feed components into the exhaust stream. In addition, the high concentrations of volatile components such as sulfur in the particulate indicate volatilization from the glass surface or cold cap. Particulate from LAW exhaust has a higher proportion of volatile and semi-volatile constituents, indicating a greater contribution from the glass surface or cold cap.

The major conclusions from this review are:

- Bubblers are needed to obtain glass production rates of 400 kg/m²/day in WTP HLW melters with Hanford HLW feeds.
- Glass production rates as high as 1400 kg/m²/day can be obtained in the DM1200 melter with two double outlet bubblers and HLW feeds prepared from waste simulants with 15% or higher undissolved solids.
- Feeds prepared from HLW with solids contents of less than 15% will require very high bubbling rates to achieve the contractually required glass production rate of $800 \text{ kg/m}^2/\text{day}$. These high bubbling rates are likely to cause film cooler clogging that may disrupt operations.
- Film cooler clogging can be minimized by increasing the number of bubbler outlets so that bubbling is more distributed in the melt pool, while maintaining the same total bubbler air flow. Skewing of bubbler air flow may also be beneficial in enhancing production rates.
- A mechanical film cooler cleaning device will likely be required at the WTP, and should be tested.
- Bubblers placed deeper in the melt pool are more effective in increasing processing rate.
- Addition of sugar and nitrates does not improve processing rates of Hanford HLW feeds.
- The rheology of the HLW melter feed does appear to affect processing rates, probably through its effect on feed distribution and cold cap formation. However, more viscous feeds processed somewhat faster.
- DM1200 glass production rates were obtained using visual monitoring of the cold cap, per Project direction. Visual observation is not planned for the WTP HLW melters, where instead, plenum temperature will be monitored to control feed rates. Since this could result in lower glass production rates, it would be beneficial to determine the impact of the planned WTP mode of operation on the DM1200.
- In bubbled melters, melter emissions consist mostly of entrained feed constituents with volatiles over represented.
- Melter emissions increase with bubbling rate, feed water content, feed volatile content, and temperature.
- After five years at the operating temperature, the DM1200 is in excellent condition.

E) Quality Requirements

This work is a summary of previously reported test results, the quality assurance requirements for each of which are provided in the original reports. This work was conducted

under a quality assurance program that is in place at the VSL that is based on Nuclear Quality Assurance (NQA)-1 (1989) and NQA-2a (1990) Part 2.7. This program is supplemented by a Quality Assurance Project Plan for RPP-WTP work that is conducted at VSL. Test and procedure requirements by which the testing activities are planned and controlled are also defined in this plan. The program is supported by VSL standard operating procedures that were used for this work. This work was not subject to DOE/RW-0333P or the requirements of the RPP-WTP Quality Assurance Project Plan for Testing Programs Generating Environmental Regulatory Data (QAPjP). However, several of the original tests were subject to the requirements of the RPP-WTP QAPjP, as noted in the original test reports.

F) Simulant Use

This summary covers testing that employed a wide range of HLW and LAW simulants formulated based on various waste bases, as detailed in the respective original test reports. References for each waste simulant are provided in each source report. The HLW waste simulants processed were AZ-101 [3, 9, 17, 29, 30], AZ-102 [23, 35], C-106/AY-102 [26, 29, 35, 41], and C-104/AY-101 [28]. The LAW Sub-Envelope simulants processed were C1 [10], A1 [14], B1 [21], A2 [41], and A and C [31].

G) Issues

These tests showed that significant improvements in HLW glass production rates could be achieved by refining the bubbler configurations, even when this refinement is subject to the significant constraints imposed by the existing melter lid design. These improvements appear to be sufficient to more than make up for the production rate short-fall brought about by the reduction in the solids content in the HLW feed from pretreatment from 20 wt% to 15 wt% undissolved solids. However, attainment of the target rate was not possible for all HLW simulants after yet further reduction in feed solids content. Attempts to achieve the target rate with low solids content HLW feed resulted in unstable melter conditions and frequent blockages of the film cooler. Overall, the success demonstrated to date suggests that there is considerable further scope for HLW production rate enhancement.

The observed differences in processing rates for different waste compositions for adjusted rheology feeds and lower solids content feeds underscores the need for pilot-scale production rate testing across the full range of feed compositions and likely solids contents.

Film cooler clogging events continued to be a significant operational problem; their frequency appeared to increase with bubbling rate and glass production rate. Feeds with low solids contents further exacerbate this issue because of the need for increased bubbling rates in order to maintain glass production rates. None of the film cooler washing procedures were effective for preventing clogging with HLW feeds. No mechanical cleaning device has been tested. Consequently, this would appear to be a significant issue with respect to the ability of the

WTP to meet HLW throughput requirements. These findings have been reported to the WTP Project and decisions regarding resolution are pending.

Per WTP Project direction, maintaining a cold cap limited feed rate during DM1200 tests was dependent on frequent visual monitoring of conditions in the melter. In contrast, operation of the WTP melters will be based only on non-visual data, such as plenum temperature. This could lead to either under feeding of the melter, resulting in under-achievement of otherwise attainable production rates, or over feeding of the melter, resulting in excessive cold-cap buildup as well as other operational difficulties. Testing under such conditions is therefore recommended to determine whether the required glass production rates can be achieved without employing the artificial visual data.

The Catholic University of America Vitreous State Laboratory Summary of DM1200 Operation at VSL Final Report, VSL-06R6710-2, Rev. 0

SECTION 1.0 INTRODUCTION

The River Protection Project - Hanford Waste Treatment and Immobilization Plant (RPP-WTP) Project has undertaken a "tiered" approach to vitrification development testing involving computer-based glass formulation, glass property-composition models, crucible melts, and continuous melter tests of increasing, more realistic scales. Melter systems ranging from 0.02 to 1.2 m² installed at the Vitreous State Laboratory (VSL) have been used for this purpose, which, in combination with the 3.3 m² low activity waste (LAW) Pilot Melter at Duratek, Inc., span more than two orders of magnitude in melt surface area. In this way, less-costly small-scale tests can be used to define the most appropriate tests to be conducted at the larger scales in order to extract maximum benefit from the large-scale tests. For high level waste (HLW) vitrification development, a key component in this approach is the one-third scale DuraMelter 1200 (DM1200), which is the HLW Pilot Melter that has been installed at VSL with an integrated prototypical off-gas treatment system. That system replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m²), but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. In particular, the DM1200 provides for testing on a vitrification system with the specific train of unit operations that has been selected for both HLW and LAW RPP-WTP off-gas treatment [2].

Over the course of testing on the DM1200 system, over one and a half million pounds of feed has been processed, producing almost 600,000 pounds of glass. A complete list of all the DM1200 melter tests performed is provided in Table 1.1 [3-42]; summaries of individual tests are provided in Tables 1.2-1.18. These tests were conducted to address several objectives, including determination of glass production rates and melt pool characteristics, as well as evaluation of the prototypical off-gas system. The tests conducted to address the performance of the DM1200 melter are summarized below:

- Initial tests to determine the need for melt pool bubbling to achieve the former project baseline of 0.4 MT/m²/d while processing HLW simulants [3, 9]. As a result of this testing, it was concluded that the current WTP HLW melter design is not capable of achieving the baseline production rate of 1.5 MT/d without the use of bubblers [43].
- Tests with two single outlet bubblers to demonstrate the "performance enhancement" necessary to achieve the then-future expanded capacity per melter of 3.0 MT/d (0.8 MT/m²/d), which is the present requirement under the so-called "2+2" revised baseline [44]. These tests evaluated the effects of waste solids content, HLW composition (AZ-101, AZ-102, C-106/AY-102, C-104/AY-101), and melt pool bubbling rate on glass production [17, 23, 26, 28].

ORP-51434, Rev. 0

- Tests designed to optimize the bubbler configuration to increase glass production rates while processing HLW simulants [30]. Variables tested included bubbler depth, bubbler location, bubbler orientation, the number of bubbling outlets per bubbler, and systematic changes in bubbler flow rates between the bubblers. The production rate goal for the DM1200 was increased from 0.8 MT/m²/d to 1.05 MT/m²/d to account for scaling effects.
- Testing conducted to validate the optimized bubbler configuration with HLW AZ-101, AZ-102, and C-106/AY-102 simulants [30, 35, 41]. The solids content of the waste from pretreatment was reduced from the former baseline of 20 percent un-dissolved solids (UDS) to 11-15 percent to reflect the new projected solids content of waste delivered from the pretreatment facility.
- Testing conducted to evaluate variation in the HLW flow sheet with respect to feed rheology and feed nitrate and organic content [29, 35]. The bubbler configuration prior to optimization was used in order to provide comparisons with data collected in previous tests [3, 9, 17, 23, 26, 28].
- Tests conducted with LAW simulants to provide scaling data in between those obtained on the DM100 and DM3300 Pilot Melter [10, 14, 21, 31]. These tests were also the sole source of prototypical off-gas system performance data on an exhaust stream originating from the vitrification of LAW simulants.
- Tests conducted with LAW and HLW simulants to collect regulatory data [10, 14, 41].

This report summarizes melter operation, production rate testing, maintenance activities, and current status of the DM1200, which is the HLW Pilot Melter system at the Vitreous State Laboratory of The Catholic University of America (VSL-CUA).

SECTION 2.0 DM1200 SYSTEM DESCRIPTION AND MAINTENANCE

2.1 Melter System Description

The DuraMelter[™] 1200 (DM1200), which is the HLW Pilot Melter, was used for all of the tests described in this report. Cross-sectional diagrams of the melter illustrating the discharge chamber and electrode configuration are provided in Figures 2.1 and 2.2. The DM1200 is a Joule-heated melter with Inconel 690 electrodes and thus has an upper operating temperature of about 1200°C. The melter shell is water-cooled and incorporates a jack-bolt thermal expansion system. The footprint of the melter is approximately 8 ft. by 6.5 ft. with a 4 ft. by 2.3 ft. air-lift discharge chamber appended to one end; the melter shell is almost 8 ft. tall. The melt surface area and the melt pool height are approximately 32 percent and 57 percent, respectively, of the corresponding values for the full-scale HLW melter. The discharge riser and trough are full-scale to verify pouring performance. Other aspects of the discharge system, such as the chamber ventilation scheme, are also prototypical. The glass contact refractory is Monofrax[®] K-3, while the plenum area walls are constructed of Monofrax[®] H refractory. The surface of the glass pool is 34" by 54" with a glass depth of nominally 25". The resultant melt volume is approximately 45,000 cubic inches (735 liters), which represents a glass tank capacity of more than 1.7 metric tons of glass. However, since the typical operating glass level is closer to 29 inches, the effective glass volume during testing is actually about 849 liters, giving an inventory of about 2.0 metric tons, which is larger than had been previously assumed [10]. The DM1200 is fitted with one pair of electrodes placed high on opposite walls of the melter as well as one bottom electrode; the bottom electrode is no longer prototypic of the WTP HLW melter since that feature was later removed from the design. The side electrodes are 11" by 34" giving an electrode area for the pair of about 750 sq. in. Depending on the glass level, the plenum space extends about 33" to 36" above the melt surface, resulting in a plenum volume ranging from about 43 to 46 ft^3 .

The single-phase power supply to the melter electrodes (250 kW design power) is derived from the DuraMelter[™] 1000 transformers by wiring them in parallel and using a single large silicon controlled rectifier. Current can be passed either from the side electrodes to the bottom electrode or between the two side electrodes only by rearranging jumpers; side-to-side operation was used (identical to the operation mode planned for the WTP HLW melter), except for some of the early tests without bubbling. Programmable process controllers are installed and can be used to control temperature or power. The melt temperature is controlled by configuring the process controller to maintain constant power and adjusting the power set-point as needed to maintain the desired operating temperature. Alarms can be set to detect out-of-range temperatures or power in the melter. Backup process controllers are installed to be used in case of failure of the main controllers. The entire system is supported by a back-up generator that is tripped on in the event of a power outage. The DM1200 has several other features. The lid refractory is prototypic and also includes a two-piece construction, which simulates the seam needed for the LAW lid that was planned to be fabricated in three pieces. Nozzles are provided for the off-gas film cooler, a standby off-gas port, and discharge airlift, along with 11 ports available for top-entering bubblers, start-up heaters and other components as needed. In addition, a bubbler arrangement is installed in the bottom electrode with the objective of developing permanent bubblers for possible use on future melters. For the present tests, two top-entering bubblers in different configurations were used.

Testing on the DM1200 was episodic and therefore the melter was idled for long intervals during the last five years. During idling, the glass temperature is lowered to between 1050°C and 1075°C. The side-to-side powering of the electrodes was used exclusively during idling except for some of the idling periods within the first year of testing. In idling mode, flow through the main off-gas system is prevented by the insertion of a blind flange immediately downstream of the film cooler. A vacuum of 0.1 to 0.2 inches of water is maintained on the melter through the bypass line, which is fitted with high efficiency particulate air (HEPA) filtration. In July of 2003, air from the discharge dam cooling air flow, which goes to the bypass off-gas piping during testing, was routed to the film cooler inlet, where it mixes with and lowers the temperature of the air flowing from the melter plenum into the film cooler to cool and protect the film cooler during periods of extended idling. The cooling air flow rate is about 23 scfm at a temperature of about 135°C at the outlet of the dam. This mixes with the plenum air, which is typically around 1020°C during idling. As a result of this cooling system, the film cooler internal temperature is about 540°C during idling. Bubblers were often left in the melter and air flow adjusted to a very low rate during idling periods to generate data on corrosion from exposure to HLW glass compositions [45].

2.2 Lance Bubblers

Three types of lance bubblers, placed in a variety of locations and orientations, were evaluated during these tests for the effect on processing rate. The three types of bubblers used, single-outlet "J", single-outlet "L", and double-outlet "J", are shown in Figures 2.3, 2.4, and 2.5, respectively. In initial tests with HLW simulants [3, 9, 17, 23, 26, 28, 29, 35], two single-outlet "J" bubblers were used, located in opposite corners, pointing towards the center, six inches from the melter floor. Tests evaluating bubbler air flow skewing, bubbler depth, and HLW flow sheet variations also used the "J" bubblers in these locations [30]. For the first test evaluating bubbler depth, the bubblers were rotated parallel to the electrodes to avoid current channeling and the height of the "J" bubblers from the floor was varied [30]. In tests with LAW simulants [10, 14, 21, 41], four single-outlet "L" bubblers were used, located in opposite corners, six inches from the melter floor pointing diagonally towards the center. Combinations of "J" and "L" bubblers were used in tests to simulate the locations of bubbling outlets of proposed double-ported bubblers, as illustrated in Figures 2.6 and 2.7 [30]. The Duratek design group provided the bubbler arrangement shown in Figure 2.6: bubblers on the melter floor, one bubbler outlet 11.3 inches from the floed tube (in the plane of the melt surface), and eight inches separation between

bubbling outlets on each side of the melter. The WTP Project provided an alternate bubbler arrangement for testing, as shown in Figure 2.7: bubblers on the melter floor and fourteen inches separation between bubbling outlets on each side of the melter, placed at the maximum distance from the feed tube with a minimum distance from the wall of 8 inches. Figure 2.8 shows a schematic of the prototypical double-outlet bubbler design that was based on the combination of the results from these DM1200 tests and room-temperature tests that were performed in a transparent fluid simulating the properties of the glass melt [46]. These bubblers have outlets 8 inches apart and were placed on the melter floor. The orientation of the bubblers in the melter, as shown in Figure 2.9, results in one of the bubbling outlets being 11.3 inches from the feed tube. These double outlet bubblers in the optimized orientation were evaluated for several waste compositions [30, 35, 41]. Bubblers were removed and replaced in the melter to achieve the required bubbling configurations; no replacements had to be made due to any lance bubbler failures. The original "J" bubblers and the prototypical double-outlet bubblers, although not currently installed in the melter, are fully functional and could be reinstalled for use at any time. The extent of corrosion of these lance bubblers from exposure to HLW glasses is detailed in a previous report [45].

2.3 DM1200 Maintenance History

Over the past five years, the VSL operations personnel have documented all of the maintenance activities performed on the DM1200 in maintenance logbooks. A detailed log summarizing all these entries is provided in Table 2.1. One aspect of the present review was to determine the frequency with which various melter components were replaced, including thermocouples, thermowells, level detectors, discharge air lances, and discharge heaters. The results of this review are discussed below.

The effect of radioactive exposure is outside of the scope of this summary and the referenced reports. However, the reported life expectancy of components is highly relevant to WTP operations unless presently unknown failure mechanisms due to radioactivity are identified. For example, film cooler clogging and corrosion should be unaffected (positively or negatively) by radioactivity. Thus, although radioactivity is not expected to affect failure rates, the radioactive environment is certainly taken into consideration with respect to conservatism in change out frequency for bubblers and other components.

2.3.1 Thermocouples

The thermocouples used in the DM1200 melter are Type K thermocouples and are used to measure the glass pool and plenum temperatures, electrode temperatures, and the discharge chamber temperatures. Nearly all of the thermocouples are installed into thermowells that provide protection and allow them to be easily replaced. The exposed plenum thermocouple is the only thermocouple that does not utilize a thermowell.

Table 2.2 provides a summary of the number of times that the DM1200 thermocouples were replaced as well as the minimum, maximum, and average lifetime of the thermocouples. The glass pool thermocouples were replaced anywhere between 8 and 14 times over the five years of operation. Although the duration between the minimum and maximum replacement frequency is extremely large, the average lifetime of all of the thermocouples is very similar, between three and four months. The plenum thermocouples have similar lifetime to the glass pool thermocouples (four months), except for the exposed thermocouple. Since this thermocouple is directly exposed to the harsh, corrosive environment generated during the vitrification process, it is not surprising that it lasts an average of only two months in the melter. Glass pool and plenum thermocouples were routinely replaced on a four- to six-month schedule as a preventative maintenance activity or when they had failed (typically as an open circuit). No drift in the thermocouple readings was noted between replacements. The thermocouples in the discharge chamber and electrodes have an average lifetime greater than eight months and have only been replaced a few times. This is primarily due to the fact that the thermocouples are located in areas that are not directly exposed to the corrosive environment generated during melter feeding. The only exception is the discharge riser thermocouple, which is located in the melter riser and is continuously exposed to the molten glass. As a result, this thermocouple was replaced more frequently and has a shorter average lifetime than the discharge chamber and electrode thermocouples.

2.3.2 Thermowells

The DM1200 typically has two thermowells installed in the melter to hold the glass pool and plenum thermocouples. The thermowells are fabricated from Inconel 690, ³/₄" schedule 160 pipe that is capped on the bottom. Table 2.3 provides the dates that the thermowells were installed in the melter, the number of days that the thermowells were exposed to feeding operations, and the number of times they were removed for inspection, as well as the type of feed that the thermowells were exposed to during operations (HLW or LAW feeds). The thermowells were exposed mostly to HLW feeds because HLW melter testing was the primary R&T mission for the DM1200 over the past five years. The replacement frequency of the thermowells varied between 105 and 784 days, with an average frequency of just under one year. The thermowells were removed periodically for inspection or installation of corrosion coupons. Most of the thermowells were removed due to wear. However, several of the thermowells were prematurely replaced in order to install thermowells with corrosion coupons [45].

2.3.3 Level Detector

The DM1200 has a level detector installed in the melter to determine the level and density of the glass during processing and to determine the melter vacuum. The level detector consists of two Inconel 690, $\frac{3}{4}$ " schedule 160 pipes that extend to different depths within the glass pool. Argon is then bubbled through the pipes and the backpressure is monitored to determine the glass level and density. A third pipe, which is exposed to just the plenum, is used

to monitor the melter vacuum. Table 2.3 provides the dates that the level detector was installed in the melter, the number of days that it was exposed to feeding operations, and the number of times it was removed for inspection, as well as the type of feed that the level detector was exposed to during operations (HLW or LAW feeds). Since the primary mission of the DM1200 was to determine the glass production rates for HLW feeds, the level detector was primarily exposed to HLW feeds. The replacement frequency of the level detector was removed periodically for inspection or installation of corrosion coupons. In all cases, the reason for replacement of the level detectors was wear of the level and density legs.

2.3.4 Discharge Air Lance

Glass is discharged from the DM1200 using an air lance installed in the riser through which air is bubbled to create an air lift that lifts the glass up the riser and out of the melter. The air lance is fabricated from Inconel 690, ³/₄" schedule 160 pipe and extends down to the bottom of the discharge riser. The location of the riser is shown in Figure 2.1. Table 2.3 provides the dates that the discharge air lance was installed in the melter, and the number of days that it was exposed to feeding operations, as well as the type of feed that the air lance was exposed to during operations (HLW or LAW feeds). Since the primary mission of the DM1200 was to determine the glass production rates for HLW feeds, the air lance was primarily exposed to HLW glass compositions. The replacement frequency of the air lance varied between 241 and 921 days with an average frequency of approximately 1.7 years.

2.3.5 Discharge Heaters

The temperature within the DM1200 discharge chamber is maintained at its operating temperature (typically greater than 1000°C) by fourteen heaters arranged horizontally around the discharge trough. The heaters are spiral-type silicon carbide heaters that are placed within heater sheaths to prevent corrosion of the heaters due to gaseous emissions from the discharging glass. Inside the heater sheaths, the heaters are placed within ceramic tubes to prevent the heaters from electrically shorting to the metal heater sheath. Figure 2.10 provides a schematic of the heater locations as well as heater numbering.

During the first year and a half of operation, the DM1200 had frequent failures of the heaters, with many failing within one to two months of operation. Since a ceramic isolator surrounds the heater element, it was surmised that the isolator was hindering the heat dissipation from the heater, which increased the average centerline temperature of the heater, resulting in premature aging and failure of the heater. To rectify this problem, the ceramic isolators were split lengthwise to allow a greater amount of radiant heat loss in order to reduce the centerline temperature. Figure 2.11 shows a discharge heater with the modified ceramic isolator. After this modification was implemented in August 2002, no heater failures occurred in over 3.4 years of operation. Table 2.4 shows the number of times heaters were replaced, and the minimum,

maximum, and average lifetime of the heaters, both before and after the ceramic isolator modification.

2.4 Current State of the DM1200 Melter

This section discusses the results of an inspection of the interior of the DM1200 melter to assess its current condition after five years of operation. Prior to discussing the details of the inspection, it is useful to provide a more detailed description of the DM1200 construction in order to provide the appropriate background for the discussion of the inspection results.

2.4.1 DM1200 Construction Details

The basic refractory package of the DM1200 consists of two layers: a glass contact refractory and a back-up refractory. The glass contact refractory (melter walls and floor) consists of a 5-inch thick layer of Monofrax® K-3 brick. Figure 2.12 shows the K-3 refractory package for the DM1200. The large brick at the center of Figure 2.12 is the riser brick that is used to direct glass out of the melter and into the discharge chamber. The back-up refractory consists of two layers of 3-inch thick AZS brick. The plenum refractory package, which sits on top of the glass contact refractory, consists of 5-inch thick Monofrax® H brick, behind which is 6 inches of fiberboard. The plenum refractory sits on a layer of refractory called the tuckstone, which is also manufactured from Monofrax® H brick. The top edge of the tuckstone is chamfered toward the glass pool so that any glass or feed from the plenum walls will drain back into the melter. The tuckstone refractory is 11 inches wide and 5 inches thick. Figures 2.13 and 2.14 provide views of the plenum refractory for the DM1200.

The DM 1200 lid is constructed from castable refractory supported by a carbon steel framework and provides access into the melter through penetrations arranged in rows. The castable refractory consist of 6 inches of an insulating castable (Kaolite 2500-LI) followed by 6" of refractory castable (Narcon 60A). The refractory castable is directly exposed to the plenum environment of the melter.

The DM1200 discharge chamber is a carbon steel shell lined with fiberboard. Fourteen discharge heaters enter horizontally through the west side of the chamber to maintain the chamber at its operating temperature of approximately 1000°C. The discharge heaters are spiral-type resistance heaters manufactured from silicon carbide.

2.4.2 DM1200 Inspection

On May 30, 2006 an inspection of the DM1200 was performed to assess the condition of the melter plenum refractory, melter lid, and the discharge chamber trough. Due to the level of

the glass in the melter (approximately 27 inches), inspection of the glass contact refractory (K-3 bricks) could not be performed. Discussed below are the details of the inspection.

DM1200 Refractory

Utilizing existing view ports on the west side of the melter, a visual inspection of the east wall was performed. Although the field of view was limited through the view ports, the east wall plenum refractory appeared to be in excellent condition with only minor surface cracking. All visible seams were tight and no rounding or spalling of the refractory edges was noted. In addition to the views through the view ports, a water-cooled video camera was inserted into the melter through the center port in the lid and through the film cooler port to record the condition of the melter refractory. Even though the camera was water cooled, the plenum temperature was high enough (>1000°C) that the camera could only be inserted into the melter for 5 - 10 seconds before it needed to be removed to prevent damage. Still frames from the video were obtained to document the results of the inspection.

Inspection of the south plenum refractory revealed some isolated cracking of the plenum wall refractory. These appear to be surface cracks in the refractory and probably do not penetrate very deep in the overall thickness of the brick (5 inches). The refractory seam that is visible in the video was in excellent condition with no evidence of deterioration or widening. Some slight spalling of the tuckstone (approximately 8 inches long by 1 inch wide) is evident, but it appears to be isolated. A picture of the south wall (taken from the video) is provided in Figure 2.15.

Figure 2.16 shows the condition of the plenum refractory on the east wall of the DM1200. Aside from various surface cracks in the plenum refractory, there appears to be an area near the northeast corner that is protruding slightly from the rest of the wall and may be in the early stages of spalling. This area is centered on a refractory seam and is approximately 12 inches in length and several inches high at its largest point. The tuckstone appears to be in good condition, but some cracking is evident from the videos. Unlike the south wall, no spalling of the tuckstone has occurred.

Video inspection of the north wall of the DM1200 again revealed surface cracking of the plenum refractory. The only viewable refractory seam appears to be slightly wider than the seams on the other walls (see Figure 2.17). It is unclear, however, if this widening occurred during melter operations or if it was present during the initial startup of the melter. As with the east wall, the tuckstone refractory shows signs of cracking, and slight spalling (<1 inch) is evident at the seams of the tuckstone.

The west wall is in similar condition to the other walls in the melter; surface cracking of the refractory was noted as well as cracking of the tuckstone (see Figure 2.18). Figure 2.19 shows the southwest corner of the melter, which is directly under the film cooler. This view provides a closer look at the general condition of the plenum refractory. Again, minor surface cracking can be seen on the walls and in the tuckstone. Some slight spalling can also be seen on

the edges of the tuckstone. The plenum brick that is directly behind the discharge chamber is in excellent condition, with sharp edges and no spalling. This brick was purposely extended beyond the rest of the plenum wall during the design of the DM1200 melter to allow room for the riser assembly.

Melter Lid

The visual inspection of the melter lid was performed through a port on the west side of the melter that allowed viewing approximately 40% of the lid. The visible portion of the lid was in excellent condition and was covered with a thin layer of a glassy material. No cracking or spalling of the castable was noted and all areas around the lid penetrations were intact. No pictures of the lid were taken due to the difficulty of obtaining clear pictures through the view port.

Discharge Chamber

Inspection of the inside of the discharge chamber was performed through a view port on the south side of the chamber as well as up through the discharge port at the bottom of the chamber. Overall, the fiberboard insulation was in excellent condition with no evidence of deterioration, as shown in Figure 2.20. Figure 2.20 also shows the condition of the bottom portion of the Inconel 690 discharge trough. This portion of the trough had a thin coating of glass and was in excellent condition. No significant wear of the trough was observed, although a very slight rounding of the trough edges was noted on the bottom edge. Figure 2.21 provides another view of the bottom of the discharge trough through the port on the south wall of the chamber. The joint where the vertical portion of the trough was in excellent condition, but some very slight rounding of the joint was evident.

Inspection Conclusions

Overall, the DM1200 melter is in excellent condition after five years of being at its operating temperature. The plenum bricks appear to be structurally sound with some surface cracking. All of the seams between the bricks are tight, with no evidence of any significant gaps. The tuckstone is showing some minor wear and cracking on the brick faces nearest the glass pool. Some small areas of spalling were also noted, but overall the tuckstone is in good condition. The lid of the melter was in excellent condition; no spalling or cracking was noted. Finally, the discharge chamber is in excellent condition. No significant wear of the trough was noted.

The Catholic University of America Vitreous State Laboratory

SECTION 3.0 DM1200 GLASS PRODUCTION RATES

One of the primary objectives of DM1200 melter tests was to determine the achievable glass production rates while processing simulated HLW feeds. This information is critical for underpinning the performance of the WTP, for melter design, and for integration of the HLW melter with waste pretreatment and LAW vitrification facilities. However, it is important to recognize that the HLW melter throughput requirements have evolved significantly over the course of the DM1200 test program. The minimum production rate requirement for the DM1200 has more than doubled, while the potential solids content of the HLW feed from pretreatment has decreased by a factor of almost two, as depicted in Figure 3.1. The RPP-WTP HLW design basis of 400 kg/m²/day (1.5 MT/d full scale WTP) was increased to 800 kg/m²/day (3.0 MT/d full scale WTP) with the "2+2" revised baseline [44]. In addition, the DM1200 production rate target was subsequently increased to $1050 \text{ kg/m}^2/\text{day}$ to reflect the scaling effects associated with the fact that there are two bubblers in the one-third-scale DM1200 but five bubblers in the full scale melter. Since, other things being equal, processing rates decrease with decreasing waste solids content, the continued drop in the projected solids content of the waste further increases the demands on melter production capacity. The DM1200 testing program had to evolve to address these challenges while also striving to define the effect that various waste characteristics have on HLW glass production rates.

For simulated LAW feeds, the definitive glass production rate data were collected on the DM3300 LAW Pilot Melter and therefore factors affecting LAW glass production rates are not discussed here. It is noted, however, that tests conducted on the DM1200 with LAW simulants matched the corresponding surface-area-normalized rates obtained on the LAW Pilot Melter and the information was used to produce scaling data with respect to bubbling rate [31, 46]. A further objective of the LAW tests on the DM1200 was to collect data on the performance of the prototypical off-gas system with simulated LAW feeds.

Initial tests that were conducted on the DM1200 melter with HLW simulants were intended to determine the feasibility of attaining the design basis glass production rate of 400 kg/m^2 /day without bubblers [3, 9]. Previous testing on the DM1000 system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the larger WVDP facility, lending confidence to the tests results [1]. Since the inclusion or exclusion of a bubbler has significant design implications, the Project commissioned further tests to address this issue. The results of these tests are depicted in Figure 3.2. All tests without bubbling resulted in production rates lower than 400 kg/m²/day. None of the variables investigated, which included feed concentration, feed acidification, frit as

the glass former additive, variable additions of reductant (sugar), continuous feeding (as opposed to pulsed), and increased glass temperature, resulted in production rates approaching the Project baseline. Conversely, all tests that used bubbling exceeded the production rate of $400 \text{ kg/m}^2/\text{day}$ even though the feed solids content for many of the tests was significantly lower. As a result of these findings, it was concluded that the current WTP HLW melter design is not capable of achieving the baseline production rate of 1.5 MT/d without the use of bubblers and that bubblers should be installed [43].

After the decision to include bubblers in the design, a series of tests was conducted on the DM1200 to determine the effects of bubbling rate and feed solids content on glass production rate while processing a simulated HLW AZ-101 feed composition [17]. Three nine-day tests, each at different feed solids content (530, 400 and 300 g glass per liter), were conducted at three bubbling rates. These tests were preceded by tests designed to establish the bubbling rate values required to produce glass at ~400 and ~800 kg/m²/day, as well as the maximum production rate. An additional test was added that featured no bubbling to determine the effect of bubbling on the retention of noble metals. Analogous tests were conducted at the highest solids content (20 wt% undissolved solids) with three other HLW compositions (AZ-102, C-106/AY-102, C-104/AY-101) to assess the effect of waste composition on production rate [23, 26, 28]. The bubbler configuration used for all the tests was two single-outlet "J" bubblers, located in opposite corners, pointing towards the center, six inches from the melter floor (see Section 2.2). Steady-state production rates were obtained in the preliminary test with AZ-101 simulants for production rates of 400, 600, 800, and 1000 kg/m²/day, but not for higher production rates, as shown in Figure 3.3. Higher production rates at about 140 and 160 hours run time were not sustainable due to accumulating and poorly distributed amounts of feed on the melt surface. Based on these results, values of 8, 40, and 65 lpm were selected for subsequent tests. The cold-cap-limited, steady-state production rates from tests conducted at these bubbling rates with AZ-101 simulants at three solids contents are shown in Figure 3.4. As expected, glass production rates increased with bubbling and decreased with decreasing feed solids content. The steady-state production rates for four HLW compositions (20% undissolved solids in the waste simulant) are illustrated in Figure 3.5. The production rates for three of the four compositions are virtually identical to each other, whereas the production rate for the C-106/AY-102 composition was about 10% lower at lower bubbling rates and about 10% higher at the highest bubbling rate. Also of note is that production rates for all four compositions exceed the present WTP requirement of $800 \text{ kg/m}^2/\text{day}$ with feed containing 20% undissolved solids in the simulant. The tests employing the highest bubbling rate and feed solids content on the DM1200 exceeded the required WTP glass production rate (800 kg/m²/day, or 3 MT/d per HLW melter), whereas tests with lower bubbling rates or solids contents did not. Feed with waste solids contents of less than about 17% UDS could not be processed at a glass production rate of 800 kg/m²/day at the highest bubbling rate feasible with that bubbler configuration. Upon the conclusion of these tests, the projection for the HLW waste solids content was reduced to 15% UDS and therefore testing was proposed to increase the effectiveness of the bubblers. In addition, since the full-scale WTP melter has slightly fewer bubblers per unit melt surface area than does the DM1200 (five bubblers in 3.75 m^2 vs. two bubblers in 1.2 m²), a scaling factor was added which increases the required DM1200 production rate to 1050 kg/m²/day.

Melter tests were also conducted on the DM1200 to determine the effects of flow sheet changes of feed rheology, nitrate content, and organic content on glass production rate while processing the HLW AZ-101 [29], AZ-102 [35], and C-106/AY-102 [29, 35] feed compositions. The bubbler configuration and maximum bubbling rate (65 lpm) used in previous tests [17, 23, 26, 28] were used in the flow sheet variation tests to allow the results from the tests to be compared. Tests with HLW AZ-102 and C-106/AY-102 simulants employed rheology-adjusted feeds that were intended to provide better representations of the rheological properties of some of the more viscous actual waste samples that have been characterized; the majority of the previous melter testing has been performed with HLW waste simulants that are of somewhat lower viscosity. The test results illustrated in Figure 3.6 show that the rheology-adjusted feeds processed at rates that were four to fifty percent higher than those in analogous tests with the less viscous feeds, indicating that the previous test results likely give an accurate to conservative estimate of processing rate. Significant differences in processing rate were observed as a function of simulant composition for rheology-adjusted feeds, suggesting that the previously held conclusion that the processing rates for different HLW simulants are virtually identical may only apply for limited compositions with lower feed viscosities. Tests conducted with AZ-101 simulants and variable amounts of sugar, C-106/AY-102 simulants and variable amounts of sugar, and C-106/AY-102 simulants with high concentrations of nitrates and variable amounts of sugar, demonstrated that additions of sugar and nitrate do not result in production rate increases and can result in poor cold cap characteristics, which result in lower production rates.

Melter tests with HLW AZ-101 simulants were conducted on the DM1200 to optimize bubbler operation and configuration with respect to glass production rates [30]. Tests of durations of between seven and nine days were conducted using a variety of bubbler configurations, operational strategies, and bubbling rates. An additional test was also conducted with sodium chloride and sulfate spikes to determine the effects of the addition of these salts on production rate. Each of the tests began with a day of feeding to establish the cold cap before determining the production rate during the two- to four-day test segments. The results depicted in Figure 3.7 show that of the test variables investigated, the number of bubbler outlets and their locations had the greatest impact on processing rate. Tests using four outlets either as four lances simulating two double-outlet bubblers, or two actual double-outlet bubblers, resulted in production rates of between 1200 and 1400 kg/m²/day for feed containing 400 g glass per liter. This result was obtained with four lances simulating two double-outlet bubblers with either 8" or 14" separation between the outlets. Production rates dropped from 1300 to 1100 kg/m²/day when the number of bubbler outlets was reduced from four to two. A 25°C increase in glass temperature did not produce a large rate increase, primarily because of power supply limitations; however, a production rate of 1450 kg/m²/day was obtained in that test with 23% less bubbling than in the comparable test at 1150°C. Increasing bubbler depth increased production rate; however, the only test systematically evaluating that variable was complicated as a result of bubbler orientation (parallel to the electrode as opposed to diagonally pointing towards the melter center, which placed the bubble flow closer to the wall), which had a larger effect than did the depth. A smaller but discernable production rate increase was observed as a result of varying the flow between the two bubblers while keeping the total flow constant (skewing), as shown in Figure 3.8. The effect of the chemical additives sodium chloride and sodium sulfate on

production rate was unclear in these tests. Sodium chloride and sodium sulfate alone appeared to decrease production rate, while the two combined appeared to increase production rate. However, it is believed that these decreases in production rate may be attributable to cold-cap ridges that built up in the first two test segments that were burned off prior to the last segment. Based on these tests, the optimum configuration selected for future tests was two bubblers, each with two outlets 8 inches apart, placed on the floor, one bubbler outlet 11.3" from feed tube, as shown in Figures 2.5, 2.8 and 2.9.

The limited number of tests conducted with the optimized bubbler configuration is listed in Table 3.1. The objective of the first four of these tests [30, 35] was to evaluate the optimized bubbler configuration with respect to production rate, whereas the production rates achieved during the MACT tests was a consequence of achieving other target test conditions, most notably plenum temperature. The target production rate of 1050 kg/m²/day was achieved or exceeded for feed containing HLW AZ-101 and C-106/AY-102 simulants but not with AZ-102 simulants. During most of the tests explicitly evaluating the optimum bubbler configuration [30, 35], the bubbling rate was adjusted to give the maximum cold cap limited steady state production rate. In the tests with the AZ-102 simulants, the target production rate of 1050 kg/m²/day was initially achieved; however, excessive mounding of the feed on the cold cap necessitated reducing the feed and bubbling rate. Prior to reducing the feed rate, total bubbling flow rates as high as 225 lpm were used in an unsuccessful attempt to break down the accumulations in the cold cap. A steady state rate greater than 1050 kg/m²/day was achieved in one of the MACT tests at the low bubbling rate of 43 lpm, suggesting that without the plenum temperature limitations, the production rates with this feed and the optimum bubbler configuration would be significantly higher. The comparisons that best illustrate the production rate enhancements are given in Table 3.2. Feed of similar composition and solids content were processed 40 to 64% faster with the optimized bubbler configuration.

It is worth noting that visual observation of the DM1200 melt pool is a key operational aspect of current DM1200 testing. In many instances where feeding was slowed or even stopped based on visual observations of cold cap ridges and mounds, non-visual data such as plenum temperature would not have identified the extent of the cold-cap buildup. In fact, high plenum temperatures can result from a high mound over a portion of the melt surface preventing feed from spreading across the melt surface and creating an opening on the glass surface. Without the visual evidence, an operator may conclude that feed rates should be increased, which could exacerbate the problem. It is likely that the maximum production rate for each set of test conditions would have been significantly impacted for most of the tests if the cold cap conditions were not monitored visually. Consequently, it is recommended that the ability to maintain production rates without use of visual information be evaluated, if that is the planned WTP operating mode.

In summary, tests showed that significant improvements in glass production rates could be achieved by employing optimized bubbler configurations. These improvements appear to be sufficient to more than make up for the production rate short-fall brought about by the reduction in the solids content in the HLW feed from pretreatment from 20 wt% to 15 wt% undissolved solids. However, attainment of the target rate was not possible for all HLW simulants after further reduction in solids content. Attempts to achieve the target rate with low solids content HLW feed resulted in unstable melter conditions and frequent blockages of the film cooler. Further optimization, including the addition of more bubbling outlets and employing automated bubbler flow rate skewing would result in additional production rate enhancements. All of these increases in production rate have been achieved while visually monitoring the cold cap; the increases may be lower if operators must rely exclusively on remotely collected data such as plenum temperature. However, overall, the success demonstrated to date suggests that there is considerable further scope for HLW production rate enhancement.

SECTION 4.0 DM1200 FILM COOLER AND TRANSITION LINE

This section provides data and analysis on the operation, maintenance, and post test inspections of the melter film cooler and the transition line in between the film cooler and the submerged bed scrubber (SBS). Similar reports reviewing the performance of the SBS and wet electrostatic precipitator (WESP) have been issued previously [47, 48].

4.1 Film Cooler Operation

The duct between a melter and its off-gas system has traditionally been a trouble spot for accumulation of deposits as a result of carryover in the melter exhaust, sometimes to the point of constriction or blockage. The film cooler was developed as a means of mitigating this problem. The film cooler injects a gas layer along the inside pipe wall to prevent collection of entrained solids and to cool the melter exhaust stream to a temperature below the softening point of the solids such that they are less adhesive and easier to remove.

The DM1200 has a louvered-type film cooler installed in the lid of the melter. The DM1200 film cooler is not fully prototypic of the WTP HLW melter film cooler, but many of its key features are similar. Figure 4.1 provides a representation of the DM1200 film cooler. An outer shell with a flanged air injection line and an intermediate diverter sleeve create a cylindrical passage that forces the air to the bottom of the film cooler. At the bottom, the air changes direction and is swept upward through the cylindrical passage between the middle shell and the louvered inner sleeve. Air exits the film cooler between these louvers. During normal DM1200 operations, the film cooler is kept clean by injecting water into the injection air supply line. One liter per minute of water is added to the line for five minutes every twelve hours. In the event that the water flushing is not sufficient to clean the film cooler, operations personnel manually clean the film cooler with a rod and/or brushes.

Since the LAW Pilot Melter (DM3300) had an entire program to assess the operation of the film cooler while processing LAW feeds, the results of which have been reported separately [49, 50], discussion of the operation of the film cooler on the DM1200 will focus mainly on HLW feeds. Initially, plugging of the film cooler was not an issue for the DM1200, especially when low glass bubbling rates were used to meet the design HLW glass production rate of $400 \text{ kg/m}^2/\text{day}$. However, as the WTP requirements have evolved over the last few years, the required HLW glass production rate has increased from 400 to 800 kg/m²/day. In addition to this rate increase, the target glass production rate for the DM1200 was increased to 1050 kg/m²/day to account for scale-up issues associated with the number of bubblers installed in the melter. In order to achieve these rates, a significant amount of testing was undertaken to optimize the bubbler configuration [30] and determine the impact of different feed chemistries [29] and rheology [35] on the glass production rate. During these tests, increased instances of film cooler

plugging were observed. Figure 4.2 shows typical views of the film cooler with heavy particulate buildup that required manual cleaning by the operations personnel.

In order to determine the causes of the film cooler plugging, operating data from April 2003 through the HLW MACT test were reviewed [29, 30, 35, 41], as were the operations log books, to identify when manual cleaning of the film cooler was performed. Since it was believed that the increased bubbling rates used to achieve the high glass production rates were the main cause of film cooler plugging, plots of glass pool bubbling rate versus film cooler differential pressure (DP) were created. Typically, a high differential pressure measurement across the film cooler was the result of a plugged film cooler. Therefore, when the film cooler DP is overlaid against the glass pool bubbling rate, impacts of high bubbling rates in the melter can be easily observed.

Figure 4.3 shows the glass pool bubbling rate versus the film cooler DP for the HLW AZ-102 feed rheology test [35]. As can be seen in Figure 4.3, the initial part of the test was conducted at a bubbling rate of 65 liters per minute (lpm) while processing a high rheology feed at various solids contents (17 and 20 wt% solids). During this time, the film cooler was manually cleaned once, as can be seen from the high film cooler DP at the run time of 20 hours. At approximately 100 hours into the test, the feed was changed to a nominal rheology, dilute feed (340 g/l). Bubbling rate was increased significantly in an attempt to achieve the desired glass production rate of 1050 kg/m²/day, which resulted in 12 manual cleanings of the film cooler over a period of approximately 24 hours. Since the conditions within the melter were not sustainable, the bubbling rate was reduced to approximately 65 lpm to achieve a sustainable rate of around 900 kg/m²/day. During this period, the film cooler was cleaned twice. Specific production rate and processing information can be found in the referenced report [35].

Figure 4.4 shows the operating data from Test 9 of the configuration tests [30]. During this test, production rates were maintained at 1000 kg/m²/day for the first 160 hours of the test, with a glass pool bubbling rate of between 55 and 70 lpm. No film cooler plugging was observed during this steady state run. The second part of the test was used to determine the maximum production rate that could be achieved with this HLW AZ-101 feed. Bubbling rates were increased to well over 100 lpm, which resulted in production rates as high as 1300 kg/m²/day. However, during this 2.5-day portion of the test, the film cooler was manually cleaned 5 times. Similar film cooler plugging and bubbling rate correlations can be seen in Test 8 [30] operating data (Figure 4.5), where the maximum glass production rate was determined at 1150°C and 1175°C. In the first 36 hours of Test 8, where the bubbling rate was less than 75 lpm, no film cooler cleanings were required. However, for the rest of the tests, where the bubbling rate was greater than 80 lpm, 21 and 13 manual cleanings were performed during the 1150°C and 1175°C tests, respectively.

A summary of the manual film cooler cleanings for all of the HLW tests from April 2003 through the HLW MACT test is provided in Table 4.1. Table 4.1 provides test conditions and average production rates for each test, as well as the number of cleanings at various bubbling rate

ranges. The bubbler flow is the total flow of air through all of the bubblers. The terms "fixed" and "variable" refer to how the air flow to the individual bubblers was controlled. Fixed flow rates are those in which all of the bubblers have the same flow, which totals to the overall flow rate (i.e., flow per bubbler is the total flow divided by the number of bubblers in the melter). Variable flow rates signify that the air flow to each bubbler can vary subject to the constraint that the air flow through all of the bubblers must total the overall flow rate. Figure 4.6 shows the difference between "fixed" and "variable" bubblers were set at 32.5 lpm) and the remaining portion of the test was conducted under a variable condition (individual bubbler flows varied, but always totaled 65 lpm).

The frequency of manual cleaning of the film cooler increases significantly when the bubbling rate increases above approximately 65 lpm when processing HLW simulants. The instances of manual film cooler cleaning during tests with a bubbling rate of 65 lpm or less occurred primarily during the initial startup and establishment of the cold cap. During this period of time, melter emissions are at their highest as the melter feed is falling directly on a molten glass surface instead of an established cold cap. Test 1 [30] resulted in a large number of manual cleanings, which may be due to the high bubbling rates for individual bubblers, since the flow rates ranged from 17 to 48 lpm at any given time (see Figure 4.6).

A similar table was assembled for the DM1200 transition line blockages and this information is shown in Table 4.2. Although the correlation between line blockages and bubbling rate is not as obvious as with the film cooler data, it is apparent from the data that line blockages typically occurred at the higher bubbling rates. Many times the blockages were removed by simply tapping the line with a hammer. Another item of note is that the sensor lines clogged frequently even though the lines were purged with air to prevent solids buildup.

Although testing of the DM1200 was mainly focused on HLW feeds, five LAW feed campaigns were run on the DM1200. Four of the campaigns were run to collect off-gas emissions data (LAW Sub-Envelopes A1, B1, C1, and the LAW MACT test) and the remaining was bubbling rate and foaming tests utilizing Envelope A and C feeds. During these LAW campaigns, the film cooler was manually cleaned three times (twice while processing the Sub-Envelope A1 feed and once during the LAW MACT test). Plugging of the transition line only occurred during the bubbling rate and foaming test (four occurrences) and the blockages were cleared by tapping the transition line with a rubber mallet.

Based on the review of the operational data, it appears that plugging of the film cooler and transition line is strongly dependent on the melter bubbling rate. As the bubbling rate increases, larger holes are formed in the cold cap, which allows fresh feed more opportunity to make direct contact with molten glass, leading to higher particulate carryover. In addition, the higher bubbling rate makes the surface of the glass pool very active, which increases glass and feed spraying within the plenum area. This additional particulate matter is then swept out of the melter through the film cooler where it deposits and builds up, eventually clogging the film cooler and transition line. The formation of holes in the cold cap can be prevented by reducing
bubbling, which has the undesirable effect of reducing the glass production rate, or by increasing the number of bubbling outlets, which permits the use of greater amounts of bubbler air without concentrating the air flow in a limited number of locations.

Although the diameter of the WTP HLW film cooler is approximately twice the size of the DM1200 film cooler, there is reason to believe that similar plugging will occur in the WTP HLW melter system. Therefore, it is recommended that routine washing/flushing of the WTP film cooler be performed to ensure that any buildup that does occur during processing is quickly removed before it impacts the facility operations. Redundancy of sensor lines and their design should be considered especially given the number of times the sensor lines plugged on the DM1200 system. While film cooler washing may slow the rate of clogging, in DM1200 tests with HLW feeds, it was found to be ultimately unsuccessful in removing the clogs that inevitably occurred. Therefore, a mechanical means to remove blockages needs to be developed and tested to ensure that it is reliable and will remove blockages without damaging the delicate film cooler louvers. Film cooler plugging can also be mitigated by the addition of more bubblers and bubbling outlets.

4.2 Film Cooler and Transition Line Inspections

The film cooler and transition line were inspected for solids accumulation and corrosion after several of the DM1200 tests [10, 14, 28, 30, 31, 41]. The general layout of the film cooler and transition line sections is shown in Figure 4.7. The film cooler is shown on the right hand side of the photograph. Transition line section #1 is located on the right, above the film cooler, and has a Y shape. Transition line section #2 is a long and slightly curved portion following transition line section #1. Transition line section #3 is a shorter straight part following section #2. The transition line bellows is a short section shown as the last section in Figure 4.7. The transition line section in between the bellows and SBS inlet, which is not shown in Figure 4.7, has a similar shape to transition line section #1 and connects the transition line bellows to the SBS. A complete list of deposits removed from the film cooler transition line is given in Table 4.3; chemical analyses of select deposits are given in Table 4.4

4.2.1 Inspection After LAW Sub-Envelope C1 Test [10]

At the end of the LAW Sub-Envelope C1 test, a large amount of dry solids was found at the thermocouple location ($\sim 1/2$ of the pipe diameter occluded) in the film cooler and on the section right above the transition line connection to the film cooler. The film cooler was cleaned with a rod and brush. Accumulation in the film cooler appeared to be greater than was observed in the previous HLW tests [3, 9]. Only a slight coating was observed in the transition line inlet. Similarly, only a slight solids coating was observed inside the bellows. Analysis by Direct Current Plasma Atomic Emission Spectroscopy (DCP-AES) of material from the transition line bellows shows the same four major components as in the melter feed (i.e., SiO₂ ~47 wt%, Na₂O ~14 %, Al₂O₃ ~6%, and Fe₂O₃ ~6%). The sample also contained a large amount of SeO₂, which was not present in the melter feed. SeO_2 , SO_3 , SrO, TeO_2 , MnO and Cs_2O are probably deposits from the AZ-101 post-commissioning tests [9] that were performed prior to the LAW Sub-Envelope C1 test.

4.2.2 Inspection After LAW Sub-Envelope A1 Test [14]

<u>Film Cooler</u>: At the end of the LAW Sub-Envelope A1 test series, the film cooler was removed and inspected in detail. Photographs of the solids deposits in various parts of the film cooler are provided in Figures 4.8 - 4.11. Although the mass of the deposits was not recorded, significant solids deposition can be observed in the photographs. In addition to the solids deposition, significant corrosion damage at the bottom of the film cooler was observed, as shown in Figures 4.12 - 4.19. DCP analysis of a sample of solids removed from the film cooler after washing indicated that the deposits consist mainly of sodium and silicon, with lesser amounts of aluminum, boron, chromium, iron, nickel, selenium, and zinc. Cleaning of the film cooler was only marginally successful, as shown in Figures 4.20 - 4.23.

A scanning electron microscope (SEM) image of a sample removed from the film cooler bottom ring is shown in Figure 4.24. Specific results from analysis using SEM coupled with energy dispersive x-ray spectroscopy (EDS) include:

- Glass has adhered to the corroded surface and is inundated with Cr-Fe-Ni spinel.
- A chromium chloride phase is found at the interfaces where the glass is observed in contact with the bulk metal, both at the corroded surfaces and in cracks.
- Platelets of chromium oxide are found throughout the cross section of the ring, except in the highly corroded/depleted regions.
- Metal near the corrosion areas is severely depleted in chromium.
- Sulfur attack is present, which extends into the bulk metal.
- Metal in the central areas of the ring is compositionally consistent with Inconel 690.
- Other phases observed in glassy/scale regions include aluminum oxide platelets, as well as chlorine- and sulfur-containing phases.

Based on the SEM/EDS analysis, the general trend observed is glass with significant spinel formation adhered to broad zones of chromium oxide that are hundreds of microns thick. Next, a chromium chloride phase is observed forming a non-uniform boundary between the chromium oxide and the chromium-depleted metal surface. Within the chromium depleted metal (which is typically a few hundred microns thick), significant grain boundary attack is observed, and formation of chromium oxide and sulfate phases is occurring at those boundaries. Finally, away from the highly depleted/corroded areas of the metal, a significant amount of an eskoalite platelet is observed. In general, these observations are consistent with high-temperature corrosion of Inconel in the presence of chlorides and sulfates.

The Catholic University of America Vitreous State Laboratory

Given the extent of the damage to the film cooler (which was the original unit installed in the DM1200), a replacement was installed prior to the next set of tests on the DM1200 system.

<u>Transition Line</u>: After 121.6 hours operation (in between the second and third test segments) and at the end of the test series, parts of the transition line were removed for inspection. The inside of the flexible bellows between the film cooler and the transition pipe and the inside of the transition pipe (SBS side) contained solids deposits after 121.6 hours operation, as shown in Figures 4.25 and 4.26. Similar, but not as extensive deposits were also observed at the end of the test series.

4.2.3 Inspection After HLW C-104/AY-101 Test [28]

Photographs of the solids deposits in the film cooler after the HLW C-104/AY-101 test are shown in Figures 4.27 and 4.28. Photographs of the solids deposits in various sections of the transition line are provided in Figures 4.29 - 4.34. The largest mass of solids (3.11 kg) was collected from transition line section #2. DCP analysis of solids taken from this section shows major component composition similar to that of AZ-101, AZ-102, C-106/AY-102 and C-104/AY-101 melter feeds, indicating entrainment of feed components into the exhaust stream. However, the concentrations of volatile components such as selenium were higher than those in the feed, indicating volatilization from the glass surface or cold cap. Other notable elements were zinc, zirconium, lithium, and manganese, which are also present in all of the four HLW feeds. Sulfur is present in the sample and is present only in the AZ-101 and AZ-102 feeds.

Contributing factors to the amount of solids deposition in the film cooler probably include feed composition, cooling of the off-gas, flow direction changes, and the film cooler washing process. The solids deposits are the accumulations since 6/21/2002 for the film cooler and the transition line sections #1, #2, and #3. The transition line bellows and the transition line on the SBS side were cleaned on 10/24/2002, hence the deposits on these two sections accumulated over a four-month period. The film cooler photographs (Figures 4.27 and 4.28) indicate that there is some corrosion of the film cooler leading surfaces and some plugging of the air holes. As noted above, this film cooler, which is constructed of Inconel 690, had been in service since 6/21/02. Corrosion of the film cooler is likely somewhat enhanced during idling since it is exposed to higher temperatures than during normal feeding as a result of the absence of a cold cap. This component is one that is expected to need occasional replacement. The film cooler and all sections of the transition line were cleaned before reassembly.

4.2.4 Inspection During and After HLW Configuration Tests [30]

Configuration Test 2

Solids deposits at the inlet of the film cooler are shown in Figure 4.35. Photographs of the solids deposits throughout the transition line are given in Figures 4.36 - 4.41. The film cooler and

all sections of the transition line were cleaned before reassembly. The solids deposits in the film cooler, transition line sections #1, #2, #3, transition line bellows, and transition line section connecting to the SBS are the result of accumulations since 3/5/03, right after the C-104/AY-101 HLW simulant test [28]. The maximum solids deposition was in transition line section #2 in both cases. The masses of solids collected from this section were 3.11 kg on 3/5/03 and 2.28 kg on 6/11/03. The tests conducted between the two dates were Tests 5 and 6 of the HLW Reductant series [29] and Configuration Test 2 [30], during which approximately 26,000 kg of glass was poured. The transition line differential pressure increased during the latter half of Test 6 and was fairly steady during Test 2, suggesting that the bulk of the transition line deposits may have occurred during Test 6.

Configuration Test 1

After the test, the film cooler, transition line sections #2, #3, and transition line bellows were inspected. Very little particulate was observed in the film cooler or transition line sections #2 and #3. A photograph of the solids deposits at the transition line bellows inlet is provided in Figure 4.42. About 10 grams of solids deposits was removed from the transition bellows. The film cooler and the above mentioned sections of the transition line were cleaned before reassembly.

Configuration Test 3

At around 162.3 hours into Test 3, melter feeding was interrupted and the transition line bellows was removed due to clogging; a 4"-diameter solid chunk (shown in Figure 4.43.a) and a small amount of debris totaling 0.254 kg were removed from the bellows. The film cooler was rodded out about one hour prior to the solids removal at the bellows. After the film cooler was cleaned, the transition line was tapped and the deposit moved down the transition line and lodged in the bellows. A macro image of the material, which is shown in Figure 4.43.b, indicates a reddish glassy admixture inundated with pores and periodically encrusted with a whitish substance. An SEM/EDS spectrum of this sample is presented in Figure 4.43.c. Observations with respect to this sample can be summarized as follows:

- An EDS spectrum taken in a region that showed a somewhat eroded appearance in SEM back-scattered electron (BSE) mode revealed that the mixture primarily contained Na, Al, Si, Fe, Zn, S, and Cl.
- In regions where whitish material was evident, high Na, S, and Cl concentrations were observed.
- Sodium sulfate was readily observed across the sample.
- In areas with surface cracks, various undissolved feed components were observed in the cross section. Most notable was a sodium zirconium silicate.

• The material contains the major feed components, indicating entrainment of feed components into the exhaust stream, as well as higher-than-feed concentrations of volatile components such as sulfur, indicating volatilization from the glass surface or cold cap.

At the end of the test, the film cooler was removed and inspected. Figure 4.44 shows some glazed build up of solids on air vent holes at the very bottom of the film cooler. There was also moderate particulate buildup on its louvers. The film cooler (2^{nd} installed on the DM1200) was replaced on 7/23/03, before Test 8. The transition line segments were not inspected after the test.

To cool and protect the film cooler during periods of extended idling, air from the discharge dam cooling air flow, which goes to the bypass off-gas piping during testing, is routed to the film cooler inlet, where it mixes with and lowers the temperature of the air flowing from the melter plenum into the film cooler. The cooling air flow rate is about 23 scfm at a temperature of about 135° C at the outlet of the dam. This mixes with the plenum air, which is typically around 1020° C during idling. As a result of this cooling system, the film cooler internal temperature is about 540° C during idling.

Test 10

The mass of solids removed from the film cooler and transition line segments was 0.57 kg and 1.5 kg, respectively. Photographs of the film cooler inlet are shown in Figures 4.45 and 4.46. Photographs of the solids deposits throughout the transition line are given in Figures 4.47 - 4.53. The white deposits seen in the figures are presumed to be alkali halides (sodium chloride was spiked into the feed during Test 10). The film cooler and all sections of the transition line were cleaned before reassembly. The cleaned film cooler inlet is shown in Figure 4.54.

Test 9

Figure 4.55 shows some glazed buildup of solids on air vent holes at the very bottom of the film cooler. Only slight solids deposits were observed throughout the transition line except in the transition line section in between the bellows and the SBS inlet, as shown in Figure 4.56. The film cooler was partially cleaned, as shown in Figure 4.57, before the next test. The transition line sections were deliberately not cleaned before reassembly; however, some solids in the transition line section connected to the SBS inlet fell out.

4.2.5 Inspection After LAW Production Rate and Foaming Tests [31]

After both the Production Rate and Foaming Tests, the transition line bellows were removed. About 60 grams of small chunks and very fine white solids were removed from the transition line bellows. The results from this test were similar to the previous LAW Sub-Envelope C1 test [10] in that no blockages of the transition line occurred and only a small amount of material was deposited in the transition line bellows. Photographs of deposits observed in the transition line after the Foaming Tests are given in Figures 4.58 - 4.60. Sixteen grams of solids was removed from transition line section #3 and fourteen grams was removed from transition line section #2.

The film cooler was not inspected during or after the Production Rate or Foaming Tests.

4.2.6 Inspection After MACT Tests [41]

After the completion of regulatory tests with both LAW and HLW simulants as well as an HLW turnover period of about 62 hours in duration, the transition line sections and the film cooler were taken out and inspected. The film cooler was installed during the bubbler configuration test series (3rd installed on the DM1200) in July of 2003 [30]. Since that installation, the film cooler and transition line were removed and cleaned on several occasions, the most recent of which occurred in April 2004 [30]. The amount of material collected and documented at the inspection at the end of the MACT tests therefore reflects feed processing during the simulant verification tests [35], turn-over and scoping tests associated with the MACT tests, the MACT tests, and idling time in between these tests. One exception occurred after the MACT tests during the HLW turnover when a clog that began to severely limit the vacuum on the melter required cleaning and removal of the bellows and cleaning of the adjacent transition line segments in place. Corrosion observed on the film cooler can be attributed to about 440 days of idling and 87 days of feed processing, whereas the measured amounts of solids (more than 1.56 kg) collected are the result of about 41 days of feeding but do not include the material removed during the HLW Turnover Test. During the HLW Turnover Test, the transition line clogged and the transition line bellows were taken out. Views of transition line bellows and transition line section in between the bellows and SBS inlet at 26.9 hours into the HLW Turnover Test are provided in Figures 4.61 and 4.62, respectively. A view of the film cooler inlet after the HLW Turnover Test is provided in Figure 4.63. Glassy solids had deposited at the end of the film cooler. In Figure 4.64, damage to the tip of the film cooler is shown. Even though the film cooler was severely corroded, it functioned without incident throughout the tests. Close-up views of the film cooler louvers and the film cooler outlet are shown in Figures 4.65 and 4.66, respectively. The inlet of the film cooler after cleaning is shown in Figures 4.67 and 4.68. Included in Figure 4.67 for comparison is a picture of the film cooler after about half the exposure time. Deposits observed throughout the transition line are shown in Figures 4.69 - 4.76.

In summary, film cooler clogging events continued to be a significant operational problem during DM1200 tests. Their frequency appeared to increase with bubbling rate and glass

production rate. Feeds with low solids contents further exacerbate this issue because of the need for increased bubbling rates in order to maintain glass production rates. None of the film cooler washing procedures were effective for clogging with HLW feeds. No mechanical cleaning device has been tested. Consequently, this would appear to be a significant issue with respect to the ability of the WTP to meet HLW throughput requirements. These findings have been reported to the WTP Project and decisions regarding resolution are pending.

The Catholic University of America Vitreous State Laboratory Summary of DM1200 Operation at VSL Final Report, VSL-06R6710-2, Rev. 0

SECTION 5.0 DM1200 EMISSIONS

Exhaust samples were taken in the transition line using 40-CFR-60 Methods 3, 5, and 29 to quantify and qualify emissions from the DM1200. Sampling durations were about one hour due to the high particle concentration. Teflon filters were used to allow for analysis of all feed components. The majority of the off-gas analyte concentrations were derived from laboratory data on solutions extracted from air samples (filters and various solutions) together with measurements of the volume of air sampled. The volume of air sampled and the rate at which it can be sampled are defined in 40-CFR-60 and SW-846. Isokinetic sampling, which entails removing gas from the exhaust at the same velocity that the air is flowing in the duct (40-CFR-60, Methods 1-5), was used. Total particulate loading was determined by gravimetric analysis of the standard particle filter and of probe-rinse solutions. Downstream of the particulate filter in the sampling train are iced impingers with acidic (5% concentrated nitric acid plus 10% hydrogen peroxide) and basic (2 N sodium hydroxide) solutions. The analysis of these solutions permits the determination of total gaseous emissions of several elements, notably halides and sulfur. An additional procedure was required for particulate samples containing ruthenium [17, 29]. Undissolved ruthenium particles were filtered from the nitric/hydrofluoric acid digestate, fused with sodium hydroxide, and dissolved with hydrochloric acid. Results from all inorganic isokinetic samples taken at the melter outlet are provided in Table 5.1, including test, feed type, melt pool bubbling rate, elemental emission rates, and melter decontamination factors (DFs). Notice the distinction that is made between constituents sampled as particles and as "gas". The "gaseous" constituents are operationally defined as those species that are scrubbed in the impinger solutions after the air stream has passed through a 0.3 µm heated filter. Impinger solutions and filtered solids from off-gas sampling were analyzed for all of the elements in the feed, but only halides, boron, selenium, and sulfur were detected in the impinger solutions.

Melter emissions can be attributed to two distinct mechanisms: simple entrainment of feed or glass particles into the exhaust stream and volatilization of constituents from the glass surface or cold cap. The composition of the former is very similar to the feed and glass target composition, whereas the composition of the latter is skewed towards the more volatile elements such as selenium, sulfur, halides, boron, and alkali metals. Increases in glass pool bubbling rate have the potential to increase emissions generated by both mechanisms; entrainment due to glass or feed being lifted into the plenum space and volatilization due to creation of openings in the cold cap exposing the molten glass surface. The effect of feed composition on emissions is most evident in the concentrations of volatile species that are lost from the melt pool or cold cap. Extremely volatile components, such as water or nitrates, can also increase the activity in the surface on the cold cap through gas evolution, thereby aiding the entrainment of other feed components into the exhaust stream. In general, particulate melter emissions are composed of major feed components with higher-than-feed concentrations of volatile components. The C-106/AY-102 formulation is the only one of the four HLW compositions tested that contained

the volatile element selenium and, therefore, emissions from this test are uniquely enriched in selenium. Likewise, the C-104/AY-101 formulation contained significant amounts of fluorine, resulting in emissions containing significant concentrations of fluorine. Particulate melter emissions during tests with LAW simulants have higher concentrations of alkali metals, sulfur, and halides due to their higher concentrations in the feed. The analyzed compositions of the particulate emissions are similar to the analysis of the deposits removed from the film cooler (see Section 4.2).

Figure 5.1 compares particulate carryover from the melter for several tests conducted with HLW AZ-101 simulants with and without melt pool bubbling [3, 9]. Solids carryover from the melter is relatively low in this test series and increases with increased melt pool bubbling. Exceptions to the bubbling trend are tests with minimal bubbling and feed that contains nitrates and sugar, which result in emissions rates comparable to tests with bubbling.

Emissions samples were taken from tests with HLW AZ-101 simulants to determine the effect of bubbling rate and feed water content on melter emissions [17]. The results are depicted in Figures 5.2 and 5.3 for percent carryover of total solids and many feed elements. No distinction was evident between emissions at the lowest bubbling rates when the data are normalized to feed rate; however, emissions did increase substantially at the highest bubbling rate. Bubbling at the intermediate rate of 40 lpm is probably insufficient to disrupt the cold cap enough to substantially increase glass production or emissions from the melter. Particulate carryover increases with increasing feed water content (decreasing feed solids content), in keeping with the expectation that increased steam generation in the cold cap region can lead to increased entrainment of feed particulates. These data also illustrate the relative volatility of the depicted feed components, with boron being most volatile, silicon being the least volatile, and total particulate emissions being in between these two extremes. Also of note is the common response of most feed elements and total solids to changes in feed water content and melter conditions. In Figure 5.4, the solids carryover from the tests conducted at 65 lpm (Figure 5.3) is compared to emissions collected while processing HLW AZ-101 feed in other tests at the same bubbling rate [29, 30]. Melter emissions were higher in tests with sugar as a feed additive due to less desirable cold cap conditions and the evolution of gases upon the breakdown of the sugar. While processing feed at a solids content of 400 g glass per liter, emissions were lowest when the 65 lpm of bubbling was spread out between four bubbling outlets instead of two.

Emissions data collected from melter tests with all HLW compositions are comparable to data from samples taken during tests processing HLW AZ-101 compositions [26, 28, 29, 35, 41]. Percent solids carryover from the melter during tests with HLW C-106/AY-102 increased with bubbling and was typically higher in tests with sugar and nitrates incorporated into the feed, as shown in Figure 5.5. Emissions from tests with four HLW compositions at the highest feed solids content (20% UDS) and a bubbling rate of 65 lpm are compared in Figure 5.6. The measured solids carryover from the melter was lower for the AZ-101 composition (0.55 percent of feed solids) than for any of the other compositions. This performance was not due to compositional differences, given the similarity between the feeds with lowest (AZ-101) and highest (AZ-102) melter emission rates, but more likely was due to changing conditions in the

melter (e.g., deposits on the tip of the feed nozzle causing spraying of feed towards the off-gas outlet during the tests with HLW AZ-102 simulants, or ridges in the cold cap leaving sections of the melt surface exposed vs. a contiguous cold cap across the entire melt pool surface) as the samples are being taken. Measured carryover for tests with AZ-101, C-106/AY-102, and C-104/AY-101 were all very similar.

The bubbler configuration tests provide a good opportunity to examine the effect of changes in melter operation, particularly bubbler configuration and usage, on melter emissions since the same AZ-101 feed is used throughout the tests with little compositional change [30]. Percent solids carryover for some of these tests is illustrated in Figure 5.7. These data can also be compared to previous tests processing the same AZ-101 feed with two single outlet bubblers at a bubbling rate of 65 lpm, which had a solids carryover from the melter of 0.55% and 0.78% for feeds at 530 and 400 g solids per liter, respectively [17]. Another comparison can be made to tests with the same AZ-101 feed at 400 g solids per liter processed using double outlet bubblers at 64 and 134 lpm resulting in 0.62% and 1.11% solids carryover from the melter, respectively. The data illustrate the increase in melter emissions with bubbling, although the increases are all or partly mitigated when the bubbler air flow is distributed between four instead of two bubbler outlets. For example, a test conducted with four bubbling outlets and total bubbling rate of 117 lpm had lower solids carryover than an earlier test with the same feed conducted with two bubbling outlets and a total bubbling rate of 65 lpm (0.78% vs. 0.58%). Carryover from tests conducted at the same total bubbler flow rate but with the flow spread out over four outlets instead of two were lower (0.78% vs. 0.62%), suggesting that spreading bubbler flow over the surface not only enhances production rate, but also reduces solids carryover from the melter. Other conditions tested that showed increased emissions included increased melt temperature and the addition of chloride and sulfate to the feed. Solids carryover from the melter in the test with the sulfate-only spike was higher than expected, particularly considering that the test with the same amount of sulfate and chloride had about half the melter carryover. The high value is probably due to the inherent variability in melter emissions as a result of continuing changes in the cold cap and the difficulty in establishing an even cold cap during portions of tests with the added salts. Step bubbler skewing resulted in a small increase in emissions due to the higher air flow from one bubbler over an extended period of time.

Sampling of the melter exhaust while processing LAW simulants was done primarily to provide scaling data between the DM100 melter and the DM3300 LAW Pilot Melter [51]. A summary of the percent solids carryover for the DM1200 tests processing LAW simulants is given in Figure 5.8. Many of the general trends observed during tests with HLW simulants were observed; increased emissions with increased bubbling and higher emissions when volatile components such as halides are added to the feed. Solids carryover increased with increasing feed alkali and halogen content (A > C > B), as expected. Comparison of DM1200 melter emissions with those measured on other melter platforms is shown in Figures 5.9 and 5.10 while processing the same LAW Sub-Envelope A1 and B1 simulants, respectively. There is reasonable consistency across the three melters. Elemental carryover is highest for the most volatile elements: sulfur followed by alkali metals, chromium, and boron (it should be noted, however, that the chromium data are likely skewed high as a result of the prevalence of chromium sources

in the melter materials of construction). This trend is apparent at all three melter scales and for all three Sub-Envelope compositions. Total emissions are therefore highest for the compositions with highest total volatile content (LAW A) and lowest for compositions with the lowest total volatile content (LAW B). The higher percentage of emissions for volatile constituents indicates that volatilization is more significant than simple entrainment as the mechanism for generating melter emissions during tests with LAW feeds. Simple entrainment would result in equal carryover for all elements, which is not observed. In view of the differences in geometry and air in-leakage rates, the similarity of emissions for melters spanning a range of a factor of 30 in melter surface suggests that the emissions are dominated by the gross chemical and physical process involved in the feed to glass conversion with an essentially complete cold cap rather than the details of the melter design. Comparison of these data also suggests that melter emissions data collected on smaller melters can be reliable predictors of melter emissions at much larger scales provided that the operating conditions are similar. The Catholic University of America Vitreous State Laboratory

SECTION 6.0 SUMMARY AND CONCLUSIONS

The DM1200 at VSL has been operated for over five years, during which time over a million and a half pounds of feed has been processed to produce over half a million pounds of glass. A wide range of simulated HLW and LAW streams were treated under a variety of melter and off-gas system operating conditions. From these tests, a large body of data has been collected on melter performance, maintenance, post test inspections, and potential failure modes. This includes the operation of the film cooler as well as plugging and corrosion of both the film cooler and transition line.

Recent inspections show that, overall, the DM1200 is in excellent condition after five years of being at its operating temperature. The plenum bricks appear to be structurally sound with some surface cracking. All of the seams between the bricks are tight with no evidence of any significant gaps. The tuckstone is showing some minor wear and cracking on the brick faces nearest the glass pool. Some small areas of spalling were also noted, but overall the tuckstone is in good condition. The lid of the melter is in excellent condition; no spalling or cracking was noted. Finally, the discharge chamber is in excellent condition. No significant wear of the trough was noted.

One aspect of the present review was to determine the frequency that various melter components were replaced, including thermocouples, thermowells, level detectors, discharge air lances, and discharge heaters; detailed information for these components is provided in Section 2.0.

One of the primary objectives of DM1200 testing was to determine the maximum production rates feasible for various feeds containing HLW simulated wastes. This objective was addressed, over time, as the production rate requirement was increased and the projected solids content of the waste was decreased. Initial tests showed that melt pool bubbling was required to produce glass at a rate of 400 kg/m²/day. Subsequently, tests with two single outlet bubblers demonstrated that production rates of 800 kg/m²/day could be obtained for HLW wastes with greater than 17 wt% undissolved solids. Significant further improvements in glass production rates (up to 1400 kg/m²/day) were achieved with feeds corresponding to 15 wt% undissolved solids from pretreatment by employing optimized bubbler configurations. These improvements appear to be sufficient to more than make up for the production rate short-fall brought about by the reduction in the solids content in the feed from pretreatment from 20 wt% to 15 wt% undissolved solids. However, attainment of the target rate was not possible for all HLW simulants after yet further reductions in solids content. Attempts to achieve the target rate with low solids content feed resulted in unstable melter conditions and frequent blockages of the film cooler. Further optimization, including adding more bubbling outlets and employing automated bubbler flow rate skewing, would result in additional production rate enhancements.

Throughout testing on the DM1200, plugging of the film cooler and transition line occurred, particularly in tests with higher bubbling rates. On several occasions, feeding was interrupted in order to manually rod out the film cooler and, less frequently, a portion of the transition line had to be disassembled for cleaning. A thorough review of operational data indicated that the film cooler occlusions were directly related to the higher bubbling rates used to maximize glass production rates. Analysis of the deposits removed from the film cooler indicate that their composition is very similar to the composition of particulate melter emissions in that they are close to the feed composition and enriched in volatile constituents. Film cooler plugging can be limited by reducing the bubbling rate, which has the undesirable effect of reducing the glass production rate, or by increasing the number of bubbling outlets, which permits the use of greater amounts of bubbler air without concentrating the air flow in a limited number of locations. None of the film cooler washing procedures were effective for preventing clogging with HLW feeds. A mechanical means to remove blockages needs to be developed and tested to ensure that it is reliable and will remove blockages without damaging the delicate film cooler louvers. No mechanical cleaning device has been tested. Consequently, this would appear to be a significant issue with respect to the ability of the WTP to meet HLW throughput requirements. These findings have been reported to the WTP Project and decisions regarding resolution are pending.

The three film coolers used over the five years of DM1200 operation experienced severe corrosion on the inlet and glassy deposits occluded the air outlet holes on the leading edge. Much of the corrosion on the film cooler inlet may be due to exposure to higher temperatures during extended idling periods and therefore this may be less of an issue for a continuously operated melter.

Melter emissions were sampled throughout the DM1200 tests to provide data for off-gas system design, to determine the effect of feed composition and melter operation on melter emissions, and to provide data for system mass balance calculations. Analysis of the samples shows that melter emissions increase with increasing melt pool bubbling, feed water content, feed volatile content, and glass pool temperature. The effect of bubbling can be mitigated by distributing the bubbler flow through more bubbling outlets. The composition of the particulate emissions reflects the major feed components, indicating entrainment of feed components into the exhaust stream. In addition, the high concentrations of volatile components such as sulfur in the particulate indicate volatilization from the glass surface or cold cap. Particulate from LAW exhaust has a higher proportion of volatile and semi-volatile constituents, indicating a greater contribution from the glass surface or cold cap.

The major conclusions from this review are:

• Bubblers are needed to obtain glass production rates of 400 kg/m²/day in WTP HLW melters with Hanford HLW feeds.

- Glass production rates as high as 1400 kg/m²/day can be obtained in the DM1200 melter with two double outlet bubblers and HLW feeds prepared from waste simulants with 15% or higher undissolved solids.
- Feeds prepared from HLW with solids contents of less than 15% will require very high bubbling rates to achieve the contractually required glass production rate of $800 \text{ kg/m}^2/\text{day}$. These high bubbling rates are likely to cause film cooler clogging that may disrupt operations.
- Film cooler clogging can be minimized by increasing the number of bubbler outlets so that bubbling is more distributed in the melt pool, while maintaining the same total bubbler air flow. Skewing of bubbler air flow may also be beneficial in enhancing production rates.
- A mechanical film cooler cleaning device will likely be required at the WTP, and should be tested.
- Bubblers placed deeper in the melt pool are more effective in increasing processing rate.
- Addition of sugar and nitrates does not improve processing rates of Hanford HLW feeds.
- The rheology of the HLW melter feed does appear to affect processing rates, probably through its effect on feed distribution and cold cap formation. However, more viscous feeds processed somewhat faster.
- DM1200 glass production rates were obtained using visual monitoring of the cold cap, per Project direction. Visual observation is not planned for the WTP HLW melters, where instead, plenum temperature will be monitored to control feed rates. Since this could result in lower glass production rates, it would be beneficial to determine the impact of the planned WTP mode of operation on the DM1200.
- In bubbled melters, melter emissions consist mostly of entrained feed constituents with volatiles over represented.
- Melter emissions increase with bubbling rate, feed water content, feed volatile content, and temperature.
- After five years at the operating temperature, the DM1200 is in excellent condition.

SECTION 7.0 REFERENCES

- "Determination of Processing Rate of RPP-WTP HLW Simulants using a DuraMelter™ 1000 Vitrification System," K.S. Matlack, W.K. Kot, F. Perez-Cardenas, and I.L. Pegg, Final Report, VSL-00R2590-2, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 8/21/00.
- [2] "Design and Installation of a Prototypical Off-Gas Treatment System for the DM1200 RPP-WTP HLW Pilot Melter," R.T. Anderson, M. Brandys, and R. Jung, Final Report, VSL-01R2510-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 2/22/01.
- [3] "Start-Up and Commissioning Tests on the DM1200 HLW Pilot Melter System Using AZ-101 Waste Simulants," K.S. Matlack, M. Brandys, and I.L. Pegg, Final Report, VSL-01R0100-2, Rev. 1, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 10/31/01.
- [4] "Tank Waste Remediation System Operation and Utilization Plan to Support Waste Feed Delivery," R.A. Kirkbride, G.K. Allen, R.M. Orme, R.S. Wittman, J.H. Baldwin, T.W. Crawford, J. Jo, L.J. Fergestrom, G.T. MacLean and D.L. Penwell, Volume I, HNF-SD-WM-SP-012, Revision 1 (Draft), February 1999.
- [5] Hanford Tank Waste Best Basis Inventory, Tank Waste Information Network System 2 (http://twins.pnl.gov:8001).
- [6] "Phase I High-Level Waste Pretreatment and Feed Staging Plan," A.F. Manuel, S.L. Lambert and G.E. Stegen, WHC-SD-WM-ES-370, Revision 1, September 1996.
- [7] "Calculation of Lag Storage Requirements for Phase 1 Pretreatment Operations," BNFL, Inc. Memorandum #001753, E. Slaathaug to I. Papp, 2/17/99.
- [8] "Using MnO₄ for TRU Separations," M. Johnson, E-mail message to I.L. Pegg, 5/17/99.
- [9] "Tests on the DuraMelter 1200 HLW Pilot Melter System Using AZ-101 HLW Simulants," K.S. Matlack, W.K. Kot, T. Bardakci, T.R. Schatz, W. Gong, and I.L. Pegg, Final Report, VSL-02R0100-2, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 6/11/02.

- [10] "Integrated Off-Gas System Tests on the DM1200 Melter with RPP-WTP LAW Sub-Envelope C1 Simulants," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, and I.L. Pegg, Final Report, VSL-02R8800-1, Rev. 1, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 9/23/03.
- [11] "Tank Farm Contractor Operation and Utilization Plan," R.A. Kirkbride, et al., CH2M Hill Hanford Group Inc., Richland, WA, HNF-SD-SP-012, Rev. 2, 4/19/00.
- [12] "Complex Concentrate Pretreatment FY 1986 Progress Report," R.O. Lokken, et al., PNL-7687, September 1986.
- [13] "Basis of Design," BNFL report, DB-W375-EG00001, Rev. 0, 11/23/98.
- [14] "Integrated Off-Gas System Tests on the DM1200 Melter with RPP-WTP LAW Sub-Envelope A1 Simulants," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, and I.L. Pegg, Final Report, VSL-02R8800-2, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 9/03/02.
- [15] "Tank Farm Contractor Operation and Utilization Plan," R.A. Kirkbride, et al., CH2M Hill Hanford Group Inc., Richland, WA, HNF-SD-SP-012, Rev. 3, 10/2/01.
- [16] "Tank Waste Remediation System (TWRS) Privatization Contractor Samples Waste Envelope B Material, 241-AN-105," R.A. Esch, HNF-SD-WM-DP-218, Rev. 1, 5/30/97.
- [17] "DM1200 Tests with AZ-101 HLW Simulants," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, W.K. Kot, and I.L. Pegg, Final Report, VSL-03R3800-4, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 2/17/04.
- [18] "Tank Farm Contractor Operation and Utilization Plan," R.A. Kirkbride, et al., CH2M Hill Hanford Group Inc., Richland, WA, HNF-SD-SP-012, Rev. 3A, 12/12/01.
- [19] "Small-Scale Ion Exchange Removal of Cesium and Technetium from Envelope B Hanford Tank 241-AZ-102," W.D. King, WSRC-TR-2000-00419 (SRT-RPP-2000-00036), 02/15/2001.
- [20] "Integrated DM1200 Testing of HLW Compositions Using Bubblers," J.M. Perez, RPP-WTP Test Specification, 24590-HLW-TSP-RT-02-005, Rev 0, 4/1/02.
- [21] "Integrated Off-Gas System Tests on the DM1200 Melter with RPP-WTP LAW Sub-Envelope B1 Simulants," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, and I.L. Pegg, Final Report, VSL-03R3851-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 10/17/03.

ORP-51434, Rev. 0

- [22] "Tank 241-AZ-101 Cores, 266 and 269 Analytical Results for the Final Report," F.H. Steen, Fluor Hanford, Richland, WA, HNF-1701, Rev. 0, 7/28/00.
- [23] "Integrated DM1200 Melter Testing of HLW AZ-102 Compositions Using Bubblers," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, W. Kot and I.L. Pegg, Final Report, VSL-03R3800-2, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 9/24/03.
- [24] "Phase I High-Level Waste Pretreatment and Feed Staging Plan," A.F. Manuel, S.L. Lambert and G.E. Stegen, WHC-SD-WM-ES-370, Rev. 1, Westinghouse Hanford Company, Richland, WA, September 1996.
- [25] "Tank Characterization for Double-Shell Tank 241-AZ-102," R.D. Schreiber, WHC-SD-WM-ER-411, Rev. 0, Westinghouse Hanford Company, Richland, WA, July 1995.
- [26] "Integrated DM1200 Melter Testing of HLW C-106/AY-102 Composition Using Bubblers," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, W. Kot and I.L. Pegg, Final Report, VSL-03R3800-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 9/15/03.
- [27] "Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102, N.M. Hassan, R. Hayden, W.D. King, D.J. McCabe and M.L. Crowder, BNF-003-98-0219, Rev. 0, 03/29/00.
- [28] "Integrated DM1200 Melter Testing of HLW C-104/AY-101 Compositions Using Bubblers," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, W. Kot and I.L. Pegg, Final Report, VSL-03R3800-3, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 11/24/03.
- [29] "Integrated DM1200 Melter Testing of Redox Effects Using HLW AZ-101 and C-106/AY-102 Simulants," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, W. Lutze, P. M. Bizot, R. A. Callow, M. Brandys, W.K. Kot, and I.L. Pegg, Final Report, VSL-04R4800-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 5/6/04.
- [30] "Integrated DM1200 Melter Testing of Bubbler Configurations Using HLW AZ-101 Simulants," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, W. Lutze, R. A. Callow, M. Brandys, W.K. Kot, and I.L. Pegg, Final Report, VSL-04R4800-4, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 10/5/04.
- [31] "Bubbling Rate and Foaming Tests on the DuraMelter 1200 with LAWC22 and LAWA30 Glasses," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, P.M. Bizot, R.A. Callow, M. Brandys, and I.L. Pegg, Final Report, VSL-04R4851-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 7/1/04.

- [32] "Tank Characterization Report for Double-Shell Tank 241-AN107," J. Jo, J.D. Franklin, D.J. Morris and L.C. Amato, WHC-SD-WM-ER600, Rev. 0, Westinghouse Hanford Company, WA, 1996.
- [33] "LAW Pilot Melter and DM-100 Sub-Envelope Changeover Testing," E.V. Morrey, WTP Test Specification, Rev. 0, 24590-LAW-TSP-RT-02-012, 8/13/02.
- [34] "Destruction of Alcohols in DM1200 Melter System During LAW and HLW Vitrification," K.S. Matlack and I.L. Pegg, Letter Report, VSL-03L4850-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 12/16/03.
- [35] "Integrated DM1200 Melter Testing Using AZ-102 and C-106/AY-102 HLW Simulants: HLW Simulant Verification," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, M. Brandys, W.K. Kot, and I.L. Pegg, Final Report, VSL-05R5800-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 6/27/05.
- [36] (a) "RE: CCN:082426 Direction for Test Planning of HLW Simulant Validation Tests,"
 E-Mail from E.V. Morrey to I.L. Pegg, 2/25/04. (b) "Authorization to Procure Feed for Upcoming 102-AZ DM1200," E-Mail from E.V. Morrey to I.L. Pegg, 4/28/04.
- [37] "CCN:082426 Direction for Test Planning of HLW Simulant Validation Test," E-Mail from E.V. Morrey to I.L. Pegg, 2/18/04.
- [38] "Test Exception to Define the High Waste Loading C-106/AY-102 Composition and Test Operating Conditions," 24590-WTP-TEF-RT-04-00028, 8/10/04.
- [39] "AY-102/C-106 Actual Waste Sample Glass Formulation Guidance," CCN 067620, RPP-WTP Memorandum, C. Musick to I.L. Pegg, 3/23/04.
- [40] "Multiple Ion Exchange Column Runs for Cesium and Technetium Removal from AW-101 Waste Sample (U)," N. M. Hassan, K. Adu-Wusu and C.A. Nash, WSRC-TR-2003-00098, Rev. 0 (SRT-RPP-2003-00026, Rev. 0), Westinghouse Savannah River Company, Aiken, SC, July 2003.
- [41] "Regulatory Off-Gas Emissions Testing on the DM1200 Melter System Using HLW and LAW Simulants," K.S. Matlack, W. Gong, T. Bardakci, N. D'Angelo, M. Brandys, W. Kot, and I.L. Pegg, Final Report VSL-05R5830-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 10/31/05.
- [42] "HLW/LAW Regulatory Off-Gas Emission Testing," S. Kelly, RPP-WTP Test Specification, 24590-WTP-TSP-RT-04-0001, Rev. 1, 7/13/04.

- [43] "Research & Technology Recommendation on the Requirement of Bubblers in the HLW Melter," Perez, J.M. 24590-HLW-RPT-RT-01-003, River Protection Project, Waste Treatment Plant, 3000 George Washington Way, Richland, WA 99352, 2002.
- [44] "Flowsheet and Process Variability Vitrification Testing of Nonradioactive HLW Simulants," J.M Perez and D.K. Peeler, Test Specification, 24590-HLW-TSP-RT-02-015, Rev. 0, 3/8/03.
- [45] "High-Level Waste Melter System Materials of Construction Testing," R.K Mohr, I. Vidensky, C. T. F. Mooers, A. C. Buechele, R. A. Callow, K. S. Matlack, and I.L. Pegg, Final Report, VSL-04R5730-1, Rev. 1, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 6/5/06.
- [46] "High-Level Waste Melter Alternate Bubbler Configuration Testing," R.K Mohr, C.C. Chapman, and I.L. Pegg, Final Report, VSL-04R4800-3, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 6/18/04.
- [47] "Summary of DM1200 SBS History and Performance," K.S. Matlack, W. Gong, G. Diener, T. Bardakci, M. Brandys, and I.L. Pegg, Final Report, VSL-06R6410-2, Rev. A, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 8/2/06.
- [48] "Summary of DM1200 WESP History and Performance," K.S. Matlack, W. Gong, Glenn Diener, T. Bardakci, N. M. Brandys, and I.L. Pegg, Final Report, VSL-06R6710-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 7/17/06.
- [49] "RPP-WTP Pilot Melter Film Cooler Cleaning Test Results Report," TRR-PLT-051, Rev. 0, 10/13/00.
- [50] "RPP-WTP Pilot Melter Film Cooler Performance and Cleaning Protocols Test Results Report," TRR-PLT-034, Rev. 0, 2/3/04.
- [51] "Comparison of Off-Gas Emissions from Tests with LAW Simulants on the DM100, DM1200, and DM3300 Melters," R.A. Callow, K.S. Matlack, and I.L. Pegg, Summary Report, VSL-04S4850-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC, 4/19/04.

Report	Testing Date	Objective	Feed Type	Amount Fed (kg)	Glass Produced (kg)
VSL- 01R0100-2 [3]	5/7/01- 5/23/01	Initial Testing of DM1200 systems	HLW AZ-101 with variable amounts of water [4-8]	15549	5457
VSL- 02R0100-2 [9]	6/25/01 - 11/10/1	Verification of the need to use bubblers to achieve required glass production rates	HLW AZ-101 with variable amounts of water, nitrate and sugar. Additives as chemicals or frit [4-8]	77668	26726
VSL- 02R8800-1 [10]	1/7/02 - 1/15/02	Regulatory Emissions Testing	LAW Sub-Envelope C1 with iodine [11-13]	29245	14820
VSL- 02R8800-2 [14]	2/27/02 - 3/20/02	Regulatory Emissions Testing	LAW Sub-Envelope A1 with iodine [11, 13, 15, 16]	28783	14661
VSL- 03R3800-4 [17]	7/23/02 - 10/24/02	Determination of glass production as a function of feed solids content and bubbling rate, two single outlet bubblers	HLW AZ-101 with iodine, variable amounts of water and noble metals (select tests) [4, 6, 18-20]	79870	25109
VSL- 03R3851-1 [21]	11/4/02 - 11/8/02	Comparison of production rates with LAW Pilot Melter	LAW Sub-Envelope B1 with iodine [11, 13, 22]	30857	16281
VSL- 03R3800-2 [23]	11/18/02 - 11/27/02	Determination of glass production rate as a function of bubbling rate, two single outlet bubblers	HLW AZ-102 with iodine [5, 19, 20, 24, 25]	17348	6748
VSL- 03R3800-1 [26]	1/22/03 - 1/31/03	Determination of glass production rate as a function of bubbling rate, two single outlet bubblers	HLW C-106/AY-102 with cesium and iodine [6, 18, 20, 27]	16574	6316
VSL- 03R3800-3 [28]	VSL- 2/19/03 - Determination of glass production rate as a function of bubbling rate, two single outlet bubblers		HLW C-104/AY-101 with cesium and iodine [18, 20]	18530	6983
VSL- 04R4800-1 [29]	4/30/03 - 5/23/03	Determination of glass production rate as a function of feed nitrate and sugar content, two single outlet bubblers	HLW C-106/AY-102 with variable amounts of cesium, iodine, sugar and nitrates. [6, 18, 20, 27]	43617	19281
VSL- 04R4800-4 [30]	5/28/03 - 4/01/04	Optimization of bubbler configuration (orientation, number of outlets, location) to maximize production rate	HLW AZ-101 with iodine, variable amounts of water and noble metals (select tests) [4, 6, 18-20]	168319	56010
VSL- 04R4800-1 [29]	8/19/03 - 8/28/03	Determination of glass production rate as a function of feed sugar content, two single outlet bubblers	HLW AZ-101 with variable amounts of iodine and sugar [4, 6, 18-20]	28095	8956
VSL-	9/25/03 - 10/20/03	Comparison of production rates with LAW Pilot Melter	LAW Sub-Envelope C1[11- 13, 32]	42645	21340
[31]	10/20/03- 10/21/03	Study of melt pool foaming	LAW Envelope A [33]	4521	1404

Table 1.1. Summary of Melter Tests Conducted on the DM1200 at VSL.

Report	Testing Date	Objective	Feed Type	Amount Fed (kg)	Glass Produced (kg)
VSL- 03L4850-1 [34]	11/3/03 – 11/8/03	Change glass pool composition, development of allyl alcohol monitoring method	s pool /elopment LAW Envelopes A+C, ohol various HLW		7817
VSL- 05R5800-1 [35]	6/21/04- 6/25/04	Determination of the effect of feed rheology on production rate	of the ology on rate HLW AZ-102 adjusted to provide different rheological properties [5, 19, 20, 24, 25, 36, 37]		5397
VSL- 05R5800-1 [35]	6/25/04- 6/30/04	Test optimum bubbler configuration	HLW AZ-102 [5, 19, 20, 24, 25]	20002	10769
VSL- 05R5800-1 [35]	8/02/04- 8/07/04	Determination of the effect of feed rheology on production rate	the HLW C-106/AY-102 adjusted to provide different rheological properties [6, 18, 20, 27, 36, 37]		5193
VSL- 05R5800-1 [35]	11/08/04- 11/12/04	Test optimum bubbler configuration	Fest optimum bubbler configuration HLW C-106/AY-102 [6, 18, 20, 27, 36-40]		5168
VSL- 05R5830-1 [41]	11/15/04- 12/12/04	Regulatory Emissions Testing	HLW C-106/AY-102 with projected maximum concentrations of toxic metals, halides and nitrates [6, 18, 20, 27, 42]	23969	7525
VSL- 05R5830-1 [41]	3/7/05 - 3/23/05	Regulatory Emissions Testing	LAW Sub-Envelope A2 with projected maximum concentrations of toxic metals, halides and nitrates [13, 33, 42]	28750	15201
	725055	287161			

Table 1.1. Summary of Melter Tests Conducted on the DM1200 at VSL (continued).

Test #		1	2	3
	Feed Start	5/7/01 10:00	5/14/01 09:29	5/21/01 08:51
Time	Feed End	5/12/01 13:10	5/16/01 13:39	5/23/01 13:28
	Interval	123.2 hr	52.2 hr	52.7 hr
Water Feed	ing for Cold Cap	3.2 hr	2.6 hr	2.5 hr
Slurr	y Feeding	120.0 hr	49.6 hr	50.2 hr
Cold c	ap burn off	10.0 hr	1.2 hr	1.6 hr
,	Total	133.2 hr	53.4 hr	53.2 hr
Bubb	oling Rate	< 8 scfh	100 scfh	100 scfh
	Characteristics	Nominal	Nominal	High Water
	Used	4178 kg	4948 kg	6423 kg
Feed	Gloss viald [#]	570 g/l	570 g/l	350 g/l
	Glass yield	0.380 kg/kg	0.380 kg/kg	0.275 kg/kg
	Average Feed Rate	34.8 kg/hr	99.8 kg/hr	127.9 kg/hr
	Poured	1587 kg	1948 kg	1922 kg
	Average Rate ^{\$}	265 kg/m²/day	785 kg/m²/day	766 kg/m²/day
Glass Produced	Average Rate*	265 kg/m²/day	759 kg/m²/day	705 kg/m²/day
	Steady State Rate*	155 kg/m²/day	750 kg/m²/day	700 kg/m²/day
	Average Power Use	9.8 kW.hr/kg glass	3.6 kW.hr/kg glass	4.5 kW.hr/kg glass

Table 1.2. Test Summary for DuraMelter 1200 HLW AZ-101 Commissioning Tests (VSL-01R0100-2) [3].

- Target values.

\$ - Rates calculates from amount of glass poured.

*- Rates calculated from amount of feed consumed and conversion ratio. Note: Rates do not take into account the time for water feeding and cold-cap burn-off.

Test #		1	2	3	4
Time	Feed Start	6/25/01 10:45	7/23/01 17:47	8/6/01 16:59	8/20/01 13:08
	Feed End	7/2/01 10:50	8/1/01 11:47	8/11/01 11:47	8/25/01 1444
-	Interval	168.1 hr	216 hr	114.8 hr	121.6 hr
Water	Feeding for Cold Cap	2.25 hr	1.6 hr	0.8 hr	1.9 hr
	Slurry Feeding	165.8 hr	214.4 hr	114.0 hr	119.7 hr
	Cold cap burn	5.0 hr	10.0 hr	3.3 hr	3.3 hr
	Total	173.1 hr	226.0 hr	118.1 hr	124.9 hr
Bubbling Rate		<4 lpm	< 4 lpm	Deep: 62 lpm	Shallow: 50 lpm
Electrode Firing		Side to Bottom	Side to Bottom	Side to Side	Side to Bottom
	Characteristics	High Solids	High Solids + 10 g sugar/l	High Water	High Water
p	Used	5927 kg	6816 kg	19184 kg	11573 kg
Fee	Claur si al 1#	570 g/l	570 g/l	400 g/l	400 g/l
	Glass yield	0. 38 kg/kg	0.38 kg/kg	0.29 kg/kg	0.29 kg/kg
	Average Rate	35.7 kg/hr	31.8 kg/hr	168.3 kg/hr	96.7 kg/hr
	Poured	2301 kg	2594 kg	6180 kg	3465 kg
lced	Average Rate ^{\$}	278 kg/m²/day	242 kg/m²/day	1084 kg/m²/day	579 kg/m²/day
Produ	Average Rate [*]	272 kg/m²/day	242 kg/m²/day	976 kg/m²/day	561 kg/m²/day
lass l	Steady State Rate*	255 kg/m²/day	205 kg/m²/day	980 kg/m²/day	540 kg/m²/day
Ð	Average Power Use	6.1 kW.hr/ Kg glass	5.7 kW.hr/ kg glass	3.9 kW.hr/ kg glass	4.7 kW.hr/ kg glass

Table 1.3. Summary of Test Conditions and Results for HLW AZ-101 Tests 1-9(VSL-02R0100-2) [9].

- Target Values.

\$ - Rates calculates from glass poured.

*- Rates calculated from feed data.

Note: Rates do not take into account the time for water feeding and cold cap burn-off.

	Test #	5	6	7	8
•	Feed Start	9/25/01 13:17	10/11/01 08:21	10/22/01 14:12	10/29/01 13:45
Щ.	Feed End	10/1/01 13:37	10/17/01 19:24	10/27/01 14:12	11/2/01 17:45
Γ	Interval	144.5 hr	155.0 hr	120.0 hr	100.0 hr
	Water Feeding for Cold Cap	2.0 hr	2.2 hr	1.5 hr	1.1 hr
	Slurry Feeding	142.5 hr	152.8 hr	118.5 hr	98.9 hr
	Cold cap burn	6.4 hr	14.5 hr	4.3 hr	10.3 hr
	Total	150.9 hr	169.5 hr	124.3 hr	110.3 hr
	Bubbling Rate	<4 lpm	<4 lpm	60 lpm deep	< 4 lpm
Electrode Firing		Side to Bottom	Side to Bottom	Side to Side	Side to Bottom
	Characteristics	Nitrated + sugar (sugar ratio=0.5)	Frit + 7.5 g sugar/l	Frit + 7.5 g sugar/l	Nitrated + sugar (sugar ratio=0.7)
p	Used	4932 kg	5417 kg	16240 kg	3426 kg
Fee	(flass yield (target)	420 g/l feed	480 g/l feed	480 g/l feed	420 g/l feed
	(Tass yield (target)	0.31 kg/kg feed	0.35 kg/kg feed	0.35 kg/kg feed	0.31 kg/kg feed
	Average Rate	34.6 kg/hr	35.5 kg/hr	137.0 kg/hr	34.6 kg/hr
_	Poured	1659 kg	1901 kg	5976 kg	944 kg
lcec	Average Rate ^{\$}	233 kg/m²/day	249 kg/m²/day	1009 kg/m²/day	191 kg/m²/day
rodı	Average Rate [*]	215 kg/m²/day	248 kg/m²/day	959 kg/m²/day	215 kg/m²/day
ss P	Steady State Rate*	220 kg/m²/day	210 kg/m²/day	1100 kg/m²/day	200 kg/m²/day
Glas	Average Power Use	6.5 kW.hr/kg glass	6.0 kW.hr/kg glass	3.3 kW.hr/kg glass	6.3 kW.hr/kg glass

Table 1.3. Summary of Test Conditions and Results for HLW AZ-101 Tests 1-9 (VSL-02R0100-2) [9] (continued).

\$ - Rates calculated from glass poured.*- Rates calculated from feed data.

Note: Rates do not take into account the time for water feeding and cold cap burn-off.

Table 1.3. Summary of Test Conditions and Results for HLW AZ-101 Tests 1-9 (in Test 9 both feed tubes used continuous instead of pulsed feed) (VSL-02R0100-2) [9] (continued).

Test #		9a	9b		
0	Feed Start	11/5/1 14:20	11/8/1 11:00		
lime	Feed End	11/8/1 11:00	11/10/1 17:00		
Ι	Interval	68.6 hr	54.0 hr		
W	Vater Feeding for Cold Cap	1.1 hr	NA		
S	urry Feeding	67.5 hr	54.0 hr		
С	old cap burn	NA	6.9 hr		
Т	otal	68.6 hr	60.9 hr		
Glass Temperature		1150°C	1200°C		
Bubbling Rate		< 4 lpm			
Ε	lectrode Firing	Side to Side			
	Characteristics	Nominal + 10 g sugar / 1			
	Gloss vield	570 g/l			
Feed	Olass yield	0.38 kg/kg			
Ţ	Used	2028 kg	2125 kg		
	Average Rate	30.0 kg/hr	39.4 kg/hr		
1	Poured	859 kg	847 kg		
lcec	Average Rate ^{\$}	255 kg/m²/day	313 kg/m²/day		
rodi	Average Rate [*]	228 kg/m²/day	299 kg/m²/day		
ss P	Steady State Rate*	230 kg/m²/day	310 kg/m²/day		
Glas	Average Power Use	6.3 kW.hr/kg glass	5.4 kW.hr/kg glass		

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

Note: Rates do not take into account the time for water feeding and cold cap burn

Table 1.4. Summary of Test Conditions and Results using LAW Sub-Envelope C1 Feedwith Iodine (VSL-02R8800-1) [10]. (Process Engineering Data)

	Feed Start	1/7/02 14:36
Time	Feed End	1/15/02 07:20
	Duration	184.8 hr
Water Fe	eding for Start-up	2.5 hr
Slu	rry Feeding	182.3 hr
Cold	cap burn-off	1.5 hr
	Total	186.3 hr
Elec	etrode Firing	Side to Side
	Start	1/12/02 11:20
Organic Spike	End	1/14/02 21:25
	Duration	58.1 hr
	Used	29245 kg
Feed	Glass vield (target)	851 g/l feed
1000		0.511 kg/kg feed
	Average Rate	160.4 kg/hr
	Poured	14820 kg
	Average Rate ^{\$}	1626 kg/m²/day
Glass Produced	Average Rate [*]	1639 kg/m²/day
	Steady State Rate [*]	1800 kg/m²/day
	Average Power Use	1.9 kW hr/kg glass

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

Note: Rates do not take into account the time for water feeding and cold cap burn-off.

	Feed Start	2/27/02, 16:41	3/3/02, 07:26	3/18/02, 08:45
Time	Feed End	3/1/02, 13:18	3/6/02, 06:33	3/20/02, 09:35
	Duration	44.4 hr	71.1 hr	48.8 hr
Water Feed	ling for Start-up	2.15 hr	2.1 hr	2.0 hr
Slurry	y Feeding	42.2 hr	68.9 hr	46.8 hr
Cold ca	ap burn-off	3.45 hr	2.6 hr	1.7 hr
	Гotal	47.9 hr	73.7 hr	50.5 hr
Feed	Reductant	Sugar	Sugar	Sugar
Organic	Start	NA	3/4/02, 13:42	3/19/02, 00:38
Spike	End	NA	3/6/02, 06:31	3/19/02, 23:59
-	Duration	NA	40.8 hr	23.35 hr
	Used	6850 kg	13195 kg	8738 kg
Feed	Glass yield	860 g/l feed	860 g/l feed	860 g/l feed
recu	(target)	0.516 kg/kg feed	0.516 kg/kg feed	0.516 kg/kg feed
	Average Rate	162 kg/h	192 kg/hr	186 kg/hr
	Poured	3452.6 kg	6584.5 kg	4623.8 kg
	Average Rate ^{\$}	1636 kg/m²/day	1907 kg/m²/day	1976 kg/m²/day
Glass	Average Rate*	1664 kg/m²/day	1976 kg/m²/day	1920 kg/m²/day
Produced	Steady State Rate [*]	1900 kg/m²/day	2000 kg/m ² /day	1950 kg/m²/day
	Average Power Use	1.6 kW.hr/kg glass	1.6 kW.hr/kg glass	1.6 kW.hr/kg glass

Table 1.5. Summary of Test Conditions and Results using LAW Sub-Envelope A1 with Iodine (VSL-02R8800-2) [14]. (Process Engineering Data)

- On 3/2/02 and 3/15/02, the melter was fed slurry for 6.2 hr and 4 hr, respectively. Tests were stopped due to WESP maintenance and blower failure. No organic spike was fed on 3/2/02 and the spike was fed for 1.25 hr on 3/15/02.

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

NA – Not applicable.

Note: Rates do not take into account the time for water feeding and cold cap burn-off.

Test		1					2	
		А	В	С	D	Е	2	
	F	'eed Start	7/23/02 13:12	7/25/02 14:25	7/26/02 14:26	7/27/02 14:27	7/28/02 16:16	7/31/02 01:39
Time	I	Feed End	7/25/02 14:25	7/26/02 14:26	7/27/02 14:27	7/28/02 14:26	7/31/02 00:59	8/01/02 15:25
		Interval	49.2 hr	24 hr	24 hr	24 hr	56.7 hr	36.2 hr
Water	Feeding	g for Cold Cap	1.2 hr	NA	NA	NA	NA	NA
	Slurry l	Feeding	48 hr	24 hr	24 hr	24 hr	56.7 hr	33.8 hr
Cold Cap Burn		NA	NA	NA	NA	NA	2.4 hr	
Bub	bling	Average	7.5	26	43	65	73	69
Rate (lpm)		Range	6.0 - 11	10 - 33	29 - 54	49 - 74	11- 107	23 - 99
		Used	2634 kg	2032 kg	2586 kg	3199 kg	7209 kg	3506 kg
eq	CI	ogg Viald [#]	504 g/l	504 g/l	504 g/l	504 g/l	504 g/l	281 g/l
Fe	U.U.	lass i leiu	0. 37 kg/kg	0.37 kg/kg	0. 37 kg/kg	0. 37 kg/kg	0.37 kg/kg	0.23 kg/kg
	Av	erage Rate	54.9 kg/hr	86.4 kg/hr	116.7 kg/hr	43.0 kg/hr	127.1 kg/hr	103.7 kg/hr
		Poured	879.4 kg	688.9 kg	1055.4 kg	1198.4 kg	2732.0 kg	863.5 kg
panpo	Av	erage Rate ^{\$}	366 kg/m²/day	574 kg/m²/day	880 kg/m²/day	999 kg/m²/day	964 kg/m²/day	510 kg/m²/day
Glass Proc	Av	erage Rate [*]	406 kg/m²/day	627 kg/m²/day	797 kg/m²/day	986 kg/m²/day	941 kg/m²/day	477 kg/m²/day
	Stead	ly State Rate [*]	400 kg/m²/day	630 kg/m²/day	800 kg/m²/day	1000 kg/m²/day	Not Achieved	500 kg/m²/day

Table 1.6. Summary of Test Conditions and Results Using HLW AZ-101 Feed with Iodine,Variable Amounts of Water and Noble Metals (VSL-03R3800-4) [17].

- Average measured values.

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

Table 1.6. Summary of Test Conditions and Results Using HLW AZ-101 Feed with Iodi	ne,
Variable Amounts of Water and Noble Metals (VSL-03R3800-4) [17] (continued).	

Test		3			4		
		А	В	С	А	В	С
	Feed Start	9/09/02 19:46	9/12/02 20:59	9/15/02 21:00	9/23/02 16:02	9/26/02 19:01	9/29/02 19:02
Time	Feed End	9/12/02 20:58	9/15/02 20:59	9/18/02 21:01	9/26/02 19:00	9/29/02 19:01	10/02/02 21:30
	Interval	73.2 hr	72 hr	74.9 hr	75 hr	72 hr	74.5 hr
Water	Feeding for Cold Cap	1.2 hr	NA	NA	3.0 hr	NA	NA
SI	lurry Feeding	72 hr					
Cold Cap Burn		NA	NA	2.9 hr	NA	NA	2.5 hr
В	ubbling Rate	8 lpm	40 lpm	65 lpm	8 lpm	40 lpm	65 lpm
	Used	3955 kg	6220 kg	8399 kg	3099 kg	5506 kg	8120 kg
ed	Glass Yield [#]	530 g/l	530 g/l	530 g/l	400 g/l	400 g/l	400 g/l
Fe		0.375 kg/kg	0.375 kg/kg	0.375 kg/kg	0.315 kg/kg	0.315 kg/kg	0.315 kg/kg
	Average Rate	54.9 kg/hr	86.4 kg/hr	116.7 kg/hr	43.0 kg/hr	76.5 kg/hr	112.8 kg/hr
	Poured	1502.6 kg	2356.5 kg	3116.1 kg	1032.6 kg	1710.4 kg	2491.8 kg
ed	Average Rate ^{\$}	417 kg/m²/day	655 kg/m²/day	866 kg/m²/day	287 kg/m²/day	475 kg/m²/day	692 kg/m²/day
: Produc	Average Rate [*]	412 kg/m²/day	648 kg/m²/day	875 kg/m²/day	271 kg/m²/day	481 kg/m²/day	709 kg/m²/day
Glass	Steady State Rate [*]	400 kg/m²/day	655 kg/m²/day	900 kg/m²/day	270 kg/m²/day	500 kg/m²/day	750 kg/m²/day
	Average Power Use	4.8 kW.hr/ kg glass	3.9 kW.hr/ kg glass	3.4 kW.hr/ kg glass	7.0 kW.hr/ kg glass	5.2 kW.hr/ kg glass	4.3 kW.hr/ kg glass

- Target values.\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

Table 1.6. Summary of Test Conditions and Results Using HLW AZ-101 Feed with Iodine,Variable Amounts of Water and Noble Metals (VSL-03R3800-4) [17] (continued).

Test			<i>(</i>		
		А	В	С	0
	Feed Start	10/15/02 13:30	10/18/02 14:31	10/21/02 14:32	10/07/02 12:49
Time	Feed End	10/18/02 14:30	10/21/02 14:31	10/24/02 17:30	10/12/02 20:30
_	Interval	73 hr	72 hr	75 hr	127.7 hr
Wate	er Feeding for Cold Cap	1 hr	NA	NA	1.5 hr
5	Slurry Feeding	72 hr	72 hr	72 hr	122.7 hr
Cold Cap Burn		NA	NA	3 hr	3.5 hr
Bubbling Rate		8 lpm	40 lpm	65 lpm	< lpm
	Used	3410 kg	6816 kg	9726 kg	3453 kg
ed	Glass Yield [#]	300 g/l	300 g/l	300 g/l	400 g/l
Чe		0.249 kg/kg	0. 249 kg/kg	0. 249 kg/kg	0.315 kg/kg
	Average Rate	47.4 kg/hr	94.7 kg/hr	135.1 kg/hr	28.1 kg/hr
	Poured	825.6 kg	1508.0 kg	2098.9 kg	1049.2 kg
lced	Average Rate ^{\$}	229 kg/m²/day	419 kg/m²/day	583 kg/m²/day	171 kg/m²/day
Produ	Average Rate [*]	235 kg/m²/day	471 kg/m²/day	672kg/m²/day	177 kg/m²/day
lass]	Steady State Rate [*]	250 kg/m²/day	450 kg/m²/day	550 kg/m²/day	190 kg/m²/day
GI	Average Power Use	8.5 kW.hr/ kg glass	5.5 kW.hr/ kg glass	4.4 kW.hr/ kg glass	14.3 kW.hr/ kg glass

- Target Values.

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

Note: Rates do not take into account the time for water feeding and cold cap burn-off.

NA: Not applicable.

	-	First Steady State Period	Second Steady State Period	Entire Feeding Period	
	Feed Start	11/4/02, 18:03	11/6/02, 21:30	11/4/02, 12:44	
Time	Feed End	11/5/02, 16:46	11/8/02, 17:24	11/8/02, 17:24	
	Duration	22.7 hr	43.9 hr	100.7 hr	
	Run Time hours	5.3 - 28.0	56.8 - 100.7	0-100.7	
Water Fee	ding for Start-up	NA	NA	1.0 hr	
Slur	ry Feeding	22.7 hr	43.9 hr	99.7 hr	
Organic	Start	NA	NA	11/6/02, 10:28	
Spike	End	NA	NA	11/6/02, 14:04	
Бріке	Duration	NA	NA	3.6 hr	
Cold cap burn-off		NA	NA	1.7 hr	
Feed Reductant		Sugar	Sugar	Sugar	
	Used	3186 kg	9489 kg	18182 kg	
Food	Glass Yield	957 g/l feed	957 g/l feed	957 g/l feed	
1000	(target)	0.557 kg/kg feed	0.557 kg/kg feed	0.557 kg/kg feed	
	Average Rate	140 kg/h	216 kg/hr	182 kg/hr	
Glass Produced	Poured	1548 kg	5106 kg	9627 kg	
	Average Rate ^{\$}	1364 kg/m²/day	2326 kg/m²/day	1931 kg/m²/day	
	Average Rate*	1563 kg/m²/day	2408 kg/m²/day	2032 kg/m²/day	
	Average Power	2.0 kW.hr/	1.6 kW.hr/	1.8 kW.hr/	
	Use	kg glass	kg glass	kg glass	

Table 1.7. Summary of Test Conditions and Results Using LAW Sub-Envelope B1 Feedwith Iodine (VSL-03R3851-1) [21].

"-"- Empty data field

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

 $\rm NA-Not\ applicable.$

Note: Rates do not take into account the time for water feeding and cold cap burn-off.

Test Segment		А	В	С
	Feed Start	11/18/02 12:00	11/21/02 13:00	11/24/02 13:02
Time	Feed End	11/21/02 13:00	11/24/02 13:01	11/27/02 13:03
	Interval	73 hr	72 hr	72 hr
Water Feedin	ng for Cold Cap	1.0 hr	NA	NA
Slurry Feeding		72 hr	72 hr	72 hr
Cold Cap Burn-Off		NA	NA	2.4 hr
Bubbling Rate		8 lpm	40 lpm	65 lpm
	Used	3526 kg	5780 kg	8042 kg
ed	Class Viald [#]	550 g/l	550 g/l	550 g/l
Че	Glass Tielu	0.385 kg/kg	0.385 kg/kg	0.385 kg/kg
	Average Rate	49.0 kg/hr	80.3 kg/hr	111.7 kg/hr
	Poured	1277 kg	2249 kg	3222 kg
ed	Average Rate ^{\$}	355 kg/m²/day	625 kg/m²/day	895 kg/m²/day
Glass Produc	Average Rate [*]	377 kg/m²/day	618 kg/m²/day	860 kg/m²/day
	Steady State Rate [*]	380 kg/m²/day	650 kg/m²/day	900 kg/m²/day
	Average Power Use	5.1 kW.hr/ kg glass	4.2 kW.hr/ kg glass	3.5 kW.hr/ kg glass

Table 1.8. Summary of DM1200 Test Conditions and Results Using HLW AZ-102 Feedwith Iodine (VSL-03R3800-2) [23].

- Target values.

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

Test Segment		А	В	С
	Feed Start	01/22/03 12:32	01/25/03 13:32	01/28/03 13:37
Time	Feed End	01/25/03 13:32	01/28/03 13:36	01/31/03 14:04
	Interval	73 hr	72 hr	72.5 hr
Water Feeding	for Cold Cap	1.0 hr	NA	NA
Slurry Feeding		72 hr	72 hr	72.5 hr
Cold Cap Burr	n-Off	NA	NA	2.0 hr
Bubbling Rate	Bubbling Rate		40 lpm	65 lpm
Feed	Used	3181 kg	4689 kg	8704 kg
	Class Viald	557.5 [@] g/l	557.5 [@] g/l	557.5 [@] g/l
	Glass Tielu	0.372 [#] kg/kg	0.372 [#] kg/kg	0.372 [#] kg/kg
	Average Rate	44.2 kg/hr	65.1 kg/hr	120.1 kg/hr
	Poured	1243 kg	1786 kg	3287 kg
ed	Average Rate ^{\$}	345 kg/m²/day	496 kg/m²/day	907 kg/m²/day
s Produc	Average Rate [*]	329 kg/m²/day	484 kg/m²/day	894 kg/m²/day
Glass	Steady State Rate [*]	330 kg/m²/day	550 kg/m²/day	970 kg/m²/day
	Average Power Use	5.1 kW.hr/ kg glass	4.7 kW.hr/ kg glass	3.5 kW.hr/ kg glass

Table 1.9. Summary of Test Conditions and Results Using HLW C-106/AY-102 Feed with
Cesium and Iodine (VSL-03R3800-1) [26].

@ - Measured values.

 $\overset{\smile}{\#}$ - Target values.

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

Table 1.10. Summary of DM1200 Test Conditions and Results Using HLW C-104/AY-101Feed with Cesium and Iodine (VSL-03R3800-3) [28].

Test Segment		А	В	С
	Feed Start	02/19/03 18:37	02/22/03 20:14	02/25/03 20:14
Time	Feed End	02/22/03 20:13	02/25/03 20:14	02/28/03 20:14
	Interval	73.7 hr	72 hr	72 hr
Water Feed	ing for Cold Cap	1.7 hr	NA	NA
Slurry Feeding		72 hr	72 hr	72 hr
Cold Cap Burn-Off		NA	NA	4.7 hr
Bubbling Rate		8 lpm	40 lpm	65 lpm
	Used	3875 kg	5934 kg	8721 kg
Fand	Close Viald	528 [@] g/l	528 [@] g/l	528 [@] g/l
Feed	Glass Tield	0.357 [#] kg/kg	0.357 [#] kg/kg	0.357 [#] kg/g
	Average Rate	53.8 kg/hr	82.4 kg/hr	121.1 kg/hr
	Poured	1487 kg	2245 kg	3251 kg
Glass Produced	Average Rate ^{\$}	413 kg/m²/day	624 kg/m²/day	903 kg/m²/day
	Average Rate*	384 kg/m²/day	588 kg/m²/day	865 kg/m²/day
	Steady State Rate [*]	400 kg/m²/day	660 kg/m²/day	900 kg/m²/day
	Average Power Use	5.0 kW.hr/ kg glass	4.3 kW.hr/ kg glass	3.6 kW.hr/ kg glass

@ - Measured values.

 $\breve{\#}$ - Target values.

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

Table 1.11. Summary of DM1200 Test Conditions and Results Using HLW C-106/AY-102 Feed (VSL-04R3800-1) [29].

C-106/AY-102 (Target Glass Yield = 0.372 kg/kg or 550 g/l) with Variable Amounts of Sugar, Bubbling = 65 lpm						
-		А	В	С	D	Е
Time	Feed Start	4/30/03 11:32	5/01/03 14:34	5/03/03 14:49	5/05/03 14:59	5/07/03 15:12
	Feed End	5/01/03 14:34	5/03/03 14:49	5/05/03 14:59	5/07/03 15:12	5/09/03 15:45
	Interval	27 hr	48.3 hr	48.2 hr	48 hr	48.6 hr
Water Feeding for Cold Cap		2.6 hr	NA	NA	NA	NA
Slurry Feeding		24.4 hr	48.25 hr	48.2 hr	48 hr	48.6 hr
Cold cap burn		NA	NA	NA	NA	3.6 hr
	Sugar Concentration	0	10 g/l	15 g/l	17.5 - 20 g/l	25 g/l
Feed	Used	3035 kg	4714 kg	5630 kg	4334 kg	4253 kg
	Average Rate	124.4 kg/hr	97.6 kg/hr	116.8 kg/hr	90.3 kg/hr	87.5 kg/hr
Glass Produced	Poured	1093 kg	2020 kg	2001 kg	1720 kg	1836 kg
	Average Rate ^{\$}	896 kg/m²/day	836 kg/m²/day	830 kg/m²/day	717 kg/m²/day	756 kg/m²/day
	Average Rate [*]	926 kg/m²/day	726 kg/m²/day	869 kg/m²/day	672 kg/m²/day	651 kg/m²/day
	Steady State Rate*	Not Attained	Not Attained	870 kg/m²/day	700 kg/m²/day	650 kg/m²/day
	Average Power Use	3.3 kW.hr/ kg glass	3.8 kW.hr/ kg glass	3.3 kW.hr/ kg glass	3.7 kW.hr/ kg glass	3.8 kW.hr/ kg glass

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

Note: Rates do not take into account the time for water feeding and cold cap burn-off. NA: Not applicable.

"-" Empty data field

Table 1.11. Summary of DM1200 Test Conditions and Results Using HLW C-106/AY-102Feed (VSL-04R3800-1) [29] (continued).

C-106/AY-102 (Target Glass Yield = 0.372 kg/kg or 550 g/l) with Additional Nitrate and Variable Amounts of Sugar, Bubbling = 65 lpm						
-		А	В	С	D	Е
Time	Feed Start	5/14/03 12:05	5/15/03 14:00	5/17/03 15:03	5/19/03 16:00	5/21/03 16:20
	Feed End	5/15/03 14:00	5/17/03 15:03	5/19/03 16:00	5/21/03 16:20	5/23/03 16:30
	Interval	25.9 hr	49 hr	49 hr	48.3 hr	48.2 hr
Water Feeding for Cold Cap		0. 7 hr	NA	NA	NA	NA
Slurry Feeding		25.3 hr	49 hr	49 hr	48.3 hr	48.2 hr
Cold cap burn		NA	NA	NA	NA	3.5 hr
	Sugar Concentration	0	10 g/l	15 g/l	20 g/l	25 g/l
Feed	Used	2643 kg	5885 kg	6738 kg	6385 kg	6502 kg
	Average Rate	104.5 kg/hr	120.1 kg/hr	137.5 kg/hr	132.2 kg/hr	134.9 kg/hr
Glass Produced	Poured	1022 kg	2244 kg	2437 kg	2395 kg	2513 kg
	Average Rate ^{\$}	808 kg/m²/day	916 kg/m²/day	995 kg/m²/day	992 kg/m²/day	1043 kg/m²/day
	Average Rate [*]	777 kg/m²/day	894 kg/m²/day	1023 kg/m²/day	984 kg/m²/day	1004 kg/m²/day
	Steady State Rate*	Not Attained	1000 kg/m²/day	1000 kg/m²/day	1000 kg/m²/day	1000 kg/m²/day
	Average Power Use	3.6 kW.hr/ kg glass	3.4 kW.hr/ kg glass	3.0 kW.hr/ kg glass	3.0 kW.hr/ kg glass	3.0 kW.hr/ kg glass

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

Note: Rates do not take into account the time for water feeding and cold cap burn-off. NA: Not applicable.

"-" Empty data field
Table 1.11. Summary of DM1200 Test Conditions and Results Using HLW AZ-101 Feed
(VSL-04R3800-1) [29] (continued).

AZ-101 (Target Glass Yield = 0.3145 kg/kg or 400 g/l) with Variable Amounts of Sugar and Ruthenium, Bubbling = 65 lpm							
- A B [#] C [#] D [#] E [#]							
	Feed Start	8/19/03 11:15	8/20/03 12:43	8/22/03 13:07	8/24/03 13:27	8/26/03 13:31	
Time	Feed End	8/20/03 12:43	8/22/03 13:07	8/24/03 13:27	8/26/03 13:31	8/28/03 13:31	
	Interval	25.5 hr	48.4 hr	48.3 hr	48.1 hr	48 hr	
Water	Feeding for Cold Cap	1.5 hr	NA	NA	NA	NA	
Slurry Feeding 24 hr 48.4 hr 48.3 hr 48.1 hr					48 hr		
	Cold cap burn	NA	NA	NA	NA	3.3 hr	
	Sugar Concentration	0	13.3 – 7.6 g/l	10 g/l	12.5 g/l	16 g/l	
Feed	Used	2266 kg	6026 kg	6332 kg	6624 kg	6847 kg	
	Average Rate	94.4 kg/hr	124.5 kg/hr	131.1 kg/hr	137.7 kg/hr	142.6 kg/hr	
	Poured	708 kg	1841 kg	2055 kg	2039 kg	2313 kg	
ed	Average Rate ^{\$}	590 kg/m²/day	761 kg/m²/day	851 kg/m²/day	848 kg/m²/day	964 kg/m²/day	
: Produc	Average Rate*	594 kg/m²/day	783 kg/m²/day	825 kg/m²/day	866 kg/m²/day	897 kg/m²/day	
Glass	Steady State Rate*	Not Attained	850 kg/m²/day	850 kg/m²/day	900 kg/m²/day	930 kg/m²/day	
	Average Power Use	4.3 kW.hr/ kg glass	3.9 kW.hr/ kg glass	3.8 kW.hr/ kg glass	3.8 kW.hr/ kg glass	3.7 kW.hr/ kg glass	

- Test segments B-E included ruthenium and yttrium spiked into the feed.

\$ - Rates calculated from glass poured.*- Rates calculated from feed data.

Note: Rates do not take into account the time for water feeding and cold cap burn-off.

NA: Not applicable. "-" Empty data field

Table 1.12.	Summary	of DM	1200	AZ-10	l Feed	Test	Conditions	and Resu	lts
		(V	SL-0	4R480)-4) [30	0].			

AZ-101 (Target Glass Yield = 0.375 kg/kg or 530 g/l), Bubbling = 65 lpm with Two J Bubblers Oriented Parallel to Electrodes							
	-	А	В	С	D		
	Feed Start	5/28/03 13:42	5/29/03 14:29	6/01/03 14:31	6/03/03 14:33		
Time	Feed End	5/29/03 14:29	6/01/03 14:31	6/03/03 14:33	6/06/03 14:40		
	Interval	24.8 hr	72 hr	48 hr	72.1 hr		
Water Feeding for Cold Cap		0.8 hr	NA	NA	NA		
Slurry Feeding		24 hr	72 hr	48 hr	72.1 hr		
Cold cap burn		NA	NA	NA	2.9 hr		
I	Bubbler Depth	Shallow: 12" from floor	Shallow: 12" from floor	Nominal: 6" from floor	Deep: on melter floor		
Faad	Used	2067 kg	5328 kg	3922 kg	6131 kg		
reeu	Average Rate	86.1 kg/hr	74 kg/hr	81.7 kg/hr	85 kg/hr		
	Poured	827 kg	1999 kg	1486 kg	2468 kg		
panpo	Average Rate ^{\$}	689 kg/m²/day	555 kg/m²/day	619 kg/m²/day	686 kg/m²/day		
jlass Pro	Average Rate*	645 kg/m²/day	551 kg/m²/day	610 kg/m²/day	638 kg/m²/day		
)	Steady State Rate [*]	Not Attained	550 kg/m²/day	640 kg/m²/day	680 kg/m²/day		

\$ - Rates calculated from glass poured.*- Rates calculated from feed data.

AZ-101 (Target Glass Yield = 0.375 kg/kg or 530 g/l), Bubbling = 65 lpm with Two J Bubblers 6" from floor pointed towards the melt pool center							
	-	А	В	С	D		
	Feed Start	6/25/03 12:00	6/26/03 13:00	6/28/03 13:02	6/30/03 13:02		
Time	Feed End	6/26/03 13:00	6/28/03 13:02	6/30/03 13:02	7/02/03 13:01		
	Interval	25 hr	48 hr	48 hr	48 hr		
Wat	er Feeding for Cold Cap	l hr	NA	NA	NA		
	Slurry Feeding	24 hr	24 hr 48 hr		48 hr		
Cold cap burn		NA	NA	NA	1.7 hr		
E	Bubbler Skewing	None	None	16 lpm, step	16 lpm, gradual		
Feed	Used	2344 kg	6643 kg	6907 kg	7034 g		
reeu	Average Rate	97.7 kg/hr	138.4 kg/hr	143.9 kg/hr	146.5 kg/hr		
	Poured	795 kg	2484 kg	2619 kg	2757 kg		
duced	Average Rate ^{\$}	663 kg/m²/day	1035 kg/m²/day	1091 kg/m²/day	1148 kg/m²/day		
ilass Prc	Average Rate [*]	733 kg/m²/day	1038 kg/m²/day	1079 kg/m²/day	1099 kg/m²/day		
9	Steady State Rate*	Not Attained	1050 kg/m²/day	1100 kg/m²/day	1100 kg/m²/day		

"-" Empty data field

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

AZ-1 on Ea for Se	AZ-101 (Target Glass Yield = 0.315 kg/kg or 400 g/l), Bubblers on floor, 8" apart on East and West side, one bubbler outlet 11.3" from feed tube. Refer to Figure 2.6 for Segments 3A & 3B bubbler placement. Segment 3C used only the L bubblers in Figure 2.6.							
		_	А	В	С			
		Feed Start	7/15/03 12:15	7/16/03 12:53	7/20/03 10:02			
Time		Feed End	7/16/03 12:53	7/20/03 10:02	7/22/03 20:20			
		Interval	24.6 hr	93.2 hr	58.3 hr			
Water	Fee	ding for Cold Cap	0.6 hr	NA	NA			
Slurry Feeding		ry Feeding	24 hr	93.2 hr	58.3 hr			
Cold cap burn		d cap burn	NA	NA	1.1 hr			
		Outlets	4	4	2			
Bubbl	ers	Steady State Bubbling Rate	NA	135 lpm	80 lpm			
Food		Used	2289 kg	17252 kg	9532 kg			
reeu		Average Rate	95.4 kg/hr	185.1 kg/hr	163.5 kg/hr			
		Poured	658 kg	5358 kg	3173 kg			
duced		Average Rate ^{\$}	548 kg/m²/day	1150 kg/m²/day	1089 kg/m²/day			
ilass Pro		Average Rate [*]	600 kg/m²/day	1164 kg/m²/day	1028 kg/m²/day			
9	St	eady State Rate*	Not Attained	1300 kg/m²/day	1100 kg/m²/day			

"-" Empty data field \$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

AZ-1 in e	AZ-101 (Target Glass Yield = 0.315 kg/kg or 400 g/l), four bubblers on floor, one in each corner, 14" apart on East and West side. Refer to Figure 2.7 for bubbler placement.						
	-	А	В	С			
	Feed Start	8/05/03 12:16	8/06/03 12:00	8/10/03 15:00			
Time	Feed End	8/06/03 12:00	8/10/03 15:00	8/13/03 15:01			
-	Interval	23.7 hr	99 hr	72 hr			
Wat	er Feeding for Cold Cap	1.7 hr	NA	NA			
Slurry Feeding		22 hr	99 hr	72 hr			
Cold cap burn		NA NA		1.1 hr			
Glass Temperature		1150°С 1150°С		11 75° C			
Steady	V State Bubbling Rate	NA 117 lpm		90 lpm			
Stea	dy State Power Use	NA	238 kW	243 kW			
Faad	Used	2596 kg	19079 kg	16515 kg			
reeu	Average Rate	118.0 kg/hr	192.7 kg/hr	229.4 kg/hr			
	Poured	780 kg	5931 kg	5351 kg			
oduced	Average Rate ^{\$}	709 kg/m²/day	1198 kg/m²/day	1486 kg/m²/day			
ilass Pro	Average Rate*	742 kg/m²/day	1212 kg/m²/day	1443 kg/m²/day			
0	Steady State Rate*	Not Attained	1400 kg/m²/day	1450 kg/m²/day			

"-" Empty data field

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

AZ-10 1	AZ-101 (Target Glass Yield = 0.315 kg/kg or 400 g/l), Two L Bubblers on floor, Bubbler on East side 11.3" from feed tube as shown for the two L bubblers in Figure 1.6, Bubbling rate = 80 lpm.							
	-	А	В	С	D			
	Feed Start	9/03/03 12:46	9/04/03 13:51	9/06/03 14:30	9/08/03 15:29			
Time	Feed End	9/04/03 13:51	9/06/03 14:30	9/08/03 15:29	9/10/03 15:30			
	Interval	25.1 hr	48.7 hr	49 hr	48 hr			
Water Feeding for Cold Cap		1 hr	NA	NA	NA			
Slurry Feeding		24.1 hr	48.7 hr	49 hr	48 hr			
Cold cap burn		NA	NA	1.1 hr	2.7 hr			
Sp	ike Solution Used	None	NaCl	$\mathrm{Na}_2\mathrm{SO}_4$	$\mathrm{NaCl} + \mathrm{Na_2SO_4}$			
Faad	Used	2789 kg	6604 kg	5804 kg	7029 kg			
геец	Average Rate	115.7 kg/hr	135.6 kg/hr	118.4 kg/hr	146.4 kg/hr			
ed	Poured	770 kg	1958 kg	1920 kg	2516 kg			
tss Produc	Average Rate ^{\$}	639 kg/m²/day	804 kg/m²/day	784 kg/m²/day	1048 kg/m²/day			
	Average Rate^*	730 kg/m²/day	853 kg/m²/day	745 kg/m²/day	921 kg/m²/day			
Gl	Steady State Rate*	Not Attained	Not Attained	Not Attained	930 kg/m²/day			

"-" Empty data field

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

AZ-101 (Target Glass Yield = 0.315 kg/kg or 400 g/l), Two bubblers, each with two outlets 8 inches apart, placed on the floor, one bubbler outlet 11.3" from feed tube. Refer to Figure 2.9 for bubbler placement.						
		-	А	В		
		Feed Start	3/23/04 19:21	3/29/04 20:35		
Time		Feed End	3/29/04 20:35	4/1/04 20:35		
-		Interval	145.2 hr	72.0 hr		
Water	Feed	ding for Cold Cap	1.2 hr	NA		
Slurry Feeding			144.0 hr	72.0 hr		
Cold cap burn			NA	5.7 hr		
Sugar concentration		concentration	3.8 g/l	3.8 g/l		
		Outlets	4	4		
Bubbl	ers Steady State Bubbling Rate		64 lpm	134 lpm		
Teed		Used	23248 kg	15206 kg		
Feed		Average Rate	161 kg/hr	211 kg/hr		
ed		Poured	7240 kg	4920 kg		
roduc		Average Rate ^{\$}	1006 kg/m²/day	1366 kg/m²/day		
ass P1		Average Rate [*]	1017 kg/m²/day	1330 kg/m²/day		
Gla	St	eady State Rate [*]	1050 kg/m²/day	1400 kg/m²/day		

"-" Empty data field

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

	-	А	В
	Feed Start	9/25/03 06:40	9/26/03 12:05
Time	Feed End	9/26/03 10:00	9/26/03 20:47
	Interval	27.3 hr	8.7 hr
W	ater Feeding for Cold Cap	1.0 hr	NA
	Slurry Feeding	26.3 hr	8.7 hr
	Average Bubbling Rate	100 lpm	96 lpm
	Туре	Mixed LAW, LAWC	LAWC
Feed	Used	5545 kg	1895 kg
	Average Rate	210.8 kg/hr	217.8 kg/hr
	Poured	2831 kg	834 kg
Glass	Average Rate ^{\$}	2153 kg/m²/day	1917 kg/m²/day
	Average Rate [*]	2159 kg/m²/day	2230 kg/m²/day
	Conditions	Power Off, Bubbling = 63 lpm	Power Off, Bubbling = 9.4 lpm
	Duration	1 hour, 2 minutes	2 hour, 49 minutes
Cold cap	Consumed	100 %	50 %
burn- off	Average Glass Temperature when power restored	1031°C	950°C
-	Additional time required after power restoration to complete cold cap burn-off	NA	2.0 hr

Table 1.13. Summary of Test Conditions and Results for Turnover Tests using LAW Sub-
Envelope C1 and LAW Envelope A (VSL-04R4851-1) [31].

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

Note: Rates do not take into account the time for water feeding and cold cap burn-off.

NA: Not applicable.

	_	А	В	С	D	Е
	Feed Start	9/30/03 07:06	10/01/0 3 11:00	10/0 3 /0 3 11:00	10/05/0 3 11:00	10/0 7 /03 11:30
Time	Feed End	10/01/0 3 11:00	10/0 3 /0 3 11:00	10/05/0 3 11:00	10/0 7 /0 3 11:30	10/09/0 3 17:02
	Interval	27.9 hr	48.0 hr	48.0 hr	48.5 hr	53.5 hr
Water Feeding for Cold Cap Creation or Maintenance		1.0 hr	NA	NA	NA	4.0 hr
	Slurry Feeding	26.9 hr	48.0 hr	48.0 hr	48.5 hr	49.5 hr
Average Bubbling Rate		91.3 lpm	20.6 lpm	41.1 lpm 62.1 lpm		103.4 lpm
Cold cap burn-off		NA	NA	NA	NA	$3.2\mathrm{hr}^{\#}$
Feed	Used	5509 kg	3530 kg	5402 kg	7359 kg	11232 kg
геец	Average Rate	204.8 kg/hr	73.5 kg/hr	112.5 kg/hr	151.7 kg/hr	226.9 kg/hr
	Poured	2593 kg	2046 kg	2449 kg	3689 kg	5855 kg
ed	Average Rate ^{\$}	1928 kg/m²/day	853 kg/m²/day	1020 kg/m²/day	1521 kg/m²/day	2365 kg/m²/day
Produce	Average Rate *	2097 kg/m²/day	753 kg/m²/day	1152 kg/m²/day	1554 kg/m²/day	2323 kg/m²/day
Glass	Steady State Rate*	Not Attained	750 kg/m²/day	1200 kg/m²/day	1600 kg/m²/day	2500 kg/m²/day
	Average Power Use	1.8 kW.hr/ kg glass	2.4 kW.hr/ kg glass	2.1 kW.hr/ kg glass	1.9 kW.hr/ kg glass	1.8 kW.hr/ kg glass

Table 1.14. Summary of Test Conditions and Results for LAW Envelope C Rate Test(VSL-04R4851-1) [31].

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

- Average glass temperature dropped to $1045^{\circ}\mathrm{C}$ during water feeding, lengthening time for cold cap burnoff.

Note: Rates do not take into account the time for water feeding and cold cap burn-off.

NA: Not applicable.

Table 1.15. Summary of DM1200 Test Conditions and Results Using LAW Envelopes Aand C and Various HLW Feeds (VSL-03L4850-1) [34].

-		LAW Test	HLW Test	
		Feed Start	11/03/03 13:30	11/06/03 01:30
Time		Feed End	11/06/03 01:30	11/07/03 20:01
		Duration	60 hr	42.5 hr
Water	Feedi	ng for Start-up	l hr	NA
	Slurry	Feeding	59 hr	Hr
С	old ca	p burn-off	NA	4 hr
I	Feed F	Reductant	Sugar	None
	Туре		LAWA + LAWC [5]	AZ-101 with and without sugar [6], AZ-102 [7], C104/AY-101 [8]
East	Used		9610 kg	7620 kg
гееа	Glass yield (estimated)		0.516 kg/kg feed	0.375 kg/kg feed
	Average Rate		163 kg/hr	179 kg/hr
	Average Rate During Alcohol Feeding		168 kg/hr	166 kg/hr
	1	Start	11/05/03, 07:10	11/06/03, 09:07
	1	End	11/05/03, 08:58	11/06/03, 10:54
Alaphal	2	Start	11/05/03, 09:28	11/06/03, 11:17
Feeding	-	End	11/05/03, 11:28	11/06/03, 12:57
Ū	3	Start	11/05/03, 13:45	11/06/03, 13:22
	5	End	11/05/03, 15:41	11/06/03, 15:29
	F	Run Time Interval	41.7 – 50.2 hours	67.6 – 74.0 hours
Glass		Average Rate [*]	1682 kg/m²/day	1345 kg/m²/day
Rate	Av	erage Rate [*] During Alcohol Feeding	1734 kg/m²/day	1245 kg/m²/day

*- Rates calculated from feed data.

NA – Not applicable.

Note: Rates do not take into account the time for water feeding and cold cap burn-off.

-		1A1	1A2	1B	2A	2B
Feed Start		6/21/04 13:36	6/23/04 18:40	6/25/04 16:15	8/02/04 15:15	11/08/04 09:30
Time	Feed End	6/23/04 17:46	6/25/04 12:33	6/30/04 11:30	8/07/04 17:33	11/12/04 19:18
	Interval	52.2 hr	41.9 hr	115.3 hr	110.3 hr	105.8 hr
Water F	eeding for Cold Cap	2.0 hr	NA	1.3 hr	3.0 hr	1.0 hr
S	lurry Feeding	50.2 hr	41.9 hr	114 hr	10 7 .3 hr	104.8 hr
(Cold cap burn	NA	1.2 hr	1.5 hr	2 hr	2.2 hr
	Bubblers	"J" , single outlet	"J" , single outlet	Prototypic, Double Outlet	"J" , single outlet	Prototypic, Double Outlet
bling	Location	6" above floor	6" above floor	On floor	6" above floor	On floor
Bub	Control	Constant	Constant	Optimized	Constant	Optimized
	Average Total	60 lpm	64 lpm	100 lpm	63 lpm	87 lpm
	Steady State	65 lpm	65 lpm	65 lpm	65 lpm	90 lpm
	Simulant	AZ-102	AZ-102	AZ-102	C-106/AY- 102	High waste loading C-
	Rheology	Adjusted	Adjusted	Nominal	Adjusted	Nominal
Feed	Close Viald	0.384 kg/kg	0.347 kg/kg	0.27 kg/kg	0.372 kg/kg	0.263 kg/kg
	Glass Tield	560 g/l	480 g/l	340 g/l	540 g/l	340 g/l
	Used	7877 kg	6836 kg	20002 kg	14300 kg	20100 kg
	Average Rate	156.9 kg/hr	163.2 kg/hr	175.5 kg/hr	130.8 kg/hr	191.8 kg/hr
	Poured	2932 kg	2465 kg	5576 kg	5193 kg	5168 kg
oduced	Average Rate ^{\$}	1168 kg/m²/day	1177 kg/m²/day	978 kg/m²/day	968 kg/m²/day	986 kg/m²/day
Jlass Pr	Average Rate [*]	1204 kg/m²/day	1133 kg/m²/day	948 kg/m²/day	982 kg/m²/day	1008 kg/m²/day
	Steady State Rate*	1350 kg/m²/day	1150 kg/m²/day	900 kg/m²/day	1010 kg/m²/day	1050 kg/m²/day

Table 1.16. Summary of DM1200 AZ-102 and C-106/AY-102 Test Conditions and Results (VSL-05R5800-1) [35].

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

Note: Rates do not take into account the time for water feeding and cold cap burn-off.

NA: Not applicable.

	C-106/AY-102	Simulant + MACT	spikes, Target Glass	Yield = 0.312 kg/kg		
	Test	1	2A	1-continued	2B	
Target Plei	num Temp. (C°)	400	300	400	500	
Average [#]	8" below ceiling	400	353	410	488	
Measured	17"below ceiling	392	338	387	484	
Plenum	Exposed TC	405	345	407	593	
Temp. (C°)	Overall	399	345	401	522	
	Feed Start	11/15/04 13:45	12/6/04 10:12	12/9/04 13:24	12/10/04 09:40	
Time	Feed End	11/17/04 18:00	12/9/04 13:24	12/10/04 09:40	12/12/04 15:35	
	Duration	52.3 hr	75.2 hr	19.1 hr	54.0 hr	
Water Feed	ling for Start-up	1.0 hr	1.0 hr	NA	NA	
Slurr	y Feeding	51.3 hr	74.2 hr	19.1 hr	54.0 hr	
Cold C	ap Burn-Off	2.0 hr	NA	NA	2.0 hr	
Average Bu	bbling Rate (lpm)	23.9	9.2	28.1	42.7	
	Туре	Allyl Alcohol	Allyl Alcohol	Naphthalene/ MeOH		
	Rate	40 g/min	40 g/min	13 g/min		
	Start	11/16/04 11:36	12/07/04 11:29	12/09/04 13:38		
	End	11/16/04 17:42	12/07/04 17:58	12/09/04 21:00		
	Duration	6.1 hr	6.5 hr	7.4 hr		
	Туре	Naphthalene/ MeOH	Naphthalene/ MeOH	NA		
Organic	Rate	13 g/min	13 g/min	NA	274	
Spikes	Start	11/17/04 12:15	12/08/04 10:44	NA	NA	
	End	11/17/04 17:36	12/08/04 21:38	NA		
	Duration	5.4 hr	10.9 hr	NA		
	Туре	NA	Allyl Alcohol/ Naphthalene	NA		
	Rate	NA	40 g/min	NA		
	Start	NA	12/09/04 10:28	NA		
	End	NA	12/09/04 13:22	NA		
	Duration	NA	2.9 hr	NA		
Feed	Used	5751 kg	6656 kg	2268 kg	9294 kg	
	Average Rate	112 kg/h	88 kg/hr	119 kg/hr	172 kg/hr	
Glass	Poured	1833 kg	1933 kg	724 kg	3035 kg	
Produced	Average Rate ^{\$}	715 kg/m²/day	521 kg/m²/day	758 kg/m²/day	$1122 \text{ kg/m}^2/\text{day}$	
	Average Rate [*]	699 kg/m²/day	550 kg/m²/day	742 kg/m²/day	$1072 \text{ kg/m}^2/\text{day}$	

Table 1.17. Summary of HLW MACT Test Conditions and Results (VSL-05R5830-1) [41].

\$ - Rates calculated from glass poured.

*- Rates calculated from feed data.

NA – Not applicable.

Note: Rates do not take into account the time for water feeding and cold cap burn-off.

7	Test	1	2B	2A	
Target Ple	num Temp. (C°)	400	500	300	
$\Delta verage^{\#}$	8" below ceiling	397	490	321	
Measured	17"below ceiling	414	504	333	
Plenum	Exposed TC	416	503	326	
Temp. (C ^o)	Overall	409	499	327	
-	Feed Start	3/7/05 09:03	3/17/05 9:30	3/20/05 06:01	
Time	Feed End	3/10/05 12:01	3/20/05 06:00	3/23/05 03:01	
	Duration	75 hr	68.5 hr	69 hr	
Water Fee	ding for Start-up	1.0 hr	1.0 hr	NA	
Slur	ry Feeding	74 hr	67.5 hr	69 hr	
Cold C	Cap Burn-Off	1.3 hr	NA	1.2 hr	
Average Bu	lbbling Rate (lpm)	26	43	9.3	
	Туре	Allyl Alcohol		Allyl Alcohol/ Naphthalene	
	Rate	10 g/min		11 g/min	
	Start	3/8/05 10:06	х.	3/21/05 09:00	
- ·	End	3/8/05 16:50		3/21/05 20:16	
Organic Spikes	Duration	6.7 hr		11.3 hr	
opixes	Туре	Naphthalene/ MeOH		Naphthalene/ MeOH	
	Rate	13 g/min		13 g/min	
	Start	3/9/05 10:02		3/22/05 09:05	
	End	3/9/05 21:12	n N	3/22/05 19:58	
	Duration	11.2 hr		10.9 hr	
Feed	Used	9036 kg	11000 kg	8714 kg	
1004	Average Rate	122 kg/h	163 kg/hr	126 kg/hr	
	Poured	4774 kg	5779 kg	4648 kg	
Glass	Average Rate ^{\$}	1290 kg/m²/day	1712 kg/m²/day	1347 kg/m²/day	
Produced	Average Rate [*]	1287 kg/m²/day	1718 kg/m²/day	1331 kg/m²/day	
	Steady State Rate	1400 kg/m²/day	1850 kg/m²/day	1300 kg/m²/day	

Table 1.18. Summary of LAW MACT Test Conditions and Results (VSL-05R5830-1) [41].

\$ - Rates calculated from glass poured.* - Rates calculated from feed data.

NA – Not applicable.

Note: Rates do not take into account the time for water feeding and cold cap burn-off.

Tal	ble	2.3	1.	Chrone	logy (of the	DN	A12 0	001	Melter	Main	tenance	and	Ins	pection	ıs.

Report	Feed	Date	Melter performance, observations, and maintenance activities.
			Completed construction and installation of the DM1200 system during Part B1.
			Note: Anytime during the insertion of anything to or removal of anything from the melter glass pool, power
			was secured.
			Approximately 37 gallons of ethylene glycol were added to the system. The system was tested to have a
		8/1/2000	freezing point of $\sim 20^{\circ}$ F. This corresponds to 17% ethylene glycol concentration in the cooling system.
			Therefore, the estimated cooling system volume is ~ 217 gallons.
		8/22/2000	Started leak test of DM1200 melter to determine the actual melter air inleakage. The calibrated thermocouples
		0/22/2000	used for the bake out were MM-XXX-TR-01, -02, -03, -04, -05 and -06.
		8/23-25/2000	DM1200 Melter bake out. (Note: The melter bake out period lasted for longer than normal due to contractor
		0/20/20/00	changes at the WTP, and time taken to make decisions about the future of the DM1200 test program.)
		9/6/2000	DM1200 Melter bake out.
		10/4/2000	To size a regenerative air blower to supply air to the dam cooler, pressure drop across the dam cooler pipe was
			determined.
		10/10/2000	Replaced electrode VI power transducer.
			Continued and finished installation of the transition line.
	HLW AZ-101	11/02-06/2000	Changed the location of the EOG vent line. Replaced the main EOG valve, MM-EOG-V-401. Installed EOG
			dilution air valve, MM-EOG-V-402.
		11/10-20/2000	Worked on cooling system modification so that during melter idling conditions we would be able to maintain
			the cooling panel temperatures warm enough to prevent moisture condensation.
VSL-01R0100-2	$(5/0^{\prime}/01-5/23/01,$	12/29/2000	CUA power outage between 7:15 and 12:00. Melter powered by VSL backup diesel generator.
	5/14/01-5/10/01,		Continued DM1200 Melter bake out. Melter Emergency off-gas was operational only in the manual mode.
	3/21/01-3/23/01)		Back up city water was operational. However, the primary side of the building chilled water supply was not
		1/17/2001	functional. The secondary cooling water was operating in the closed loop. Back up compressed air bubblers
			were tested. One out of six pressure regulators was leaking air signity and was marked for replacement.
			Isolom electrode was isolated. Air was supplied to the electrode bubblers. Melter electrode power supply was
		1/21/2001	Dreasedures were set up for dealing with sirewit breaker tripping and fire in the control nonal
		1/21/2001	Cooling system temperature testing was completed. Heat amount of the heat we have a system temperature testing was completed.
		1/21/22/2001	MCL CW LW 401 in which the city upstart was completed. Heat removing tapacity of the back-up heat exchanger,
		1/21-23/2001	system chilled water pump MCL-CW-PA01 secured
		1/22/2001	Heat loss through the emergency off-gas line was determined as a function of the off-gas exit temperature
		1/22/2001	Paducing sir in leakage into the malter was evplored. Air in leakage was determined as a function of the
		2/13-14/2001	malter vacuum
		2/15-14/2001	Pitot tube on the transition line was cloqued
		Eebruary 2001	Discharge chamber heater elements were placed in service
		2/14/2001	Silicon caulking was applied around electrodes and other locations to reduce air in-leakage
		2/26/2001	Obtained din measurements of glass nool denth, which was found to be 23"
		2/20/2001	An automotive type antifreeze tester was used to find the freezing point of the cooling system fluid. The
		3/09/2001	The determinant of the determinant of the determined in the determined of the determined by the determinant of the determinant
			T measured freezing point was between ± 10 and ± 20 °F. Added ~ 2gallons of Betz N 1402 corrosion inhibitor to \pm

		3/15-23/2001	Started water feed to test the performance of the DM1200 melter and off-gas system.
		3/19/2001	Performed a three-point accuracy check of cooling system thermocouples (readings were within 1/2%).
		3/20/2001	Between 7:25 and 10:05 the auxiliary diesel generator was tested.
		3/26-27/01	Performance of the DM1200 melter was tested with water feed.
		2 (20 (2001	First start-up test with about 2000 kg of HLW AZ-101 feed was performed to assess the performance of the
		3/28/2001	new melter, identify and correct problems, train operators, and finalize procedures.
	HLW AZ-101	3/29/2001	Between 10:30 and 11:04, turned melter power off to insulate under melter around heat exchanger.
VSL-01R0100-2	(5/07/01-5/25/01, 5/14/01)	3/292001	The thermocouples (TCs) of MM-XXX-TR-12, -01, -06 were calibrated.
	5/21/01-5/23/01	4/18/2001	Discharge chamber silicon controlled rectifier, SCR, was set to full output.
	5/21/01-5/25/01)	5/17/2001	Replaced EOG HEPA train (MM-EOG-F-401) local differential pressure gauge (MM-EOG-DPI-400) with a
		3/1//2001	0-5" W.C. scale gauge to improve sensitivity.
		5/18/2001	Removed circuit 6 heaters (two heaters) from the discharge chamber for inspection.
		5/25/2001	Work began on chilled water system to monitor cooling panel temperatures. All temperature readings were
		512512001	satisfactory. Six hours later, the chilled water system was returned to normal operation.
		5/30/2001	Cooling system controls were tested.
		6/7/2001	Power to the electrodes was shut off to reconfigure for side-to-bottom firing.
		6/16/2001	Removed the power fuse for the affected discharge heater circuit (see above).
		6/19/2001	Electrode bubbler #1 was partially clogged; highest attainable flow rate was 1.0 SCFH
		6/20/2001	Electrode bubbler #5 flow rate was <3.5 SCFH with backpressure of 37 psi. Adjusted flow rate to 1.0 SCFH,
			backpressure was 32 psi. Electrode bubblers 1 and 5 are now at a flow rate of 1.0 SCFH, bubblers 2, 3 and 4
			are at a flow rate of 3.5 SCFH.
		6/21/2001	Found that electrode bubbler 5 flow rate can be increased to 3.5 SCFH at a backpressure of 40 psi. Electrode
	HI W AZ 101	0/21/2001	bubbler 1 flow rate is 1.0 SCFH, bubblers 2, 3, 4 and 5 are at 3.5 SCFH flow rate.
	(6/25/01-7/2/01	6/23/2001	Checked the melter operating parameters every two hours and everything is within acceptable limits.
	7/23/01-8/1/01	6/25/2001	Replaced heating elements of discharge chamber heaters 1B and 3A.
	8/6/01-8/11/01	7/10/2001	A selector switch was installed so that the melter can be operated based on power or glass temperature
	8/20/01-8/25/01.	//10/2001	feedback control.
VSL-02R0100-2	9/25/01-10/1/01,	2	Removed thermowell for inspection.
	10/11/01-10/17/01,		Observed a 2" long and 1" wide high temperature/arc coloration on thermowell (TW) #2 at 9"-11" from the
	10/22/01-10/27/01,		bottom, and another spot on opposite side of pipe at 8" from the bottom. Also observed signs of arcing at the
	10/29/01-11/2/01,	7/19/2001	very bottom of the pipe.
	11/5/01-11/10/01)		The immersed section of thermowell in the glass had become thinner. Signs of metal erosion near the tip also
			were observed. The melter-air interface section looked relatively intact. Installed new thermowell #2 on the
			west side. All thermowell thermocouples of MM-XXX-TR-01, -02, -03, -04 and -05 were replaced.
		7/21/2001	Secured discharge chamber for maintenance and later energized the discharge chamber heaters. Calibrated
		112112001	melter pressure sensor at instrument port (MM-XXX-PR-200).
		7/22/2001	The melter pressure sensor at level detector port was labeled as MM-AR-PR-202.
		7/23/2001	The power transducer for DM1200 melter electrodes was modified to improve response.
			Emergency diesel generator (new 300 kW generator) was installed. Verified that MM-XXX-TR-01, -02, -03, -
		7/23/2001	12 and -13 TCs were used to determine the average glass temperatures. Cleaned emergency off-gas port. The
			pipe was $\sim 75\%$ clogged.

Table 2.1. Chronology of	he DM1200 Melter Maintenance an	d Inspections (continued).

		7/25/2001	Replaced 0-10 SCFH airlift flowmeter with a 2-20 SCFH flowmeter due to airlift requiring >10 SCFH flow
			Pare to fill glass at desired fate.
			Feed tube "B" was removed to allow hubbler testing to occur utilizing this port
			Visual inspection of TW #1 showed multiple "are" snots with slight metal degradation. No obvious failure
		8/2/2001	noints Decided to remove 60" of old TW nine and weld on a new 60" section
		0/2/2001	Reinstalled TW #1 with the same TC's that were in use Power was turned off during this evolution
			Reconfigured electrode firing side to side Torgied connecting fasteners to 105 lb-ft Removed TW #2 for
			inspection. No signs of arcing. Reinstalled TW #2 and reconnected TCs.
			Melter lid components were re-configured. Electrode bubbler back pressures were going up, which was an
			indication that these bubblers were clogging.
			A new thermocouple was installed in lance bubbler #2.
	HLW AZ-101		Lance bubbler #1 was installed in port A-3,
	(6/25/01-7/2/01,	0/2/2001	Lance bubbler #2 was installed in port D-1,
	7/23/01-8/1/01,	8/3/2001	Level detector was installed in port B-1,
	8/6/01-8/11/01.		TW #1 was installed in port A-2,
	8/20/01-8/25/01,		TW #2 was installed in port D-2.
VSL-02R0100-2	9/25/01-10/1/01,		Feed tube A was installed in port C-2,
	10/11/01-10/17/01,		Feed tube B was installed in port B-2.
	10/22/01-10/27/01,		Secured electrode power. Lowered lance bubbler #2 to 6" from floor. Also installed lance bubbler #1 in the
	10/29/01-11/2/01,		southeast port. Power was restored. Checked glass level and glass density transmitter's calibration. Removed
	11/5/01-11/10/01)	8/6/2001	MM-CA-MFCR-001 and -002 to recalibrate. Calibration of MM-CA-MFCR-003 and -005 were performed.
			Bubbler outlets were installed at depths of ~62.8" and ~68.8" from the lid of the melter. Bottom of bubblers
			were 6" below bottom of side electrode.
		8/8/2001	Replaced mass flow controller for lance bubbler #2. Controller was very hot. Installed a temporary fan to cool
		0/0/2001	the controller. Mass flowmeter was removed and shipped to factory for repair/calibration/evaluation.
		8/11/2001	Changed melter voltage taps from 168 V to 112 V to reduce harmonic frequency in SCR (silicon controlled
		0/11/2001	rectifier) and maximize power transfer. Control power output was 70 kW.
		8/13/2001	Melter pressure increased to +0.6" W.C. Replaced all EOG filters. Melter pressure decreased to -0.4" W.C.
		8/14/2001	Re-configured electrodes to fire side to bottom. Torqued connecting hardware to105 ft-lbs. Raised both lance
		0.1.2001	bubblers to 11 ¹ / ₂ ". This puts bottom of lance bubblers even with the middle of the side electrode.
		8/15/2001	Removed TW #1 (east side) for inspection. Found one small heat mark on the end of TW #1. Reinstalled TW
		0.10.2001	#1 and reconnected TCs.
		8/17/2001	Lance bubbler #1 flow is low with mass flow meter controller (MM-CA-MFCR-001). Switched the flow
		0/1//2001	control to MM-CA-MFCR-004 in order to repair the other mass flow controller.

			Lowered both lance bubblers 4" and installed both feed tubes. MM-XXX-TR-17 TC was installed as plenum exposed TC at an insertion denth of 17" below the ceiling through EQG clean-out flance.
		8/20/2001	MM-CA-MFCR-003 and -005 readings were compared with NIST traceable flow meter readings. Verified temperature averaging for the TCs of MM-XXX-TR-02, -03, -12, and -13. MM-XXX-TR-19 TC was replaced.
			Back-up mass flow controller comparison check was performed with a NIST traceable calibrated flowmeter. Adjusted electrode power input range; changed from 218 kW to 250 kW. Replaced MM-XXX-TR15 TC.
		8/21/2001	Failure of the mass flowmeter was identified by AALBORG Engineering to a design flaw in the 4-20 mA input, and corrected.
		8/24/2001	Replaced TC of emergency HEPA inlet temperature indicator, MM-EOG-TR-11 TC. Calibrated electrode voltage and TCs of MM-XXX-TR-04, -09 and -11.
		8/28/2001	Turned off power to the melter, removed TW #2 for inspection, and turned on the melter power and set it to 69 kW.
	HLW AZ-101	8/29/2001	Removed mass flow controllers for lance bubblers #1 and #2 for recalibration and replaced them with mass flow controllers with current calibrations.
	(6/25/01-7/2/01, 7/23/01-8/1/01, 8/6/01-8/11/01, 8/20/01-8/25/01, 9/25/01-10/1/01, 10/11/01-10/17/01, 10/22/01-10/27/01, 10/29/01-11/2/01,	8/30/2001	MM-AR-PR-202 and MM-XXX-PR-200 transmitters were replaced with fast response Ashcraft transmitters. Loop calibration verified.
		9/16/2001	Toshiba UPS for generator power for room 10 was tested. Power failure was simulated, and UPS picked up the load. UPS seems to be compatible with the generator, and the system worked as required.
VSL-02R0100-2		9/7/2001	Visual inspection of electrodes to make sure that the silicone was still holding in between the electrodes and the melter shell.
		9/19/2001	Removed lance bubbler #1 and #2 for inspection. Removed TW #1 for inspection and reinstalled TW #1 in melter. Bubblers and TW photographs were taken.
	11/5/01-11/10/01)	9/24/2001	Inspected film cooler. Slight build-up on walls. Inspected the Teflon lining of all feed tubes and found them to be in good condition.
		9/25/2001	Removed plug A-3, and relocated level detector from port B-1 to port A-3. Feed tubes A and B reinstalled with verification of cooling water flow to each prior to installation. Replaced TCs of MM-XXX-TR-23 and -17.
		10/10/2001	Removed TW #2 for inspection. Digital photographs of TW #2 were taken. Observed slight crystallization, but no sign of high temperature or arcing. Reinstalled TW #2. MM-XXX-TR-14 TC failed and was scheduled for replacement. Observed that MM-XXX-TR-14 and TR-15 connections were reversed; error was corrected.
		10/13/2001	Replaced TCs of MM-XXX-TR-16 and TR-06.
		10/18/2001	Removed TW #1. It did appear that the ceramic insulator or liner in the thermowell around the TC was starting to crack. Relocated the level detector to port B-1. Photographs of TW #1 were taken.
		10/22/2001	Removed MM-XXX-TR-17 and -19 TCs for inspection. Secured power to reconfigure electrode firing from side to bottom to side to side, and installed lance bubblers in ports A-3 and D-1. MM-XXX-TR-19 TC was inspected, cleaned and reinstalled. MM-XXX-TR-17 TC was replaced. Tightened all bolts around bubblers, feed tube, TWs and plugs on top of the melter. Bottom of bubbler was 6" below bottom of side electrode.

		10/23/2001	Replaced lance bubbler #2 mass flow controller. The unit was sent to AALBORG for repair and failure analysis.
		10/25/2001	Replaced MM-XXX-TR-01 TC due to suspected failure. During inspection, found that the entire bundle was stuck together. Replaced TW #1 thermocouples as a group with a multi-TC unit. MM-XXX-TR-01, -02, -03, - 04 and -05 TCs were replaced.
		10/28/2001	Photographs of TW #1 and TW #2 were taken. TW #1 had about a 6" arcing spot about 2.3 inches from the bottom. TW #2 had 6 arcing spots up about 10 inches from bottom.
		10/29/2001	Secured power to reconfigure electrodes for side to bottom firing. Repositioned melter level detector from port B-1 to port A-3 and installed feed tubes. Wired electrodes to fire side to bottom. Replaced all lock washers, torqued bolts to 105 ft-lbf. Tightened all flanges on the melter. Added a new TC in TW #2 to 1" from bottom of melter using the existing TC wire connection for readout on LabVIEW.
		10/30/2001	Replaced discharge heaters 1A and 1B. Found heater 1A had failed.
	HLW AZ-101 (6/25/01-7/2/01, 7/23/01-8/1/01, 8/6/01-8/11/01, 8/20/01-8/25/01, 9/25/01-10/1/01,	11/3/2001	Removed TW #1 for inspection. TW #1 showed about a 10-12" stretch of arcing about 2' up from the bottom. Photographs were taken.
		11/3/2001	Removed MM-XXX-TR-17 TC (exposed plenum) to minimize damage.
		11/5/2001	Used silicone to minimize the air inleakage around the west electrode. Replaced the damaged MM-XXX-TR-17 TC (exposed plenum).
VSL-02R0100-2		11/5/2001	Inspected film cooler. Observed ~ $\frac{1}{2}$ " of build-up below TC on south west side of pipe. Rest of the pipe was very clean up to transition pipe. Above transition pipe there was a dry powdery build-up.
	10/11/01 - 10/17/01, 10/22/01 + 10/27/01	11/6/2001	Ran back-up dam wall regenerative blower and back-up chilled water cooling pumps for 15 minutes.
	10/22/01 - 10/27/01, 10/20/01, 11/2/01	11/7/2001	Film cooler regenerative blower, MM-RGB-B-102 bearings may have burned up.
	11/5/01-11/10/01)	11/15/2001	Removed plenum exposed TC MM-XXX-TR-17. Also secured power to remove TW #1 for inspection. TW #2 was removed, and power was restored to 61 kW. Visual inspection of TW #2 showed significant crystallization with ~3-4" wide high temperature indications centered at 10" from end, wrapping full circumference of pipe. Digital photographs were taken.
		11/20/2001	Installed new TW #2. Power restored to 61 kW. Also removed TW #1 which showed some signs of crystallization. Took digital photographs. Also, TW #2 had signs of arcing about 12" from bottom. Replaced TW #1 with a new TW. The removed TW had high temperature/burn marks starting approximately 12" from the bottom of the TW and extending to 24" from the bottom of TW. Restored power to 61 kW.
		11/21/2001	Automatic transfer switch ATS-10 was installed in the back-up generator system.
		11/26/2001	Discharge circuit 4 was not functioning. Total of 2 discharge heaters were affected.
		11/29/2001	Removed MM-XXX-TR-12 TC for inspection. It was found defective and was replaced. Replaced thermocouples for MM-XXX-TR-03, -16, -05, -15, -01, -04, -14, -02, -13.
		12/3/2001	Relocated the level detector from port A-3 to port B-1.
		12/8/2001	Isolated power to the discharge chamber to remove and replace heating elements connected to circuits 2 and 4. Replaced heaters 2A, 2B, 4A and 4B with new elements. Power was restored and set to a maximum of 15 kW.

VSL-02R0100-2	HLW AZ-101 (6/25/01-7/2/01, 7/23/01-8/1/01, 8/6/01-8/11/01, 8/20/01-8/25/01, 9/25/01-10/1/01, 10/11/01-10/17/01, 10/22/01-10/27/01, 10/29/01-11/2/01, 11/5/01-11/10/01)	12/10/2001	Replaced TR-17 (exposed plenum) TC. Replaced bubbler #1 TC. Two new bubblers, bubbler #3 and bubbler #4, were made and new TC installed in them. Secured power to electrodes to reconfigure firing pattern. Restored power to electrodes (firing side by side). Raised electrode power first to 90W then 100 kW. Installed four lance bubblers between 11:23 and 12:00 while power was secured to reconfigure firing pattern. Bubbler #1 was installed in port A-1. Bubbler #2 was installed in port A-3 Bubbler #3 was installed in port D-1 Bubbler #4 was installed in port D-3 Bottoms of the bubblers were 6" below bottom of the side electrodes. Repaired west electrode silicone gasket by applying ¹ / ₄ " bead of RTV (room temperature vulcanizing silicon). Feed tube B gasket was missing; installed silicone gasket, which caused a gain of approximately 1.2" W.C. in melter vacuum.
		12/11/2001	 Relocated the melter pressure measurement port from D-3 to emergency off-gas line; connections were made for melter pressure sensor and exposed plenum TC. Replaced film cooler regenerative blower, MM-RGB-B-102 with new blower due to the damaged bearing. Installed melter pressure control air (i.e. dilution air) system. System included the following. a. PAXTON blower (OG-DA-B-301) with variable frequency drive. b. Air flow indicator/transmitter. c. Fast acting diverter valve, driven by compressed air and controlled based on melter pressure.
		12/15/2001	Placed electrode bubbler air flow through rotameters and turned off power to electrode bubbler mass flow meters. Installed a new TC in melter pressure dilution air pipe and installed a pitot tube upstream of TC.
		12/17/2001	Removed lance bubblers #1, #2, #3, and #4.
		12/18/2001	Reconfigured electrodes to fire from side to bottom.
		12/19/2001	Disconnected power to discharge chamber, replaced two heating elements and two heating sleeves, and restored power.
		1/4/2002	Replaced discharge chamber heating elements 1A and 1B.

Table 2.1.	Chronology .	of the DM1200	Melter Ma	aintenance and	Inspections	(continued).
					.	

VSL-02R8800-1	LAW Envelope C1 with cesium and hazardous organic compounds (1/7/02-1/15/02)	1/7/2002	Installed lance bubblers #1, #2, #3, and #4. Bottom of bubblers were 6" below bottom of side electrode. A new TC was installed for the exposed plenum temperature measurement, MM-XXX-TR-17. Replaced the riser TC (MM-XXX-TR-08).		
		1/16-17/2002	Removed transition line bellows. Only slight coating of material was observed in transition line bellows. Transition line bellows were reinstalled after cleaning. Inspected film cooler. Found large amounts of dry feed build-up on TC (~½ pipe diameter) and also in section of pipe above transition line into dilution air port. TC was removed and cleaned. Removed TW #2. Observed what appeared to be a few more arcing marks on the lower end of the tube. Took photographs and reinstalled TW # 2. Secured power to remove lance bubblers and reconfigure electrode firing pattern. Lance bubblers #1 and #2 showed significant signs of crystallization/pitting and slight bow at bottom 6 to 12". Lances bubblers #3 and #4 were in good condition. Photographs were taken.		
	LAW Envelope A1 with cesium, cadmium, selenium and hazardous organic compounds (2/27/02-3/1/02, 3/3/02-3/6/02, 3/18/02 -3/20/02)	2/20/2002	Started preparations to install new lance bubblers and change electrode power configuration/tap. Lance bubblers #1 and #2 were replaced with new lance bubblers. New TCs were also installed with the new lance bubblers. All four lance bubblers were installed. Installed plenum exposed TC of MM-XXX-TR-17.		
		2/25/2002	Inspection of TW #1 showed a slight bow approximately 14" from the bottom. Photographs were taken; TW # 1 was reinstalled.		
VSL-02R8800-2		2/26/2002	Replaced TC of MM-XXX-TR-17. Since the TC was not of the correct length, it was removed and installed at a later date. Added a switch to off-gas and melter labVIEW systems to change the save location of the data file to the local hard drive should network server be down. Added control air flow calculation to labVIEW. Changed many of the instrument cabling to shielded cable in order to reduce the noise in the signal for the following instruments: MM-AR-PR-202 (melter pressure – off-gas labVIEW), MM-XXX-PR-200 (melter pressure - melter labVIEW). The melter pressure measurement (MM-AR-PR-202) output values were averaged over ~ 0 s intervals p in the off gas labVIEW program and the average value signal was transmitted to a CN 7600 series Omega PID process controller to control melter pressure. The melter pressure control range was set to 0-15 inches W.C. The controller was set to maintain melter pressure based on the set point value entered into the controller. The initial amount of control air flowing into the melter was 40-50 SCFM; this amount was varied to maintain melter pressure.		
		2/27/2002	Installed a new TC for MM-XXX-TR-17. Cooling jacket for Paxton blower failed because it was not made of corrosion resistant material. Based on recommendations from the manufacturer, modifications were made to the blower so that it could be operated at a higher temperature without coolant.		
		3/3/2002	Replaced plenum exposed TC of MM-XXX-TR-17. Inspected and verified that the film cooler (FC) had only minor build-up on walls.		

VSL-02R8800-2		3/7/2002	Secured power to reconfigure electrode firing to side to bottom. Removed lance bubblers and TW #2. Secured power to lance bubbler mass flow controllers based on vendor recommendation to secure power to the mass flow controllers when air is not flowing through them. Restored power. Digital photographs were taken of lance bubbler #2. Removed the level detector and stopped argon flow. Reinstalled TW #2. Removed TW #1 for inspection. Secured power to replace discharge heaters 2A and 2B with new elements. Power was restored.
	LAW Envelope A1 with cesium, cadmium, selenium and hazardous organic compounds (2/27/02-3/1/02, 3/3/02-3/6/02, 3/18/02 -3/20/02)	3/8/2002	Replaced fuse on discharge heater circuit 2, which controls heaters 2A and 2B. Replaced the heating elements of the discharge chamber heaters 2A and 2B. Visual inspection of level detector showed damage to the ends of both glass submerged pipes. On the longest pipe ½" of half the diameter of the pipe was missing, and there was a split in the pipe ~2" up the pipe. On the second longest pipe about the same amount of metal was missing, but no splitting. Also, there was significant crystallization and pitting. Overall lengths of the pipes were still as specified in the drawing. Digital photographs were taken. Inspection of TW #1 showed slightly more crystallization than during the previous inspection. No significant crystallization or heat damage was noticed. Photographs were taken.
		3/11/2002	Replaced TW #1 and TCs. Secured electrode power to install new TW #1. Power was restored. Cooling liquid was added to the secondary cooling system to raise the inlet water pressure of the chilled water pumps MCL-CW-P-402A/B from 1 psi to 20 psi. The system was not working properly, and ~ 2 gallons of liquid was removed to bring the inlet water pressure down to ~10 psi. Cooling system was a closed loop system with an expansion tank; adjustments were made on an as-needed basis. After replacing EOG pre-filters, melter vacuum was about -0.3 "WC. Removed transition line bellows for inspection.
		3/12/2002	Took digital photographs of transition line from melter to SBS before and after cleaning. No significant solids build-up was observed. Small amount of solids were seen in the bellows, which was typical. Bellows was reinstalled. Secured power and reinstalled level detector. Power was restored. Found erratic melter level and density readings. Investigation showed that argon supply was off. Restored argon flow and readings returned to normal. Film cooler and transition line were cleaned. A second EOG HEPA housing was installed.
		3/15/2002	A pressure regulating valve was installed at the inlet of the ammonia system regenerative blowers to control air flow.
		3/18/2002	Investigated unusual melter pressure and film cooler DP readings and found damage to the EOG vent line (~20" of pipe missing from EOG vent pipe insertion into the melter), and extensive corrosion of pressure sensor line that was connected to the EOG vent line. Temporarily plugged port while new sensor pipe was fabricated. The EOG went line was replaced. TC of MM-XXX-TR-17 was also replaced.
		3/21/2002	Secured electrode power to remove lance bubblers and change electrode firing pattern to side to bottom. Re-energized the electrodes. Lance bubblers #1- #4 were removed, and photographed

Table 2.1. Chronology of t	e DM1200 Melter N	Jaintenance and Ins	pections (continued).

	3/22/2002	Removed MM-XXX-TR-17 and MM-XXX-PR-200 from EOG port. Large amount of solids build-up was observed in vertical and horizontal sections of EOG piping. Solids from the vertical section were cleaned and put in the melter. Horizontal was still blocked at the 45° bend and was cleaned by vacuuming.	
		3/26/2002	Secured melter electrode power to facilitate cleaning of EOG piping. Removed solids in EOG line with a vacuum cleaner with stainless steel flex hose. Sample of the removed material were taken. Opened manual EOG vent valve, MM-EOG-V-403 and found piping packed with material resembling concrete. Cleared valve and removed piping at upstream flange. Material found packed solid past next "T" fitting. Removed and cleaned the EOG vent line. Re-energized electrodes.
		3/27/2002	Continued EOG vent cleaning. Main EOG valve, MM-EOG-V-401 had large amount of solids build-up on damper and pipe downstream, ~34" build-up at the bottom of the pipe. Upstream pipe was coated with a thin layer of material. Digital photographs were taken. Finished cleaning MM-EOG-V-401 valve and piping. Changed EOG filters.
		4/3/2002	Removed and replaced EOG HEPA filters on MM-EOG-F-402 EOG HEPA train.
LAW	LAW Envelope A1 with cesium, cadmium,	LAW Envelope A1 with cesium, cadmium,	Replaced pre-filters and HEPA filters in both MM-EOG-F401 and MM-EOG-F-402 EOG HEPA trains. Transition line and film cooler were removed; digital photographs were taken. Observed solids build-up on the film cooler. There was significant corrosion damage to the bottom of the film cooler. The transition line piping had ~1/16" - 1/8" build up on pipe wall uniformly along entire piping. Small sections of film cooler bottom were collected for analysis by microscopy.
VSL-02R8800-2	hazardous organic compounds	4/6/2002	Cleaned film cooler with water. This was only marginally successful. Majority of solids remained. Tried to remove materials by chipping with hammer/chisel with marginal success. Collected sample of removed solids for analysis. Digital photographs were taken.
	3/3/02-3/6/02	4/8/2002	Melter pressure became positive; switched to EOG HEPA train MM-EOG-F-401.
	3/18/02 -3/20/02)	4/11/2002	Secured power to change TCs of MCL-CW-TR-410, TR-411, TR-406, TR-409, TR-413, TR-415, TR-416 and TR-418, all used to measure temperature of chilled water supply to the melter.
		4/29/2002	Removed air-lift for inspection. Inspected the airlift and noticed some arcing on the bottom end of the lance. Photographs were taken.
		5/1/20002	Cooling panel back-up pumps and dam wall regenerative blowers were tested. They were all working properly.
		5/2/2002	Installed power switch ATS-10A (Automatic Transfer Switch). (In the event of a power failure, ATS-10A switches to the first source of electrical power available. When both sources of power are available, it uses the normal power source. If normal power fails, ATS-10A switches to emergency power.)
		5/3/2002	Restored dam cooling to normal RGB supply and disconnected temporary B-301 air supply connection. Replaced HEPA and pre-filters on both EOG HEPA trains.
		5/3/2002 5/14 and 5/16/2002	ATS wiring was completed. Secured power to melter electrodes and discharge heaters and placed diesel generator in "OFF" position to complete wiring modifications. Operation of ATS-10A was performed. Power was restored to melter and the discharge heaters. Diesel generator was placed back in "Auto" control.
			Effect of a bulb on air flow through the bubbler was tested.
		5/15/2002	Changed EOG HEPA train MM-EOG-F-401 filter and pre-filter.

		5/17/2002	Changed EOG HEPA train MM-EOG-F-402 filter and pre-filter.		
VSL-02R8800-2		5/21/2002	Noticed that heater #5 in discharge chamber had burned out.		
		6/13/2002	Switched the EOG exhaust trains. Replaced pre-filter on MM-EOG-F-401 EOG HEPA train.		
		6/21/2002	Installed new film cooler and re-piped the dam wall outlet air into the film cooler. Installed a new film cooler TC.		
		6/22/2002	Replaced EOG train MM-EOG-F-402 HEPA with a high temperature stainless steel filter. Noticed that melter pressure was at 0.00" W.C. Piping dam wall outlet air to film cooler may be the cause of lack of melter vacuum. Momentarily switched dam wall outlet air valve through EOG, and vacuum went to - 0.24" W.C. Switched the valve back so that dam wall outlet air flow was through film cooler.		
		7/2/2002	Installed HEPA filter and pre-filter in EOG HEPA train. Performed instrument calibration and loop calibration on: MM-OG-DPR-002, MM-AR-DTR-201, MM-AR-PR-201, MM-AR-LTR-201, MM-OG-DPR-001, MM-XX- PR-200, OG-B-FIR-301, MM-AR-PR-202, MM-OG-DPR-002, glass density and glass level. Removed the pancake flange from the transition line.		
		7/8/2002	Reduced power from 65 to 60 kW for core drilling of melter lid.		
VSL-03R3800-4	HLW AZ-101 (7/23/02-8/1/02, 9/9/02-9/18/02, 9/23/02-10/02/02, 10/7/02-10/12/02, 10/15/02-10/24/02,	7/10/2002 Secured power to electrodes to begin core drill evolution, utilizing rented air compressor. 7/10/2002 Core drilling complete. Restored power. Shut down off-gas system. Switched electrode power to "Auto".			
		7/12/2002	 Placed both EOG HEPA trains in service. Inspected EOG port. Vertical section was clean, horizontal pipe was ~ ½ blocked. Rodded as much as possible of the solids into the melter. Inspection of EOG TC showed no visible damage. Removed MM-EOG-V-403 valve (Manual EOG vent/dilution air valve). No clog was observed downstream of EOG valve MM-EOG-V-401, emergency vent valve. Replaced valve, MM-EOG-V-403 due to corroded ball and seat. 		
		7/13/2002	Replaced the elements of discharge chamber heaters 5A and 5B with new elements. Heater 5B failed due to fracture. Made a modification to EOG control circuit. During automatic system operation the dilution valve would open with a time delay. Replaced MM-XXX-TR-10 TC.		
		7/15/2002	 Secured power. Removed TW #2 for inspection. Minor arc spots and minor crystallization were observed. Photographs were taken. Power was restored. Secured power to reinstall TW #2. Restored power. Installed a 100 – 3000 CCM flow meter for the film cooler water wash line. Installed film cooler water wash line nozzle at 40 psi. Transition line was cut on the bend with pipe support added down to the melter so the film cooler could be removed without taking down the entire transition line. Cut hole in the lid, welded flange in the center of the melter lid and core drilled for ADS feed tube. Installed new instrumentation and exposed plenum TC in melter port B-3 and reconnected all instrumentation. Installed a manual 4" blast gate valve (with an in/out sliding piece of metal) on the end of the emergency dilution air pipe. 		

	1 aut 2.1. C	in onoiogy of	the DM11200 Menter Maintenance and Inspections (continued).
		7/16/2002	Installed new thermocouple in riser air lance MM-XXX-TR-08. TC was inserted to a depth of ½" above the bottom of the air Lance.
HLW AZ-10 (7/23/02-8/1/		7/17/2002	Replaced filters and pre-filters of both MM-EOG-F-401 and -402 EOG HEPA trains.
		7/20/2002	Inspected EOG lines. Horizontal section of the EOG line was clear. The vertical section was partially clogged up to the "T" section. Air flow still had about 90% open flow path. The material was removed. Took sample of solids found blocking EOG dilution air valve.
		7/22/2002	 Secured power to replace lance bubblers with "J" type bubblers. Thermocouples were installed in lance bubblers #1 and #2. Removed TW #1 for inspection. Lance bubblers #1 and #2 were replaced with "J" bubblers to the same depth. After TW #1was removed, power was restored. Inspection of TW #1 showed significant crystallization and signs of conduction of electric current. Caliper measurements were taken. Inspection of removed bubblers showed some crystallization with arcing spots on lance bubbler #2. Photographs were taken. Secured power to install TW #1. Power was restored after installing TW #1.
	HLW AZ-101 (7/23/02-8/1/02,	7/24/2002	Repaired discharge chamber heater circuit 4A and 4B. Replaced the heating elements of heaters 4A and 4B with new elements. Heating element of heater 4A had failed. Also repaired several overheated heater connections. An external fan was added to help remove radiant heat. A different type of material ring terminals ordered to replace all connection ends. Ran back-up generator for 30 minutes.
VSL-03R3800-4	9/9/02-9/18/02,	7/31/2002	Replaced MM-XXX-TR-13 TC.
VSL-03K3600-4	9/23/02-10/02/02, 10/7/02-10/12/02, 10/15/02-10/24/02	8/5/2002	TW #1and #2 were removed for inspection. Initial inspection TW #1 (before glass coating shattered) showed unusually large deposits, which have not been observed previously, on electrode side of TC. Closer observation of deposits on TW #1 showed a metallic appearance and was collected for analysis. Visual inspection of both TW #1 and #2 showed significant degree of crystallization in the section exposed to the electrode. TW #2 appears more degraded than TW #1. TW #1 had an unusual shiny coating on the bottom 3" of the TW. Significant signs of arcing were observed on the bottom end of both TWs. Photographs and dial caliper readings were taken of both. Decision was made to replace both TW #1 and #2. Fabrication was started.
		8/8/2002	Since the new TW #1 was shortened, TC of MM-XXX-TR-04 was replaced with a shorter TC. Existing TC for MM-XXX-TR-13 is now MM-XXX-TR-15. Both TW #1 and #2 were reduced in length from 76 ½" to 67 ½". Also TC for MM-XXX-TR-18 was removed. Glass pool temperature average now uses MM-XXX-TR-01, -02, -03, -12, -13 and -14. In the new configuration: TCs of MM-XXX-TR-01 and MM-XXX-TR-12 are 13" from melter floor. TCs of MM-XXX-TR-02 and MM-XXX-TR-13 are 15 ½" from melter floor. TCs of MM-XXX-TR-03 and MM-XXX-TR-14 are 18" from melter floor. TCs of MM-XXX-TR-04 and MM-XXX-TR-15 are 27" from melter floor. TCs of MM-XXX-TR-04 and MM-XXX-TR-15 are 27" from melter floor. In addition to shortening the TW, a 16" quartz sleeve was inserted to insulate TCs of MM-XXX-TR-01,-02, - 03, -12,-13, -14 from TW wall. Removed pancake flange from the transition line. Reinstalled gasket and secured the bolts.

		8/9/2002	Switched to MM-EOG-F-401 EOG HEPA train. Decided to replace EOG HEPA pre-filter on the other train.
		8/12/2002	Replaced MM-EOG-F-402 EOG HEPA train pre-filter. Observed build-up before pre-filter.
		8/12/2002	Verified the TW #2 TC readings.
		8/13/2002	Discharge chamber heaters 3A and 3B failed.
		8/16/2002	Heating elements of discharge chamber heaters 1A, 1B, 7A and 7B were replaced with new elements. Modified heating element sleeve by splitting it in half. Removed top half of the alumina insulation inside the Kanthal protection tube covering each heater element. The reason for removing the upper half of the alumina sleeve was to reduce failure due to high temperature caused by the excessive insulation Switched from EOG HEPA train MM-EOG-F-401 to EOG HEPA train MM-EOG-F-402.
		8/17/2002	Replaced pre-filters and HEPA filters on both EOG HEPA trains.
VSL-03R3800-4	HLW AZ-101 (7/23/02-8/1/02, 9/9/02-9/18/02, 9/23/02-10/02/02, 10/7/02-10/12/02, 10/15/02-10/24/02	8/20/2002	Bubbler in port D-1 and TW in port D-2 were removed. Lance bubbler #2 showed some high temperature (arcing) at the tip, on the bend, and just above the bend. No crystallization was observed. Photographs were taken. TW #2 showed no physical damage but did show an indentation on the pipe (full circumference) at the glass surface interface. Photographs were taken. Coupons were installed on both the lance bubbler and TW #2. Photographs were taken. TW #2 and lance bubbler #2 were installed. Secured power to discharge chamber for repairs. Replaced the heating elements of discharge chamber heaters 3A, 4A, 4B and 5A with used elements. All of the heater elements were removed for inspection and resistance measurements were taken at room temperature of the elements that were reinstalled. A Tektronix model TX1 True RMS Multimeter was used for this purpose. The ceramic (alumina) isolator was split lengthwise to allow for a greater amount of radiative heat loss to lower the average temperature in the heating zone of the heating elements. This was implemented to try and prevent the failure mode observed with some of the past heater element failures. Metal sheaths of the following heating elements were again cut in half lengthwise to allow better fit inside the warped metal sheaths. Two cylindrical tube sections were placed around all of the heating element to prevent the elements from melting the ceramic insulators and to prevent the heating element from touching the metal sheaths at the top. This tube, which was ~3/8" wide at the connection end and ~1" wide at the heating zone tip had a high alumina content. This material had good insolating properties. All heater power leads showed various degrees of overheating at the conductor - terminal connection. So all of the heater power lead connections were redone using 1200 F nickel-plated steel crimp on ring terminals. These replaced the 195 F aluminum set screw ring terminal connectors.

Table 2.1.	Chronology	of the l	DM1200	Melter	Maintenance a	and Ins	pections ((continued).
							3	

		8/21/2002	Removed level detector and replaced with new level detector with coupons attached. Outside diameter caliper readings were taken of the old level detector. Removed level detector showed significant crystallization and loss of pipe outside diameter. Radial cracks were observed on both level detector pipe (7" from end) and density pipe (1 ½" from end). Photograph and caliper readings were taken.
		8/22-23/2002	While attempting to open MM-EOG-F-401, EOG HEPA filter outlet isolation valve-damper (MM-EOG-V-405), the damper stem fell into the ductwork. (Damper stem was broken). MM-EOG-F-401 was opened. Removed EOG damper (MM—EOG-V-405) from the ductwork. In MM-EOG-V-401, no clogging was found. MM-EOG-F-402 filters were marked for replacement.
		8/26/2002	Installed a new level detector with coupons. LabVIEW calculations for glass level were modified for new detector pipe dimensions. Level detector was placed in service.
		8/27/2002	Performed functional/operational test of cooling water system and diesel generator.
		9/3/2002	Completed high temperature switch testing for the cooling system. Chilled water return high temperature switch TSH-105 and supply city water high temperature switch TSH-107 were tested for their functionality.
	III III A 7 101	9/4/2002	Removed airlift lance. Maintained air flow in an attempt to remove and replace TC. Air flow was maintained for glass to flow out and to keep the lance open.
	(7/23/02-8/1/02, 9/9/02-9/18/02,	9/5/2002	Performed loop calibration of MM-BB-TR-01 and TCs of MM-XXX-TR- -19, -10, -05, -01, -02, -03, -04, -06, -16, -11, -08, -12, -14, -15, -07, -23, -21, -22, -09 and -13.
VSL-03R3800-4	9/23/02-10/02/02, 10/7/02-10/12/02, 10/15/02-10/24/02	9/6/2002	Removed TW #1and lance bubbler #1. Coupon closest to bottom of bubbler had broken off during cooling. Outside diameter caliper readings were taken of lance bubblers #1 and TW #1. Bubbler #1was reinstalled without re-attaching coupon. TW #1 was inspected and reinstalled. Photos of both were taken. Coupons were installed on air lift lance.
		1,0	Replaced air lift TC MM-XXX-TR-08 with a new one.
		9/9/2002	Reinstalled MM-XXX-TR-17, plenum exposed TC. Installed corrosion coupons in the film cooler and transition pipe Lance bubbler #1 and #2 backpressure transmitters were added (0 -15 psi).
		9/11/2002	Completed control air control upgrades. Input to controller is MM-AR-PR-201 (melter pressure for the EOG system).
		9/16/2002	Diesel generator weekly test run was completed.
		9/20/2002	Removed TW #2 and lance bubbler #2. Nothing unusual noted. Outside diameter caliper readings of lance bubbler #2 were taken.
		9/23/2002	Weekly test of diesel generator was completed. Completed test of MCL-CW-P-402 B and -403B chilled water pumps. Missing coupons of lance bubbler #2 were remounted. TW #2 and lance bubbler #2 were reinstalled. Checked exposed plenum TC. It was functional. Replaced TC of MM-XXX-TR-15 due to erratic readings.

		Removed TW #1 and lance bubbler #1. Lance bubbler #1 showed pitting after the bend (the corner) at the end
		about 4" long and farther up at 13" from the bottom. There were two hot spots close together plus some
		crystallization from 8" to 22" from the bottom. Photographs were taken.
	100000	There was Joule heating signs at 0 to ¹ / ₂ " from the bottom of TW #1. No other spots or crystallization were
	10/3/2002	noticed on TW #1.
		Outside diameter caliper readings of lance bubblers #1 were taken.
		Outside diameter caliper readings of TW #1 were taken.
		Lance bubbler #1 and TW #1 were reinstalled.
		Installed manual rotameter flow meters for lance bubblers #1 and #2. (MM-CA-FIC-012, -013).
	10/7/2002	Replaced RGB/film cooler domestic water totalizer (RGB-DW-FIT-215).
		Performed back-up chilled water pump and back-up dam wall regenerative blower tests.
		Removed manual hubbler mass flow controllers MM-CA-MER-001 -004 -005 -010 -011 -012 and -013 for
	10/9/2002	offsite calibration
	10/12/2002	Removed lance bubbler #2 and TW #2
	10/12/2002	While trying to measure dimensions of lance hubbler #2 and TW #2 found too much residual feed on both
HI W AZ-101		Reinstalled both into the melter to melt residual feed
(7/22/02 8/1/02	10/13/2002	Removed lance hubbler $\#2$ and TW $\#2$ again. After hubbler was removed one of the lower coupons came off
0/0/02-0/18/02		Photographs were taken
9/9/02-9/18/02, 9/23/02-10/02/02, 10/7/02-10/12/02, 10/15/02-10/24/02		Outside diameter caliner readings of TW #2 were taken
	10/14/2002	Installed lance bubbler #2 and TW #2
		Installed a new TC in lance bubbler #2
	10/15/2002	MM-XXX-TR-17 exposed plenum TC was inspected and reinstalled.
	10/15/2002	Back-up chilled water pumps & diesel generator tests were completed.
	10/16/2002	After troubleshooting melter pressure indication found that 24 volt DC power supply needed to operate the
		pressure transmitter was overloaded Added another power supply
		Replaced RGB/film cooler water totalizer with a model of 0.3 lpm capacity (RGB-DW-FIT-215)
	<u>.</u>	During glass discharge operator noticed that knife gate valve was closed: immediately secured discharge and
		attempted to open knife gate valve. Since the valve had warred, it was necessary to loosen the mits around the
		value body before it could be opened. Removed glass from the value body, verified that glass discharge path
	10/17/2002	was clear and replaced discharge can This hannend because the interlock that should have prevented glass
	10/1//2002	discharge while the sate was closed did not work
		Repaired limit switch for discharge chamber knife switch
		Replaced MM-XXX-TR-02 TC
	10/22/2002	A start up test was performed on all cooling panel motors including backups
		Photographs were taken of coupons inside the transition piping. Transition line itself appeared mostly clean
	10/24/2002	Some dobris around the ballows was removed
	HLW AZ-101 (7/23/02-8/1/02, 9/9/02-9/18/02, 9/23/02-10/02/02, 10/7/02-10/12/02, 10/15/02-10/24/02	I0/3/2002 10/3/2002 10/7/2002 10/9/2002 10/12/2002 10/12/2002 10/12/2002 10/13/2002 10/13/2002 9/9/02-9/18/02, 9/23/02-10/02/02, 10/7/02-10/12/02, 10/15/2002 10/15/2002 10/15/2002 10/15/2002 10/16/2002 10/17/2002 10/17/2002 10/17/2002 10/12/2002

VSL-03R3800-4	HLW AZ-101 (7/23/02-8/1/02, 9/9/02-9/18/02, 9/23/02-10/02/02, 10/7/02-10/12/02, 10/15/02-10/24/02	10/28/2002	TW #2, air lift and level detector were removed for inspection and coupon removal. Removed coupons from discharge chamber. Took photographs of air lift from bottom to 31" up. The metal appeared somewhat pitted. Also, there was a greenish color to the pipe up to ~31" (it has greenish tint to it). A small amount of crystallization also was observed in this region. Between 27" - 31" there was heavy pitting and between 18" - 23" there was a bend in it. Air lift outside diameter caliper readings were taken. Outside diameter caliper readings of lance bubblers #1, #2, #3 and #4 were taken. Inspection of TW #2 showed slight crystallization. No sign of arcing. Photographs were taken. Outside diameter caliper readings of TW #1 and TW #2 were taken. Inspection of level detector showed no signs of degradation. Photographs were taken. TW #2, airlift, and level detector were reinstalled.
		10/29/2002	Removed lance bubbler #1, lance bubbler #2 and TW #1. Inspection of lance bubbler #1 showed slight narrowing at tip with minor crystallization. Photographs were taken. Lance bubbler #2 had similar appearance as lance bubbler #1. Photographs were taken. TW #1 showed slight crystallization with only minor indication of arcing. Photographs were taken. Installed lance bubblers #1, #2, #3, #4 and TW #1. Installed TCs of MM-XXX-TR-01, -02, -03, -04 and -05 in TW #1. Replaced HEPA and pre-filter in EOG HEPA train MM-EOG-F-402.
		11/1/2002	Installed a new TC in lance bubbler #2, MM-BB-TR-02. Removed discharge chamber knife gate valve; replaced the gate with a piece of 1/8" TK 601 inconel plate and reinstalled the valve.
		11/3/2002	Replaced plenum exposed MM-XXX-TR-17 TC with a new one. Inserted the MM-XXX-TR-17 TC 17" below the lid.
VSL-03R3851-1	LAW Envelope B1 with hazardous organic compounds (11/4/02-11/8/02)	11/4/2002	Replaced 2 "J" type lance bubblers with 4 "L" type lance bubblers. Removed all glass corrosion coupons. Replaced exposed plenum TC. Installed 2 more (total 4) back pressure transmitters for 4 lance bubblers. Melter LabVIEW software was changed to revision VI. Removed transition line pancake flange and tightened film cooler flange bolts. Repaired damaged TC wire of MM-XXX-TR-17. Zeroed all blow-down and water addition totalizers. Reinstalled all mass flow controllers previously removed for calibration. Added lance bubblers #3 and #4 back pressure transmitters to melter labVIEW.
		11/8/2002	Outside diameter caliper readings of the "J" type lance bubblers #1, and #2 were taken. They appeared the same as during the inspection on 10/19/2002. Glass was adhering to the bubblers, making it difficult to get good dimension measurements. Readings near the tip were taken to determine the severity of loss there. Removed lance bubblers #2 and #3 for inspection and caliper measurements ("L" type).
		11/9/2002	Photographs of lance bubblers #2 and #3 were taken. Inspection showed various spots on both bubblers, and some minor pitting on lower 20" of bubblers. Took caliper readings on lance bubblers #2 and #3.

	2 X		
VSL-03R3851-1	LAW Envelope B1 with hazardous organic compounds	11/11/2002	Increased power from 75 to 80 kW in preparation for bubbler installation and transformer tap change from 224 V to 168 V. Tested RGB electronic valve for film cooler washing. Verified timer and flow were correct for 5-liter water flow. Since the existing nozzle could not be cleaned, installed a new spray nozzle for film cooler wash line. Tested (electric valve with timer) flow rate and adjusted rotameter to flow 1 liter of water per minute. Installed "J" bubblers in ports A-3 and D-1. Increased discharge heater power from 12 to 14 kW. Replaced upstream film cooler inlet air temperature (MM-RGB-TR-201) TC. Replaced exposed plenum TC (MM-XXX-TR-17). Note: ~ 6" was missing from the "OLD" TC. Film cooler was inspected. Replaced "L" type lance bubblers in ports A-3 and D-4 with "J" type lance bubblers. Added upstream film cooler inlet air temperature, MM-RGB-TR-201 to the melter data file.
	(11.102.11.0.02)	11/13/2002	Changed voltage connections from 224 V tap to 168 V tap.
		11/15/2002	Removed lance bubblers #1, #2, #3, #4 and TW #2. Installed "J" type lance bubblers #2 and #3 with new TCs. Inspected and took photographs of lance bubblers #1, #2, #3, #4 and TW #1 and #2. Only visible damage was an arc spot on lance bubbler #4 at about 12"-14" from the bottom.
		11/16/2002	Installed coupons on both sides of the transition line.
VSL-3R3800-2	HLW AZ-102 (11/18/02- 11/27/02)	11/18/2002	Installed new TCs MM-XXX-TR-12, -TR-13, -TR-14, -TR-15 and -TR-16 in TW #2. Caliper readings of TW #2 were taken Outside diameter caliper readings of lance bubbler #1 (L type), lance bubbler #2 (J type), lance bubbler #3 (J type) and lance bubbler #4 (L type) were taken. TW #2 was installed. Exposed plenum TC was inspected and reinstalled. Discharge coupons were reinstalled. Replaced TCs of MM-XXX-TR-12, -13 and -14 with multi TC set.
		11/27/2002	Removed lance bubbler #1 and TW #1 for inspection. Inspected film cooler. It appeared clean and smooth with no-build-up. Photographs were taken. Inspection of TW #1 did not reveal any new damage or bends. Photographs taken. Outside diameter caliper readings of TW #1 and TW2 were taken. "J" type lance bubbler #1 lost two coupons due to removing adhering glass with hammer. Other than that the bubbler looked good with no apparent damage. Photographs were taken. Outside diameter caliper readings of "J" type lance bubbler #1 were taken. Decided to leave bubblers out until coupons were reattached. TW #1 was reinstalled.
		11/28/2002	Removed the pancake flange from film cooler outlet. Replaced two damaged bolts. Due to unusual noise from chilled water (CW) pump, MCL-CW-P-402A, switched from CW pump MCL-CW- P-402A to CW pump MCL-CW-P-402B.
		12/3/2002	Lance bubbler #2 was removed for coupon inspection. All 6 coupons were still attached. Some of the coupons became detached during removal of glass adhering to the outside of the bubbler. The bubbler appeared to be in good condition, except for minor signs of high temperature at bend (bottom side) of "J". Outside diameter caliper readings of the bubbler were taken. Performed operational test on the chilled water pump MCL-CW-P-402A. Did not observe any noise. Pump outlet pressure gauge removed and tested. Chilled water pump MCL-CW-P-402B was placed in operation with MCL-CW-P-402A CW pump in back-up.

	I HOIC AILI C	monoros, or c	ne brill oo menter multice and mspections (continued).
		12/4/2002	Temporary EOG installation was completed in preparation to remove the existing off-gas duct pipes. Replaced both EOG HEPA filters and pre-filters. Installed temporary "W.C. differential pressure indication (0-10") on both EOG HEPAs.
		12/11/2002	Installed lance bubblers #1 and #2 with attached corrosion coupons.
		12/16/2002	Since building compressed air supply was not functioning properly, dilution air could not be supplied prior to EOG HEPA. Therefore, a hole was cut in the line prior to EOG HEPA to reduce exhaust gas temperature to about 180 °C. EOG dilution air valve became functional. Temporary hole to supply dilution air at the EOG HEPA inlet sealed.
		12/17/2002	DM1200 off-gas duct pipes were removed.
	HLW AZ-102	12/18/2002	Temporarily closed EOG to modify ductwork for gas sample ports to be installed. EOG returned to service.
VSL-3R3800-2	(11/18/02- 11/27/02)	12/19/2002	Level detector and airlift were removed, and coupons were installed. EOG sampling/testing was performed. Reinstalled level detector and airlift. Back-up air compressor was placed in service because main air compressor could not be started. Adjusted EOG dilution air valve-damper to gain more melter vacuum.
		1/6/2003	Tied-in EOG duct work to permanent piping. Replaced temporary EOG HEPA pre-filters. Replaced EOG HEPA filters.
		1/9/2003	Installed pre-filter and filter in both new EOG HEPA housings.
		1/13/2003	Installed pancake flange in the transition line.
		1/16/2003	An automatic switching panel was installed for the roof blowers, including an upgraded damper mechanism. Panel had alarm interlocks and received power through automatic transfer switch, ATS-10A system.
		1/21/2002	Weekly test of diesel generator and cooling pumps was completed.
VSL-03R3800-1	HLW C-106/AY- 102 (1/22/03-1/31/03)	1/28/2003	\sim 30 minutes since the main compressor was switched off for maintenance and the back-up compressor did not come on line.
		2/1/2003	Installed pancake flange on the transition line. Lance bubblers #1 and #2 and TW #2 were removed. One of the coupons on lance bubbler #1 became detached after removal.
VSL-03R3800-3	HLW C-104/AY- 101 (2/19/03-2/28/03)	2/4/2003	Outside caliper readings of lance bubbler #1 ("J" type) and #2 ("J" type), and TW #2 were taken. Inspection of TW #2 showed moderate pitting and crystallization. Photographs were taken. Inspection of lance bubblers #1 and #2 showed no signs of arcing or crystallization. Photographs were taken. Performed a test to simulate a broken belt on the roof blower for the DM 1200 off-gas system. Responses of 5 pressure indicators were used to evaluate the response of the system to roof blower PLC (programmable logic controller) control program. The system response was acceptable.
		2/10/2003	Airlift and level detector were removed. Discharge chamber exhaust pipe was removed for inspection for build-up. Inspection of discharge chamber exhaust pipe showed a lot of dry solids in the flange opening, coming off the top of the chamber where there was an inner reduced flange with a ¹ / ₄ " opening. There were some solids in the opening by the EOG piping. Pipe itself appeared to be clear. Photographs were taken. Pipe was reinstalled. Completed diesel performance test.

		2/11/2003	Replaced pre-filter and HEPA filter in EOG HEPA train, MM-EOG-F-401.
			Inspection of airlift showed 1/2 circumference crack in pipe just above the larger pipe at the bottom. While
		2/12/2003	moving residual glass for further inspection with needle gun, tip broke off completely. Tip had visible arc
			spots. Photographs were taken. All coupons were still attached to the airlift.
			Level detector outside diameter caliper readings and air lance outside caliper readings were taken.
		2/19/2003	Raised airlift lance 3" from previous insertion depth.
		2/24/2003	Replaced existing Omega Controller Model CN7600 used with control air system to a series 8600 Love Model 8600 controller that is a newer PID (proportional integral derivative) controller.
	1	2/25/2003	Performed test on back-up dam wall regenerative blower and back-up chilled water cooling pumps.
		2/27/2002	Replaced TC of MM-XXX-TR-21.
		3/3/2002	Installed the pancake flange in the transition line.
			Lance bubblers #1 and #2 and annual rance were removed.
			Visual inspections of rance outdoters and animit an rance were made.
		10 - 11	complete outpoint an constant coupons sum attached. Metal loss was visible on J section (O.D.
		3/4/2003	I anne hubbler 2 anneared similar to lance hubbler #1
			Airlift showed signs of some arcing on bottom tip. No metal degradation was observed. Caliner readings and
			nhotographs were taken
			Film cooler and sections of transition line were removed for inspection
	HLW C-104/AY-		Total of ~ 4.5 kg of solids were removed from the film cooler. 4 sections of the transition line and transition
VSL-03R3800-3	101	3/5-6/2003	line bellows. Light coating of solids was seen in the film cooler pipe walls. Inlet of the film cooler showed
	(2/19/03-2/28/03)		large amount of glass collected at the bottom side of pipe, blocking most of the air holes. Fin area had only
	· · · · · · · · · · · · · · · · · · ·		light coating of material. Parts of transition line section 2 were 50% blocked with solids. Photographs were
			taken.
			Film cooler and transition line sections were cleaned by chipping, hammering, soaking and washing.
			Took photographs of cleaned film cooler and sections of the transition line and bellows.
			Photograph illustrating the configuration (lay-out) of the film cooler and transition line also were taken.
		3/10/2003	Changed filter and pre-filter of EOG HEPA in train #2 (MM-EOG-F-402).
			Performed automatic switching test on the chilled water pumps MCL-CW-P-402A to -402B and MM-CW-P-
			403A to -403B respectively. Two pumps, one pump from either MCL-CW-P-402A or -402B and one pump
			from either MM-CW-P-403A or -403B were operational at any time. Ran the dam wall regenerative blower
			MCA-RGB-B-101 for 30 minutes. All of the systems functioned satisfactorily
		3/24/2003	Diesel generator test was completed.
		3/27/2003	Removed and replaced TW #2, thermocouple wires of MM-XXX-TR-12, -13, -14 and -15.
		5/2//2003	Removed dam wall flow indicator (local) MCA-RGB-FI-201 pitot tube to check blockages. It was clean.
		3/28/2003	TC for MM-XXX-TR-16 was giving erratic readings.
		3/31/2003	Switched from MM-EOG-F-401 EOG HEPA train to -402 EOG HEPA train. Replaced HEPA pre-filter in MM-EOG-F-401 EOG HEPA train.
		4/7/2003	CUA maintenance confirmed primary system chilled water pump, MCL-CW-P-401, seal failure. Repair
			required primary CW outage. Scheduled repair and ordered new pump as replacement.
			Performed chilled water back-up pumps test for 0.5 hour.

VSL-03R3800-3	HLW C-104/AY- 101 (2/19/03-2/28/03)	4/8/2003	Reinstallation of film cooler and transition line was started. Installed a new TC in film cooler for film cooler air temperature, MM-XXX-TR-09. Initiated city water flow to cooling panel. Secured primary chilled water pump, MCL-CW-P-401, for repair/replacement. Finished installation of film cooler and transition line sections. Replaced EOG HEPA filter and pre-filter on both trains. Upgraded melter labVIEW. CUA maintenance notified that repair/replacement of MCL-CW-P-401 was complete. The system was placed in normal operation. City water was secured.
		4/10/2003	Installed coupons in the film cooler outlet and SBS inlet. Installed discharge chamber exhaust flow manometer (MM-XXX-FI-205), tubing and pitot tube.
		4/14/2003	Reconfigured electrode firing pattern form side to bottom to side to side. Installed "J" type lance bubblers #1 and #2, in ports A-3 and D-1 respectively. Installed airlift. Performed weekly chilled water back-up pump test.
		4/16/2003	Installed coupons in discharge chamber.
Post C104/AZ101 Turnover	HLW AZ-101 (4/22/03-4/25/03)	4/22/2003	 Installed ("L" type) lance bubblers #3 and #4 in ports A-1 and D-3 respectively. Also mass flow controllers MM-CA-MFCR-008 and 009 were installed to operate these lances. Wire in "J" type lance bubbler #1 pressure transmitter line that was broken was repaired. Installed parallel 20 HP blowers for melter pressure control with associated piping and controls to run "independently" or in parallel Installed additional alarms for stack vacuum to indicate belt failures, fire damper closure or blower failures. Added film cooler and dam cooler inlet flow indications. Replaced exposed plenum TC, MM-XXX-TR-17. (1) Installed rebuilt ammonia supply regulator with new inlet and outlet pressure gauges. Removed lance bubblers #3 and #4, TW #1 and TW #2. Secured bubbling and flow to lances bubblers #3 and #4. Installed the pancake flange in the transition line. TW #1 and TW #2 were inspected. Both showed a green tint from the bottom up to about 18". Also pitting
		4/25/2003	 was observed throughout on both TWs. Photographs were taken. Coupons were still attached to TW #2 (4 total). TW #1 and #2 were reinstalled. TW #1 and TW #2 outside diameter caliper readings were taken. Inspection of lance bubbler #3 showed an arc spot at about 25" from the bottom. Joule heating signs are present on lance bubbler #4 at the bend and on lance bubbler #3 at about 26" from the bottom. Digital photographs were taken.
			Outside diameter measurements were taken.
VSL-04R4800-1	HLW C-106/AY- 102 with sugar (4/30/03-5/09/03)	4/28/2003	Removed the pancake flange from the transition line. Power was lost temporarily to all 4 computers screens, EOG, electrode temperatures, alarms, and power controller. Power was restored to all components.
		4/30/2003	The solenoid that controls main EOG valve, MM-EOG-V-401 failed. Parts were ordered for repair. Removed "L" type lance bubblers #3 and #4.

Table 2.1. Chronolog	y of the DM1200 Melter	Maintenance and Ins	pections (continued).
----------------------	------------------------	----------------------------	-----------------------

			Replaced TW #1 TCs MM-XXX-TR-01, -02, -03 with multi-TC.
	HLW C-106/AY- 102 with sugar (4/30/03-5/09/03)	5/1/2003	Replaced TW #2 TCs MM-XXX-TR-12, -13, -14 with multi-TC.
			TW #1 TCs were replaced due to erratic TC MM-XXX-TR-01 reading.
			TCs for MM-XXX-TR-12, -13 and -14 also were replaced.
			MM-XXX-TR-05, -16, -15, -04 TCs were replaced.
			Experienced an indication problem with MM-XXX-TR-01 indicator. Found a problem with channel input and
			corrected.
			Main EOG valve, MM-EOG-V-401 actuator solenoid was repaired and tested for auto control function.
		5/5/2003	Performed weekly cooling pump maintenance test. Completed diesel generator test.
	1	5/8/2003	Replaced compressed air bottles #1 and #2 for bubbler back-up air supply.
			De-fragmented both off-gas and melter labVIEW hard drives. Re-started system. All systems are working
		5/12/2003	property
			Installed the pancake flange into the transition line
			Cleaned both malter and off-gas labVIEW committees
		5/13/2003	Equild that electrode seals were damaged Applied additional 1/" head of PTV (room temperature valcanizer)
		5/15/2005	around alasticides to seal. Derformed a two point varification of all cooling system temperature virtualizer)
			Amina additional <i>U</i> had of PTV around day cooler flow inlatend author bining.
			Applied additional 74 beau of KTV alound dam cooler now filler and outlet piping.
		5/1 1/2002	Completed an cooling pumps to secondary pumps.
		5/14/2003	Completed finding desergenerator test.
			Completed functional test of MM-XXX-1R-01.
	HLW C-106/AY- 102 with sugar and nitrates (5/14/03-5/23/03)	5/15/2003	Switched from CW pump, MCL-CW-402A to MCL-CW-402B due to leakage.
VSL-04R4800-1			Repaired seal on chilled water pump MCL-CW-P-402A. Melter cooling panels were placed in closed loop
			recirculation with city water during repair. Secondary system was isolated from the cooling panels.
			Pump MCL-CW-P-402A was reinstalled, leak tested, and vented. System was restored to normal operation.
		5/16/2003	Chilled water pressure alarm MCL-CW-PAL-1006 indicated low differential pressure for chilled water pump
			MCL-CW-P-403B. The pressure alarm sensor was found to be leaking and was isolated.
		5/19/2003	Verified that MM-XXX-PR-200 and MM-AR-PR-202 (melter pressure at the level detector) sensors
			responded over their full range.
		5/20/2003	Switched from chilled water pump MCL-CW-P-402B to 402A and switched chilled water pump MCL-CW-P-
			403B to 403A.
		5/23/2003	Removed airlift and lance bubblers and shut off mass flow controllers. Electrode firing pattern was
			reconfigured to side to bottom.
			Glass coating was removed from lance bubblers and airlift and digital photographs were taken. Several
			corrosion coupons had fallen off.
	-	5/24/2003	Installed pancake flange in transition line. There was some solids build-up on the inside of the pipe. It had to
			be removed from both sides of the pipe before the gasket could be pulled out.
		5/27/2003	Took caliper readings of lance bubbler #1 lance bubbler #2 (both I type) and airlift Photographs were taken
			Airlift had a bend at about 24" from the bottom
			Replaced 0-2" W.C. primary system chilled water flow indicator MCL-CW-FI-401 gauge with a 0-3" gauge
			The larger range was needed to match the system flow characteristics
			Performed nump and blower weekly maintenance
			Electrode firing pattern was changed from side to bottom to side to side
			Long to high and the standard for the state to both to side to side.
			Lance bubblets #1 and #2 were reinstaned with new 1 Cs.

	1		
		5/28/2003	Removed the pancake flange from the transition line.
		5/29/2003	Replaced MCL-CW-PAL-1006, chilled water pressure alarm, with a new alarm.
			Replaced airlift TC.
			Switched CW pumps from MCL-CW-P-403A to -403B.
			Bubbler configuration was changed for the melter test. Direction of air flow now parallel to electrode with
			varying elevation during test (i.e. 6" above normal and 6" below normal).
		6/2/2003	Performed weekly maintenance of cooling water pumps and blowers.
		6/6/2003	Electrode firing pattern was changed from side to side to side to bottom. Removed lance bubblers #1 and #2.
		6/9/2003	Installed pancake flange in the transition line. Performed monthly test on diesel generator and weekly test on chilled water pumps. Switched from chilled water pump MCL-CW-P-402A to -402B pump. Switched from dam wall regenerative blower MCA-RGB-B- 102 to -101.
			Cleaned bubblers J3 and J4 with needle gun. Bubbler J3 was inspected. There were signs of Joule heating at about 10.5", 15.5" and 17" on J3. The rest of bubbler J3 was in very good shape. Photographs were taken. Inspection of bubbler J4 showed a total of 19 joule heating spots ranging in size from 0.25" to 3.5" wrapping halfway around the bubbler. The joule heating spots were seen from 10.5" to 29.5" from the bottom. The rest of bubbler J4 was in good shape. Photographs were taken Caliper readings were taken of bubblers I3 and I4
			Installed pancake flange in the transition line Removed transition line sections and the film cooler for
			inspection Photographs of film cooler and transition line sections were taken
	(5/28/03-6/6/03	6/10-13/2003	Total of about 4 kg solid deposits were removed from the film cooler and all of the transition line sections
	(<i>J</i> /28/03-07/2/03, 6/25/03-7/2/03, 7/15/03-722/03, 8/5/03-8/13/03)		including the bellows. About 25% of the holes were clogged in the film cooler.
VSL-04R4800-4		6/11/2003	Switched to city water on cooling panels due to loss of chilled water. Switched back to chilled water.
		6/17/2003	Roof blowers fault alarms were observed. Found that alarm tubing was disconnected. The tubing was reconnected.
		6/18/2003	TW #1 and #2 were removed. Inspection of TW #1 showed joule heating spot at about 17-18" from end, some pitting in the glass area, and some discoloration to about 20" from the tip. No significant bends or twists were observed. TW #2 showed no joule heating spots. Discoloration was observed at 11 to 17" from the tip. There was some pitting in the glass area. Photographs were taken. Caliper readings of both TWs were taken. Reconnected all computers inside new control console in room 10. Reinstalled TW #1.
		6/19/2003	Added 55 gallons of antifreeze to closed loop cooling system. Also added 2.5 liters of corrosion inhibitor. TW #2 was reinstalled.
		6/20/2003	Transition line differential pressure sensor, MM-OG-DPR-001, high and low side tubing and the film cooler differential pressure sensor, MM-OG-DPR-002, low side tubing were cleaned with compressed air. All three lines showed small amounts of dust when airflow was initiated. Installed revised labVIEW software for melter system. Tested lance bubbler skewing function for manual and auto control and was found to be satisfactory. Secured mass flow controllers for the lance bubblers.
		6/23/2003	Reinstalled transition line sections and the film cooler
		i ()/ 2. // 2. (/ U.)	

			Replaced TC in lance bubbler #1.
		6/24/2003	Observed that electrode bubbler #2 flow is now at 7 scfh
			Swapped on-line chilled water pumps from MCL-CW-P-402B and -403B to -402A and 403A, respectively.
			Delayed dam wall regenerative blower weekly test until feed preparation completed.
			Modified labVIEW VI to support automatic lance bubbler flow variance in either "step" or "ramp" mode.
			Reinstalled lance bubblers #1 and #2.
			Electrode firing was reconfigured from side to bottom to side to side.
			Switched dam wall blower MCA-RGB-B-101 to MCA-RGB-B-102.
		6/25/2003	Switched control air flow to manual due to removal of TCs in the SBS down-comer. A number of new TCs
			were installed in the SBS.
		C (2 C (2 0 0 2	Noticed some noise from MCL-CW-P-402A chilled water pump. Switched to MCL-CW-P-402B chilled water
		6/26/2003	pump. Suspect that the chilled water pump MCL-CW-P-402A has a broken seal.
			Removed section #3 of the transition pipe. There was little or no clogging. Photographs were taken from
			bellows toward the SBS inlet. There was a small amount of very hard dry particulate at the bottom of the
			bellows inlet. Photographs of section #3 were taken. Inspection of section #2 of the transition line showed
			only very slight build-up.
	HLW AZ-101	7/3/2003	Photographs of airlift were taken. There were 3 sets of 2 coupons attached at the bottom, 16", and 40" up.
	(3/28/03-0/0/03,		Removed the pancake flange from the transition line.
VSL-04R4800-4	7/15/02 722/02		Partially closed chilled water isolation valve MCL-CW-V-494 to raise cooling panel temperatures. This valve
	//15/03-722/03,		is located at outlet of main chilled water heat exchanger MCL-CW-HX-402 and at the inlet of the four chilled
	8/3/03-8/13/03)		water pumps.
		7/7/2003	Roof blower panel showed a broken belt warning for blower #1; system automatically switched to blower #2.
			This fault was caused by severe weather.
			Blower #1 was reset.
			Replaced pre-filter on EOG HEPA, MM-EOG-F-402. Switched from EOG HEPA train MM-EOG-F-402 to -
			403.
		7/8/2003	Shifted lance bubbler air supply from mass flow meters to rotameters to implement LabVIEW VI changes.
		7/9/2003	Roof blower #2 tripped due to heavy rain.
			Experienced a total of 3 power outages in 60 seconds. Momentarily lost compressed air and connection to all
		7/10/2003	computers.
			All power was restored. Computer connection to network was not functional. System was left in local drive
			until network connection could be reestablished.
			Noticed that chilled water system was not working.
			Placed domestic water supply in parallel to cooling water system by opening, city water bypass valve, MCL-
			DW-V-404.
			Reset labVIEW melter, O/G, feed) from local drive to network data log. Also closed MCL-DW-V-404 valve.
			Installed new melter lab VIEW VI Rev. 1763 software.

			Removed lance hubblers #1 and #2. Installed new lance hubblers #1, #2, #3, and #4 as given below
		7/10/2003	• "I" type lance bubbler (13) was installed in port A3
			• "I" type lance bubbler (I 1) was installed in port R3
			• If type lance bubbler (14) was installed in part D3
ļ			• J type lance bubbler (J4) was installed in port (J
			• L type lance bubbler (L2) was installed in port C2
			Laby IE w was modified to support the "banked" bubbler now control. Lance bubblers #1 and #2 to be
			controlled together, and lance bubblers #3 and #4 to be controlled together.
			Lance bubblet #4 was installed with a new IC.
			Lost roof blower #1 due to severe weather.
			Observed Inicitiations and had to reset some alarms and systems due to weather.
			Lance bubbler #3 controller was indicating flow with no corresponding glass agitation. Found loose tubing in
		7/11/2003	bubbler control panel. The connections were tightened in order to restore flow.
			Adjusted EOG damper from ½ to ½ open.
			Replaced chilled water pump MCL-CW-P-402A for repair.
			Cleaned, measured the dimensions, and stored bubblers J5 and J6. Photographs were taken. No damage was
			observed.
		7/14/2003	Airlift was reinstalled.
			Conducted monthly diesel generator test.
	HLW AZ-101		Shut off city water and returned melter cooling to chilled water system.
	(5/28/03-6/6/03,		Lost all power to Hannan Hall.
VSL-04R4800-4	6/25/03-7/2/03, 7/15/03-722/03, 8/5/03-8/13/03)	7/15/2003	Cooling system was switched to work on city water.
			Heaters were turned off.
			About 44 minutes later power was restored. Off-gas system was restarted.
		7/22/2002	Transition line bellows was removed due to clogging. A 4" diameter chunk of solids, plus small amount of
		1/22/2003	debris, was removed. Photographs were taken.
			Removed all 4 lance bubblers from melter.
			Lance bubbler #3 installed in Port C1 (J type) showed small indication of arcing at 19" from bottom. No
			indication of any bowing or metal loss was seen. Photograph was taken.
			Lance bubbler #4 installed in Port C2 (L type) showed slight bow at 24" from bottom and indication of joule
			heating at 22". Photographs were taken.
			Lance bubbler #2 installed in port B3 (L type) had slight bow and indication of joule heating at 28" from
		7/00/000	bottom. Photographs were taken.
		//23/2003	Lance bubbler #1 installed in port A3 (J type) showed no bowing, but had indication of joule heating at 28"
			from bottom. Photographs were taken.
			Caliper readings of all 4 bubblers were taken.
			Nylon bushing for lance bubbler #3 back pressure sensor was broken.
			Switched from city water to chilled water.
			Installed the pancake between film cooler and transition line.
			Installed "J" bubblers, J3 in port A-3 and J4 in port D-1. Replaced MM-XXX-TR-09 TC.
		7/28/2003	Noticed that air compressor breaker had shut off. The compressor was reset. labVIEW was in local mode.
			Both labVIEWs were switched back to network mode.
			Secured city water. Adjusted CW supply valve.
		Τ	Peduced chilled water flow
---------------	--	------------	--
			Reduced clinical water now.
		7/00/0000	Replaced the nim cooler. Photographs of old nim cooler were taken. Moderate particulate buildup was observed
		1/29/2003	on fouvers and glazzed buildup on an vent noise on very boltom of nim cooler.
			Increased chilled water flow by adjusting valve MCL-CW-V-494 to reduce cooling panel temperatures. Switched
			chilled water pumps and dam wall regenerative blowers.
			Installed lance bubblers #2 (L1) and #4(L3) into ports A-1 and D-3 respectively. Mass flow controllers were set
			to 1.5 lpm air flow rate.
		7/31/2003	Connection wire on plug for TC of MM-XXX-TR-17, which was loose, was tightened.
			Investigated compressor air low-pressure alarm and found that compressed air bottle #2 was leaking. The leak
			was stopped; compressed air was turned back on.
			Switched chilled water cooling pumps and dam wall regenerative blowers.
			Temporarily transferred lance bubblers #1- #4 air flow control from mass flow controllers (MFCRs) to manual
		8/4/2003	rotameters, MM-CA-FIC-012 thru 00015. Flow was set to 1.0 SCFH each while checking labVIEW program.
			Transferred lance bubblers #1- #4 air flow control back to mass flow meters. Secured manual rotameters MM-
			CA-FIC-012 thru -015. No problem was found with melter labVIEW VI.
			Replaced PID (proportional integral derivative) control air controller due to output failure. Configured lance
		8/5/2003	bubblers with one in each corner (i.e. ports A1, A3, D1 and D3) controlled by MFCRs in banked mode with
	HI W 47-101		lance bubblers #1 and #2 together, and lance bubblers #3 and #4 together.
(4	(5/28/03-6/6/03		Utilized city water to supplement CW system on cooling panel temperature control.
	6/25/03-7/2/03	8/7/2003	Replaced the thermocouples of MM-XXX-TR-15, -05, -04 and -16.
VSL-04R4800-4	8/2/03-7/2/03, 7/15/03-722/03, 8/5/03-8/13/03)		Replaced pitot tube of MM-RGB-FI-201.
			Removed horizontal blank flange on EOG port on the melter lid. Visual inspection showed $\sim \frac{1}{2}$ pipe diameter of
		8/13/2003	solids restricting flow of air. Vacuumed EOG line to remove solids from the pipe all the way to the 90° bend on
			the east wall.
			All bubblers and airlift were removed.
			Lance bubbler #1 and #3 showed no evidence of any abnormalities on either "J" bubbler, except for bubbler #3
			castable section which showed some damage. Photographs were taken.
			Lance bubbler #2 showed significant bend at 28" from the bottom. Also, slight joule heating marks were seen at
			the same location Castable section also showed damage. Photographs were taken
			Lance hubbler #4 was bent at \sim 28" from the bottom. No signs of joule heating were observed. Photographs were
			taken
		8/14/2003	TW #1 showed minor pitting, but no bend. Photograph was taken
		0/11/2005	TW #2 showed damage to the castable section Photograph was taken
			A will fish we demail bend in middle section, with no other noticeable damage. Photograph was taken
			Replaced multi-junction TC in each TW.
			TCs of MM-XX-TR-01 -02 and -03 were replaced in TW #1
			TCs of MM-XXX-TR-12 -13 -14 were replaced in TW #2
			Caliner readings of all A lance highlars both TWs and air lift were taken
			"I" hubblers #1 and #2 were reinstalled Reconnected TCs for lance hubblers #1 and #2
		0/1 5/2002	3^{-} outboliets π^{-1} and π^{-2} were reministance. Reconnected 1 Cs for failed bubblets π^{-1} and π^{-2} .
		8/17/2003	Closed MM-EOG-V-403, manual EOG vent/dilution valve to increase the melter vacuum from -0.1 to -0.2" W.C.

A2			
		8/18/2003	Switched chilled water pumps and dam wall regenerative blowers.
		8/19/2003	Utilized two "J" type lance bubblers in ports A3 and D1, respectively controlled in individual mode.
		8/00/0000	Installed all lill. Depleted TW #2 thermoscouples MM VVV TD 12, 12 and 14
		8/22/2003	Replaced 1 w #2 themlocouples MM-XXX-1R-12, -13, and -14.
		8/20/2003	Switched chined water pumps and dam wan regenerative browers.
		8/28/2003	Installed pancake liange in the transition line.
			started.
	HIW AZ-101 with		TW #1 and #2 both were cleaned, inspected and measured for the dimensions. Upon inspection found no
VSL-04R4800-1	Sugar (8/19/03-8/28/03)		significant abnormality on either except damage to the castable on TW #2. Photographs were taken. In addition to caliper measurement of dimensions, and photographs, both TWs were turned over and metallic dust was removed from both. TW #2 had considerably more metallic dust.
			Removed pre-filters from both EOG HEPA trains.
		8/29/2003	Lance bubbler J1 was installed in port A-3 and J2 in port D-1. Both were cleaned and inspected prior to
			installation. No significant abnormalities were noted on J2. Lance bubbler J1 located in port A-3 had an arc spot
			adjacent to a corrosion coupon. Photographs of both lance bubblers were taken.
			Cleaned and inspected airlift lance. No abnormalities noted, other than a slight bend in the lance located at the
			location of the lower corrosion coupon.
			Caliper readings of J1 and J2 lance bubblers, TW #1 and #2, and airlift were taken.
			Removed MM-EOG-V-401 emergency vent valve and found valve shaft sheared. Replaced shaft and valve with
			old parts. Photographs were taken. Electrode TCs were calibrated.
		9/2/2003	Switched chilled water pumps and dam wall regenerative blowers.
			Reconfigured electrodes to fire from side to side.
			Lances bubblers L1 and L2 (in ports B-3 and C-2), TW #2 and airlift were installed. Lance bubbler in C-2 port
			was configured to be 11.3" from feed tube center line.
			Film cooler inspected, and was found to be clean.
		9/5/2003	Replaced city water filter due to low flow rate.
	HLW AZ-101 with	9/6/2003	Cleaned film cooler rinse spray nozzle. Hole was partially clogged.
VSL-04R4800-4	chloride and sulfate	9/8/2003	Swapped chilled water pumps and dam wall regenerative blowers.
	(9/3/03-9/10/03)		Bubblers, airlift, TW #2 and level detector were removed.
			Secured air flow through mass flow controllers to bubblers.
		30 30	Removed transition line sections and film cooler.
		9/10/2003	Inspection of film cooler showed 50% blockage at the bottom with light coating on louvers. Photographs were
			taken.
			Transition line showed some solids build-up, but no large accumulations. Heavier build-up was seen on bottom
			of pipe as expected. Photographs were taken.

£			
VSL-04R4800-4 HL [*] chlc (9,	HLW AZ-101 with chloride and sulfate (9/3/03-9/10/03)	9/11/2003	Replaced EOG HEPA filters and installed pre-filters. Inspection showed vertical section of EOG clear, but horizontal section was ~50% blocked due to hard solid deposits. Solids were chipped as far as possible (i.e. up to 45° bend). Collected sample of material for analysis. Installed pancake flange in the transition line. Due to shared sensor port, melter vacuum reading on EOG panel was in error. Cleaned and inspected air lift. Normal pitting was noted. Five corrosion coupons were still attached. Slight bend in pipe was noticed at lower coupon holder. Cleaned and inspected TW #1. Normal pitting was noted. Three corrosion coupons were still attached. Slight bend was seen ~13" from bottom. Approximately 4-5" of castable was missing from bottom of plug. Photographs were taken. Cleaned and inspected lance bubbler L2. Normal pitting was noted. Arc spots were seen on back side of bubbler, between 27-30". Slight bend was noticed at 28-29". Photographs were taken. Cleaned and inspected level detector. Two coupons were attached. Normal pitting was noted. The level detector tube had a slight bend at 12" and an eroded area next to the outlet of the density tube. The air outlet on both tubes showed signs of erosion. Photographs were taken. Dimensions of the air lift, TW #2, lance bubblers L1 and L2, and level detector were measured using calipers. Reconfigured electrodes to fire from side to bottom. Reinstalled level detector, air lift and TW #2. Replaced MM-XXX-TR-09 TC because the old one broke in half partway through installation.
		9/12/2003	Film cooler and transition line were cleaned and reinstalled. Samples and photographs were taken. Positioned the dam wall cooling outlet valve to direct air into film cooler. Removed coupons from discharge chamber.
		9/15/2003	Removed all coupons from the transition line. Switched chilled water pumps and dam wall regenerative blowers. Corrected discharge chamber knife gate closed alarm problem by adjusting switch.
		9/22/2003	Switched chilled water pumps and dam wall regenerative blowers.
		9/23/2003	Replaced TCs in lance bubblers #1 and #3. Reconfigured electrodes to fire from side to side. Installed lance bubblers L1, L2, L3 and L4 in ports A-1, A-3, D-1 and D-4, respectively. Replaced damaged TC wires in lance bubblers #3 and #4.
		9/24/2003	Erratic CW temperature indications. Reboot of operating system corrected the problem. Installed 4 "L" bubblers at normal elevations in ports A-1, A-3, D-1and D-3. Added cooling panel flow display on labVIEW.
		9/25/2003	Installed a new exposed plenum TC. Replaced airlift TC.
trendentation of anti-statisticaped mon	Mixed LAW	9/27/2003	Removed level detector.
VSL-04R4851-1	(9/25/03-9/27/03)	9/29/2003	Found that melter cooling panel system flow rate indicator, MCL-CW-FR-401 pitot tube had failed. A spare was calibrated and installed. Inspection of level detector showed that bottom 12-15" of pipe was heavily pitted, and that bottom of pipe had started to break and fall part. Density pipe was in similar condition though the damage was not that severe.

<u> </u>	r		
		9/30/2003	Installed level/density detector in normal position in port B-1 and additional detector in port C-1. Swapped CW pumps and RGB blowers. Replaced film cooler outlet TC.
		10/3/2003	Replaced butterfly type dampers on EOG HEPA trains with slide gate style dampers. Replaced compressed air bottle #1.
	5	10/7/2003	Swapped CW pumps and RGB blowers.
		10/8/2003	Replaced exposed plenum temperature TC.
	LAW Envelope C (9/30/03-10/9/03)	10/10/2003	Removed transition line bellows. Inspection showed only some small chunks of solids and some very fine white particulate, samples of which were collected. The rest of the transition line showed only a thin coating of particulate. Secured mass flow controllers (MFCRs) for bubblers, and bubbler air flow control was switched to manual rotameters while updating some of the software. Computer updates were completed. Air flow control was returned to MFCRs.
		10/15/2003	Replaced pre-filter in EOG HEPA train MM-EOG-F-402 Swapped chilled water pumps and dam wall regenerative blowers. Adjusted control air set point for melter pressure from 3.75 to 3.0" W.C.
		10/16/2003	Replaced HEPA filter in EOG HEPA train MM-EOG-F-401.
VSL-04R4851-1	2	10/17/2003	Replaced pre-filter and filter in EOG HEPA train MM-EOG-F-402.
VSL-04K4851-1	LAW Envelopes A and C (10/20/03- 10/23/03)	10/20/2003	Replaced TW #2, thermocouples MM-XXX-TR-15 and -16. Replaced TW #1, thermocouples MM-XXX-TR-04 and -05. Switched chilled water pumps.
		10/24/2003	Removed transition line section #3 and bellows, and took solids samples. Photographs were taken. Removed transition line section #2, and collected samples. Photographs were taken. Transition line sections were reinstalled. Installed a pancake flange on bellows outlet to allow draining and inspection of SBS.
		10/28/2003	Replaced level detector. Replaced pre-filters in both EOG HEPA trains. Replaced main city water filter. Lance bubblers #1 and #4 MFCRs were removed to do a check. Lance bubblers #1 and #4 were connected to manual rotameter circuit at 1.0 SCFH air flow rate. Lance bubblers #1 and #4 were connected back to mass flow controllers.
		10/30/2003	Temporarily tested new melter labVIEW software. If labVIEW VI fails, the system will be restarted using the new Rev 17c.
		10/31/2003	Performed calibrations of back pressure transmitters for lance bubblers #1 - #4, and the inlet gas, outlet gas, and differential pressure transmitters. Completed calibration of density probe.
VSL-03L4850-1	LAW + HLW (11/03/03- 11/08/03)	11/3/2003	Replaced plenum exposed TC.Switched CW pumps and RGB blowers. Repaired tubing for melter pressure indicator (MM-XXX-PR-200). Near the EOG line, tubing appeared to be brittle. Replaced 2 part level detector with single unit per new design. In-house comparison checks of flow rates were made against a calibrated NIST traceable manual rotameter.

Table 2.1. Chronolog	y of the DM1200 Melter	Maintenance and Ins	pections (continued).
----------------------	------------------------	----------------------------	-----------------------

VSL-03L4850-1 VSL-04R4800-4	LAW + HLW (11/03/03- 11/08/03)	11/4/2003	Replaced control air flow pitot tube, OG-DA-FR-301. Replace the control air valve. Bled air from the cooling system flow transmitter to restore normal system readings.
		11/8/2003	 Pancake flange was installed in transition line inlet. Lance bubblers were removed from the melter. Lance bubbler #1 had heavy pitting up to 24" from bottom and a substantial bow at about 16-24". Photographs were taken. Lance bubbler #2 had a slight bow and showed minor pitting. Photograph was taken. Lance bubbler #4 showed minor pitting. Photograph was taken. Lance bubbler #3 showed only minor pitting. Caliper readings of all lance bubblers were taken. Installed lance bubbler #1 in port B-3 and lance bubbler #2 in port C-2.
		11/10/2003	Observed lance bubbler #2 flow to be 0 SCFH; and on investigation found that MFCR air supply was not connected. Reconnected air supply to the bubbler. Due to lack of spare MFCRs, utilized lance bubbler #3 MFCR for lance bubbler #2. Switched the chilled water pumps. Switched melter electrode control power fuses from 1 amp to 5 amps. One amp was too close to the normal load for the circuit. 5 amps fuse allows circuit to operate while maintaining necessary protection. Fuses were switched to allow for changeover to VSL emergency generator power. Diesel generator test was performed. Bubbler configuration modified from 4 lance bubblers to 2 bubblers. Installed lance bubbler #2 (L2) in port C-2 at 11.3" from feed tube center. Installed lance bubbler #1 (L1) in B-3 port.
		11/11/2003	Swapped dam wall regenerative blowers.
	HLW AZ-101 (3/23/04- 4/02/2004)	11/12/2003	Replaced electrode TCs of MM-XXX-TR-22 and -23.
		11/15/2003	Removed lance bubblers #1 and #2. Changed electrode firing pattern to side to bottom. Bubblers were cleaned, inspected photographed, and measured for dimensions. Lance bubbler #1 was bowed and had pitting in the lowest 12" section of the bubbler. Lance bubbler #2 had a large bend in the top 40" of bubbler and heavy pitting on lower section of bubbler.
			Air compressor alarm activated. Investigation showed that air compressor main breaker had failed. No spare was in stock. Lowered all electrode bubbler flow rates.
V SL-04R4800-4	HLW AZ-101 (3/23/04- 4/02/2004)	11/17/2003	Removed both TWs. Cleaned and inspected TW #1 and #2. Both are bent about 9-11" from bottom. Normal pitting also was observed. Photographs of both TWs were taken. Caliper readings of both TWs were taken. Replaced multi-function TC in TW #1.
VSL-04R4800-4	HLW AZ-101 (3/23/04- 4/02/2004)	11/17/2003 12/2/2003	 Removed both TWs. Cleaned and inspected TW #1 and #2. Both are bent about 9-11" from bottom. Normal pitting also was observed. Photographs of both TWs were taken. Caliper readings of both TWs were taken. Replaced multi-function TC in TW #1. Swapped chilled water pumps and dam wall regenerative blowers. Diesel generator testing was performed. Removed TW #2.
VSL-04R4800-4	HLW AZ-101 (3/23/04- 4/02/2004)	11/17/2003 12/2/2003 12/3/2003	 Removed both TWs. Cleaned and inspected TW #1 and #2. Both are bent about 9-11" from bottom. Normal pitting also was observed. Photographs of both TWs were taken. Caliper readings of both TWs were taken. Replaced multi-function TC in TW #1. Swapped chilled water pumps and dam wall regenerative blowers. Diesel generator testing was performed. Removed TW #2. Moved control air controller location. Installed TW #2 with 3 corrosion coupons.
VSL-04R4800-4	HLW AZ-101 (3/23/04- 4/02/2004)	11/17/2003 12/2/2003 12/3/2003 12/4/2003	Removed both TWs. Cleaned and inspected TW #1 and #2. Both are bent about 9-11" from bottom. Normal pitting also was observed. Photographs of both TWs were taken. Caliper readings of both TWs were taken. Replaced multi-function TC in TW #1. Swapped chilled water pumps and dam wall regenerative blowers. Diesel generator testing was performed. Removed TW #2. Moved control air controller location. Installed TW #2 with 3 corrosion coupons. Removed transition line pancake flange. Fitting for L2 bubbler, which was slightly loose was tightened.

			City water low pressure alarm sounded. Found city water valve on west wall in the open position. Valve was
		12/6/2003	closed.
			Due to low city water pressure, removed camera from feed tube port and replaced blank plug.
		12/9/2003	Swapped chilled water pumps.
		12/12/2003	Removed the mass flow controller, MFCR-004 for testing. Replaced the thermocouples for MM-XXX-TR-01, -02, -03, -04, -12, -13, -14 and -15. Removed feed tube from "feed port" and installed a blank flange in its place. Replaced the mass flow controller, MFCR-004 in the system.
	HLW AZ-101 (3/23/04- 4/02/2004)	12/15/2003	Installed 2 "J" bubblers in ports A-3 and D-1. The video camera was also installed in the feed tube port to record the bubbler configuration testing. Bubbler depth was adjusted twice. Installed the pancake flange in transition line.
VSL-04R4800-4		12/16/2003	Switched electrode firing from side to bottom to side to side. Installed "L" bubblers in ports A-1 and D-3. "J" bubblers are still installed in ports D-1 and A-3. The bubblers were rotated so that there is 14" separation from tips of bubblers in A-1 and A-3 and D-1 and D-3 per project direction. Depths of bubblers were changed. Removed bubblers to reinstall in a new configuration. Installed bubblers for bubbler configuration test.
		12/17/2003	Bubbler depths were adjusted. Adjusted east electrode high temperature alarm set point from 1100 °C to 1110 °C to complete tests per the test plan.
		12/18/2003	Swapped chilled water pumps and dam wall regenerative blowers. Removed lance bubblers #1, #2, #3, and # 4. Electrode firing configuration was changed from side to side to side to bottom.
		12/19/2003	Changed electrode high temperature alarm set point from 1110 °C to 1100 °C.
		12/20/2003	Switched EOG HEPA train MM-EOG-F-401 to -402.
		12/21/2003	Compressor low pressure alarmed. Restored compressor pressure.
		1/6/2004	Swapped CW pumps and dam wall blowers. Removed transition line sections and bellows. Dam wall cooling outlet valve was positioned to direct air to EOG line.
		1/7/2004	Removed film cooler. Photographs of the transition line sections including bellows and film cooler were taken. Film cooler seems to be clean and inspection found no sign of abnormalities.
		1/8/2004	Removed total of ~1.4 kg solids from the transition line sections. Inspection of the film cooler showed no particulate to sample.
		1/12/2004	Determined that air compressor failure was due to power supply failure inside the unit. Parts will not be available until 1/13/2004. Opened manual EOG vent/dilution air valve, EOG-V-403 to reduce vacuum in the melter from 0.28" W.C. to 0.15" W.C.
		1/21/2004	Swapped chilled water pumps and dam wall regenerative blowers.
		1/27/2004	Swapped chilled water pumps and dam wall regenerative blowers.
		1/28/2004	Placed new air compressor in service and old air compressor in stand by.

		2/2/2004	Swapped CW pumps and dam wall regenerative blowers.
		0///2004	Simulated loss of power and tested the diesel generator.
		2/4/2004	Electrode firing pattern was changed from side to bottom to side to side.
		2/5/2004	Secured cooling water to camera cooling plug. Plug had been removed form the melter.
		2/6/2004	Disconnected air flow to lance bubblers to allow glass migration to occur.
			Transition line inlet pressure transmitter taken out of service for testing. Cooling water flow transmitter, MCL-CW-
			FR-401 placed in service to monitor system flow rate.
		2/11/2004	Transition line inlet pressure transmitter returned to service.
			Mass flow controllers for bubblers L1A, L4A, spare 6, electrode bubblers # 2, #3, and #4 were placed back in
			service.
		2/12/2004	Melter cooling panel system flow rate transmitter, MCL-CW-FR-401 was isolated to check the problem with the
		2/12/2004	transmitter.
		2/17/2004	Swapped chilled water pumps and dam wall regenerative blowers.
		2/1//2004	Switched EOG HEPA train MM-EOG-F-402 to F-401.
		2/23/2004	Replaced the thermocouples of thermowells #1 and #2, MM-XXX-TR-04, -15, -05 and -16.
		2/24/2004	Swapped chilled water pumps and dam wall regenerative blowers.
		3/1/2004	Swapped chilled water pumps and dam wall regenerative blowers.
			Performed simulated loss of power diesel generator test.
	HLW AZ-101 (3/23/04- 4/02/2004)	3/5/2004	Replaced the thermocouples of chilled water return and supply MCL-CW-TR-417 and 418 respectively. City water
			low-pressure alarm sounded. No knowledge of any broken mains or any other problems.
VSL-04R4800-4		3/6/2004	City water low-pressure alarm was cleared.
			Swapped CW pumps and dam wall blowers
		3/8/2004	Installed a new TC on film cooler internal temperature MM-XXX-TR-09
			Repositioned dam wall exhaust diverter three-way valve MCA-RGB-V-220 to exhaust via the film cooler.
		3/9/2004	Replaced filter and pre-filter of MM-EOG-F-401 EOG HEPA train.
			Completed installation of film cooler and transition line assembly from melter to SBS.
		3/10/2004	Installed two coupons in the transit line closest to the film cooler.
		108. 01.06.00.000 A	Straightened transition line piping and installed metal gasket on the bellows flange upstream of the SBS.
			Replaced the three-way control valve (which maintains the chilled water temperature during idling) MCL-CW-V-
		3/11/2004	496 positioner, and restored automatic temperature control of chilled water at 80 °F.
		5/11/2004	Melter air pressure indication was connected to control air circuit.
			Replaced air pressure transmitter. Replaced 0-100 psi pressure transmitter, which displays "compressed air pressure"
		3/12/2004	indicator on the annunciator sub-panel. The new transmitter, which measures 0-200 psi, was placed in service.
			Raised compressor air low-pressure indicator set value from 100 psi to 105 psi.
		3/14/2004	Placed both EOG HEPA trains online.
			Swapped chilled water pumps and dam wall regenerative blowers.
		3/16/2004	Installed corrosion coupons in discharge chamber.
			Leak found on CPVC coupling to lance bubbler #2 hose. Investigated and found that fitting had cracked.
		a (1 7 (200) 1	Replacement of CPVC header is required.
		3/1//2004	Replaced TW #2 multi-thermocouples. (TCs of MM-XXX-TR-12, -13 and -14).
			Replaced TC for MM-XXX-TR-08.

Tuble 2.1. Chronology of the DM1200 Mener Manuenance and inspections (continued).	Table 2.1.	Chronology	of the DM	1200 Melter	· Maintenance and	Inspections	(continued).
---	------------	------------	-----------	-------------	-------------------	-------------	--------------

		3/18/2004	Modified lance bubbler tubing to combine outputs from mass flow controller MM-CA-MFCR-003, MM-CA-MFCR-008, MM-CA-MFCR-004, and MM-CA-MFCR-009 as a single source to lance bubbler #2 (port D-1) since the test plan called for more air flow than that one mass flow controller alone could provide. Replaced TCs of MM-XXX-TR-06 and -10. Modified tubing connections for lance bubbler #1 to combine outputs from mass flow controller MM-CA-MFCR-001, MM-CA-MFCR-006, MM-CA-MFCR-002, and MM-CA-MFCR-007 as a single source to lance bubbler #1. Reconfigured mass flow meters to conduct the test according to the test plan.
		3/19/2004	Replaced filter and pre-filter of EOG HEPA lower train (MM-EOF-F-401). Removed pancake from the transition line. Replaced filter and pre-filter in EOG HEPA train of MM-EOG-F-401. All the studs that hold the door shut have stripped. Opened the chilled water isolation valve, MM-EOG-V-494, and closed city water valve. Removed both TWs, level detector, and airlift. TW #1 is to be inspected and reinstalled.
VSL-04R4800-4 (3/23/0 4/02/20(HLW AZ-101 (3/23/04- 4/02/2004)	AZ-101 3/04- 3/20/2004 /2004)	Alarms sounded twice when air compressors pressure reached 100 psi. TW #1 and #2 caliper readings of dimensions were taken. Photographs were taken. Inspection showed no damage or abnormalities.
		3/22/2004	 Placed melter cooling panel system flow rate transmitter MCL-CW-FR-401 in service. TW #2 was cleaned, inspected and measured. No damaged spots were found. Photograph was taken. Similar observations were for the level detector. Photographs were taken. Performed inspection of air lift. Observed a slight bend at approximately 21" from the bottom (at the 2nd corrosion coupon tab), which possibly happened during removal. No other damages were observed. Digital photographs were taken. Swapped chilled water pumps and dam wall regenerative blowers. Isolated MCL-CW-FR-401 so that maintenance could be performed on the cooling system. Changed melter thermocouple connections to module 1120 for labVIEW; MM-XXX-TR-01 to MM-XXX-TR-04 and MM-XXX-TR-12 to MM-XXX-TR-15. Completed caliper readings for the airlift and level detector. Installed TW #2, airlift, level detector and lance bubbler #1. DM1200 melter lid temperature survey was done.
VSL-04R4800-4	HLW AZ-101 (3/23/04-4/02/04)	3/23/2004	Replaced multi-thermocouple in TW #1 for MM-XXX-TR-01, -02 and -03. Completed 1st functional check of melter labVIEW VI rev 17e for bubbler control. The check failed because the MFCR flow readings were erratic. Retested melter labVIEW VI Rev 17e again for functionality. The test was satisfactory, and the new software was accepted for operations. Lance bubblers were modified to be two deep bubblers with 2 outlets each. Bubblers were set on melter floor through ports A-3 and D-1.
		3/27/2004	Drained control air receiver tank in mechanical room; ~ 10 gallons of water was removed.
		3/31/2004	Replaced MM-XXX-TR-04 TC in TW #1.
		4/2/2004	Cleared blockage of EOG vertical line on top of the melter. The 4" line was ~ 50% blocked.
		4/5/2004	Secured power to mass flow controllers for lance bubblers L1A and L3A.

			Removed film cooler and transition line sections.
NGL 04D 4900 4	HLW AZ-101		Video and digital photographs of the film cooler and the transition line assembly were taken. Visual inspection
		4/6/2002	showed that most of the transition line was clear of solids build-up. No solids were removed. Film cooler showed
v SL-04K4800-4	(3/23/04-4/02/04)	4/0/2005	some glass and dry feed mostly on the bottom section covering the air holes. Film cooler was cleaned (gently)
			due to minor metal corrosion.
			Swapped CW pumps and dam wall regenerative blowers.
		4/13/2004	Swapped CW pumps and dam wall regenerative blowers
		4/15/2004	Photographs were taken of film cooler and transition line bellows.
		4/16/2004	Removed discharge chamber coupons and transition line coupons.
		4/19/2004	Swapped CW pumps and dam wall regenerative blowers.
			Removed TW #2, airlift, level detector and lance bubbler #1 for inspection and coupon removal.
			Level detector showed only very minor pitting on submerged section of level and density pipes. Two corrosion
			coupons in plenum area were still attached. Photographs were taken.
			Airlift showed some crystallization from 8-15" with minor bend at coupon tab (21" elevation). Photographs were
			taken.
			Inspection of DB-2 lance bubbler (DB stands for deep bubbling double outlet bubbler) showed $\sim 1/2$ of bottom
			support tab missing with a shiny (silver) look to bottom of pipe (melter floor side). Significant arc spots were
		4/20/2004	observed at 1^{st} coupon tab (~15" from floor) with shiny metal surface. Remainder of the bubbler was in good
			condition with no visible damage. Photographs were taken
			Bubbler did have a slight bend near 1^{\pm} to (possibly may have occurred during removal). Seven corrosion
			comons were still attached
	HLW AZ-102		Inspection of TW #2 showed no damage or arc spots. Photographs were taken. Three corrosion coupons were
VSL-05R5800-1	(6/21/04-6/30/04, 8/2/04-8/7/04)		attached
			Caliper readings of level detector, air lance, lance bubblerDB-2 (in port A-3), TW #1 and TW #2 were taken.
			Removed lance bubbler #2 (DB-1) (deep bubbling double outlet bubbler -1) and installed TW2, level detector.
			smaller "J" bubblers, lance bubbler #1 in port A-3 and lance bubbler #2 in port D-1 (lance bubbler ID in port A-3
		4/21/2004	is J3 and in port D-1 is J5).
			Visual inspection of lance bubbler from port D-1 (DB-1) showed that bottom support tab was completely missing
			and tip end of the bubbler lance had bent away from horizontal to vertical (pointing down towards the floor).
			Slight "rounding" of tip and other minor heat spots were noted on the vertical portion of the submerged section.
			Photographs were taken. Caliner readings of bubbler #2 (DB-1) were taken
			Installed air lift
		4/25/2004	Adjusted manual set point for electrode(s) and discharge chamber power.
			Swapped chilled water pumps and dam wall regenerative blowers
		4/26/2004	Comparison check was performed between NIST traceable calibrated flowmeter and mass flow meter MM-CA-
			MFR-009 (used to supply air to lance bubbler L4B).
			About 3 gallons of water was blown down from the compressor.
		4/27/2004	Installed film cooler and associated transition line piping. Diverted dam wall air flow via film cooler.
			Checked EOG cleaning port for solids build-up. Very little debris was found.

VSL-05R5800-1 (6		4/28/2004	About 1 gallon of water was blown down from the compressor. Checked EOG port. No solids build-up was found in the vertical section, but very minor build-up was found up to 45 ° bend in the horizontal section. MM-XXX-TR-15 TC was found damaged due to arcing. MM-XXX-TR-15 TC was fused to MM-XXX-TR-16 TC. MM-XXX-TR-09 TC was also out of service, but not due to the arcing. Replaced TC of MM-XXX-TR-15.
		4/29/2004	Repositioned external section of TC of MM-XXX-TR-16 to eliminate the chance of arcing to ground.
		5/2/2004	Electrode power control was switched to ordinary potentiometer because of automatic circuit failure (Dimension controller).
		5/3/2004	Swapped chilled water pumps and dam wall regenerative blowers. Performed loss of power simulation, diesel generator test. About 5-6 gallons of water was blown down from the compressor. Switched discharge chamber heater control to manual setting at 33.3%. Replaced dimension controller with spare unit. Replaced TC of MCL-CW-TR-418.
		5/7/2004	Adjusted control air damper for EOG to increase vacuum to -0.16" W.C.
	HLW AZ-102 (6/21/04-6/30/04, 8/2/04-8/7/04)	5/10/2004	Electrode bubbler #5 pressure transmitter was removed and tested. The unit passed the functional tests successfully and was returned to service.
		5/11/2004	Removed airlift. TC out of lance bubbler #2 was removed. Swapped chilled water pumps and dam wall regenerative blowers.
		5/17/2004	Swapped chilled water pumps and dam wall regenerative blowers. Replaced the cooling fan on top of the melter.
		5/20/2004	Refer to DB-1 and DB-2 damaged or missing support tabs on 4/20/2004 and 4/21/2004 entries. Analysis of tab material determined that tabs were not Inconel 690, but stainless steel. New supports were made of ½" thick I-690 and welded in place. Tabs are ½" thick, 1½" wide and 1¾" long.
		5/21/2004	Dimension controller was replaced with two Love Model 8600 controllers.
		5/24/2004	Switched the discharge chamber power and electrode controls from the Dimension controller to Love Model 8600 controller in order to perform functional testing. Swapped chilled water pumps and dam wall regenerative blowers.
		5/25/2004	Electrode temperature loop calibrations were completed. Completed various temperature loop checks throughout the melter system. Opened city water bypass valve, MCL-DW-V-404, due to chillers being down. CUA maintenance indicated that chilled water was functioning, but there appeared to be a damper problem.
		5/27/2004	Removed vertical and horizontal flanges on the EOG and rodded out piping beyond the initial bend. Minor blockage was observed after the flanges.
		6/1/2004	Swapped CW pumps and dam wall regenerative blowers, Performed loss of power simulation testing of diesel generator. Removed film cooler to install TC. Installed TC for MM-XXX-TR-09, film cooler internal temperature. Reinstalled film cooler in melter system. Redirected dam wall air flow back into film cooler. Replaced filter and pre-filter of EOG HEPA train MM-EOG-F-402. Both filters appeared black. Repaired threads for door bolts and installed new wing nuts.
		6/2/2004	Removed blockage in EOG piping using a drain snake. Build-up appeared to be in the first 90° elbow closest to melter.

		6/3/2004	Melter pressure sensor, MM-XXX-PR-200 tubing, which became disconnected, was reconnected.
VSL-05R5800-1 HLW AZ (6/21/04-6. 8/2/04-8/		6/4/2004	Completed riser TC temperature evaluation.
		6/7/2004	Swapped chilled water pumps and dam wall regenerative blowers.
		6/10/2004	Adjusted dilution air damper.
		6/14/2004	Swapped chilled water pumps and dam wall regenerative blowers. Secured bypass rotameters for lance bubblers #1 and #3 and reconnected to mass flow meters MM-CA-MFCR- 001 and 003. Set flow rate for both at 1.5 lpm each.
		6/15/2004	Air lift was installed. Rebooted melter labVIEW VI. Switched instrument port (for melter pressure) from B-2 to B-3 due to camera being installed. Switched to Dimension controller; unable to switch back to Love 8600 controller. Secured power to the Love 8600 melter and discharge chamber controllers. Replaced the Love 8600 melter controller. Restored power to the Love 8600 melter and discharge chamber controllers. Removed lance bubbler #3 for inspection.
	HLW AZ-102 (6/21/04-6/30/04, 8/2/04-8/7/04)	6/16/2004	Inspected and took photographs of lance bubbler #3. Inspection showed bubbler pipe to be in good condition. Glass blockage was seen at air inlet. Somehow glass had migrated up the entire length of the bubbler and frozen at air inlet. Caliper readings of the bubbler dimensions were also taken.
		6/17/2004	Cleared the glass blockage that was observed in lance bubbler #3. Installed lance bubbler #3 in port D-1. Disconnected labVIEW power indicator in order to perform a functional test of the loop. Reconnected labVIEW power indicator. Loop calibration test was completed successfully. Replaced plenum exposed TC of MM-XXX-TR-17. Completed water separator filter maintenance for air dryer system. Switched lance bubbler #3A to the manual rotameter in order to perform mass flow controller maintenance. Replaced riser TC of MM-XXX-TR-08. Compressor air dryer alarm sounded and was investigated. Returned lance bubbler #3A connection to the mass flow controller.
		6/18/2004	Compressed air system functioned satisfactorily after the alarm was reset. Functional testing of electrode voltage and electrode power current loops was completed. No problems were found. All testing was completed successfully. Thermocouples of MM-XXX-TR-21, -22, and -23 were replaced.
		6/21/2004	Added 2 ^{nd set} of power controllers for melter electrodes and discharge heaters. Switched from Dimension controller to Love controller. Swapped chilled water pumps and dam wall regenerative blowers.
		6/25/2004	Removed nominal depth "J" bubbler. Installed extended bubbler that rests on the melter floor. Installed extended bubbler #1 (DB-2) in port A-3 and extended bubbler #2 (DB-1) in port D-1.
		6/26/2004	Inspections and caliper readings of lance bubblers J3 and J5 were performed. No signs of damage were found. Photographs were taken.
		6/28/2004	Swapped chilled water pumps and dam wall regenerative blowers.
		6/29/2004	Photographs were taken of cold cap formation and stalactites in the melter plenum.

		6/30/2004	Lance bubbler #2 was raised to cool prior to removal. Removed lance bubbler #2 from the melter. Lance #1 was raised to cool and then removed. Lance bubblers J3 and J5 were installed in ports A-3 and D-1, respectively.
VSL-05R5800-1	HLW AZ-102 (6/21/04-6/30/04, 8/2/04-8/7/04)	7/1/2004	Switched off all but mass flow meters L1A and L3A a 1.5 lpm each. Opened MM-EOG-V-403 (EOG-HEPA-401 outlet damper) about half way. Melter vacuum decreased from - 0.25"W.C. to -0.20" W.C. Lance bubblers DB-1 and DB-2 were cleaned and inspected. Lance bubbler DB-1 appeared to be in good condition with only minor pitting. Lance bubbler DB-2 was in similar condition with minor pitting and no arcing spots. Photographs were taken. Caliper readings of the dimensions were taken.
		7/6/2004	Swapped chilled water pumps and dam wall regenerative blowers.
		7/7/2004	Switched dam wall regenerative blower from MCA-RGB-B-102 to B101. MCA-RGB-B-101 was slated to remain in use for 2 weeks to make up for not being switched in proper sequence to balance run time.
		7/9/2004	Switched from EOG HEPA train MM-EOG-F-401 to -402.
		7/13/2004	Swapped chilled water pumps and dam wall regenerative blowers.
VSL-05R5800-1		7/15/2004	TW #1 and TW #2 were removed. Visual inspection of TW #1 and TW #2 showed no damage. Caliper readings of dimensions, and photographs were taken. TW #1 and TW #2 were reinstalled. Changed air dryer inlet filter. Removed desiccant for inspection and refilled with same material. The dryer was turned back on.
		7/17/2004	Adjusted dilution air to bring vacuum to about -0.20" W.C. Observed readings of MM-AR-PR-201, MCA-RGB- FR-201, MM-XXX-TR-11 and HF-EOG-DPI-403 (differential pressure across MM-EOG-F-402 EOG HEPA train).
		7/19/2004	Swapped chilled water pumps and dam wall regenerative blowers. Both EOG HEPA trains were placed online.
		7/26/2004	Swapped CW pumps and dam wall regenerative blowers.
	HLW AZ-102	7/29/2004	DM1200 high electrode temperature alarm sounded. Started actions to correct the situation.
		7/30/2004	Switched lance bubblers #1 and #2 to manual rotameters MM-CA-FIC-012 and MM-CA-FIC-013, respectively. Manual rotameters were set to 1 SCFH. Bubbling was verified inside the melter before and after the flow controllers were switched. Adjusted EOG dilution air valve. Returned lance bubblers #1 and #2 inputs to mass flow controller MM-CA-MFCR-001 and MM-CA-MFCR-003, respectively. Mass flow controller MM-CA-MFCR-006 was removed for testing. Mass flow controller MM-CA- MFCR-010 was used to replace mass flow controllerMM-CA-MFCR-006. Mass flow controllers MM-CA- MFCR-001 and MM-CA-MFCR-003 were set to 1.5 lpm. Bubbling was verified inside the melter.
		7/31/2004	Added water to CW secondary system. Replaced thermocouples in TW #2. New multi-thermocouple consists of MM-XXX-TR-12, -13, -14, -15 and -16. TCs of MM-XXX-TR-04 and MM-XXX-TR-05 in TW #1 were also replaced. Changed filter and pre-filter of MM-EOG-F-401 EOG HEPA train.

7		<u>_</u>	Replaced HEDA filter and pre-filter of MM EOG F 402 EOG HEDA train There was a look in the bottom laft
			corner due to inshility to fighten the wing mit. A longer bolt was used to correct this problem
		8/1/2004	Switched EOG HEPA train MM-EOG-F-401 to -F-402. It was not possible to seal the door of EOG HEPA train
			MM-EOG-E-401 due to study which were fixed or replaced as needed
			Swapped chilled water pumps and dam wall regenerative blowers. Simulated loss of power and tested diesel
			senerator
			Modified film cooler spray to utilize a wand inserted through top view-port to the bottom of film cooler. Spray
			volume was still set at 5 liters. Previous film wash method was discontinued.
		8/2/2004	Inserted melter camera in port C-2.
			Electrode power control was switched back to Love controller.
			Replaced transducers for electrode voltage and electrode power with newly calibrated units (or units with
			unexpired calibration dates) as part of instrumentation calibration maintenance.
		8/3/2004	Replaced TW #1 multi-TC due to suspect readings.
		8/10/2004	Airlift was removed.
			Cleaned airlift for inspection. There were 3 bends in the pipe; one at 9" from the bottom, second at 16" from
		8/12/2004	bottom, and the third at 22" from the bottom. Photographs were taken. The most significant damage was that a
		0/12/2004	piece of the pipe had flaked off at 48" from the bottom. Caliper readings of the airlift were taken. It was decided
			to replace the airlift.
	HLW AZ-102		Removed bubblers J3 and J5 from the melter. Bubblers DB-2 and DB-1 were installed in ports A-3 and D-1,
		8/12/2004	respectively.
			Slightly closed EOG damper slide gate.
VSL-05R5800-1		0/12/2004	Completed cleaning and inspection of bubblers J3 and J5. Inspection showed no damage on either bubbler,
		8/13/2004	except for heat marks at about 22" from the bottom on lance bubbler J5. Caliper measurements of the dimensions
			and photographs were taken.
		8/14/2004	City water low pressure light was lit on the annunciation panel. However, water pressure throughout the room
			City water alarm was investigated. It was found that the sumply value to the pressure transmitter was closed
		8/15/2004	Swapped chilled water pumps and dam wall regenerative blowers.
			Repaired door on EOG HEPA MM-EOG-F-401 housing and put that train on line. EOG HEPA train MM-EOG-
		8/17/2004	402 was taken off line and filter and pre-filter were replaced.
			Placed EOG HEPA train MM-EOG-F-402 train back in service and took MM-EOG-F-401 off line.
		0/10/2004	Photographs were taken of plenum camera fixture, camera, and light.
		8/19/2004	Switched EOG HEPA train from MM-EOG-F-402 to -401.
		8/22/2004	Replaced EOG HEPA filter and pre-filter on MM-EOG-F-402.
		8/25/2004	Swapped chilled water pumps and dam wall regenerative blowers.
		8/24/2004	Cooling panel temperature indicator (MCL-CW-TR-408) appeared to be out of service; monitoring continued.
		8/25/2004	Rebooted Melter labVIEW. MCL-CW-TR-408 functioned properly.
		8/25/2004	Annunciator panel alarm was noticed, but no lights were illuminated. No operational problems were identified.
		8/20/2004	Swapped chilled water pumps and dam wall regenerative blowers.
		8/30/2004	Installed lance bubbler L1B. Moved mass flow controller MM-CA-MFCR-010 to stand by.
		8/31/2004	Switched EOG HEPA train from MM-EOG-F-401 to MM-EOG-F-402.
		9/1/2004	Performed simulated loss of power, diesel generator test.
		9/5/2004	Adjusted dilution air damper.

		9/7/2004	Swapped chilled water pumps and dam wall regenerative blowers.
		3/1/2004	Opened EOG HEPA train MM-EOG-F-402 due to low melter vacuum and high HEPA temperature.
			City water low pressure alarmed due to testing by CUA maintenance.
		9/8/2004	Replaced pre-filter on EOG HEPA train MM-EOG-F-401. Closed EOG HEPA train MM-EOG-F-402. Replaced
			pre-filter on EOG HEPA train MM-EOG-F-402.
		9/12/2004	Opened flow to EOG HEPA train MM-EOG-F-402. Both trains were placed on line.
		9/13/2004	Swapped chilled water pumps and dam wall regenerative blowers.
			Inspection of EOG piping showed plenty of solid material throughout. Photographs were taken. About 160 grams
			of solids sample was removed from the EOG piping. Including the solids removed earlier, total mass of solids
			removed from the EOG piping was about 6.1 kg. Photographs were taken.
		9/14/2004	1.7 kg more solids were removed from the EOG pipe after the EOG valve. The new total solids mass was about
			7.8 kg plus the sample mass of ~160 grams.
			Closed EOG HEPA train MM-EOG-F-401.
		0/15/0001	Opened EOG manual vent/dilution valve, MM-EOG-V-403 about ³ / ₄ way.
		9/15/2004	Adjusted MM-EOG-V-403 to be open $\sim \frac{1}{2}$ way.
			Closed MM-EOG-V-403. Partially closed EOG dilution air slide gate to increase vacuum.
		9/16/2004	Obtained caliper measurements of new air lift.
	HLW AZ-102		Installed new air lin.
			Removed air fift due to a bad 1C fifting. 1C that was damaged during earlier air fift removal was replaced.
			Lance bubbler $\#2$ was pointing closer to 1 w $\#2$ than preferred. Adjusted lance bubbler $\#2$ orientation more
VSL-05R5800-1			lowards port C-2.
		9/17/2004	Closed MCL DW V 404 value because abilled water was back on line
			A dijusted main EOG valve to be a ¹ / ₂ closed
			Swapped chilled water numps and dam wall regenerative blowers
		9/23/2004	A diusted main FOG value slightly
		9/24/2004	Collected din samples
		9/27/2004	Swapped chilled water pumps and dam wall regenerative blowers
		10/1/2004	Collected din samples
		10/1/2004	Swapped chilled water numps and dam wall regenerative blowers. Performed simulated power loss diesel
		10/4/2004	generator test
		10/8/2004	Dip samples were collected
		10/9/2004	Opened main EOG valve slightly
		10/2/2001	Swapped chilled water pumps and dam wall regenerative blowers
		10/12/2004	Slightly closed main EOG valve slide gate
		10/18/5004	Swapped chilled water pumps and dam wall regenerative blowers
		10/16/2004	Adjusted FOG damner open slightly
		10/10/2004	TC of MM VVV TP 04 failed and uses removed Densited connection plug of TC of MM VVV TP 04 that had
			heat damage TC of MM-XYX TP.00 was scheduled to be replaced within the week with TCs of MM-XYX TP.
		10/29/2004	05 -15 and -16
			Completed functional testing of the lance bubbler back pressure transmitters
			e empreted faited that totalig ef ale faite outoffer outer problate autoffitterb.

		11/1/2004	Film cooler wash lance was tested. The timer was set for a 230 second cycle with the air pulse set for 10 seconds on and 10 seconds off. One cycle was set to provide 5 liters of wash water. Swapped CW pumps and dam wall regenerative blowers				
VSL-05R5800-1		11/3/2004	TW #1 and TW #2 were removed. During removal hot glass dripped on the level detector tubing causing erratic reading on labVIEW. Level detector tubing was repaired. Caliper readings of both TWs were taken. Digital photographs of TWs were taken.				
	HLW C-	11/4/2004	Replaced the following thermocouples: MM-XXX-TR-04, -05, -06, -10, -15, -16 and -17. Thermowells were cleared of debris before reinstallation of thermocouples. Noticeable reduction in diameter measurements on both TW at 18" from the bottom. Replaced the following thermocouples: MM-XXX-TR-01, -02, -03, -12, -13 and -14. TW #1 and TW #2 were reinstalled.				
	106/AY-102 (11/08/04- 11/12/04)	11/5/2004	Found that TCs of MM-XXX-TR-14 and MM-XXX-TR-15 were reversed. During the swap of connections, TC wire of MM-XXX-TR-14 broke inside the connector. Repaired connection. Removed mass flow controllers MM-CA-MFCR-002 and MM-CA-MFCR-005 for testing. Moved mass flow controller MM-CA-MFCR-010 into the mass flow controller MM-CA-MFCR-002 position. Collected dip sample.				
		11/8/2004	Rebooted both melter and off-gas labVIEWs. Observed difficulty in achieving normal discharge temperatures. Investigated and found that the weld connecting mounting flange to the bottom of the discharge chamber was partially cracked causing air inleakage. Modified film cooler rinse mechanism to combine water and compressed air purge during wash cycle. Cycle time was set to 120 seconds for a 5-liter flush.				
		11/13/2004	Removal and inspection of feed tube, plenum camera and airlift were completed. Airlift outside diameter caliper readings were taken. There was no visible damage to the air lift lance, except for minor arcing on tip and slight metal discoloration.				
		11/15/2004	Swapped chilled water pumps and dam wall regenerative blowers. Rebooted both melter and off-gas labVIEW VI. Airlift was reinstalled.				
VSL-05R5830-1	HLW C- 106/AY-102 with envelope maximum concentrations of RCRA metals and hazardous organic	11/18/2004	Removed deep lance bubblers DB-1 and DB-2 for inspection. Inspection of DB-2 and DB-1 showed no damage, except for some pitting and arcing that were noticed during the last inspection. Photographs were taken. Bubblers were tipped over to remove any metallic debris (total of about 20 g of debris; DB-1 had slightly more debris than DB-2). Caliper readings of the bubbler dimensions were taken. DB-1 and DB-2 were reinstalled in ports A-3 and D-1, respectively.				
		11/22/2004	Adjusted dilution air supply. Swapped chilled water pumps and dam wall regenerative blowers. Lifted lance bubbler #2 to check gasket. The gasket appeared cut in half. Removed bubbler and replaced gasket.				
	compounds (11/15/04-	11/23/2004	Opened flanges to the 90° and horizontal pipe of the EOG line to DM1200 melter for inspection. Investigation showed minimal build up of solids that was cleared.				
	11/17/04,	11/26/2004	Replaced pre-filter in EOG HEPA train MM-EOG-F-402. The other EOG HEPA train was on line.				
	12/06/04-	11/28/2004	Adjusted main EOG valve to bring DM1200 melter vacuum from -0.10" W.C. to -0.15"W.C.				
	12/12/04)	11/29/2004	Replaced HEPA filter in EOG train MM-EOG-F-401. Swapped chilled water pumps and dam wall regenerative blowers. Switched from EOG HEPA train MM-EOG-F-401 to -402. Filter and pre-filter of EOG HEPA train MM-EOG-F- 402 were replaced.				

	ki e	12/1/2004	Performed monthly diesel generator test
		12/1/2004	It conserved that noticing were being emitted from the class need due to bubbling. This was seen by a rise in
			The appeared that particles were being entitled north the pars both due to bubbling. This was seen by a fise in
			EVG HEPA differential pressure and debris within EVG piping.
		12/2/2004	Rodded the EOG piping up to the first 90° elbow, and removed minor build up. Lots of the dust was seen.
			Melter vacuum increased from -014" W.C. to -0.1/" W.C.
			Rodded the EOG piping for the second time, including past the 90° elbow.
			EOG HEPA filter and pre-filter were replaced in MM-EOG-F-401 train.
		12/6/2004	Installed plenum camera.
		12/12/2004	The EOG control circuit had a limit switch that needed adjusting.
			Removed both thermowells. Completed inspection and caliper measurements of both TW #1 and TW #2. TW
			#1 showed some discoloration. Both TWs showed significant metal loss on submerged sections with moderate
			pitting and minor crystallization. Photographs were taken.
			Replaced TW #2 with a new TW and the old TC bundle. During the holiday idle period, only TW #2 scheduled
			to be installed.
	19691 202000000		Swapped chilled water pumps and dam wall regenerative blowers.
	HLW C-	12/13/2004	Lance bubblers 1 and 2 and airlift were removed for inspection. TW #2 (new TW) was installed. Lance bubblers
	106/AY-102		not scheduled to be reinstalled at this time. Changed electrode firing pattern from side to side to side to bottom.
	with envelope		Level detector was disconnected during DB-2 removal and then reconnected.
	maximum		Visual inspections of lance bubbler #1 showed numerous arcing spots and a slight bend $\sim 37''$ down from the
	concentrations		ceramic insulator. Photographs were taken. Lance bubbler #2 also showed numerous arcing spots and a slight
VSI	of RCRA metals		bend ~32" down from the ceramic insulator. Photographs were taken. Air lance looked good, with no
0505820 1	and hazardous		significant damage. Caliber readings of lance bubblers #1 (DB-2) and #2 (DB-1) and the air lift were taken.
0513650-1	organic		Reduced supply air pressure to electrode bubblers #3 and #5 due to back pressure being too high
com	compounds	12/14/2004	Installed jumpers on TC connectors MM-XXX-TR-01 thru -05.
	(11/15/04-		On 12/22, 12/24, and 12/29, tapped on EOG piping to dislodge solids build up to improve system airflow and
	11/17/04,	12/22/2004	to reduce the melter vacuum.
	12/06/04-	12/23/2004	Swapped chilled water pumps and dam wall regenerative blowers.
	12/12/04)	12/30/2004	Due to scheduled power outage, melter was powered by diesel generator for about six hours.
			All systems functioned satisfactorily. City water bypass valve, MCL-DW-V-404, to cooling panels left open
		12/31/2004	until 1/3/2005 to supply city water to the back-up heat exchanger
		1/3/2005	Closed cooling panel, city water bypass MCL-DW-V-404.
			No monthly testing of the diesel generator was done due to the scheduled outage on 12/30/2004
			Swapped chilled water pumps and dam wall regenerative blowers
		1/4/2005	Airlift was reinstalled
		1/10/2005	Swanned chilled water numps and dam wall regenerative blowers
		1/10/2005	Swapped chilled water pumps and dam wall regenerative blowers.
		1/16/2003	Swapped chilled water puttips and dam wan regenerative blowers.
		1/04/0005	Swapped childed water pumps and dam wall regenerative blowers.
		1/24/2005	Opened EOG port at mener for inspection and found no blockage in vertical section and very little on
			nonzontal section. Cleaned all visible solids build up.
		1/25/2005	Found TC of MCL-CW-TR-418, removed from thermo well on chilled water pipe. Reinstalled the TC, and the
		1.10.10.00	reading changed by ~6 °C to 32.5 °C.
	1/26/2005	Performed loop testing of various melter thermocouples.	

1			
		1/27/2005	Removed mass flow controllers for the bubblers L1A, L4A and L spare 6 from the system for testing,
		112112005	Placed mass flow controllers for bubbler L spare 5 and L2A back in operation after testing.
		1/28/2005	Removed air lift for inspection. No damage was noticed. Caliper readings and photographs were taken. Air lift
		1,20,2000	left out for now.
		1/29/2005	Switched form EOG HEPA train MM-EOG-F-402 to -401.
		C2022526000252600-0500es	Found that both melter and off gas labVIEW VI were recording to "local" drive. Reestablished network
		1/31/2005	connection, and system appeared to be working satisfactorily.
			Swapped chilled water pumps and dam wall regenerative blowers.
		2/2/2005	Electrode firing was from side to bottom.
		2/7/2004	Swapped chilled water pumps and dam wall regenerative blowers.
		a construction de la constructio	Started and completed calibration of various melter and off gas thermocouples.
	HLW C-	2/8/2004	EOG piping was cleaned.
	106/AY-102	0/0/0005	Started and completed calibration of various melter and off-gas loops.
	with envelope	2/9/2005	Started and completed calibration of various melter and off-gas loops.
	maximum	2/10/2005	Completed updates to melter, off-gas, and feed data programs including spyware detection and removal.
	concentrations	2/11/2005	Started and completed canoration of various metter and off-gas loops.
VSI -	of RCRA metals	2/11/2005	Keinstalled alf lift.
05R 5830-1	and hazardous	2/14/2005	Swapped chilled water pumps and dam wan regenerative blowers.
051050501	organic		Example dame will significant (MCA BCB ED 201) as ding 0 SCEM. Investigation of blower status, suffet
	compounds		round dam wan an now (MCA-RGB-FR-201) reading 0 SCFM. Investigation of blower status, outlet
	(11/15/04-		Electrode firing pattern was changed from side to battom to side to side
	11/1//04,	2/17/2005	Reinstalled lance hubblers I4 in port A-3 I.3 in port A-1 I.4 in port D-3 and I.2 in port D-1
	12/06/04-		Power was set to 69 kW
	12/12/04)		Adjusted dam wall recenerative blower MCA-RGB-B-102 outlet pressure from 28 to 25 psig. Dam wall flow
			was unchanged at 26 SCFM. Lower pressure may trip low pressure alarm.
			Reinstalled TW #1 with a new multi-TC assembly and TW #2.
		2/18/2005	Replaced EOG filter and pre-filter of EOG HEPA train MM-EOG- F-402. Debris had accumulated on the
			housing floor.
			Swapped chilled water pumps and dam wall regenerative blowers.
		2/21/2005	Functional test of mass flow meters for lance bubblers 1B, 2A, 2B, 3A, 3B and 4B with labVIEW VI was
			unsuccessful.
		5)	Increased discharge chamber power from 12 to 15 kW. Discharge chamber was heated to discharge glass to
		2/22/2005	obtain grab sample of riser glass, and lower melt pool level in preparation for glass turnover to LAW
		212212003	composition.
		Replaced TC of MM-XXX-TR-08 for airlift.	

VSL- 05R <i>5</i> 830-1	HLW C- 106/AY-102 with envelope maximum concentrations of RCRA metals and hazardous organic compounds (11/15/04- 11/17/04, 12/06/04- 12/12/04)	2/23/2005	Turned on MM-CA-MFR-013 (electrode bubbler #3) at 1 lpm. No flow was observed through MM-CA-MFCR-013 after 8 minutes. Unplugged power to MFCR. Swapped lance bubbler air supply from rotameter to MFCR and verified flow in melt pool. Lance bubblers were installed with L1 in port A-1, L2 in port A-3, L3 in port D-1 and L4 in port D-3. MFCRs in use were set to 1.5 lpm air flow rate. Secured power to electrode MFCRs. Swapped EOG HEPA line from MM-EOG-F-401 to MM-EOG-F-402 train. MM-EOG-F-401 EOG HEPA differential pressure was 3.5" W.C. Melter vacuum was -0.11" W.C. with dilution air valve (from manual EOG went/dilution valve, MM-EOG-V-403) almost fully closed. Tapping EOG pipe had no effect on melter pressure. Reduced air supply pressure to electrode bubbler #2 due to back pressure being >42 psi. Found MM-XXX-PR-200 (melter pressure at instrument port) melter pressure tubing disconnected. When the tubing was reconnected, melter vacuum reading changed from +0.1" W.C. to -0.1" W.C., as expected. Primary chilled water system pump MCL-CW-P-401 tripped for unknown reason, was reset, and continued to operate without any other problems. The pump will be monitored. Completed testing of several of gas and melter pressure transmitters. Melter pressure at -0.1" W.C., This may be due to partial blockage in the vertical section of the EOG piping. Minor build up was removed from the bottom part of the vertical section of the EOG piping. Chillers appeared to be down. CUA maintenance was notified that chillers were off line. Removed mass flow controller, MM-CA-MFCR-013 from the system for testing. Chilled water supply temperature, MCL-CW-TR-402 was at 46 °C.
	LAW Envelope	2/25/2005	Installed lance hubblers 1 A 2B and 4A in the melter. The units were powered and set to 1.5 lpm flow rate
	A with envelope maximum concentrations	2/27/2005	Turned on mass flow controller MM-CA-MFCR-002 of lance bubbler L2A at 1.5 lpm, and secured mass flow controller MM-CA-MFCR-007 of lance bubbler L2B.
LAW Scoping test	of RCRA metals and hazardous	2/28/2005	Installed 4 lance bubblers (3 L type bubblers and one J type bubbler) in 4 corners pointed to the center of the melter.
	organic compounds (2/28/04- 3/04/04)	3/1/2005	Swapped chilled water pumps and dam wall regenerative blowers.
	LAW Envelope	3/7/2005	Swapped chilled water pumps and dam wall regenerative blowers.
VSL- 05R <i>5</i> 830-1	with envelope maximum	3/11/2005	Both EOG HEPA trains were placed on line.
	concentrations of RCRA	3/12/2005	Replaced MM-EOG-F-401 EOG HEPA filter and pre-filter. High amounts of sulfate dust were found inside the HEPA housing. Both EOG HEPA trains were placed on line.
	metals, halides,	3/13/2005	Tapped on the EOG pipe, which raised melter vacuum from 0.09 to 0.18" W.C.
	and hazardous organic	3/14/2005	Swapped chilled water pumps and dam wall regenerative blowers. Replaced EOG HEPA, MM-EOG-F-401 pre-filter.
	compounds (3/07/05- 3/10/05, 3/17/05-3/23/05)	3/15/2005	Replaced MM-EOG-F-402 HEPA train pre-filter and filter. Left both trains on line.

Table 2.1. Chronology of the DM1200 Melter Maintenance and	I Inspections	(continued).
--	---------------	--------------

VSL- 05R5830-1		3/16/2005	Replaced electrode TCs TR-22, TR-21 and TR-23. Film cooler was inspected visually. No build up was found. Reinstalled plenum exposed TC. Installed a remote melter pressure indicator (MM-AR-PR-201) by the chemical room door, tested for functionality, and was found to be satisfactory.
		3/18/2005	Found clog in one of the MM-OG-DPR-002 sensing lines.
		3/21/2005	Observed discharge chamber drum flange to be "looser" than previously noted. It was difficult to maintain chamber temperature. Swapped chilled water pumps and dam wall regenerative blowers.
	LAW Envelope A with envelope maximum concentrations of RCRA metals, halides, and hazardous organic	W Envelope A ith envelope maximum ncentrations of RCRA itals, halides, d hazardous organic 3/24/2005	 EOG pipe got clogged causing loss of melter vacuum. Used drain snake to clear clog. Melter vacuum returned to -0.32" W.C. Opened dilution air valve with both HEPA trains open. One EOG HEPA train was taken off line to allow for swapping trains to replace filters. Reduced electrode bubblers 1, 2, 4 and 5 flow rates from 0.5 to 0.2 SCFH to help minimize carryover to EOG piping/HEPA. Removed TC of MM-XXX-TR-17. Both EOG HEPA trains were placed on line. Checked all melter ports for leakage. Started modified off-gas operation to clean EOG piping. During this time PBS was in line and HCU was off line. Switched back to EOG. ~ 5 kg of solids build up was removed. This was in the EOG pipe after the 90° and up to valve 401. Was not able to remove much of the build up before the 90° on top of the melter. There is only about 2" opening through the pipe. Cleaning scheduled for a later time. Placed cooling panels on city water. Primary system chilled water pump, MCL-CW-P-401, tripped and was reset, The pump worked satisfactorily afterwards. Water pressures appeared to be normal, but monitoring of pump continued.
	(3/07/05- 3/10/05, 3/17/05-3/23/05)	3/26/2005	Tapped on the first 90° of EOG line and was able to bring vacuum to -0.07" W.C. Both HEPA trains were in operation
		.3/27/2005	Both EOG HEPA filters and pre-filters were replaced. Tapped on EOG line to try to remove blockage due to solids deposits. Tried rodding out EOG line with a drain snake. Neither was effective in removing the blockage. Due to the condition of the EOG line, a modified off- gas system was implemented bypassing HCU. Melter vacuum was at -0.09" W.C. Changed EOG alarm set point from 0.5" to 0.00" W.C.
		3/28/2005 3/29/2005	EOG alarm sounded and was reset.
			Primary system chilled water pump, MCL-CW-P-401 alarm sounded on the annunciator and cooling panels. Alarms reset. Removed the first section of the EOG line for modification and cleaning. Cut the first section of EOG line, 90% packed with solids. Photographs were taken. First section of the EOG line on top of the melter was cleaned, modified and put back together. Photographs were taken. EOG was put back on line.
		3/31/2005	Placed lance bubblers #1, #2, #3, and #4 on the bypass rotameters, and set them at 0.5 SCFH flow rate to reduce carry over to the HEPA system.
		4/1/2005	Switched EOG HEPA trains from MM-EOG-F-402 to -401. Replaced EOG HEPA train MM-EOG-F-402 filter and pre-filter.

Tubic 2010 Chi onology of the Divitation function of the managements (continuous)	Table 2.1. Chronology	of the DM1200 N	Aelter Maintenance and	I Inspections	(continued).
---	-----------------------	-----------------	------------------------	----------------------	--------------

	LAW Envelope A with envelope	4/4/2005	Swapped chilled water pumps and dam wall regenerative blowers. Completed simulated loss of power diesel generator test. Primary cooling pump MCL-CW-P-401 tripped, was reset, and worked satisfactorily afterwards. Dam wall regenerative blower, MCA-RGB-B-102, tripped due to low air flow rate. Flow rate was increased to 23 SCFM and the system functioned satisfactorily.
VSL- 05R5830-1	concentrations of RCRA metals, halides.	4/6/2005	Lost dam wall regenerative blower, MCA-RGB-FR-202. Was able to reset and adjust flow to dam wall using blower MCA-RGB-FR-201 at 20 SCFM. Switched EOG line from EOG HEPA train MM-EOG-F-401 to -402.
	and hazardous organic	4/7/2005	Added particulate removed from EOG piping into melter. Replaced EOG HEPA train MM-EOG-F-401 pre-filter.
	compounds	4/9/2005	Replaced EOG HEPA train MM-EOG-F-402 pre-filter.
	(3/07/05-	4/11/2005	Swapped chilled water pumps and dam wall regenerative blowers.
	3/10/05, 3/17/05-3/23/05)	4/12/2005	Removed mass flow controllers for lance bubblers L1A, L4A and L spare 6 (MM-CA-MFCR-001, -004, and -010) for testing. Moved mass flow controllers for lance bubblers L1B and L4A (MM-CA-MFCR-006 and -009) into positions for MM-CA-MFCR-001 and -004. Per CUA maintenance, primary CW system was fully functional.
HLW Turnover (4, VSL- 4/ 05R5830-1		4/13/2005	Reinstalled MM-XXX-TR-17, exposed plenum TC. Secured city water to melter panel heat exchanger. TR-17 TC failed again. Replaced TR-17 TC.
	HLW mixed (4/13/05- 4/15/05)	4/14/2005	Stopped test to remove transition line bellows. Differential pressure across transition line was very high at 7- 10" W.C. Inspection showed only minor build up at the bellows. Photographs were taken. Clog was found at the end of the curvature from the melter, prior to sample port. Rodded with slight success. About 333 grams of solids were removed.
		4/18/2005	Removed lance bubblers #1, #2, #3 and #4, TW #1 and TW #2. Changed electrode firing pattern from side to side to side to bottom. Swapped chilled water pumps and dam wall regenerative blowers. Inspection of TW #1 showed heavy pitting at the lower 15" section. Above the 15" mark, the TW seemed OK. Joule heating was observed at about 3" and 10" from the bottom. Inspection of TW #2 showed two joule heating spots at 1" and 20"marks. The rest of the pipe was in very good shape. Photographs and caliper readings of both thermowells were taken. Both TWs were reinstalled. Removed TC of MM-XXX-TR-17.
		4/	4/19/2005

	Table 2.1.	Chronology	of the DM1200 Melter Maintenance and Inspections (continued).
		4/20/2005	More than 1560 grams of solids were removed from the transition line assembly and the film cooler. Transition line section #1 was clean. Film cooler end was damaged. Photographs of the solid deposits and the film cooler were taken.
HLW Turnover	HLW mixed	4/21/2005	Cleaned glass build-up from the bottom of film cooler. Photographs were taken. Louvered section of the film cooler had separated from the main body. Photographs of the Louvered section were taken.
VSL- 05R5830-1	(4/13/05- 4/15/05)	4/22/2005	Reduced electrode bubblers #1, #2, #4 and #5 air flow rate from 0.8 to 0.5 SCFH. Removed MM-XXX-TR-04 TC from the melter. Swapped chilled water pumps and dam wall regenerative blowers. Opened MCL-DW-V-404 valve (city water bypass valve) in preparation for cooling tower outage.
		4/29/2005	Closed MCL-DW-V-404 valve and returned to chilled water for cooling panels.
		5/2/2005	Swapped chilled water pumps and dam wall regenerative blowers. Simulated loss of power and successfully completed diesel generator test.
		5/9/2005	Swapped chilled water pumps and dam wall regenerative blowers.
	Maintenance	5/12/2005	Switched from EOG HEPA train MM-EOG-F-401 to -402. Melter pressure was -0.20" W.C. EOG HEPA inlet temperature (MM-XXX-TR-11) was reading 81°C. Differential pressure across MM-EOG-F-401 EOG HEPA train was ~5.6" W.C., which had not changed for several days. After switching to MM-EOG-F-402 train, melter vacuum increased to -0.66" W.C. All dilution air valves were opened. Partially closed MM-EOG-F-401 EOG HEPA inlet valve, which dropped melter vacuum to -0.14" W.C, then closed the suction valve after the HEPA outlets. Melter vacuum at 0.21" W.C. Replaced MM-EOG-F-401 EOG HEPA train filter and pre-filter. This HEPA housing had a large amount of particulate (possibly sulfate) prior to pre-filter. Underneath particulate there was a build-up of glass-like material. The housing was scraped and vacuumed, and new gasket material was placed on the door.
		5/13/2005	Removed lance bubbler #4.
-		5/15/2005	Alarm sounded because cooling system, chilled water pump MCL-CW-P-401 was not running. The pump was restarted. Partially closed the main EOG valve to raise the melter vacuum to about -0.17" W.C. Partially opened MCL-DW-V-404 valve to allow some city water flow to the back-up heat exchanger.
		5/16/2006	Swapped chilled water pumps and dam wall regenerative blowers. Dam wall regenerative blower MCA-RGB- B-102 outlet pressure was adjusted to 2.5 psi. Flow was 25 SCFM. CUA maintenance informed that chilled water was back in service.
		5/17/2005	Primary chilled water system was functioning satisfactorily. Closed city water to MCL-DW-V-404 valve. Adjusted EOG HEPA train MM-EOG-F-402 inlet valve to fully open. Melter vacuum was at -0.14" W.C. Closed manual EOG vent/dilution valve completely and opened the dilution air damper to about 70% open. Melter vacuum was at -0.20" W.C.
		5/20/2005	City water low pressure alarm sounded due to city water outage for Hannan Hall. City water restored to Hannan Hall. Turned on city water to the back-up heat exchanger because chilled water supply temperature was 80°F and return 82°F. Cooling panel temperatures at 39-43 °C.
		5/22/2005	Switched from MM-EOG-F-402 EOG HEPA train to -401 train.
		5/23/2005	Closed MCL-DW-V-404 city water bypass valve. Swapped chilled water pumps and dam wall regenerative blowers.

Table 2.1. Chronology of	he DM1200 Melter Maintenance an	d Inspections (continued).

			Partially closed MM-EOG-V-403 valve, ¹ / ₄ of the way. Melter vacuum increased from -0.13" to -0.18" W.C.
		5/26/2005	Replaced the filter and pre-filter of MM-EOG-F-402 EOG HEPA train.
			Closed MM-EOG-V-403 valve to increase the melter vacuum from -0.16" to -0.19" W.C.
			Removed lance Bubbler #3 back pressure transmitter from the system. Unit was removed for use in the DM100
			system.
		5/30/2005	Swapped chilled water pumps and dam wall regenerative blowers.
		5/31/2005	Performed simulated loss of power diesel generator test.
		6/3/2005	Closed MM-EOG-V-403 valve fully, and partially (½) closed dilution air valve (MM-EOG-V-402). Melter vacuum changed from -0.14" to -0.17" W.C.
		6/6/2005	Swapped chilled water pumps and dam wall regenerative blowers. Hannan Hall experienced loss of power. Automatic transfer switch (ATS) for building powered by back-up diesel generator did not activate. Normal power was restored. Diesel generator was generating only ~220 volts on all 3 phases, which might be insufficient to power ATS. Switched dam wall regenerative blower from MCA-RGB-B-101 to -102. Blower MCA-RGB-B-101 was making unusual noises and not maintaining proper flow.
	Maintenance	6/7/2005	Air compressor dryer switching alarm activated. The compressor was back to normal operation after the solenoid valve was reset. Found that diesel generator speed (motor) switch was set for low speed. Switched to high speed and tested generator. Output was back to ~480 volts on all phases.
		6/9/2005	Swapped chilled water pumps. Did not switch dam wall regenerative blowers.
		6/18/2005	Inspected EOG inlet port at the melter and found horizontal section almost 90% blocked; cleared blockage and melter vacuum increased from -0.14" to -0.35" W.C. Completely opened dilution air damper and MM-EOG-V-403 valve. Melter vacuum changed to -0.18" W.C. Slightly closed MM-EOG-V-403 valve. Melter vacuum changed to -0.21" W.C.
		6/20/2005	Swapped chilled water pumps. Checked the MCA-RGB-B-101 blower for operation. Noticed a grinding noise from the blower housing. Maintained flow using MCA-RGB-B-102 dam wall regenerative blower. Inspected internals of MCA-RGB-B-101 blower along with outlet check valve. No problems were identified. Observed noise during operation of MCA-RGB-B-101 that occurred only when it warmed up, indicating probable bearing failure. The blower maintained as emergency back-up. Closed valve MM-EOG-V-403 entirely. Opened dilution air damper completely. Melter vacuum at -0.20" W.C.
		6/25/2005	Partially closed (~2/3) EOG dilution air damper. Melter vacuum was changed from -0.12" to -0.16" W.C.
		6/26/2005	Switched EOG line from EOG HEPA train MM-EOG-F-401 to -402. Adjusted electrode bubbler #3 supply pressure to target of ~40 psi (found at 32 psi and no flow)
		6/27/2005	Swapped chilled water pumps.
		6/28/2005	Replaced filter and pre-filter of EOG HEPA train MM-EOG-F-401.
		7/5/2005	Swapped chilled water pumps.
		0.0000000000000000000000000000000000000	Swapped chilled water pumps.
		7/11/2005	Started removal/replacement of MCA-RGB-B-101 dam wall regenerative blower. New blower was a single stage regenerative blower.

		7/12/2005	Melter vacuum had decreased to -0.09" W.C. Removed horizontal flange and vertical plug at melter outlet. Rodded out blockage in both sections. Replaced flange and plug. Melter vacuum increased to -0.42" W.C. Opened dilution air damper and MM-EOG-V-403 completely. Melter vacuum changed to -0.22" W.C. Temporarily secured power to MCA-RGB-B-102 dam wall regenerative blower to replace temperature overload relays inside disconnect box. Replacement was to downgrade relay temperature limit due to replacement of MCA-RGB-B-101 with a smaller unit. Performed replacement in 2 stages to prevent excessive heating of dam wall panel. Restarted air to dam wall. Outlet air temperature at 160 °C. 1 st stage of overload replacement was completed, allowed temperatures to decrease before completing second stage. Secured dam wall regenerative blower to complete temperature overload replacement. Outlet temperature at 139 °C.
		7/13/2005	Power restored to KCA-KGB-B-102. Dam wall outlet temperature at 1/3 °C. MCA-RGB-B-101 new dam wall regenerative blower was returned to service in standby mode
		7/14/2005	Performed monthly simulated loss of power diesel generator test.
		7/18/2005	Swapped chilled water pumps and dam wall regenerative blowers.
		7/10/2005	Switched EOG line from EOG HEPA train MM-EOG-F-402 to -401.
		//19/2003	Replaced filter and pre-filter of EOG HEPA train MM-EOG-F-402.
		7/25/2005	Swapped chilled water pumps and dam wall regenerative blowers
	Maintenance	7/27/2005	City water low pressure alarm activated due to maintenance work being performed. Found dam wall inlet flow at 29 SCFM, adjusted back to 28 SCFM. CUA maintenance experienced some problems with one of the chillers. Opened city water bypass valve MCL- DW-V-404 until problem was resolved. Dam wall regenerative blower inlet flow was at 30 SCFM with outlet pressure at 2.10 psi. Switched blower to MCA-RGB-B-102. Adjusted outlet pressure to 2.50 psi. Dam wall outlet flow from -B-102 at 21 SCFM.
		7/28/2005	Closed city water bypass valve MCL-DW-V-404 about ½ way. Flow was adjusted from 32 gpm to 27 gpm. MM-XXX-TR-16 temperature was 32.3°C and -17 temperature 36.3°C. Partially closed (~80%) city water bypass valve MCL-DW-V-404. CW supply temperature at 32.3°C and panels at 35-39 °C.
		8/1/2005	Swapped chilled water pumps. Until alarm set point could be lowered for MCA-RGB-B-102, dam wall regenerative blowers would not be switched. Simulated loss of power and tested diesel generator. Found electrode bubbler #3 back pressure at 35.8 psi; adjusted regulator to 40.5 psi pressure.
		8/2/2005	Closed city water bypass valve MCL-DW-V-404 completely. Chiller returned to service. Panel temperatures at 37-43°C.
		8/5/2005	Found labVIEW data logged in local position and reset to network. Tested dam wall regenerative blower -B-102 for flow with outlet relief pressure at 2.5 psi; flow at 20 SCFM. No problems were observed with either blower operation. Switched back to -B-101 dam wall regenerative blower.

		8	Swapped chilled water pumps and dam wall regenerative blowers.
			Found some blockages in the EOG vertical and horizontal sections. Once blockages were cleared, melter
			vacuum increased from -0.10" to -0.30" W.C. Partially opened (1/2 way) dilution valve. Melter pressure at -
		8/8/2005	0.21" W.C.
			Switched dam wall regenerative blower (RGB), MCA-RGB-B-102 to -B-101. Found inlet flow at 31 SCFM and
			blower outlet at 2.5 psi pressure. When the blower was switched pressure was still at 2.5 psi, but inlet flow
			dropped to 20 SCFM. Also noticed no melter pressure change after switching blowers.
			Switched dam wall regenerative blower (RGB), MCA-RGB-B-101 to -B-102 and lowered outlet pressure to 2.2
		8/9/2005	psi; corresponding flow rate was 19 SCFM. In order to increase dam wall air flow rate to 31 SCFM, blower
		San gennese nämtara sutesaas o	outlet pressure was increased to 2.5 psi.
			Performed flow versus outlet pressure testing of MCA-RGB-B-101 and -B-102.
			-B-101 at 2.5 psi outlet pressure flow is 21 SCFM.
		8/10/2005	-B-102 at 1.6 – 2.5 psi outlet pressure flow is 20 SCFM (after 45 minutes).
			-B-102 has at times shown flow rates as high as 31 SCFM.
			Outlet pressure for both blowers will be maintained at 2.5 psi.
		8/13/2005	Switched EOG line from EOG HEPA train MM-EOG-F-401 to -F-402.
		8/15/2005	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted blower outlet pressure to 2.5 psi.
	Maintenance	8/18/2005	Replaced filter and pre-filter of EOG HEPA train MM-EOG-F-401.
	mannonanoo	8/21/2005	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted blower outlet pressure to 2.5 psi
			MM-EOG-V-403 valve was fully closed Ammonia duct valve was closed and EOG damper valve was closed
		27 X2	Melter vacuum at -0.15" W.C. Tanning on the EOG pipe at the melter outlet raised the melter vacuum to -0.30"
		8/23/2005	WC
			MCL-CW-TR-408 TC failed. It was taken out of service.
		8/27/2005	Rodded out build up of particulate at EOG horizontal and vertical sections. Vacuum increased from -0.15" to -
			0.18" W.C.
			Used the manual drain snake device to clear EOG horizontal piping and was successful in cleaning the 45
			degree elbow. Melter vacuum increased from -0.14" W.C to -0.79" W.C. Opened dilution damper to full open
		8/28/2005	position and fully opened MM-EOG-V-403 value: vacuum at -0.34" W C
			Opened ammonia exhaust valve fully. Vacuum now at -0.24" W.C.
		8/29/2005	Swapped chilled water pumps and dam wall recentrative blowers
		8/31/2005	Replaced TC of MCL-CW-TR-408
			Removed level detector from melter
			Inspection of level detector showed significant damage and metal loss. Both level and density pipes had lost 4/"
		9/1/2005	or more of the pipe due to corrosion extending unward at a 45° angle. Pipes also showed significant
			crystallization and arcing. Photographs and outside diameter caliper readings were taken
-		-	Installed temporary jumper from MM-XXX-PR-200 (melter pressure measurement at instrument port) to MM-
			AR-PR-202 (melter pressure measurement at level detector port) tubing to provide melter pressure indication on
		ance 9/2/2005	EOG panel and labVIEW for MM-XXX-PR-201 (melter pressure indication at EOG).
	Maintenance		Removed TW #1 for inspection. Also removed TC of MM-XXX-TR-15 from service.
			Visual inspection of TW #1 showed significant damage. It will not be reinstalled. Only one TW (TW #2) will be
			installed in the melter. Photographs and caliper readings of TW #1 were taken.
		9/5/2005	Swapped chilled water pumps and dam wall regenerative blowers.

			Found compressor alarm fault illuminated. Reset the fault switch on dryer in the mechanical room. Found large
			amounts of moisture build up in dryer. Will continue to monitor.
			Removed TW #2 for inspection.
			There were some pittings and metal flaking on lower 12-15" of TW #2 Overall the condition of TW#2 was
		9/6/2005	satisfactory
		210/2003	Caliner readings and photographs of TW #2 were taken
			TC of MM-XXX-TR-16 failed Replaced this TC with the TC from TW#1 that had been removed from
			sentine
			Similated loss of power, diesel generator test was performed
		9/9/2005	Switched from FOG HEPA train MM-FOG-F-402 to -F-401
		9/12/2005	Swapped chilled water primes and dom wall recencerative blowers. Adjusted blower pressure to 2.5 psi
		0/14/2005	Swapped entried water pumps and dam wan regelerative blowers. Adjusted blower pressure to 2.5 ps.
		9/14/2003	Increased there is vacuum non -0.17 to -0.21 w.C. by signify opening EOG HEFA thet varve.
		9/19/2005	swapped chilled water pumps and dam wan regenerative blowers. Adjusted blower pressure from 2.2 to 2.5 psi.
		9/24/2005	Replaced filter and pre-filter of HEPA train MM-EOG-F-402.
		9/26/2005	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted blower pressure to 2.5 psi.
			Found city water pressure alarm on. Pressure was at 3.5 psi. The alarm was silenced. Primary CW supply
		9/27/2005	temperature was 87°F and return temperature was 90°F.
			The city water pressure at 46 psi and rising. Alarm was reset.
		10/3/2005	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted blower pressure to 2.5 psi.
	Maintenance	10/6/2005	Rebooted melter labVIEW VI to reset the readout from TC of MM-XXX-TR-408.
		10/7/2005	Switched from EOG HEPA train MM-EOG-F-401 to -F-402
		10/10/2005	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted blower pressure from 2.9 to 2.5
			psi.
		10/12/2005	Performed simulated loss of power, diesel generator test.
		10/13/2005	Adjusted electrode bubbler #3 back pressure from 35.6 to ~41 psi. Air flow rate at <1.0 SCFH.
		10/17/2005	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted blower pressure to 2.5 psi.
		10/22/2005	Replaced filter and pre-filter of MM-EOG-F-401 EOG HEPA train.
		10/24/200	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted blower pressure to 2.5 psi.
		10/31/2005	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted blower pressure to 2.5 psi.
		and the second sec	Performed simulated loss of power diesel generator test.
		11/3/2005	The city water pressure alarm was on. The city water pressure was at 36 psi. Alarm was reset.
			The water pressure now at 79 psi.
		11/7/2005	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted blower pressure to 2.5 psi.
		11/8/2005	Switched from EOG HEPA train MM-EOG-F-402 to -F-401.
		11/14/2005	Swapped chilled water pumps and dam wall regenerative blowers.
		11/14/2005	Replaced filter and pre-filter of MM-EOG-F-402 EOG HEPA train.
		11/22/2005	Swapped chilled water pumps and dam wall regenerative blowers.
		11/28/2005	Swapped chilled water pumps and dam wall regenerative blowers.
		10/5/0005	Swapped chilled water pumps and dam wall regenerative blowers.
		12/5/2005	Performed simulated loss of power-diesel generator test.

			Annunciator panel alarm sounded. No lights were illuminated. However primary chilled water supply and
			return temperatures as shown on MCL-CW-TI-402 and 421 were at 120°F while on the labVIEW
			corresponding chilled water supply and return temperatures were 45.6 and 54.2°C, respectively. All cooling
		10/0/0005	panel temperatures were 53-55°C.
		12/8/2005	Found chiller stopped. CUA maintenance was alerted.
			Opened the city water bypass valve MCL-DW-V-404 half way.
			Later found the secondary chilled water temperatures to be normal and pressures and temperatures within
			normal parameters. Closed the city water bypass valve MCL-DW-V-404
		12/12/2005	Swapped chilled water pumps and dam wall regenerative blowers.
		10/15/0005	Due to chiller being off line city water bypass valve was opened half way.
		12/15/2005	Chiller back in service; city water bypass valve was closed.
		10/10/0005	Cooling panel temperatures exceeded 40°C. Opened city water bypass valve partially.
		12/18/2005	Chilled water back on line. Closed city water bypass valve.
		12/19/2005	Swapped chilled water pumps and dam wall regenerative blowers.
			Opened city water bypass valve in preparation for chiller outage.
			Switched from EOG HEPA train MM-EOG-F-401 to -F-402.
		12/20/2005	Differential pressure across the MM-EOG-F-402 EOG HEPA train was 5.2" W.C. Fully opened the air dilution
			valve and MM-EOG-V-403 valve. MM-EOG-F-402 EOG HEPA inlet valve was about half way open and
			melter vacuum as at -0.17" W.C.
		12/21/2005	Closed the city water bypass value, chiller back on line
			Replaced filter and pre-filter of EOG HEPA train MM-EOG-F-401
	Maintenance		In anticipation of power outages throughout the day, opened the city water bypass value to provide water for
		11/22/2005	the back-up heat exchanger.
		12/23/2005	Closed the city water bypass valve.
		12/26/2005	Swapped chilled water pumps and dam wall regenerative blowers.
		10/20/2005	Chiller out of service. City water bypass valve was opened.
		12/29/2005	Chiller back in service. Closed city water bypass valve.
		10/00/0005	Opened slightly MCL-DW-V-404 city water bypass value in preparation for power outage later in the day.
		12/30/2005	Power outage in progress, melter powered by the diesel generator.
		12/31/2005	Closed MCL-DW-V-404 city water bypass valve. Cooling panels on normal chilled water.
		1/2/2006	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted blower outlet pressure to 2.5 psi.
		1/4/2006	Partially opened the city water bypass valve for replacement of the chilled water 3-way valve.
			Primary system chilled water pump fault alarm.
			Notified by CIIA maintenance that primary chilled water system was back in service
			Restarted primary system chilled water pump. Primary chilled water temperatures still high. City water bypass
		1/5/2005	valve to be left on until temperatures return to normal
			Reported melter labVIEW VI due to reset erroneous display of MCL-CW-TR-408 temperatures
			The temperature readings returned to normal
		1/6/2006	Closed city water bypass valve.
		1.0.2000	Primary chilled water return temperature rose from 79 to 100°F during the last 2 hours and cooling namel
		1/8/2006	temperatures increased several degrees at over 40 °C. City water bypass valve was opened due to the suspected
			chiller problems
			childer problems.

		1/0/2006	Primary chilled water system appears to be functioning properly. Secured the city water bypass valve.
		1/9/2000	Swapped chilled water pumps and dam wall regenerative blowers.
		1/17/2005	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted blower outlet to 2.5 psi.
			Swapped chilled water pumps and dam wall regenerative blowers.
		1/23/2005	Secured power to discharge chamber to replace a bad cooling fan on SCR. Heaters to be left off to facilitate
			repairs to isolation valve and bad heating elements.
		1/30/2006	Swapped chilled water pumps and dam wall regenerative blowers.
		2/4/2006	Switched from EOG HEPA train MM-EOG-F-402 to -F-401.
		2/6/2006	Swapped chilled water pumps and dam wall regenerative blowers.
		2/13/2006	Swapped chilled water pumps and dam wall regenerative blowers.
			MM-RGB-B-101 regenerative blower fault alarm sounded. Switched to alternate blower MM-RGB-B-102.
			The dam wall cooler inlet air flow rate now at 26 SCFM. Attempted to restart dam wall regenerative blower
		2/14/2006	MM-RGB-B-101. As soon as the blower was turned on, the outlet pressure dropped.
		100001420463-430463-800 C 104443	Inspection of the blower for mode of failure indicated bearing failure.
			Swapped chilled water pumps.
		2/22/2006	Replaced filter and pre-filter of EOG HEPA train MM-EOG-F-402.
		2/23/2006	Adjusted MCA-RGB-B-102 outlet pressure from 2.3 to 1.3 psig and dam wall flow rate from 27 to 25 SCFM.
			Swapped chilled water pumps.
	2	2/27/2006	Removed TW #2 for inspection. Inspection showed extensive pitting 18" from the bottom upward. No bends
	Maintenance	TODE DOT EL FILLO POLISIONED	were seen. Photographs and caliper readings of TW #2 were taken.
		3/2/2006	Replaced dam wall regenerative blower MCA-RGB-B-101. The blower needs to be wired and checked for
			proper operation before being placed in service.
		3/6/2006	Swapped chilled water pumps.
		2/7/2004	Performed simulated loss of power-diesel generator test.
		-3/7/2006	Tested dam wall regenerative blower MCA-RGB-B-101.
			Switched from dam wall blower MCA-RGB-B-102 to blower -B-101. Initially the outlet pressure was 3.75
		2/0/2004	psig; adjusted pressure to 2.5 psig with a flow rate of 22 SCFM.
		3/8/2006	Regenerative blower -B-101 outlet pressure dropped from 2.5 to 2.25 psig, adjusted back to 2.5 psig; flow rate
			at 21 SCFM.
		2/12/2005	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted blower outlet pressure to 2.5 psi.
	·	5/15/2000	Switched from EOG HEPA train MM-EOG-F-401 to -F-402.
		3/17/2006	Replaced filter and pre-filter of EOG HEPA train MM-EOG-F-401.
		3/20/2006	Swapped chilled water pumps and dam wall regenerative blowers.
		2/07/2006	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted dam wall regenerative blower
		3/2//2006	outlet pressure to 2.5 psig.
		3/28/2006	Melter pressure was at -0.14" W.C. Tapped on EOG pipe in an attempt to increase melter vacuum. This
			resulted in melter pressure of -0.09" W.C. Attempted to remove blockage using drain snake down the EOG
			pipe. This also was not effective in increasing melter vacuum.

		3/29-30/2006	Attempted again to clear any blockage in the EOG pipe using a drain snake. Measurement of the length of the snake in the EOG pipe showed it to have passed up to the main EOG valve. Also cleared a blockage above the MM-EOG-V-403 (manual EOG vent/dilution) valve. During this attempt to clear the EOG pipe, no obstructions were felt and melter pressure stayed at -0.09" W.C. Switched from EOG HEPA train MM-EOG-F-402 to -F-401. The differential pressure of EOG HEPA train MM-EOG-F-401 was 4.2" W.C. Used MM-AR-PR-202 for melter pressure indication. Switched back to EOG HEPA train MM-EOG-F-402 to increase vacuum on the melter. Troubleshooting of melter vacuum measurement identified that melter pressure indication on the MM-AR-PR-201 and -202 were inaccurate since the sensor line was disconnected during the level detector removal. Reconnected sensor line to high pressure port on the instrument plug for the film cooler differential pressure measurement. (Film cooler differential pressure, high pressure line was left disconnected). Since argon was no longer available to purge, modified purge supply to compressed air on 3/30/2006.
		4/3/2006	Melter vacuum now between -0.10 to -0.20" W.C. Swapped chilled water pumps and dam wall regenerative blowers. Performed simulated loss of power-diesel generator test.
		4/10/2006	Switched Holl EOG HEPA tialit MM-EOG-F-402 to -F-401.
		4/10/2006	Benleged the filter and pro filter of EOC LIEDA train MM EOC E 402
	Maintenance	4/11/2000	Swannad abillad water number and dem wall reconcretive blowers
		4/17/2000	National that shilled water ratum line from Room 15 had a look
		4/23/2000	Sweepped abilled water numps and dom wall regenerative blowers
		4/24/2006	Switched from EOG HERA train MM EOG E 401 to E 402
		5/1/2006	Swanned chilled water numps and dam wall regenerative blowers
		5/2/2006	Performed simulated loss of nower-diesel generator test. Noticed some corrosion on the battery terminals
		5/8/2006	Swapped chilled water numps and dam wall regenerative blowers
		5/9/2006	City water low pressure alarm. Water pressure at 3.2 psig
		5/12/2006	Turned on the Room 10 air conditioning unit to cool the computers
		5/15/2006	Swapped chilled water numps and dam wall recentrative blowers
		5/16/2006	Secured Room 10 air conditioning unit
		5/22/2006	Swapped chilled water pumps and dam wall regenerative blowers
		5/26/2006	Replaced the filter and pre-filter of EOG HEPA train MM-EOG-F-401
		5/29/2006	Swapped chilled water pumps and dam wall regenerative blowers.
		5/30/2006	Took digital photographs of discharge chamber trough, melter plenum interior walls, and ceiling.
		6/1/2006	Performed simulated loss of power-diesel generator test. Noticed some corrosion on the battery terminals.
		6/5/2006	Switched from EOG HEPA train MM-EOG-F-402 to -F-401.
		6/5/2006	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted dam wall regenerative blower outlet pressure to 2.5 psig
		6/6/2006	City water low pressure alarm. The pressure reading at 30.5 psig
		01012000	The primary system chilled water pump MCL-CW-P-401 fault alarm illuminated Attempted to reset without
		6/7/2006	success.
			Opened the city water bypass varve to the back-up heat exchanger.

	Table 2.1. Chronology	of the DM1200 Melter	Maintenance and Ins	pections (continued).
--	-----------------------	----------------------	----------------------------	-----------------------

	6/8/2006	Low pressure alarm on primary system chilled water pump, MCL-CW-P-401. Pump was reset and restarted. Low pressure alarm on primary system chilled water pump, MCL-CW-P-401. Secured -P-401 pump to allow CUA chilled water to circulate and vent potential air bubbles out of the system.
	6/9/2006	Restarted primary system chilled water pump, MCL-CW-P-401. Monitored for low pressure alarms. Completely closed the city water bypass valve, MCL-DW-V-404.
	6/12/2006	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted dam wall regenerative blower outlet pressure to 2.5 psig.
Mainte	enance 6/15/2006	Removed discharge chamber heater and ceramic sheath for digital photographs. Reinstalled after photographs were taken.
	6/16/2006	Diesel generator was temporarily disconnected to relocate the unit to allow inspection and repair of underground storage tanks.
	6/19/2006	Swapped chilled water pumps and dam wall regenerative blowers. Performed simulated loss of power diesel generator test after it was relocated. The system worked satisfactorily. Diesel generator was placed in the standby mode.
	6/26/2006	Swapped chilled water pumps and dam wall regenerative blowers. Adjusted dam wall regenerative blower outlet pressure to 2.5 psig.

T-82

Thermocouple Location	Thermocouple Description	# Times Replaced	Minimum Time Installed, days	Maximum Time Installed, days	Average Time Installed, days
	1" from floor (W)	13	25	225	111
	13" from floor (W)	14	2	223	104
	18" from floor (W)	13	25	225	111
Class Dool	27" from floor (W)	14	35	312	108
Glass Pool	9" from floor (E) *	8	8	354	134
	18" from floor (E) *	9	8	244	119
	24" from floor (E) *	8	8	354	134
	30" from floor (E)	12	53	302	123
	8" below ceiling *	10	35	225	120
Plenum	17" below ceiling	9	47	354	158
	Exposed	20	1	227	56
	TC 1 *	2	231	887	559
Discharge	TC 2 *	2	231	614	423
	Riser *	6	52	384	190
	East *	2	271	842	557
Electrode	West *	2	219	271	245
	Bottom *	2	490	778	634

Table 2.2. Summary of Thermocouple Replacements on the DM1200.

* Thermocouple still installed in melter; therefore, lifetime data for that thermocouple is not included. Note: Replacement data does not include the first thermocouples installed.

-	Dates in Melter	Duration in Melter, days	Total Days Exposed to Feeding	Days Exposed to LAW Feeding	Days Exposed to HLW Feeding	# Times Removed for Inspection
	08/22/00 - 08/02/01	345	25.5	0.0	25.5	2
	08/02/01 - 11/15/01	105	36.6	0.0	36.6	5
Thermowell	11/20/01 - 08/05/02	258	23.5	14.6	8.9	4
#1	08/08/02 - 05/01/03	266	65.4	4.2	61.2	5
	05/01/03 - 09/02/05	784	124.1	22.2	101.9	9
	Average	352	55.0	8.2	46.8	-
	07/19/01 – 11/15/01	119	45.6	0.0	45.6	3
	11/20/01 - 08/05/02	258	23.5	14.6	8.9	4
Thermowell	08/08/02 - 05/01/03	266	65.4	4.2	61.2	7
#2	05/01/03 - 12/13/04	592	115.3	13.4	101.9	11
	12/13/04 - 05/31/06 *	534	8.9	8.9	0.0	1
	Average	354	51.7	8.2	43.5	-
	02/01/01 - 08/21/02	561	85.6	14.6	71.0	5
Level	08/26/02 - 10/28/03	424	142.2	15.1	127.1	6
Detector	10/28/03 - 09/01/05	668	48.3	11.4	36.9	2
	Average	551	92.0	13.7	78.3	-
	02/01/01 - 10/28/03	921	226.8	25.4	201.4	11
Discharge	11/03/03 - 08/10/04	241	26.6	2.4	24.2	3
Air Lance	09/16/04 - 05/13/06 *	584	21.6	8.8	12.8	3
	Average	608	91.7	12.3	79.4	-

Table 2.3. Summary of Thermowell, Level Detector and Discharge Air Lance **Replacements on the DM1200.**

* Component still installed in melter. "-" Empty data field

		Before Mo	After Mo	dification		
Heater #	# Times Replaced	Min. Time Installed, days	Max. Time Installed, days	Ave. Time Installed, days	# Times Replaced	Time Installed, days
1A	3	66	271	187	0	1256
1B	4	66	224	140	0	1256
2A	4	26	310	141	0	1252
2B	4	26	310	141	0	1252
3A	2	144	421	283	0	1252
3 B	1	565	565	565	0	1252
4A	3	27	310	188	0	1252
4B	3	27	310	188	0	1252
5A	2	38	527	283	0	1252
5B	3	12	527	188	0	1252
6A	1	565	565	565	0	1252
6B	1	565	565	565	0	1252
7A	1	561	561	561	0	1256
7B	1	561	561	561	0	1256

Table 2.4. Summary of Discharge Heater Replacements on the DM1200.

Test	Feed	Glass Yield	Duration	Bubbling Rate	Glass Production Rate
Configuration Test 9A VSL-04R4800-4 [30]	AZ-101	400 g/l	145 hrs	64 lpm	1050 kg/m²/d
Configuration Test 9B VSL-04R4800-4 [30]	AZ-101	400 g/l	72 hrs	134 lpm	1400 kg/m²/d
Test 1B VSL-05R5800-1 [35]	AZ-102	340 g/l	114 hrs	65 lpm	900 kg/m²/d
Test 2B VSL-05R5800-1 [35]	C-106/AY-102, High Waste Loading	340 g/l	105 hrs	90 lpm	1050 kg/m²/d
MACT HLW 1 (400°C plenum) VSL-05R5830-1 [41]	C-106/AY-102, spiked	430 g/l	52 hrs	24 lpm	700 kg/m²/d
MACT HLW 2A (345°C plenum) VSL-05R5830-1 [41]	C-106/AY-102, spiked	430 g/l	75 hrs	9 lpm	550 kg/m²/d
MACT HLW 1-cont (400°C plenum) VSL-05R5830-1 [41]	C-106/AY-102, spiked	430 g/l	19 hrs	28 lpm	742 kg/m²/d
MACT HLW 2B (500°C plenum) VSL-05R5830-1 [41]	C-106/AY-102, spiked	430 g/l	54 hrs	43 lpm	1072 kg/m²/d

Table 3.1. Tests Performed with Final HLW Bubbler Configuration.

Table 3.2.	Rate Increas	e from Imn	roved Bubbler	Configuration.
1 abic 5.2.	mare mercas	v nom mip	I OVCH DUDDICI	Conngui auton.

Test	Bubbler Configuration	Feed	Glass Yield	Duration	Bubbling Rate	Glass Production Rate	
Test 1B VSL-05R5800- 1 [35]	New (2 – Double Outlet bubblers on floor)	AZ- 102	340 g/l	114 hrs	65 lpm	900 kg/m²/d	
Test 5C VSL-03R3800- 4 [17]	Old (2 - Single Outlet bubblers in corners facing center, 6" from floor)	AZ- 101	300 g/l	75 hrs	65 lpm	550 kg/m²/d	
Rate Increase							
Configuration Test 9A VSL-04R4800-4 [30]	New (2 – Double Outlet bubblers on floor)	AZ- 101	400 g/l	145 hrs	64 lpm	1050 kg/m²/d	
Test 4C VSL- 03R3800-4 [17]	Old (2 - Single Outlet bubblers in corners facing center, 6" from floor)	AZ- 101	400 g/l	72 hrs	65 lpm	750 kg/m²/d	
Rate Increase							

	Feed Type and Test Conditions	Ave. Glass	Bubbler Flow	Number of Cleanings vs. Bubbling Rate		
Test		Production Rate, $1 e_{2}/d_{2}$	Rate, lpm *	0 – 65 lpm	65 - 100	>100 lpm
	C 106/AV 102	kg/m/day	_	1	Ipm	1
5	550 g/l [29]	650 – 925	65 (variable)	0	-	-
6	C-106/AY-102, variable sugar with nitrates, 550 g/l [29]	895 – 1025	65 (variable)	1	-	-
2	AZ-101, variable bubbling depth (parallel to electrodes, 530 g/l [30]	550 – 650	65 (variable)	0	-	-
1	AZ-101, bubbler skewing, 530 g/l [30]	730 – 1100	65 (skewed)	10	-	-
3	AZ-101, prototypical bubbling, 2 and 4 outlet bubblers, 400 g/l [30]	600 – 1165	Adjusted for max rate (fixed)	2	10	5
8	AZ-101, 4 outlet bubbling and 1175°C, 400 g/l [30]	740 – 1450	Adjusted for max rate (fixed)	0	12	22
4	AZ-101, variable sugar with Ru, 400 g/l [29]	600 – 900	65 (variable)	0	-	-
10	AZ-101, variable Cl/SO ₄ , 400 g/l [30]	730 – 920	80 (variable)	1	-	-
9	AZ-101, best bubbler configuration, 400 g/l [30]	1000 – 1275	Adjusted for max rate (fixed)	0	0	5
-	AZ-102, rheology test, 2 and 4 bubbling outlets, 500 – 340 g/l [35]	1000 – 1300	65 and adjusted for max rate (fixed)	3	0	12
-	C-106/AY-102, rheology test, 2 and 4 bubbling outlets, 540 – 340 g/l [35]	1010 – 1050	65, adjusted for 1050 kg/m²/day (fixed)	1	1	-
HLW MACT	C-106/AY-102, 4 outlet bubblers, 420 g/l [41]	500 - 1100	<65 (adjusted to achieve rate)	0	-	-

Table 4.1. Summary of Manual Cleanings of the DM1200 Film Cooler.

"-" Empty data field

* Fixed – all bubblers have equal flow rates and total to the target overall flow rate.

Variable - bubbler flow rates are independent of one another, but total to the target overall flow rate.

Test	Feed Type and Test Conditions	Ave. Glass Production Rate, kg/m²/day	Bubbler Flow Rate, lpm *	# of Blockages	Comments
5	C-106/AY-102, variable sugar, 550 g/l [29]	650 – 925	65 (variable)	0	Sensor line clogging, line not cleaned after test.
6	C-106/AY-102, variable sugar with nitrates, 550 g/L [29]	895 – 1025	65 (variable)	0	Line not cleaned after test.
2	AZ-101, variable bubbling depth (parallel to electrodes, 530 g/l [30]	550 - 650	65 (variable)	4	Line cleaned after test.
1	AZ-101, bubbler skewing, 530 g/l [30]	730 – 1100	65 (skewed)	1	Blockage cleaned by tapping line with hammer, sensor line clogged.
3	AZ-101, prototypical bubbling, 2 and 4 outlet bubblers, 400 g/l [30]	600 – 1165	Adjusted for max rate (fixed)	5	Blockages rodded out, line not cleaned at end of test.
8	AZ-101, 4 bubbling outlets and 1175°C, 400 g/l [30]	740 – 1450	Adjusted for max rate (fixed)	0	Line not cleaned at end of test.
4	AZ-101, variable sugar with Ru, 400 g/l [29]	600 – 900	65 (variable)	0	Line not cleaned at end of test.
10	AZ-101, variable Cl/SO ₄ , 400 g/l [30]	730 – 920	80 (variable)	2	Blockage cleared by tapping with hammer, line cleaned after test.
9	AZ-101, optimum bubbler configuration, 400 g/l [30]	1000 – 1275	Adjusted for max rate (fixed)	0	Line not cleaned after test.
-	AZ-102, rheology test, 2 and 4 bubbling outlets, 500 – 340 g/l [35]	1000 - 1300	65 and adjusted for max rate (fixed)	0	Line tapped with hammer prior to start, sensor tubing clogged.
-	C-106/AY-102, rheology test, 2 and 4 bubbling outlets, 540 – 340 g/l [35]	1010 - 1050	65, adjusted for 1050 kg/m²/day (fixed)	0	-
HLW MACT	C-106/AY-102, 4 bubbling outlets, 420 g/L [41]	500 - 1100	<65 (adjusted to achieve rate)	0	-
LAW MACT	LAW Sub-Envelope A2, 4 bubblers, 8M Na [41]	1300 - 1850	20 - 35	0	Sensor tubing clogged several times.

Table 4.2. Summary of DM1200 Transition Line Blockages.

"-" Empty data field

* Fixed – all bubblers have equal flow rates and total to the target overall flow rate.

Variable - bubbler flow rates are independent of one another, but total to the target overall flow rate.
Report Number	Sampling	Location	Mass (g)
	Date		120
VSL-02R8800-1[10]	1/15/2002		130
	3/6/2002	Solids in the transition bellows and transition line section 4	Mass not recorded.
VSL-02R8800-2 [14]	4/5/2002	Small sections of film cooler bottom for microscopy analysis	Digital pictures taken. Mass not recorded.
	4/6/2002	Solids removed from film cooler with chisel and hammer.	Digital pictures taken. Mass not recorded.
VSL-03R3800-4 [17]	10/24/2002	Transition line section #4 - transition line section #1	Masses are not recorded.
	3/6/2003	Film cooler	62
	3/6/2003	Transition line (section) #1	116
	3/6/2003	Transition line section #2	3110
VSL-03R3800-3 [28]	3/6/2003	Transition line section #3	842
	3/6/2003	Transition line bellows	236
	3/6/2003	Transition line #4 (SBS inlet transition line pipe)	136
	6/11/2003	Transition line section #1	740
	6/11/2003	Transition line section #3	410
	6/11/2003	Transition line section #4	260
VCI 04D4900 4 [20]	6/11/2003	Transition line section #2	2280
VSL-04R4800-4 [30]	6/11/2003	Transition line bellows	270
	6/11/2003	Film cooler	80
	7/2/2003	Transition line bellows	10
	7/22/2003	Transition line bellows	254
VSL-04R4800-4 [30]	9/12/2003	Transition line and bellows	1500
	9/12/2003	Film cooler	570
	10/10/2003	Transition line bellows	60
VSL-04R4851-1 [31]	10/23/2003	Transition line section #3 and bellows	16
	10/23/2003	Transition line section #2	12
	1/8/2004	Transition line bellows	150
	1/8/2004	Transition line section #3	270
	1/8/2004	Transition line section #1	4
VSL-03L4850-1 [34]	1/8/2004	Transition line section #4	87
	1/8/2004	Transition line section #2	890
	1/8/2004	Film cooler	Found no particulate to sample.
	4/14/2005	Transition line section #2	333
VSL-05R5800-1 [35]	4/20/2005	Transition line section #2	834
	4/20/2005	Transition line section #3 and bellows	360
	4/20/2005	Transition line section #4,	370

Table 4.3. Solid Deposits Removed During DM1200 Tests.

Report	VSL-02R8800-1 [10]	VSL-02R8800-2 [14]	VSL-03R3800-3 [28]	VSL-04R4800-4 [30]	VSI	L-05R5800-1	[35]
Date	1/16/2002	4/06/2002	3/6/2003	7/22/2003		4/20/2005	-
Sample Description	Transition line bellows	Residual solids removed from film cooler after washing.	Transition line section #2	Transition line bellows	Transition line Section #2	Transition line section #3 & bellows	Transition line section #4
Al ₂ O ₃	7.47	4.19	4.14		2.13	2.05	3.65
As_2O_3	0.10	0.01	0.08	1	< 0.01	< 0.01	< 0.01
B ₂ O ₃	3.22	9.97	6.93	7	7.49	8.06	10.35
BaO	0.03	0.01	0.01	7	0.01	0.01	0.05
CaO	0.96	1.33	0.63	7	0.73	0.60	0.50
CdO	0.43	0.13	0.03	7	0.12	0.13	0.04
Cr_2O_3	0.31	2.81	0.04	Main	5.01	2.75	0.14
Cs_2O^*	0.55	NA	0.11	constituents	NA	NA	NA
CuO	0.03	0.01	0.03	determined	0.01	0.01	0.02
Fe_2O_3	14.39	6.95	11.68	by SEM/EDS	7.66	6.60	11.88
I**	< 0.01	NA	NA	Si, Fe, Zn, S	NA	NA	NA
K ₂ O	0.39	1.37	0.06	and Cl.	5.57	5.37	0.27
Li ₂ O	2.06	1.37	1.03	In regions	0.75	1.15	2.04
MgO	0.70	0.30	0.60	material was	0.46	0.42	0.60
MnO	0.61	0.28	1.11	evident, high	0.35	0.30	2.71
Na ₂ O	6.99	17.78	6.61	Na, S, and Cl	22.55	22.71	11.90
NiO	0.74	4.02	0.37	spectra were	0.17	0.17	0.34
P_2O_5	0.25	0.14	0.08	observed.	0.10	0.19	0.34
PbO	0.15	0.04	0.08	Sodium	0.08	0.09	0.53
Sb ₂ O ₃	0.16	< 0.01	0.13	readily	NA	NA	NA
SeO ₂	14.01	1.99	5.06	observed	NA	NA	NA
SiO ₂	20.68	14.73	26.42	across the	13.42	13.70	35.05
SO3**	6.06	<0.01	1.99	Sample.	12.07	6.89	2.28
SrO	1.70	0.39	0.38]	0.22	0.26	0.36
TeO_2	1.44	0.25	NA	7	NA	NA	NA
TiO ₂	0.24	1.53	0.19	7	0.45	0.49	0.16
ZnO	2.01	2.15	2.07	7	1.35	1.47	1.20
ZrO_2	0.73	0.70	3.48	1	0.61	0.40	1.47
Total	86.43	72.49	73.36	7	81.31	73.82	85.88

Table 4.4. DCP Analyzed Composition of Solid Deposits Collected During DM1200 Tests (wt%).

* Analyzed by AA; **Analyzed by IC; NA Not analyzed

R	eport		VSL-	-01R0100)-2 [3]		VSL-01R0100-2 [3]							
Fee	d Type		HLW	AZ-101,	570 g/l		HLW AZ-101, 570 g/l							
Ι	Dates	5/10/01 5/10/01					5/15/01 5/15/01							
Bı Conf	ubbler iguration	Bubbling from the bottom electrode bubblers						Bubbling from the bottom electrode bubblers						
Bu]	bbling Rate			< 4 lpm				47 lpm						
			Average		Average			Average			Average			
		Feed Melter			DF Melter		Feed	Melter	DF	Feed	Melter	DF		
-		Flux Emissions			Emissions	Across	Flux	Emissions	Across	Flux	Emissions	Across		
		(g/hr)	Flux	Melter	Flux	Melter	(g/hr)	Flux	Melter	(g/hr)	Flux	Melter		
			(mg/min)	to Relation toretage	(mg/min)			(mg/min)	a selfinos com	on and a second second	(mg/min)	0.9 - 57 - 55		
	Total [®]	9655	78.0	2063	60.0	2682	42045	1879	373	46717	1951	399		
	Al	303.6	1.7	2976	1.8	2811	1322.2	40.3	547	1469.1	46.1	531		
	As	2.4	0.1	400	0.1	400	10.2	1.7	100	11.4	1.5	127		
	В	120.3	0.8	2506	2.1	955	523.7	32.7	267	581.9	27.4	354		
	Ba	2.8	< 0.1	>470	< 0.1	>470	12.1	0.5	403	13.4	0.5	447		
	Ca	13.9	0.9	257	1.0	232	60.3	5.4	186	67.0	4.9	228		
	Cd	25.7	0.1	4283	0.3	1428	111.8	6.3	296	124.2	5.4	383		
	Cr	1.1	< 0.1	>180	0.1	183	4.6	1.0	77	5.1	0.7	121		
	Cs	6.2	0.1	1033	0.4	258	27.0	9.5	47	30.0	6.9	72		
	Cu	1.9	< 0.1	>320	< 0.1	>320	8.1	0.4	338	9.0	0.4	375		
	Fe	563.1	4.0	2346	4.2	2235	2452.0	97.7	418	2724.5	96.7	470		
	Ĩ	7.8	< 0.1	>1300	< 0.1	>1300	33.8	< 0.1	>5630	37.5	< 0.1	>6250		
10	Κ	10.9	0.3	606	0.4	454	47.6	7.3	109	52.9	6.0	147		
late	Li	216.0	0.6	6000	1.2	3000	940.7	21.7	723	1045.2	19.7	884		
icu	Mg	2.8	0.2	233	0.1	467	12.2	0.9	226	13.6	0.9	252		
art	Mn	181.9	0.3	10106	0.4	7579	792.0	8.2	1610	880.0	7.1	2066		
	Na	378.9	4.4	1435	6.2	1019	1650.2	91.4	301	1833.5	78.0	392		
	Ni	32.9	0.2	2742	0.3	1828	143.2	6.2	385	159.1	6.3	421		
	Р	113.7	0.1	18950	< 0.1	>18950	495.0	0.3	27500	550.0	< 0.1	>91660		
	Pb	10.8	0.1	1800	0.1	1800	47.0	3.1	253	52.2	2.7	322		
	S	7.8	2.6	50	1.8	72	33.8	35.7	16	37.6	30.3	21		
	Sb	12.3	0.1	2050	< 0.1	>2050	53.4	1.1	809	59.3	0.6	1647		
	Se	8.3	8.3	17	21.2	7	36.0	345.9	2	40.0	323.1	2		
	Si	1649.5	5.1	5391	2.2	12496	7183.2	114.0	1050	7981.4	111.0	1198		
	Sr	152.0	0.8	3167	1.2	2111	662.1	21.8	506	735.7	20.5	598		
	Te	8.7	0.5	290	1.9	76	37.8	43.1	15	42.0	34.3	20		
	Ti	2.8	< 0.1	>470	0.1	467	12.1	0.5	403	13.5	0.7	321		
	Zn	124.5	0.8	2594	1.3	1596	542.3	20.7	437	602.5	20.6	487		
	Zr	204.3	0.3	11350	0.1	34050	889.5	10.5	1412	988.3	9.4	1752		
	В	120.3	17.2	117	4.9	409	523.7	141.5	62	581.9	197.9	49		
	Cl	0.8	8.7	2	2.9	5	3.4	65.5	1	3.8	78.7	1		
IS	F	3.1	4.4	12	4.3	12	13.5	72.8	3	15.0	103.3	2		
Ğ	Ι	7.8	47.2	3	122.3	1	33.8	475.9	1	37.5	584.6	1		
	S	7.8	5.2	25	1.8	72	33.8	95.0	6	37.6	119.1	5		
	Se	8.3	17.4	8	12.7	11	36.0	38.0	16	40.0	63.1	11		

Table 5.1. Melter Emission Rates

NC - Not calculated.

"-" Empty data filed. ^{\$} - From gravimetric analysis of filters and rinse dry downs

Damart						on Raits		VSL_02R0100_2 [9]				
Report		V	SL-01R0100-2	3	VSL	-02R0100-2	[9]	TTT 337 A	VSL-02R0100-2	2[9]		
Feed Type		HI	LW AZ-101, 350) g/l	HLW	AZ-101, 57	70 g/l	HLW AZ-101, 570 g/1 with 10 g/1 sugar				
	Dates		5/22/01			6/29-30/01			7/29-30/01			
B Con	ubbler figuration	Bubl	oling from the b lectrode bubble	ottom ers	No bubbling			No bubbling				
Bubl	oling Rate		47 lpm		< 4 lpm			< 4 lpm				
						Auguara	-		Arranges	r		
		Faad	Average	DE	Food	Average		Food	Maltar			
0 <u>37</u> 1985		Flux	Emissions*	Across	Flux	Emissions	Across	Flux	Emissions	Across		
- Total ^{\$}		(q/br)	Flux	Melter	(ma/min)	Flux	Melter	(a/br)	Flux	Melter		
		(g/m)	(ma/min)	IVICITCI	(mg/mm)	(ma/min)	IVICIUI	(g/m)	(ma/min)	Wiener		
		11746	1704	408	317167	155.3	2042	232167	202	11/0		
	. 10	1371.2	1704	400	12/25	3.04	4000	0005	5.82	1143		
		10.6	47.7	71	12425	3.04	> 224	70	1.52	1505		
	AS D	542.1	2.5	22	90	20.20	204	70	6.07	4.5		
	D	12.5	270.4	417	9045	50.20	>1140	82	0.07	> 820		
		12.5	0.3	417	57	< 0.10	>1140	0.5	~ 0.10	<u>~ 630</u>		
		02.3	24.9	42	1051	< 4.40	>127	413	0.72	575		
		110.0	8.0 41.6	1	1031	0.07	1572 NC	709	15.45	37		
ite		3.3	41.0	1	INA 07	INA 10.12	NU	NA	NA 0.12	INC CO2		
	Cr	4.8	2.0	40	8/	< 0.13	> 669	64	0.13	203		
	Cs	28.0	9.9	47	239	0.40	599	1/5	0.46	380		
	Cu	8.4	0.4	350	/6	0.29	258	36	0.24	232		
		14.0	0.5*	467	NA	NA	NC	NA	NA	NC		
	Fe	2542.8	90.8	467	23043	6.38	3609	16867	10.27	1643		
		35.0	181.8	3	317	< 0.09	> 5286	232	< 0.06	> 3869		
ula	K	49.4	8.8	94	448	0.48	925	328	0.57	578		
tic	L1	975.5	28.4	572	8840	1.49	5932	64/1	2.35	2755		
Pai	Mg	12.7	4.6	46	2208*	1.18	1871	1613"	1.69	954		
	Mn	821.3	8.7	1573	7443	0.78	9587	5448	1.72	3159		
	Na	1711.3	661.8	43	15507	7.71	2012	11351	7.50	1514		
	N1	148.5	6.0	413	1346	< 0.30	> 4487	985	0.50	1976		
	<u>P</u>	513.3	0.7	12221	180	<1.52	>118	132	0.32	412		
	Pb	48.7	3.9	208	442	0.38	1156	323	1.71	189		
	S	35.1	190.2	3	318	12.56	25	233	0.88	265		
	Sb	55.3	2.6	354	501	< 0.30	> 1670	367	0.55	665		
	Se	37.4	400.4	2	339	104.25	3	248	29.64	8		
	Si	7449.3	97.3	1276	67505	9.78	6906	49414	15.38	3213		
	Sr	686.6	24.1	475	6222	2.37	2624	4555	3.64	1250		
	Te	39.2	64.4	10	355	2.56	138	260	37.66	7		
	Ti	12.6	0.4	525	114	< 0.09	>1901	84	< 0.08	>1050		
	Zn	562.4	20.9	448	5096	3.55	1434	3730	3.88	961		
	Zr	922.4	7.7	1997	8359	< 0.67	> 12476	6119	0.86	7074		
	В	543.10	NA	NC	9843	18.99	518	7205	24.53	294		
	Cl	3.50	NA	NC	32	< 4.05	> 8	23	5.31	4		
as	F	14.00	NA	NC	127	< 4.33	> 29	93	5.21	18		
0	I	35.00	NA	NC	317	216.03	1	232	63.66	4		
ā	S	35.07	NA	NC	318	< 10.49	> 30	233	22.99	10		
	Se	37.36	NA	NC	339	16.73	20	248	22.27	11		

NC - Not calculated..

^{\$} - From gravimetric analysis of filters and rinse dry-downs.

* - Melter emissions include gas and particle fractions combined due to filter breach.

- The analyzed MgO concentration of 1.15 wt% instead of the target value of 0.06 wt% was used to calculate the feed flux NA –Not analyzed; "-" Empty data field

Report		VS	L-02R0100-2	2 [9]	VSL	VSL-02R0100-2 [9]			VSL-02R0100-2[9]			
Feed Type		HLV	V AZ-101, 4	00 g/l	HLW	AZ-101, 40	00 g/l	HLW AZ-101, 420g/l with nitrated + sugar (sugar ratio=0.5)				
J	Dates		8/08-10/01			8/22-24/01			9/28-30/01	0.0)		
B Cont	ubbler figuration	E	Bubbling: De	ep	Buł	obling: Shall	ow	No bubbling				
Bubb	oling Rate		62 lpm			50 lpm		<4 lpm				
-		Feed Flux (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter	Feed Flux (mg/min)	Feed Melter DF Flux Emissions Across (mg/min) Flux Melter (mg/min) 1749 207.4		Feed Flux (g/hr)	Average Melter Emissions Flux (mg/min)	DF Across Melter		
		1036333	4520	229	336667	1748	307.4	2/5333	949.7	290		
	AI	40600	109.48	240	162	10.37	104	10787	15.11	221		
	AS D	20160	140.40	220	16655	1.30	229	0.5	0.36	221		
-	Ba	32102	140.49	229	10055	0.64	300	0040	0.19	514		
	Da Ca	1852	9.08	203	050	3.68	261	492	1.37	350		
1	Cd	3433	21.27	161	1778	8.53	201	912	2 30	397		
0	Cr	284	4 75	60	147	2.10	70	75	0.26	289		
	Cs	782	16.61	47	405	8 32	49	208	1 46	142		
	Cu	248	0.97	257	129	0.32	263	66	0.18	361		
	Fe	75292	312.81	241	38990	119.84	325	20003	28.15	711		
	I	1036	< 0.06	> 17272	537	< 0.06	> 8944	275	< 0.06	> 4589		
	K	1463	11.55	127	757	5.46	139	389	2.80	139		
late	Li	28884	71.23	405	14958	32.85	455	7674	18.20	422		
icu	Mg#	7200	36.84	195	3725	15.68	238	1920	3.97	105		
art	Mn	24319	32.71	743	12593	14.10	893	6461	3.43	1886		
	Na	50670	223.13	227	26240	93.11	282	13462	51.26	263		
	Ni	4398	18.81	234	2277	7.54	302	1168	1.70	689		
	Р	588	6.21	95	305	1.54	197	156	0.64	245		
1	Pb	1443	7.23	200	747	3.06	244	383	0.60	634		
	S	1038	102.47	10	538	34.34	16	276	1.49	185		
	Sb	1638	6.11	268	848	1.96	433	435	0.11	3892		
	Se	1106	485.26	2	573	278.12	2	294	38.76	8		
	Si	220570	459.30	480	114223	171.89	664	58601	38.38	1527		
	Sr	20330	70.73	287	10528	31.30	336	5401	7.90	684		
	Те	1160	81.88	14	601	42.07	14	308	1.16	266		
	Ti	373	1.17	319	193	1.35	143	99	0.29	346		
	Zn	16652	67.92	245	8623	30.26	285	4424	5.53	801		
	Zr	27312	37.59	727	14144	12.65	1118	7256	7.30	993		
	В	32162	333.09	97	16655	146.58	114	8545	65.35	131		
	Cl	104	73.78	1	54	66.71	1	28	< 0.07	> 459		
as	F	415	131.53	3	215	61.61	3	110	139.60	1		
U U	\mathbf{I}_{a}^{a}	1036	508.80	2	537	448.56	1	275	12.95	21		
	S	1038	164.92	6	538	94.75	6	276	7.31	38		
	Se	1106	49.64	22	573	37.22	15	294	0.52	562		

Table 5.1	Melter	Emission	Rates	(continued)	Y
Table S.L.	MUTUL	Linnssion	Mails	(commuca)	J•.

 NC - Not Calculated
 ⁸ - From gravimetric analysis of filters and rinse dry-downs
 # - The analyzed MgO concentration of 1.15 wt% instead of the target value of 0.06 wt% was used to calculate the feed flux.

Report		VS	[02R0100-2 [9]	VS	L-02R0100-2	9]	VSL-02R0100-2 [9]				
Feed Type		HLW AZ	C-101, 480 g/l	with frit	HLW AZ-1	01. 480 g/l w	ith frit and	HLW AZ-101. 420g/l with				
Fee	ed Type	ar	id 7.5 g/l sugai	r		7.5 g/l sugar		nitrated	+ sugar (sugar)	ratio=0.7)		
Į	Dates		10/15-17/01			10/23-25/01			10/30-11/1/01			
В	ubbler	9	S.F. 1. 191.19									
Configuration			No bubbling		B	ubbling: Deep			No bubbling			
D 11	U D.		11			co. 1						
Bubb	oling Rate	~	< 4 lpm			60 lpm			<4 lpm			
			Average			Average			Average			
		Feed	Melter	DF	Feed	Melter	DF	Feed	Melter	DF		
	-	Flux	Emissions	Across	Flux	Emissions	Across	Flux	Emissions	Across		
- Total ^{\$}		(mg/min)	Flux	Melter	(mg/min)	Flux	Melter	(g/hr)	Flux	Melter		
			(mg/min)			(mg/min)			(mg/min)			
	Total [®]	160333	206.4	797	957667	2212	433	285167	1291	221		
	Al	6281	4.60	1364	37518	25.32	1482	11172	5.58	2004		
	As	49	0.57	85	290	10.65	27	86	1.41	61		
	В	4976	1.48	3367	29721	30.75	967	8850	61.33	144		
	Ba	57	< 0.06	> 957	343	0.14	2381	102	0.31	328		
	Ca	287	1.98	145	1711	3.36	509	510	2.14	238		
	Cd	531	1.97	269	3173	35.09	90	945	5.31	178		
	Cr	44	0.15	302	262	1.08	244	78	0.23	340		
	Cs	121	0.43	282	723	9.53	76	215	6.24	34		
	Cu	38	< 0.07	> 543	230	0.25	904	68	0.12	581		
	Fe	11649	6.49	1795	69576	53.95	1290	20718	12.54	1652		
	I	160	< 0.06	> 2672	958	< 0.06	> 15961	285	< 0.06	> 4753		
10	Κ	226	0.36	632	1352	6.17	219	402	9.45	43		
lat	Li	4469	1.42	3149	26692	18.63	1432	7948	26.30	302		
ici	Mg#	1114	0.66	1687	6643	3.26	2038	1978	2.75	719		
art	Mn	3762	0.36	10536	22473	3.44	6528	6692	1.53	4384		
Here :	Na	7839	3.74	2096	46824	55.92	837	13943	139.66	100		
	Ni	680	0.36	1884	4064	3.08	1319	1210	0.74	1628		
	Р	91	< 0.08	>1240	544	1.02	531	162	0.68	239		
	Pb	223	0.25	896	1334	4.40	303	397	1.10	361		
	S	161	1.17	137	959	41.72	23	286	3.65	78		
	Sb	253	< 0.13	> 1946	1514	3.31	457	451	0.96	468		
	Se	171	28.39	6	1022	562.05	2	304	29.28	10		
	Si	34125	12.45	2742	203827	62.82	3245	60694	364.85	166		
	Sr	3145	1.04	3026	18787	7.30	2573	5594	6.25	896		
	Те	179	7.19	25	1072	122.25	9	319	3.02	106		
	Ti	58	0.60	96	344	0.59	582	103	0.21	491		
	Zn	2576	0.76	3397	15388	7.32	2102	4582	2.90	1582		
	Zr	4226	0.56	7501	25239	4.62	5466	7515	2.48	3034		
	В	4976	14.36	347	29721	292.79	102	8850	55.23	160		
	Cl	16	8.27	2	96	94.59	1	29	< 0.07	> 475		
3S	F	64	20.73	3	383	265.73	1	114	< 0.07	> 1901		
Ŭ	I	160	27.86	6	958	222.54	4	285	15.19	19		
	S	161	19.52	8	959	481.31	2	286	17.09	17		
	Se	171	10.08	17	1022	30.35	34	304	0.59	513		

NC - Not Calculated [§] - From gravimetric analysis of filters and rinse dry-downs # - The analyzed MgO concentration of 1.15 wt% instead of the target value of 0.06 wt% was used to calculate the feed flux.

Report		VSL-02R0100-2 [9]			VSI	VSL-02R8800-1 [10]			VSL-02R8800-2 [14]			
Feed Type		HLW AZ-	101, 570 g/l w	ith 10 g/1	TAW	Envalona C1	951 c/l	TAWE		260 ~/1		
Feed Type			sugar.	8,7722	LAW	Envelope C1,	651 g/1	LAWE	nvelope A1, a	500 g/1		
	Dates		11/07-08/01			1/9-10/02		3/03-04/02 and 3/18/02				
Bubbler		8	ST 1 111		Four top-entering bubblers (one in			Four top-entering bubblers (one in				
Configuration			No bubbling		each corner) together with three of			each corner) together with three of				
D 11	1. D.		Sec. 1		the botto	m-electrode	oubblers.	the bottor	the bottom-electrode bubblers.			
Bub	bling Rate		< 4 lpm	1		/1 lpm	1		90 lpm			
		Trad	Average		Fred	Average	DE	Event	Average	DE		
-		Feed	Emissions	Across	Feed	Emissions	Across	Flux	Emissions	Across		
		(ma/min)	Flux	Melter	(mg/min)	Flux	Melter	(g/hr)	Flux	Melter		
		(mg/mm)	(mg/min)		(mg/mm)	(mg/min)	IVICIUI	(g/III)	(mg/min)	Wiener		
-	Total ^{\$}	281833	536	526	1126150	2.767	407	2041667	8239.9	248		
1	Al	11041	2.25	4902	46417	6.39	7260	51717	56.65	912.9		
	As	85	4.10	21	NA	NA	NC	NA	NA	NC		
	В	8747	4.15	2108	44903	60.25	745	44048	75.06	586.8		
	Ba	101	< 0.06	> 1683	NA	NA	NC	NA	NA	NC		
	Ca	504	0.59	859	52482	4.72	11119	22444	13.23	1696.4		
1	Cd	934	32.12	29	NA	NA	NC	1704	14.57	117.0		
	C1	NA	NA	NC	1152*	820.59*	1.40	8881	3044.66	2.9		
	Cr	77	0.09	824	197	3.14	63	217	5.15	42.1		
	Cs	213	1.50	141	2173	119.73	18	2094	248.11	8.4		
	Cu	68	< 0.12	> 567	NA	NA	NC	NA	NA	NC		
	F	NA	NA	NC	2016^{*}	126.72*	16	317	58.42	5.4		
	Fe	20476	4.95	4140	56072	22.95	2443	76957	53.67	1433.9		
2	I	282	< 0.06	> 4697	1440*	< 0.01*	>144000	1586	< 0.10	> 15860		
ılat	K	398	0.76	526	956	14.53	66	5793	141.70	40.9		
tici	Li	7855	1.86	4227	16719	14.80	1129	NA	NA	NC		
Par	Mg#	1958	0.60	3264	13108	0.32	41394	18933	0.43	44030.2		
	Mn	6614	0.24	27815	NA	NA	NC	NA	NA	NC		
	Na	13780	8.24	1673	154346	388.30	397	234847	1766.24	133.0		
	N1	1196	0.29	4081	339	0.04	8475	NA	NA	NC		
		160	< 0.18	> 889	754	3.67	205	485	3.05	158.8		
	Pb	392	2.49	157	267	1.64	163	NA 1525	NA (1.05	NC 25.0		
	<u> </u>	282	3.20	87	2192 NIA	195.00 NA	11 NC	1525 NIA	01.05 NIA	25.0 NC		
	50	201	162.00	1000	NA NA	NA NA	NC	1120	NA 222.21	2.4		
	Se Si	50085	8.07	7/3/	212808	16 50	6715	328554	85.50	2828.5		
	Sr	5529	1.00	5540	NΔ	NA	NC	NA	NA	NC		
	Te	315	96.59	3	NΔ	NA	NC	NA	NA	NC		
-	Ti	101	< 0.06	> 1690	0830	538	1829	21011	27.47	764.8		
	Zn	4528	1 25	3620	35392	18 70	1893	37584	67.56	556.3		
	Zr	7428	0.40	18529	32080	0.47	67775	34868	1.67	348680		
	B	8747	32.25	271	44903	87.37	514	44048	163.03	2.70.2		
	Cl	28	14.58	2	1152	4.25	271	8881	131.21	67.7		
	F	113	30.04	4	2016	50.54	40	317	9.96	31.8		
jas	I	282	98.60	3	1440	698.31	2	1586	633.29	2.5		
	S	282	119.22	2	2192	6.03	364	1525	0.55	2500		
	Se	301	10.18	30	NA	NA	NC	1128	1.63	667		
	NH	NA	NA	NC	0	2058	NC	2.42.7	1516	16		

"" Empty data field; NC – Not calculated, NA – Not analyzed.
 From gravimetric analysis of filters and rinse dry-downs
 * - Calculation based on water dissolution of filter particulate
 # - The analyzed MgO concentration of 1.15 wt% instead of the target value of 0.06 wt% was used to calculate the feed flux

Report		VSI	L-03R3800-4 [17]	VSL-0	3R3800-4 [17]		VSL-03R3800-4 [17]				
Fee	ed Type	HLV	WAZ-101, 530	g/l	HLW A	1	HLW AZ-101, 530 g/l					
1	Dates		9/12/02			9/14/02		9/17/02				
n	1.1.1	Two top	-entering "J" b	ubbling	Two top-er	ntering "J" bub	Two top-entering "J"					
B	ubbler	lances loc	ated six inches	from the	lances loca	ated six inches	trom		ng lances loca	ated six		
Con	figuration	melte	r bottom in cor	mers	the melter	inches from the melter bottom						
-			diagonally.		u	diagonally.				any.		
Bubb	oling Rate		40 lpm			40 lpm	<u>.</u>		62 lpm			
			Average	129020304110		Average	1		Average	the second second		
		Feed	Melter	DF	Feed	Melter	DF	Feed	Melter	DF		
		Flux	Emissions	Across	Flux	Emissions	Across	Flux	Emissions	Across		
		(mg/min)	Flux	Melter	(mg/min)	Flux	Melter	(g/hr)	Flux	Melter		
		205100	(mg/min)			(mg/min)		000000	(mg/min)	1.01		
	Total	396400	1634	243	625700	1116	561	903300	4987	181		
	Al	8847	21.6	410	13965	26.0	537	20159	127	159		
	B	11900	59.3	201	18784	65.1	288	27116	264	103		
	Ba	58	0.18	322	91	0.51	178	132	1.45	91		
	Ca	645	3.67	176	1018	3.17	321	1470	12.8	115		
	Cd	173	0.59	293	273	1.04	263	394	3.38	117		
	Cl*	0	40.4	NC	0	27.2	NC	0	95.3	NC		
	Cu	77	0.28	275	122	0.28	436	176	0.97	181		
	F*	129	12.6	10.3	203	17.9	11.4	294	261	1.1		
e	Fe	27510	71.89	383	43425	121	360	62688	492	127		
ılat	I*	322	< 0.10	> 3220	509	< 0.10	> 5090	734	< 0.10	>7340		
tict	K	80	1.00	80.0	127	1.17	109	183	5.37	34		
Par	Li	5269	9.62	548	8317	11.6	720	12006	43.9	273		
, F	Mg	214	1.53	140	337	1.73	195	487	6.89	71		
	Mn	424	0.84	505	6 7 0	1.12	598	967	4.28	226		
	Na	27851	115	243	43963	133	332	63464	476	133		
	Ni	1545	3.94	392	2438	5.77	423	3520	27.35	129		
	Pb	90	0.20	450	142	0.46	309	204	2.54	80		
	S*	90	18.3*	4.9	143	27.9	5.1	206	116	1.8		
	Si	71396	87.7	814	112699	142	792	162690	463	351		
	Sr	82	0.21	391	129	0.22	586	186	1.38	135		
	Zn	5203	29.9	174	8213	25.0	329	11857	87.86	135		
	Zr	9064	13.7	662	14308	21.7	661	20655	76.78	269		
	В	11900	46.2	258	18784	92.8	203	27116	193.07	140		
	Cl	0	< 0.10	NC	0	< 0.10	NC	0	< 0.10	NC		
Gas	F	129	16.9	7.6	203	43.4	4.7	294	60.57	4.9		
	Ι	322	302	1.1	509	417	1.2	734	748	1.0		
	S	90	8.15	11.0	143	28.6	5.0	206	33.3	6.2		

\$ - From gravimetric analysis of filters and front-half rinse dry-down

* - From water dissolution of filter particulate.

NC –Not calculated

Report		VSI	L-03R3800-4 [1	7]	VSL-03R3800-4 [17]			VSL-03R3800-4[17]			
Fee	ed Type	HLW AZ	-101, 400 g/l wi metals.	th noble	HLW	AZ-101, 315	g/l	HL	W AZ-101, 30	0 g/l	
	Dates		10/01- 02/02		10/11/02			10/23-24/02			
B Coni	ubbler figuration	Two top lances 1 the me	-entering "J" bu ocated six inche lter bottom in co diagonally.	bbling s from orners	Two top- lances lo the melt	Two top-entering "J" bubbling lances located six inches from the melter bottom in corners diagonally			Two top-entering "J" bubbling lances located six inches from the melter bottom in corners diagonally.		
Bubb	oling Rate		63		5.4	<1 lpm			62 lpm		
-		Feed Flux (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter	Feed Flux (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter	Feed Flux (g/hr)	Average Melter Emissions Flux (mg/min)	DF Across Melter	
	Total ^{\$}	703600	5462	129	185392	2196	84	509541	6176	82.5	
	Al	17092	172	99	4431	44.9	99	12378	216	57.4	
	В	22991	293	78	5961	86.9	69	16650	311	53.6	
	Ba	112	1.49	75	29	0.44	66	81	2.30	35.3	
	Ca	1246	14.8	84	323	4.97	65	902	16.8	53.9	
	Cd	334	3.51	95	87	0.96	91	242	3.75	64.5	
	Cl*	0	94.4	NC	<1	5.2	NC	0	108	NC	
	Cu	149	1.01	147	39	0.40	98	108	1.39	77.5	
	F*	249	182	1.4	65	41.6	1.6	180	131	1.4	
	Fe	53151	582	91	13780	159	87	38491	495	77.8	
	I*	623	< 0.10	> 6230	161	< 0.10	>1610	451	< 0.10	> 4510	
ate	K	155	4.76	33	40	0.95	42	112	4.31	26.0	
Ing	Li	10179	54.2	188	2639	16.1	160	7372	76.3	96.7	
Itic	Mg	413	7.98	52	107	2.34	46	299	7.38	40.5	
Pa	Mn	820	3.61	227	212	1.02	210	594	6.24	95.2	
	Na	53809	534	101	13951	180	78	38968	502	77.6	
	Ni	2984	31.7	94	774	8.22	94	2161	27.2	79.5	
	Pb	173	2.83	61	45	0.86	52	126	2.90	43.5	
	Pd	0	< 0.10##	NC	66	0.84	79	0	< 0.12 [#]	NC	
	Rh	0	0.56#	NC	37	0.99	37	0	0.27#	NC	
	Ru	0	24.3 [#]	NC	104	3.22	32	0	3.64 [#]	NC	
	S*	175	77.3	2	45	6.2	7.3	126	124	1	
	Si	137940	509	271	35763	173	207	99895	504	198	
	Sr	158	1.87	84	41	0.54	76	114	2.31	49.4	
	Zn	10053	98.2	102	2606	37.7	69	7280	94.0	77.5	
	Zr	17513	76.8	228	4540	32.7	139	12683	99.5	128	
	В	22991	177	130	5961	10.2	584	16650	122	137	
s l	Cl	<1	11.0	NC	<1	14.2	NC	0	< 7.8	NC	
Ga	F	249	45.2	6	65	< 0.10	>650	180	19.2	9.4	
	I	623	518	1	161	93.5	2.8	451	262	1.7	
	S	175	14.1	12	45	2.44	18	126	11.8	10.6	

\$ - From gravimetric analysis of filters and front-half rinse dry-down

* - From water dissolution of filter particulate

- From combination of standard $\dot{\mathrm{HF}}:\mathrm{HNO}_3$ digestion and NaOH:Ru fusion in HCl.

NC – Not calculated.

F	eport VSL-03R3851-1 [21] VSL-03R3800-2 [23]		23]	VSL-03R3800-1 [26]		-1 [26]				
Fee	ed Type	LAWI	Envelope B1.	957 g/l	HLV	V AZ-102, 550) g/l		HLW	
т			11/07 09/02	0 -		11/26 27/02	8-	C-10)6/AY-102, 5	57.5 g/l
	Jates	Fourt	11/07-08/02	abblara		11/20 - 27/02			1/29-30/0.	3
B Conf	ubbler figuration	(on together v	ie in each corr with three of t ectrode bubble	her) he bottom ers.	Two top-er in diagor	ntering bubble ally opposite	rs located corners.	Two located	top entering l in diagonall corners.	bubblers ly opposite
Bubb	oling Rate		54 lpm.			65 lpm			65 lpm	
	-	Feed Flux (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter	Feed Flux (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter	Feed Flux (g/hr)	Average Melter Emissions Flux (mg/min)	DF Across Melter
	Total ^{\$}	2259000	2888	782.2	845000	10688	49.3	954700	6458	148
	Al	65402	40.32	1622	20984	290.74	72.2	22690	105.30	215.5
	As	NA	NA	NC	NA	NA	NC	1167	19.66	59.4
	В	62246	52.54	1185	27598	469.51	58.8	23628	190.96	123.7
	Ca	96963	80.79	1200	1169	25.52	45.8	1739	21.13	82.3
	Cd	NA	NA	NC	700	11.10	63.1	NA	NA	NC
	Cl	NA	NA	NC	NA	NA	NC	892	237	3.76
	Cr	548	2.76	199	NA	NA	NC	444	5.24	84.7
	Cs	2835	29.87	95	335	12.59	26.6	382	10.46	36.5
	Cu	NA	NA	NC	NA	NA	NC	259	1.28	202.3
	Fe	73978	102.05	725	62182	792.18	78.5	71322	505.13	141.2
	Ι	2004	< 0.10	> 20040	711	< 0.10	>7110	811	< 0.10	> 8110
ate	K	3160	14.55	217	177	6.19	28.6	NA	NA	NC
cul:	Li	40023	42.40	944	10765	80.69	133.4	11337	47.45	238.9
LT.	Mg	35883	7.25	4952	300	12.68	23.7	5720	38.31	149.3
Ъ	Mn	NA	NA	NC	1982	12.24	162.0	25117	52.46	478.8
	Na	81319	162.56	500	63394	849.95	74.6	71165	498.18	142.8
	Ni	NA	NA	NC	2514	32.97	76.2	1083	6.34	170.9
	Р	350	0.40	882	93	3.25	28.6	319	1.89	168.8
	Pb	NA	NA	NC	462	8.33	55.4	1054	7.33	143.8
	S	5219	173.77	30	114	64.68	1.8	NA	NA	NC
	Sb	NA	NA	NC	NA	NA	NC	1694	12.20	138.9
	Se	NA	NA	NC	NA	NA	NC	2135	959.77	2.2
	Si	454471	320.31	1419	160367	1627.95	98.5	178291	481.36	370.4
	Sr	NA	NA	NC	NA	NA	NC	6308	40.24	156.8
	Ti	16697	23.66	706	NA	NA	NC	681	8.71	78.2
	Zn	77752	105.43	737	11479	157.02	73.1	13484	105.52	127.8
	Zr	46726	8.83	5292	9315	114.99	81.0	1561	5.83	267.6
	В	62246	231.39	269	27598	162.47	169.9	23628	183.41	128.8
	Cl	200	15.34	13	NA	NA	NC	892	196.36	4.5
as	F	1202	117.86	10	NA	NA	NC	NA	NA	NC
Ü	Ι	2004	798.20	3	711	713.72	1.0	811	689.57	1.2
	S	5219	303.72	17	114	23.50	4.9	NA	NA	NC
	Se	NA	NA	NC	NA	NA	NC	2135	49 75	42.9

^{\$} - From gravimetric analysis of filters and rinse dry downs.

NA – Not analyzed.

NC – Not calculated. "-" Empty data field

Report		VSL	VSL-03R3800-3 [28]			VSL-04R4800-1 [29]		VSL-04R4800-1 [29]		
			TTT W			HLW			HLW	
Fee	ed Type	C 10	HLW	$P \sim 1$	C-106	/AY-102, 550 g	g/l,	C-10)6/AY-102, 550) g/l,
		C-104	+/A1-101, 32d	9 g/1	wi	th 10 g/l sugar	-	V	vith 15 g/l suga	r
Ι	Dates		2/26-27/03			05/02/03			5/4/2003	
D.	ah h lan	True ten an		a lacatad	Two top ente	ering bubblers l	ocated in	Two top e	entering bubble	rs located
B Canf	uddier	in diagon	ally ann agita	s localed	diagonally	v opposite corne	ers, six	in diagon	ally opposite co	rners, six
	iguration	in diagon	any opposite c	comers.	inches fr	om the melter f	floor.	inches	from the melter	floor.
Bubb	ling Rate		65 lpm			65 lpm			65 lpm	
	2		Average			Average			Average	
		Feed	Melter	DF	Feed	Melter	DF	Feed	Melter	DF
	-	Flux	Emissions	Across	Flux^+	Emissions	Across	$Flux^+$	Emissions	Across
		(mg/min)	Flux	Melter	(mg/min)	Flux	Melter	(g/hr)	Flux	Melter
		· _ ·	(mg/min)			(mg/min)			(mg/min)	
	Total ^{\$}	924000	6689	138	508300	9268	54.8	609300	5750	106.0
	Al	14200	147.49	96.5	16931	177.60	95.3	20289	75.06	270.3
	As	NA	NA	NC	871	74.77	11.6	1043	83.86	12.4
	В	25200	296.79	84.9	17631	326.94	53.9	21128	97.47	216.8
	Ca	2580	16.19	159	1297	28.50	45.5	1555	8.94	173.9
	Cd	NA	NA	NC	0	15.57	NC	0	12.26	NC
	Cl	< 1*	131.87*	NC	666	NA	NA	798	NA	NA
	Cr	308	5.54	55.6	331	0.63	525.4	397	0.39	1018
	Cs	354	10.43	34.0	285	21.28	13.4	342	8.86	38.6
	Cu	180	1.22	148	193	2.40	80.4	232	1.41	164.5
	F	902*	690.04*	1.31	NA	NA	NC	NA	NA	NC
	Fe	50100	645.56	77.7	53219	779.54	68.3	63775	289.77	220.1
	Ι	751*	15.47*	48.6	605	< 0.10	> 6050	725	< 0.10	> 7250
ate	La	961	NA	NA	NA	NA	NC	NA	NA	NC
iul ⁸	Li	11600	64.06	180	8459	70.93	119.3	10137	28.39	357.1
l ti	Mg	NA	NA	NC	4268	60.25	70.8	5115	29.48	173.5
Pa	Mn	8850	29.73	297	18742	69.14	271.1	22459	57.50	390.6
	Na	64100	659.88	97.1	53101	729.29	72.8	63634	331.38	192.0
	Nd	709	NA	NA	NA	NA	NC	NA	NA	NC
	Ni	2780	25.58	108	808	7.67	105.3	969	4.54	213.4
	Р	131	1.66	78.9	238	9.57	24.9	285	2.50	114.0
	Pb	837	8.80	95.1	786	18.72	42.0	942	33.87	27.8
	S	< 1*	92.16*	NC	0	86.66	NC	0	39.68	NC
	Sb	NA	NA	NC	1264	24.27	52.1	1515	16.37	92.5
	Se	NA	NA	NC	1593	915.61	1.7	1909	1277.55	1.5
	Si	163000	784.49	207.7	133037	793.55	167.6	159424	419.93	379.6
	Sr	NA	NA	NC	4707	66.53	70.8	5640	28.51	197.8
	Ti	90	6.68	13.5	508	14.39	35.3	608	5.46	111.4
	Zn	13000	131.33	99.3	10061	152.48	66.0	12057	63.60	189.6
	Zr	52500	251.82	208	1164	9.18	126.8	1395	5.08	274.6
	В	25200	224.77	112	17631	129.34	136.3	21128	101.84	207.5
	Cl	< 1	3.06	NC	666	86.56	7.7	798	241.55	3.3
as	F	902	84.26	10.7	0	54.44	NC	0	16.69	NC
U C	Ι	751	586.72	1.28	605	319.54	1.9	725	419.76	1.7
	S	< 1	10.89	NC	0	66.99	NC	0	100.06	NC
	Se	NA	NA	NC	1593	35.97	44.3	1909	64.25	29.7
	* - From gra	vimetric analys	is of filters and rir	ise dry down	IS					

* - From water dissolution

 $\,+\,$ - Calculated from target concentrations and steady state production rates

- Amount of iodine in residual feed not rigorously known." - " Empty data field, NA – Not analyzed. NC – Not calculated.

Rep	ort	VSI	VSL-04R4800-1 [29] VSL-04R4800-1 [29]				9]	VSL-04R4800-1 [29]			
			HLW			HLW			HLW		
Feed	Туре	C-10	6/AY-102, 550	g/l,	C-106	6/AY-102, 550) g/l,				
		with	17.5-20 g/l sug	gar	wit	th 20 g/l sugar	-	with 10	g/l sugar and i	nitrates	
Da	tes		5/6/2003			5/8/2003			5/16/2003		
Dub	blar	Two top ent	tering bubblers	located in	Two top en	tering bubblers	located	Two top entering bubblers located			
Bub Config	urotion	diagonall	y opposite corn	ers, six	in diagonally opposite corners, six			in diagonally opposite corners, six			
Coning	uration	inches f	from the melter	floor.	inches fr	om the melter	floor.	inches	rom the melter floor.		
Bubblir	ng Rate		65 lpm			65 lpm			59 lpm		
			Average			Average			Average		
		Feed	Melter	DF	Feed	Melter	DF	Feed	Melter	DF	
-	-	$Flux^+$	Emissions	Across	$Flux^+$	Emissions	Across	Flux ⁺	Emissions	Across	
		(mg/min)	Flux	Melter	(mg/min)	Flux	Melter	(g/hr)	Flux	Melter	
			(mg/min)			(mg/min)			(mg/min)		
	Total [®]	490200	2633	186.2	455200	4542	100.2	688000	8853	77.7	
	Al	16325	27.00	604.6	15159	55.10	275.1	23321	91.63	254.5	
	As	839	54.13	15.5	779	79.28	9.8	1199	35.20	34.1	
	В	16999	46.12	368.6	15785	100.15	157.6	24284	202.75	119.8	
	Ca	1251	1.24	1009	1162	4.10	283.4	1787	14.14	126.4	
	Cd	0	3.24	NC	0	2.98	NC	0	2.85	NC	
	Cl	642	NA	NA	596	NA	NA	917	250.2	3.7	
	Cr	319	0.42	759.5	296	0.31	954.8	456	6.54	69.7	
	Cs	275	8.00	34.4	255	9.44	27.0	393	12.16	32.3	
	Cu	186	0.56	332.1	173	1.10	157.3	266	2.13	124.9	
	F*	NA	NA	NC	NA	NA	NC	0	471.7	NC	
	Fe	51313	133.39	384.7	47648	253.96	187.6	73305	568.27	129.0	
ate	Ι	583	< 0.10	> 5830	542	< 0.10	> 5420	0	< 0.10	NC	
cul	Li	8156	16.50	494.3	7574	26.87	281.9	11652	69.00	168.9	
arti.	Mg	4115	10.19	403.8	3821	21.65	176.5	5879	56.25	104.5	
Å Å	Mn	18071	10.00	1807	16780	23.09	726.7	25815	70.51	366.1	
	Na	51200	201.85	253.7	47543	345.78	137.5	73142	638.03	114.6	
	Ni	779	1.91	407.9	724	2.88	251.4	1113	7.99	139.3	
	P	229	< 0.10	> 2290	213	< 0.10	> 2130	327	3.19	102.5	
	Pb	758	14.97	50.6	704	13.96	50.4	1083	4.19	258.5	
	S	0	36.48	NC	0	42.23	NC	0	83.90	NC	
	Sb	1219	4.73	257.7	1132	4.83	234.4	1741	8.71	199.9	
	Se	1536	560.58	2.7	1426	862.81	1.7	2194	1356.12	1.6	
	Si	128273	118.57	1082	119110	250.35	475.8	183246	643.24	284.9	
	Sr	4538	10.74	422.5	4214	22.15	190.2	6483	51.21	126.6	
	Ti	490	2.49	196.8	455	4.46	102.0	699	10.26	68.1	
	Zn	9701	26.70	363.3	9008	51.02	176.6	13859	114.57	121.0	
	Zr	1123	1.02	1101	1043	2.34	445.7	1604	8.15	196.8	
	B	16999	67.94	250.2	15785	86.57	182.3	24284	231.04	105.1	
		642	200.68	3.2	596	83.49	7.1	917	120.50	7.6	
Gas	F -	0	6.97	NC	0	11.08	NC		34.43	NC	
		583	294.45	2.0	542	370.23	1.5		< 0.10	NC	
	S	0	52.21	NC 12 °	0	46.92	NC		17.94	NC	
	Se	1536	117.94	13.0	1426	30.92	46.1	2194	36.31	60.4	

From gravimetric analysis of filters and rinse dry downs
 - Calculated from target concentrations and steady state production rates NC – Not calculated

NA – Not excluded due to insufficient particulate loading for separate anion analysis "-" Empty data field; *- From water dissolution of filter particulate

			10010				, marate	/•			
R	eport	VSI	04R4800-1 [2	.9]	VSL·	-04R4800-1 [2	9]	VS	L-04R4800-1 [29]	
			HLW				HLW				
Fee	d Type	C-106/AY	-102, 550 g/l w	ith 15 g/l	C-106/AY-	102, 550 g/l wi	th 20 g/l	C-106/A	Y-102, 550 g/l	with 25	
		su	gar and nitrates	5	sug	ar and nitrates	sugar and nitra	tes			
Γ	Dates		5/18/203			5/20/03			5/22/03		
D ₁	ıbblar	Two top ent	tering bubblers	located in	Two top en	tering bubblers	located	Two top e	ntering bubble	rs located	
Confi	iourotion	diagonall	y opposite corn	iers, six	in diagonal	ly opposite cor	ners, six	in diagona	ally opposite co	orners, six	
	iguiation	inches f	from the melter	floor.	inches fr	om the melter	floor.	inches	from the melte	r floor.	
Bubb	ling Rate	ing Rate 65 lpm			63 lpm				65 lpm		
			Average			Average			Average		
		Feed	Melter	DF	Feed	Melter	DF	Feed	Melter	DF	
	-	Flux	Emissions	Across	Flux	Emissions	Across	Flux	Emissions	Across	
		(mg/min)	Flux	Melter	(mg/min)	Flux	Melter	(g/hr)	Flux	Melter	
			(mg/min)		× U)	(mg/min)		, e ,	(mg/min)		
	Total ^s	688000	8491	81.0	688000	9903	69.5	688000	7028	97.9	
	Al	23321	91.46	255.0	23321	106.43	219.1	23321	53.12	439.0	
	As	1199	116.62	10.3	1199	191.00	6.3	1199	304.85	3.9	
	В	24284	195.42	124.3	24284	208.15	116.7	24284	180.61	134.5	
	Ca	1787	5.24	341.0	1787	17.05	104.8	1787	11 74	152.2	
	Cd	0	4 94	NC	0	3.69	NC	0	2 14	NC	
	Cl	917	NA	NA	917	NA	NA	917	NA	NA	
	Cr	456	2.45	186.1	456	154	206.1	456	0.45	1013	
	Cr	303	6.48	60.6	303	15.50	25.2	303	12.90	30.5	
	Cu	266	2.03	131.0	266	2.74	07.1	266	12.90	160.2	
	Eq.	72205	652.70	1121	72205	615.27	110.1	72205	278.05	100.2	
	T	73303	< 0.10	NC	73305	< 0.10	NC	13303	<i>378.93</i>	193.4 NC	
	т;	11652	67.81	171.8	11652	72.65	158.2	11652	53.21	210.0	
ate -		5970	56.01	171.0	5970	62.04	04.9	5970	20.79	147.0	
l ni	Me	25915	72.50	255.6	25915	02.04	212.6	25019	39.76	147.0	
ці.	IVIII Na	23813	652.09	333.0	23813	668.50	100.4	23813	54.94	127.0	
Pa	INA NT	13142	033.28	112.0	13142	10.03	109.4	13142	371.88	127.9	
	N1	1113	8.97	124.1	1113	10.02	554	207	1.92	140.5	
		327	8.83	37.0	327	5.90	<u> </u>	327	5.69	57.5	
.	Pb	1083	6.88	157.4	1083	42.23	25.6	1083	58.71	18.4	
	<u>S</u>	0	42.86	NC	0	57.97	NC	0	34.08	NC	
	Sb	1/41	6.91	252.0	1/41	29.29	59.4	1/41	22.30	/8.1	
	Se	2194	1609.78	1.4	2194	1937.62		2194	1282.06	1.7	
	S1	183246	691.18	265.1	183246	731.84	250.4	183246	299.98	610.9	
	Sr	6483	49.57	130.8	6483	55.37	117.1	6483	34.35	188.7	
	Ti	699	11.52	60.7	699	10.99	63.6	699	6.37	109.7	
	Zn	13859	120.56	115.0	13859	119.75	115.7	13859	77.00	180.0	
	Zr	1604	8.40	191.0	1604	9.32	172.1	1604	3.08	520.8	
	В	24284	242.23	100.3	24284	217.50	111.7	24284	210.62	115.3	
	Cl	917	31.88	28.8	917	22.79	40.2	917	40.31	22.7	
]	F	0	< 0.10	NC	0	< 0.10	NC	0	< 0.10	NC	
as	Ι	0	< 0.10	NC	0	< 0.10	NC	0	< 0.10	NC	
U U	S	0	62.07	NC	0	106.70	NC	0	127.77	NC	
[Se	2194	5.35	410.1	2194	7.26	302.2	2194	7.14	307.3	

Table 5.1. Melter	Emission Rates	(continued).
I HOIC CIT ITTCICCI		(contentaca)

^{\$} - From gravimetric analysis of filters and rinse dry downs

+ - Calculated from target concentrations and steady state production rates

 $\mathrm{NC}-\mathrm{Not}\ \mathrm{calculated}$

NA - Not available due to insufficient particulate loading for separate anion analysis

R	eport	VSI	04R4800-1 [2	9]	VSL-	-04R4800-1 [2	9]	VS.	L-04R4800-1 [:	29]	
Fee	d Type	HLW AZ-1	01, 400 g/l with	1 13.3-7.6	HLW AZ-1	.01, 400 g/l wit	th 10 g/l	HLW AZ	Z-101, 400 g/l v	vith 12.5	
	a rype	g/l su	igar and rutheni	um	suga	r and rutheniur	n	g/l si	ugar and ruthen	nium	
I	Dates		8/22/03			8/24/03		8/26/03			
B	ıhhler	Two top ent	tering bubblers	located in	Two top en	tering bubblers	located	Two top e	entering bubble	rs located	
Conf	iguration	diagonall	ly opposite corn	ers, six	in diagonally opposite corners, six			in diagonally opposite corners, six			
	igui acieii	inches from the melter floor.			inches from the melter floor.			inches from the melter floor.			
Bubb	ling Rate		65 lpm		65 lpm				65 lpm		
			Average			Average			Average		
		Feed	Melter	DF	Feed	Melter	DF	Feed	Melter	DF	
	-	Flux	Emissions	Across	Flux	Emissions	Across	Flux	Emissions	Across	
		(mg/min)	Flux	Melter	(mg/min)	Flux	Melter	(g/hr)	Flux	Melter	
			(mg/min)			(mg/min)			(mg/min)		
	Total ^s	476300	10308	46.2	476300	9108	52.3	504300	7030	71.7	
	Al	19448	221.67	87.7	19448	190.33	102.2	20592	138.77	148.4	
	В	26159	506.44	51.7	26159	373.20	70.1	27698	324.80	85.3	
	Ba	127	1.65	77.0	127	1.51	84.1	134	1.14	117.5	
	Ca	1418	30.15	47.0	1418	24.56	57.7	1501	19.85	75.6	
	Cd	381	85.97	4.4	381	80.52	4.7	403	124.27	3.2	
	Cl*	0	278.69	NC	0	239.64	NC	0	231.53	NC	
	Cs	0	0.17	NC	0	0.16	0.0	0	0.18	NC	
	Cu	170	1.77	96.0	170	2.58	65.9	180	1.75	102.9	
e	F*	283	335.43	NC	283	329.25	NC	300	216.45	1.4	
llat	Fe	60476	881.92	68.6	60476	763.01	79.3	64034	650.75	98.4	
lict	Κ	176	8.19	21.5	176	7.46	23.6	187	6.18	30.3	
² art	Li	11582	86.22	134.3	11582	66.35	174.6	12263	52.47	233.7	
	Mg	470	14.50	32.4	470	12.04	39.0	497	9.56	52.0	
	Mn	933	7.87	118.6	933	7.62	122.4	987	5.79	170.5	
	Na	61225	925.56	66.1	61225	783.65	78.1	64827	661.54	98.0	
	Ni	3395	39.71	85.5	3395	41.82	81.2	3595	29.22	123.0	
	Pb	197	4.64	42.5	197	4.44	44.4	209	3.84	54.4	
	S*	199	96.43	2.1	199	59.50	3.3	210	84.53	2.5	
	Si	156952	1209.72	129.7	156952	1329.04	118.1	166184	898.33	185.0	
	Sr	180	3.24	55.6	180	2.76	65.2	190	2.15	88.4	
	Zn	11438	163.05	70.2	11438	141.97	80.6	12111	118.08	102.6	
	Zr	19926	254.32	78.4	19926	287.51	69.3	21099	172.80	122.1	
	В	26159	180.83	144.7	26159	196.60	133.1	27698	182.15	152.1	
as	Cl	0	0.51	0.0	0	1.51	NC	0	0.83	NC	
Ü	F	283	1.58	179.1	283	1.43	197.9	300	4.14	72.5	
	S	199	134.62	1.5	199	123.28	1.6	210	105.45	2.0	

⁸ - From gravimetric analysis of filters and rinse dry downs

+ - Calculated from target concentrations and steady state production rates

* - From water dissolution of filter particulate

NC – Not calculated

NA - Not available due to insufficient particulate loading for separate anion analysis

R	eport	VSI	L-04R4800-1 [2	9]	VSL-04R4800-4 [30]			VSL-04R4800-4 [30]			
Fee	ed Type	HLW AZ- sug	-101, 400 g/l wi ar and rutheniu	th 16 g/l n	HLW	AZ-101, 530	g/l	HLV	W AZ-101, 530) g/l	
I	Dates		8/27/03			6/01/03			6/03/03		
Bı Conf	ubbler iguration	Two top en diagonali inches t	tering bubblers ly opposite corn from the melter	located in ers, six floor.	Two bubbl electrodes. 1 12	ers oriented pa Bubbler depth: 2" from floor.	rallel to shallow,	Two bubl electro nom	olers oriented p odes. Bubbler o inal, 6" from f	barallel to depth: loor	
Bubb	ling Rate		65 lpm			65 lpm	lpm 65 lpm				
	-	Feed Flux (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter	Feed Flux (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter	Feed Flux (g/hr)	Average Melter Emissions Flux (mg/min)	DF Across Melter	
	Total	520000	6669	78.0	505800	2848	177.6	645100	3271	197.2	
	Al	21278	119.43	178.2	11852	54.19	218.7	15113	60.10	251.5	
	B	28622	308.89	92.7	15894	151.88	104.6	20268	165.42	122.5	
	Ba	139	1.00	139.0	-77	0.35	218.4	98	0.46	212.3	
	Ca	1551	17.44	88.9	861	8.59	100.2	1097	9.89	111.0	
	Cd	416	147.78	2.8	231	1.05	220.8	295	1.07	276.4	
	Cl*	0	217.44	NC	NA	NA	NC	NA	NA	NC	
	Cs	0	0.25	NC	NA	NA	NC	NA	NA	NC	
	Cu	186	1.61	115.5	103	0.48	215.2	131	0.53	247.1	
e	F*	310	396.94	NC	172	7.03	24.5	219	12.38	17.7	
ulaı	Fe	66168	609.93	108.5	36863	285.66	129.0	47007	336.02	139.9	
ticı	K	193	5.83	33.1	107	4.15	25.8	137	3.58	38.1	
Par	Li	12672	52.48	241.5	7031	28.73	244.7	8966	31.19	287.5	
	Mg	514	9.11	56.4	285	5.18	55.0	364	5.68	64.0	
	Mn	1020	5.31	192.1	566	7.44	76.1	722	3.04	237.8	
	Na	66988	600.67	111.5	37167	274.33	135.5	47395	306.61	154.6	
	Ni	3715	25.80	144.0	2095	12.58	166.5	2671	14.43	185.1	
	Pb	216	3.68	58.7	120	0.88	136.3	153	1.62	94.3	
	S	217	78.50*	2.8	138	21.27	6.5	176	18.56	9.5	
	Si	171723	757.67	226.6	95279	356.56	267.2	121499	370.81	327.7	
	Sr	197	2.12	92.9	109	1.70	64.1	139	1.90	73.2	
	Zn	12515	108.14	115.7	6978	81.95	85.1	8899	70.42	126.4	
	Zr	21802	142.34	153.2	12160	62.29	195.2	15507	57.19	271.1	
	В	28622	208.30	137.4	15894	92.23	172.3	20268	110.10	184.1	
as	Cl	0	1.50	NC	NA	NA	NC	NA	NA	NC	
Ü	F	310	4.33	71.6	172	< 0.10	> 1720	219	< 0.10	> 2190	
	Ι	NA	NA	NC	< 430 [#]	95.74	NC	< 548 [#]	26.89	NC	
	S	217	101.31	2.1	138	< 0.10	> 1380	176	0.69	253.1	

^{\$} - From gravimetric analysis of filters and rinse dry downs

+ - Calculated from target concentrations and steady state production rates

NC - Not calculated

* - From water dissolution of filter particulate

- Amount of iodine in residual feed not rigorously known.

NA - Not available due to insufficient particulate loading for separate anion analysis

Report		VSI	VSL-04R4800-4 [30]			-04R4800-4 [3	0]	VSL-04R4800-4 [30]			
Fee	ed Type	HLV	V AZ-101, 530	g/l	HLW	AZ-101, 530 g	g/l	HLV	V AZ-101, 530	g/l	
I	Dates		6/05/03			6/28/03			6/30/03	_	
B [.] Conf	ubbler ïguration	Two bubb electrodes.	lers oriented pa Bubbler depth melter floor	arallel to : deep on	Two bul pointed tow bubbl	oblers 6" from vards melt poo er skewing: no	floor l center, ne	Two bubblers 6" from floor poin towards melt pool center, bubb skewing: 16 lpm step			
Bubb	oling Rate		65 lpm		65 lpm				65 lpm		
	-	Feed Flux (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter	Feed Flux (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter	Feed Flux (g/hr)	Average Melter Emissions Flux (mg/min)	DF Across Melter	
	Total [®]	658800	4336	151.9	1060700	5568	190.5	1121500	8935	125.5	
	Al	15435	86.54	178.4	24852	90.01	276.1	26276	115.90	226.7	
	В	20699	219.32	94.4	33327	328.96	101.3	35237	497.40	70.8	
	Ba	100	0.60	168.3	162	0.72	224.3	171	1.31	130.8	
	Ca	1121	10.92	102.6	1805	16.56	109.0	1908	24.91	76.6	
	Cd	301	1.64	183.2	484	4.02	120.6	512	5.86	87.5	
	Cu	134	0.81	166.1	216	0.71	303.1	228	1.40	163.8	
	F	224*	16.77*	13.4	361	NA	NA	381*	357.17*	1.1	
0	Fe	48008	442.80	108.4	77298	603.81	128.0	81727	790.61	103.4	
late	Κ	139	3.12	44.7	225	7.99	28.1	237	9.84	24.1	
icu	Li	9157	36.26	252.5	14743	59.47	247.9	15588	68.47	227.7	
art	Mg	371	5.88	63.2	598	8.39	71.3	632	12.15	52.0	
	Mn	737	3.93	187.8	1187	4.11	288.9	1255	5.89	213.2	
	Na	48404	406.59	119.0	77936	583.60	133.5	82402	849.29	97.0	
	Ni	2728	19.18	142.2	4393	20.76	211.6	4645	33.71	137.8	
	Pb	156	0.83	187.6	251	2.57	97.6	265	4.64	57.2	
	S	180	28.36	6.3	289	43.07	6.7	306	57.46	5.3	
	Si	124084	546.56	227.0	199790	525.48	380.2	211238	675.56	312.7	
	Sr	142	1.27	111.7	229	1.54	148.3	242	2.71	89.2	
	Zn	9088	82.31	110.4	14633	100.83	145.1	15471	157.50	98.2	
	Zr	15837	97.23	162.9	25499	48.33	527.6	26960	65.50	411.6	
	В	20699	118.68	174.4	33327	208.33	160.0	35237	242.83	145.1	
as l	F	224	< 0.10	> 2240	361	< 0.10	> 3610	381	< 0.10	> 3810	
Ŭ	Ι	< 560#	6.40	NC	NA	NA	NC	NA	NA	NC	
	S	180	44.43	4.0	289	97.00	3.0	306	95.37	3.2	

^s - From gravimetric analysis of filters and rinse dry downs

* - From water dissolution of filter particulate

- Amount of iodine in residual feed not rigorously known.

 $\mathrm{NC}-\mathrm{Not}\ \mathrm{calculated}$

NA - Not available due to insufficient particulate loading for separate anion analysis

R	leport	VSL-04R4800-4 [30]				VSL-04R4800-4 [30]			VSL-04R4800-4 [30]		
Fee	ed Type	HLV	V AZ-101, 530	g/l	HLW	AZ-101, 400 g	g/l	HLW	/ AZ-101, 400	g/l	
I	Dates		7/02/03			7/19/03			7/22/03	_	
B	ubbler	Two bubble	ers 6" from floc	r pointed	Bubblers on	floor, 8" apar	t on East	Bubblers of	Bubblers on floor, 8" apart on East		
Conf	iguration	skewi	ng: 16 lpm grad	bubblei	bler and West side, one bubbler outlet and West side, 11.3" from feed tube 11.3" from				" from feed tul	from feed tube	
		SKC W I	ng. 10 ipin giac	uai.	11.5	fioni feed tub	0.	11.5	Hom feed tu		
Bubb	oling Rate		65 lpm			135 lpm			80 lpm		
			Average			Average			Average		
		Feed	Melter	DF	Feed	Melter	DF	Feed	Melter	DF	
	-	Flux	Emissions	Across	Flux	Emissions	Across	Flux	Emissions	Across	
		(mg/min)	Flux	Melter	(mg/min)	Flux	Melter	(g/hr)	Flux	Melter	
			(mg/min)			(mg/min)			(mg/min)		
	Total	1081300	7128	151.7	1344400	16838	79.8	1085500	11776	92.2	
	Al	25334	141.14	179.5	31205	349.50	89.3	25196	278.71	90.4	
	В	33974	438.46	77.5	41847	855.80	48.9	33789	604.33	55.9	
	Ba	165	1.13	145.5	203	2.18	92.9	164	1.73	94.6	
	Ca	1840	24.61	74.8	2266	40.03	56.6	1830	31.11	58.8	
	Cd	494	5.31	93.0	608	8.87	68.6	491	6.71	73.2	
	Cu	220	1.16	189.4	271	3.70	73.4	219	2.93	74.9	
	F*	368	208.68	1.8	453	244.29	1.9	366	486.75	0.8	
da l	Fe	78798	742.77	106.1	97058	1565.19	62.0	78370	1024.18	76.5	
lat	Κ	229	9.38	24.4	282	15.46	18.2	228	10.80	21.1	
icu	Li	15030	81.67	184.0	18512	172.17	107.5	14948	122.28	122.2	
art	Mg	610	12.16	50.1	751	20.64	36.4	606	15.47	39.2	
	Mn	1210	7.65	158.3	1491	12.80	116.4	1204	10.93	110.1	
	Na	79449	761.44	104.3	97859	1519.70	64.4	79016	999.11	79.1	
	Ni	4478	28.36	157.9	5516	69.42	79.5	4454	52.18	85.3	
	Pb	256	3.85	66.5	315	7.81	40.4	255	6.42	39.6	
	S	295	39.21	7.5	363	83.82	4.3	293	54.21	5.4	
	Si	203668	657.20	309.9	250864	1977.69	126.8	202560	1301.11	155.7	
	Sr	233	2.10	111.2	287	3.92	73.2	232	3.03	76.6	
	Zn	14917	140.75	106.0	18373	268.69	68.4	14836	199.87	74.2	
	Zr	25994	85.99	302.3	32017	371.53	86.2	25852	328.48	78.7	
	В	33974	205.22	165.6	41847	390.30	107.2	33789	232.33	145.4	
Jas	F	368	< 0.10	> 3680	453	< 0.10	> 4530	366	< 0.10	> 3660	
	S	295	91.80	3.2	363	147.91	2.5	293	117.44	2.5	

^{\$} - From gravimetric analysis of filters and rinse dry downs

* - From water dissolution of filter particulate

 $\mathrm{NC}-\mathrm{Not}$ calculated

NA - Not available due to insufficient particulate loading for separate anion analysis

R	leport	VSI	L-04R4800-4 [3	0]	VSL-04R4800-4 [30]			VSL-04R4800-4 [30]		
Fee	ed Type	HLV	W AZ-101, 400	g/l	HLW	AZ-101, 400 g	g/l	HLV	V AZ-101, 400 vith NaCl spike) g/l e
I	Dates		8/10/03			8/12/03			9/06/03	
Б	ubblar	Four bubb	lers on floor, on	e in each	Four bubble	ers on floor, one	e in each	Two bubblers on floor, bubbler		
Conf	iguration	corner, 14'	' apart on East a	ind West	corner, 14"	apart on East a	nd West	on East	side 11.3" fro	m feed
	iguiauon		side.			side.			tube.	
Bubb	oling Rate		117 lpm		90	90 lpm (1175°C)			80 lpm	
		Average				Average			Average	
		Feed	Melter	DF	Feed	Melter	DF	Feed	Melter	DF
	-	Flux	Emissions	Across	Flux	Emissions	Across	Flux	Emissions	Across
		(mg/min)	Flux	Melter	(mg/min)	Flux	Melter	(g/hr)	Flux	Melter
			(mg/min)			(mg/min)			(mg/min)	
	Total	1412700	8215	172.0	1439800	20444	70.4	861900	7987	107.9
	Al	32789	134.46	243.9	33419	424.61	78.7	20005	120.66	165.8
	В	43973	365.00	120.5	44817	1123.25	39.9	26828	291.18	92.1
	Ba	213	1.28	167.1	217	3.56	61.0	130	1.22	106.7
	Ca	2381	22.54	105.6	2427	59.84	40.6	1453	24.05	60.4
	Cd	639	5.69	112.4	651	14.18	45.9	390	6.16	63.4
	Cl*	NA	NA	NC	NA	NA	NC	3629	608.36	6.0
	Cu	285	1.40	203.9	291	4.39	66.2	174	2.17	80.3
	F	476*	425.77*	1.1	485	708.36	< 1	290*	192.81*	1.5
ate	Fe	101988	759.44	134.3	103945	1857.40	56.0	62224	752.00	82.7
l	Κ	296	9.47	31.3	302	15.40	19.6	181	10.12	17.9
Ti i	Li	19453	71.61	271.7	19826	168.25	117.8	11868	74.98	158.3
Pa	Mg	789	10.36	76.1	804	27.34	29.4	481	12.00	40.1
	Mn	1566	6.14	255.1	1596	16.37	97.5	956	5.17	184.8
	Na	102829	739.32	139.1	104803	1897.88	55.2	65107	966.75	67.3
	Ni	5796	26.90	215.5	5907	84.41	70.0	3536	26.96	131.2
	Pb	331	4.15	79.8	338	11.90	28.4	202	4.82	41.9
	S	381	50.29	7.6	389	72.61	5.4	233	50.27	4.6
	Si	263605	831.56	317.0	268664	2543.73	105.6	160829	546.15	294.5
	Sr	302	2.61	115.7	308	6.81	45.2	184	2.81	65.5
	Zn	19307	130.82	147.6	19677	337.47	58.3	11779	133.64	88.1
	Zr	33643	112.98	297.8	34289	508.36	67.5	20526	53.97	380.3
	В	43973	488.65	90.0	44817	413.98	108.3	26828	259.34	103.4
as l	Cl	NA	NA	NC	NA	NA	NC	3629	569.05	6.4
Ŭ	F	476	3.27	145.5	485	1.44	337.1	290	85.09	3.4
	S	381	115.63	3.3	389	155.72	2.5	233	66.43	3.5

From gravimetric analysis of filters and rinse dry downs
 From water dissolution of filter particulate

 $\mathrm{NC}-\mathrm{Not}\ \mathrm{calculated}$

NA - Not available due to insufficient particulate loading for separate anion analysis

R	eport	VSL	-04R4800-4 [30]	VSL-0	04R4800-4 [3	30]	VS	L-04R4800-	4 [30]	
Eaa	d Tuna	HLW	^r AZ-101, 400) g/l	HLW	AZ-101, 400	g/l	HL	W AZ-101, 4	400g/1	
гсс	u rype	wit	h NaSO₄ spik	e	with Na	ICl +NaSO ₄ s	pike	W	ith 3.8 g/l su	gar.	
I	Dates		9/08/03			9/09/03			3/29/04		
		Two bubb	larg on floor	hubblar	Two hubbl	ara on floor	hubblar	Two bu	ubblers, each	with two	
Bu	ubbler	on East of	side 11 3" fro	m feed	on Fast si	ide 11 3" from	n feed	outlets 8	inches apart	, placed on	
Conf	iguration	OII Liast s	tube	III ICCU	OII Last 5.	tube	II ICCU	the floor, one bubbler outlet			
			tube.			ube.		11.3" from feed tube.			
Bubb	ling Rate		80 lpm			80 lpm.		64 lpm			
			Average			Average			Average		
		Feed	Melter	DF	Feed	Melter	DF	Feed	Melter	DF	
	-	Flux	Emissions	Across	Flux	Emissions	Across	Flux	Emissions	Across	
		(mg/min)	Flux	Melter	(mg/min)	Flux	Melter	(g/hr)	Flux	Melter	
			(mg/min)			(mg/min)			(mg/min)		
	Total ^s	734200	14588	50.3	910400	8111	112.2	1059610	6595	160.7	
	Al	17042	314.91	54.1	21131	145.02	145.7	24594	107.98	227.8	
	В	22855	607.82	37.6	28338	288.68	98.2	32982	295.96	111.4	
	Ba	111	2.49	44.5	137	1.24	110.4	160	1.02	156.4	
	Ca	1238	44.79	27.6	1534	21.18	72.4	1786	19.34	92.3	
	Cd	332	7.33	45.3	412	4.92	83.8	479	11.13	43.0	
	Cl*	0	274.57	NC	3833	694.96	5.5	NA	NA	NC	
	Cu	148	3.66	40.5	184	2.24	82.0	214	1.29	166.3	
	F*	247	139.74	1.77	307	83.90	3.6	357	291.24	1.2	
	Fe	53008	1320.97	40.1	65725	754.25	87.1	76498	710.47	107.7	
ate	Κ	154	10.86	14.2	191	8.51	22.4	222	11.57	19.2	
- nla	Li	10111	118.57	85.3	12536	77.69	161.4	14591	64.91	224.8	
urtic	Mg	410	21.23	19.3	509	10.48	48.5	592	11.13	53.2	
Pa	Mn	814	13.35	61.0	1009	7.08	142.5	1175	3.81	308.1	
	Na	54868	1365.96	40.2	70533	988.44	71.4	77129	784.29	98.3	
	Ni	3013	65.09	46.3	3735	29.27	127.6	4347	25.15	172.9	
	Pb	172	7.48	23.0	214	5.27	40.5	249	2.73	91.2	
	Ru	NA	NA	NC	NA	NA	NC	610	24.86	24.5	
	S	1023	134.21	7.6	1269	114.00	11.1	286	115.51	2.5	
	Si	137009	1704.91	80.4	169877	1140.41	149.0	197722	689.70	286.7	
	Sr	157	4.93	31.8	194	2.56	76.0	226	2.33	96.9	
	Y	NA	NA	NC	NA	NA	NC	527	< 0.39	> 1351.9	
	Zn	10035	245.10	40.9	12442	136.76	91.0	14481	134.69	107.5	
	Zr	17486	348.23	50.2	21681	117.23	184.9	25235	91.00	277.3	
	В	22855	195.44	116.9	28338	234.53	120.8	32982	373.91	88.2	
as	Cl	0	27.48	NC	3833	479.77	8.0	NA	NA	NC	
Ü	F	247	68.15	3.6	307	89.83	3.4	357	< 3.15	> 113.3	
	S	1023	213.89	4.8	1269	238.44	5.3	286	77.45	3.7	

From gravimetric analysis of filters and rinse dry downs
 From water dissolution of filter particulate

NC - Not calculated

NA - Not available due to insufficient particulate loading for separate anion analysis

]	Report	VSL-04R4800-4 [30]							
Fe	eed Type		HLW AZ-101, 400 g/l with 3.8 g/l sugar						
	Dates		3/31/04						
E Cor	Bubbler Ifiguration	Two bubblers, each with two o	outlets 8 inches apart, placed on the floor, on feed tube.	e bubbler outlet 11.3" from					
Bub	bling Rate		134 lpm						
	-	Feed Flux (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter					
	Total [®]	1324800	14761	89.8					
	Al	30750	248.07	124.0					
	В	41237	837.36	49.2					
	Ba	200	2.76	72.5					
	Ca	2233	35.49	62.9					
	Cd	599	16.05	37.3					
	Cu	267	2.77	96.3					
	F*	446	158.33	2.8					
	Fe	95644	1822.74	52.5					
ate	K	278	15.79	17.6					
l lu	Li	18243	137.06	133.1					
Lti	Mg	740	23.90	31.0					
P _a	Mn	1469	9.70	151.5					
	Na	96433	1811.81	53.2					
	Ni	5436	58.90	92.3					
	Pb	311	6.23	49.9					
	Ru	763	47.12	16.2					
	S	358	165.86	2.2					
	Si	247208	1287.73	192.0					
	Sr	283	6.48	43.7					
	Y	659	1.32	498.9					
	Zn	18106	293.23	61.7					
	Zr	31551	202.81	155.6					
as	В	41237	475.80	86.7					
Ŭ	F	446	6.63	67.2					
	S	358	88.18	4.1					

From gravimetric analysis of filters and rinse dry downs
 From water dissolution of filter particulate

NC – Not calculated

NA - Not available due to insufficient particulate loading for separate anion analysis

Report		VSL-04R4851-1 [31]			VSL-04R4851-1 [31]			
Feed Type		LAW Envelope C			LAW Envelope C			
Dates		10/02/03			10/04/03			
Bubbler Configuration		Four top-entering bubblers located in diagonally opposite corners, six inches from the melter floor.			Four top-entering bubblers located in diagonally opposite corners, six inches from the melter floor.			
Bubbling Rate		20.6 lpm			41.1 lpm			
-		Feed Flux ⁺ (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter	Feed Flux ⁺ (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter	
	Total ^{\$}	553000	362	1528	885000	869	1018	
	Al	14005	1.47	9552	22412	3.39	6602	
	В	13563	1.20	11317	21704	2.32	9350	
	Са	15852	3.25	4877	25367	6.04	4199	
	Cl [#]	739	NA	NA	1184	169*	7.0	
late	Cr	59	0.53	113	95	1.30	72.9	
	F [#]	1563	NA	NA	2498	45.5*	54.9	
	Fe	16934	2.20	7691	27098	4.44	6108	
	Ι	434	< 0.10	> 4340	695	< 0.10	> 6950	
	K#	936	5.34	175	1498	10.7	139	
icu	Li	5040	2.90	1738	8065	5.84	1381	
art	Mg	3952	0.24	16553	6323	0.35	17869	
рд	Na	46529	82.4	565	74457	37.6	1982	
	Ni	102	0.20	516	164	0.24	686	
	Р	227	< 0.10	> 2270	364	< 0.10	> 3640	
	Pb	81	< 0.10	> 810	129	0.20	638	
	S	661	9.26	71.3	1058	44.49*	23.9	
	Si	94481	8.98	10516	151192	20.2	7477	
	Ti	2966	1.33	2235	4746	2.94	1616	
	Zn	10669	3.65	2926	17073	8.35	2046	
	Zr	9703	0.27	35534	15527	0.56	27757	
Gas	В	13563	13.9	973	21704	34.8	623	
	Cl [#]	739	5.86	126	1184	18.1	65.6	
	$F^{\#}$	1563	12.8	122	2498	57.4	43.4	
	Ι	434	280	1.6	695	419	1.7	
	S	661	7.14	92.6	1058	15.5	68.0	

^{\$} - From gravimetric analysis of filters and rinse dry downs.

+ - Calculated from target concentrations and steady-state production rates.

- Calculated elemental feed rates from analyzed concentrations and steady-state production rates

NA - Not available due to insufficient particulate loading for separate anion analysis

* - Calculated from water dissolution of filter particulate.

Report		VSL-04R4851-1 [31]			VSL-04R4851-1 [31]			
Feed Type		LAW Envelope C			LAW Envelope C			
Dates		10/7/03			10/8/03			
Bubbler Configuration		Four top-entering bubblers located in diagonally opposite corners, six inches from the melter floor.			Four top-entering bubblers located in diagonally opposite corners, six inches from the melter floor.			
Bubbling Rate		62.1 lpm			103.4 lpm.			
-		Feed Flux (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter	Feed Flux (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter	
	Total ^{\$}	1180000	1423	829	1843000	4513	408	
	Al	29882	4.84	6174	46690	24.3	1923	
	В	28939	7.43	3896	45216	50.3	898	
	Ca	33823	7.95	4254	52847	39.9	1325	
	Cl [#]	741	295	2.5	1157	841	1.4	
	Cr	127	2.36	53.8	198	6.78	29.2	
	$F^{\#}$	1296	36.5	35.5	2026	138	14.7	
	Fe	36131	7.37	4900	56453	38.1	1481	
0	Ι	926	< 0.10	> 9260	1447	< 0.10	> 14470	
late	$K^{\#}$	615	21.6	28.5	961	56.5	17.0	
icu	Li	10754	11.8	914	16802	39.5	425	
art	Mg	8431	0.69	12285	13173	2.77	4763	
	Na	99276	92.5	1073	155115	286	543	
	Ni	218	0.37	592	341	1.06	322	
	Р	485	0.92	526	758	1.32	573	
	Pb	172	0.32	543	269	1.06	254	
	S	1410	87.10*	19.0	2203*	216	10.2	
	Si	201589	29.1	6935	314974	140	2255	
	Ti	6329	3.68	1719	9888	18.1	548	
	Zn	22765	12.0	1892	35569	52.2	682	
	Zr	20703	1.73	11937	32347	4.31	7504	
Gas	В	28939	75.7	382	45216	244	185	
	Cl [#]	741	86.1	8.6	1157	220	5.3	
	$F^{\#}$	1296	142	9.1	2026	351	5.8	
	Ι	926	708	1.3	1447	1378	1.0	
	S	1410	19.8	71.2	2203	46.4	47.5	

^{\$} - From gravimetric analysis of filters and rinse dry downs

+ - Calculated elemental feed rates from target concentrations and steady-state production rates

- Calculated elemental feed rates from analyzed concentrations and steady-state production rates

* - Calculated from water dissolution of filter particulate.

Report		VSL-05R5800-1 [35]			VSL-05R5800-1 [35]			
Feed Type		HLW AZ-102, 560 g/l			HLW C-106/AY-102, 540 g/l			
Dates		06/23/04			08/05-06/04			
E	Bubbler	Top-entering bubbler, "J" single outlet, 6" above			Top-entering bubbler, "J" single outlet, 6" above			
Con	figuration	melter floor			melter floor			
Bubbling Rate		65 lpm			65 lpm			
-		Feed Flux (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter	Feed Flux (mg/min)	Average Melter Emissions Flux (mg/min)	DF Across Melter	
	Total ^{\$}	1187988	9206	129	992352	7477	133	
	Al	33328	195.02	170.9	23643	90.81	260.4	
	As	NA	NA	NC	1211	24.40	49.6	
	В	43712	614.61	71.1	24527	227.15	108.0	
	Ca	1850	27.45	67.4	1805	20.80	86.8	
	Cd	1108	10.92	101.5	NA	NA	NC	
	Cl	NA	NA	NC	926	183.2	5.1	
	Cr	NA	NA	NC	461	5.09	90.6	
	Cs	531	16.14	32.9	397	22.77	17.4	
	Cu	NA	NA	NC	269	2.08	129.5	
	Fe	98804	988.70	99.9	74332	562.84	132.1	
0	K	280	10.29	27.2	NA	NA	NC	
late	Li	17036	87.88	193.9	11768	48.16	244.4	
icu	Mg	475	14.96	31.8	5938	44.13	134.6	
art	Mn	3137	12.71	246.7	26139	60.49	432.1	
	Na	100328	1026.21	97.8	73936	607.68	121.7	
	Ni	3978	26.41	150.6	1124	9.02	124.6	
	Р	147	1.42	103.5	331	5.95	55.6	
	Pb	731	8.23	88.8	1094	7.24	151.1	
	S	180	89.37	2.0	0	37.52	NC	
	Sb	NA	NA	NC	1829	15.88	115.2	
	Se	NA	NA	NC	2216	1078.06	2.1	
	Si	253799	1043.34	243.3	185118	647.08	286.1	
	Sr	NA	NA	NC	6548	50.11	130.7	
	Ti	NA	NA	NC	706	8.83	79.9	
	Zn	18167	167.30	108.6	13997	105.17	133.1	
	Zr	14825	77.76	190.7	1620	9.01	179.8	
Gas	В	43712	272.96	160.1	24527	179.25	136.8	
	Cl	NA	NA	NC	926	114.45	8.1	
	F	NA	NA	NC	0	1.03	NC	
	I	NA	NA	NC	842	634.87	1.3	
	S	180	70.15	2.6	0	17.54	NC	
	Se	NA	NA	NC	2216	26.00	85.2	

From gravimetric analysis of filters and rinse dry downs for the first set of data and From gravimetric analysis of filters and front-half nitric acid analytical results for the second set of data.

NA – Not Analyzed

NC - Not Calculated.

Figure 2.1. Cross-section of the DM1200 melter through the discharge chamber.

Figure 2.2. Cross-section through the DM1200 melter showing electrodes.

ORP-51434, Rev. 0

Figure 2.3. Single Outlet "J" Bubbler.

Figure 2.4. Single Outlet "L" Bubbler.

Figure 2.5. Double Outlet "J" Bubbler.

Figure 2.6. Placement of 4 single outlet bubblers simulating 2 double outlet bubblers; 8" separation between outlets on each side of the melter. Note: solid circles represent locations of bubbler outlets.

Summary of DM1200 Operation at VSL Final Report, VSL-06R6710-2, Rev. 0

Figure 2.7. Placement of 4 single outlet bubblers simulating 2 double outlet bubblers; 14" separation between outlets on each side of the melter. Note: solid circles represent locations of bubbler outlets.

•

Figure 2.8. Double Outlet "J" Bubbler.

Figure 2.9. Placement of double outlet bubblers. Note: solid circles represent location of bubbler outlet.

Figure 2.10. Schematic of the DM1200 discharge chamber showing the location and numbering of heaters.

ORP-51434, Rev. 0

Figure 2.11. Typical discharge heater in the modified ceramic isolator. This assembly was installed in metal sheaths located in the discharge chamber.

Figure 2.12. View of the south and west DM1200 K-3 refractory (north and east walls removed for clarity)

Figure 2.13. View of the north and east walls of the DM1200 plenum refractory (south and west walls removed for clarity).

Figure 2.14. View of the south and west walls of the DM1200 plenum refractory (north and east walls removed for clarity).

Figure 2.15. View of the south wall plenum refractory in the DM1200.

Figure 2.16. View of the plenum refractory on the east wall of the DM1200.

Figure 2.17. View of the plenum refractory on the north wall of the DM1200.

Figure 2.18. View of the plenum refractory on the west wall of the DM1200.

Figure 2.19. View of the plenum refractory in the southwest corner of the DM1200.

Figure 2.20. View of the inside of the DMI200 discharge chamber showing the fiberboard walls and the end of the discharge trough. View up through the discharge port on the bottom of the chamber.

Figure 2.21. View of the bottom of the discharge trough through the view port on the south wall of the discharge chamber.

Figure 2.22. View up the discharge trough showing the top edge of trough.

Figure 3.1. Schematic representation of the variation over time of the required HLW glass production rates for the DM1200 and the projected solids content of the HLW feed from pretreatment.

Figure 3.2. Comparison of steady state glass production rates for HLW AZ-101 melter tests without bubbling and with bubbling using two single outlet bubblers [3, 9].

Figure 3.3. Glass production rates for HLW AZ-101 waste simulants with bubbling using two single outlet bubblers [17].

Figure 3.4. Comparison of steady state glass production rates for HLW AZ-101 melter tests using two single outlet bubblers [17].

Figure 3.5. Comparison of steady state glass production rates for 20% UDS HLW waste simulants using two single outlet bubblers [17, 23, 26, 28].

Figure 3.6. Comparison of steady state glass production rates for HLW waste simulants of varying viscosities using two single outlet bubblers at 65 lpm [23, 26, 35].

Figure 3.7. Steady state glass production rates for HLW AZ-101 waste simulants obtained during bubbler configuration tests [30].

Figure 3.8. Comparison of steady state glass production rates for HLW AZ-101 melter tests using two single outlet bubblers [30].

Figure 4.1. Schematic of the DM1200 film cooler.

Figure 4.2. Typical views of particulate buildup/plugging of the film cooler. View from the top of the film cooler looking down.

Figure 4.3. Glass pool bubbling rate versus film cooler DP for the HLW AZ-102 tests [35].

Figure 4.4. Glass pool bubbling rate versus film cooler DP from Test 9 employing the optimum bubbler configuration [30].

Figure 4.5. Glass pool bubbling rate versus film cooler DP from Test 8 of the optimum bubbler configuration tests [30].

Figure 4.6. Glass pool bubbling rates from Test 1 of the bubbler configuration tests [30].

Figure 4.7. Layout of film cooler and transition line sections.

Figure 4.8. View of top of the installed film cooler after tests (pre-cleaning) with LAW Sub-Envelope A1 simulants [14].

Figure 4.9. View of top of the removed film cooler after tests (pre-cleaning) with LAW Sub-Envelope A1 simulants [14].

Figure 4.10. View of bottom of the removed film cooler (pre-cleaning) after tests with LAW Sub-Envelope Al simulants [14].

Figure 4.11. Close-up view of bottom of the removed film cooler (pre-cleaning) after tests with LAW Sub-Envelope Al simulants [14].

Figure 4.12. View of fractured bottom ring of the film cooler (pre-cleaning) after tests with LAW Sub-Envelope Al simulants [14].

Figure 4.13. View of the bottom ring and throat of the film cooler (pre-cleaning) after tests with LAW Sub-Envelope Al simulants [14].

Figure 4.14. Another bottom view of the film cooler (pre-cleaning) after tests with LAW Sub-Envelope A1 simulants [14].

Figure 4.15. View of detachment of the film cooler bottom ring (pre-cleaning) after tests with LAW Sub-Envelope A1 simulants [14].

Figure 4.16. View of glass and weld beneath the failed region of film cooler (pre-cleaning) after tests with LAW Sub-Envelope A1 simulants [14].

Figure 4.17. View of louvers of the film cooler (pre-cleaning) after tests with LAW Sub-Envelope A1 simulants [14].

Figure 4.18. View of louvers of the film cooler (pre-cleaning) after tests with LAW Sub-Envelope A1 simulants [14].

Figure 4.19. Side view of the film cooler (pre-cleaning) after tests with LAW Sub-Envelope Al simulants [14].

Figure 4.20. View of damage to the bottom ring of film cooler (post cleaning) after tests with LAW Sub-Envelope A1 simulants [14].

Figure 4.21. View of louvers of the film cooler (post cleaning) after tests with LAW Sub-Envelope A1 simulants [14].

Figure 4.22. View of exit end of the film cooler (post cleaning) after tests with LAW Sub-Envelope A1 simulants.

Figure 4.23. Close-up view of exit end of the film cooler (post cleaning) after tests with LAW Sub-Envelope A1 simulants.

Figure 4.24. SEM micrograph of a sample removed from the film cooler bottom ring after tests with LAW Sub-Envelope A1 simulants [14].

Figure 4.25. View of flexible bellows (pre-cleaning) during tests with LAW Sub-Envelope A1 simulants [14].

Figure 4.26. Inside view of the SBS-side of the flexible bellows (pre-cleaning) after 121.6 hours of operations during tests with LAW Sub-Envelope A1 simulants [14].

Figure 4.27. Film cooler inlet after tests with HLW C-104/AY-101 simulants [28].

Figur e 4.28. Film cooler inlet close-up after tests with HLW C-104/AY-101 simulants [28].

Figure 4.29. Transition line section #2 inlet after tests with HLW C-104/AY-101 simulants [28].

ORP-51434, Rev. 0

Figure 4.30. Transition line section #2 outlet after tests with HLW C-104/AY-101 simulants [28].

Figure 4.31. Transition line section #3 inlet after tests with HLW C-104/AY-101 simulants [28].

ORP-51434, Rev. 0

Figure 4.32. View of transition line section #3 inlet after tests with HLW C-104/AY-101 simulants [28].

Figure 4.33. Transition line bellows outlet after tests with HLW C-104/AY-101 simulants [28].

Figure 4.34. SBS transition line inlet after tests with HLW C-104/AY-101 simulants [28].

Figure 4.35. Film cooler inlet after Configuration Test 2 [30].

Figure 4.36. Transition line section #1 outlet after Configuration Test 2 [30].

Figure 4.37. Transition line section #2 inlet after Configuration Test 2 [30].

Figure 4.38. Transition line section #3 inlet after Configuration Test 2 [30].

Figure 4.39. Transition line bellows inlet after Configuration Test 2 [30].

Figure 4.40. Transition line bellows outlet after Configuration Test 2 [30].

Figure 4.41. Outlet of transition line section in between bellows and SBS inlet after Configuration Test 2 [30].

Figure 4.42. Transition line bellows inlet after Configuration Test 1 [30].

Figure 4.43.a. View of large debris removed from transition line bellows inlet during Configuration Test 3 [30].

Figure 4.43.b. Macro image of sample removed from the transition line during Configuration Test 3 [30] (Sample # 1D2-O-25A).

Figure 4.43.c. EDS spectrum of the transition line sample (Sample # 1D2-O-25A).

Figure 4.44. Close-up of clogged perforation of film cooler inlet after Configuration Test 3 [30].

Figure 4.45. Film cooler inlet after Configuration Test 10 [30].

Figure 4.46. Close-up of film cooler inlet after Configuration Test 10 [30].

Figure 4.47. Transition line section #1 outlet after Configuration Test 10 [30].

Figure 4.48. Transition line section #2 inlet after Configuration Test 10 [30].

Figure 4.49. Transition line section #3 inlet after Configuration Test 10 [30].

Figure 4.50. Transition line section #3 outlet after Configuration Test 10 [30].

Figure 4.51. Transition line bellows inlet after Configuration Test 10 [30].

Figure 4.52. Transition line bellows outlet after Configuration Test 10 [30].

Figure 4.53. Inlet of transition line section in between bellows and SBS inlet after Configuration Test 10

Figure 4.54. Film cooler inlet (post-cleaning) after Configuration Test 10 [30].

Figure 4.55. Film cooler inlet and internals after Configuration Test 9 [30].

Figure 4.56. Inlet of transition line section in between bellows and SBS inlet (on bellows side) after Configuration Test 9 [30].

Figure 4.57. View of film cooler inlet and internals (partial post-cleaning) after Configuration Test 9 [30].

Figure 4.58. Transition line section #2 outlet after Foaming Test [31].

Figure 4.59. Close-up of transition line section #2 oulet after Foaming Test [31].

The Catholic University of America Vitreous State Laboratory

Figure 4.60. Transition line section #3 inlet after Foaming Test [31].

Figure 4.61. Transition line bellows at 26.9 hours of HLW Turnover Test following the MACT tests [41].

Figure 4.62. Inlet of transition line section in between bellows and SBS inlet at 26.9 hours of HLW Turnover Test following the MACT tests [41].

Figure 4.63. Film cooler inlet after HLW Turnover Test following the MACT tests [41].

Figure 4.64. Tip of the film cooler inlet showing damage after HLW Turnover Test following the MACT tests [41].

Figure 4.65. Close-up view of inlet and louvers of the film cooler after HLW Turnover Test following the MACT tests [41].

Figure 4.66. Film cooler outlet after HLW Turnover Test following the MACT tests [41].

Figure 4.67. View of bottom end of film cooler (post-cleaning) after Configuration Tests [30] (bottom) and HLW Turnover Test following the MACT tests [41] (top).

Figure 4.68. Close-up view of bottom end of film cooler (post-cleaning) after HLW Turnover Test following the MACT tests [41]. The Catholic University of America Vitreous State Laboratory Summary of DM1200 Operation at VSL Final Report, VSL-06R6710-2, Rev. 0

Figure 4.69. Transition line section #1 inlet after HLW Turnover Test following the MACT tests [41].

Figure 4.70. Transition line section #1 outlet after HLW Turnover Test following the MACT tests [41].

Figure 4.71. Transition line section #2 outlet after HLW Turnover Test following the MACT tests [41].

Figure 4.72. Transition line section #3 inlet after HLW Turnover Test following the MACT tests [41].

Figure 4.73. Solids that fell out of Transition line section #3 after HLW Turnover Test following the MACT tests [41].

Figure 4.74. Transition line bellows outlet after HLW Turnover Test following the MACT tests [41].

Figure 4.75. Inlet of transition line section in between bellows and SBS inlet after HLW Turnover Test following the MACT tests [41].

Figure 4.76. Outlet of transition line section in between the bellows and SBS inlet after HLW Turnover Test following the MACT tests [41].

The Catholic University of America Vitreous State Laboratory

Figure 5.1. Carryover from the DM1200 during initial HLW AZ-101 tests [3, 9].

Figure 5.2. DM1200 emissions during HLW AZ-101 tests [17] conducted with feed at 530 g glass per liter and two single outlet bubblers.

Figure 5.3. DM1200 emissions during HLW AZ-101 tests [17] conducted with two single outlet bubblers at a total constant flow of 65 lpm.

Figure 5.4. Carryover from the DM1200 during HLW AZ-101 tests [17, 29, 30] conducted with a total constant flow of 65 lpm.

The Catholic University of America Vitreous State Laboratory

Figure 5.5. Carryover from the DM1200 during HLW C-106/AY-102 tests [17, 29, 35, 41].

Figure 5.6. Carryover from the DM1200 during HLW tests [17, 26, 28, 29] conducted with two single outlet bubblers at a total constant flow of 65 lpm.

Figure 5.8. Carryover from the DM1200 during LAW tests [10, 14, 21, 31, 41].

Figure 5.9. DM1200 emissions during LAW Sub-Envelope A1 tests [14, 46].

Figure 5.10. DM1200 emissions during LAW Sub-Envelope B1 tests [21, 46].

ORP-51434, Rev. 0

R&T Technology Issues Summary

Page 1 of 1

Test Report Title:	Summary of DM1200 Operations at VSL			
Test Report Number:	<u>VSL-06R6710-2</u>			
Prepared By: Lawrence	e Petkus	Date:	Septembe	e <u>r 29, 2006</u>
Signature:	where Petking		9/29	106
Does the Testing or Repo	ort reveal any new discoveries, technology issu	op Mes,	Yes	No
or suggest potential follow	w-on work?		\bowtie	
If yes, describe the sugge	sted activity.			
See attached				
	·			
				·
				·
			Yes	No
If appropriate, is a Reque	st for Technology Development attached.			\boxtimes
Additional comments (in	clude researcher recommendations):			
See Attached				

Issues Summary - Attachment

Page 1

Suggested Activities

- 1. These tests showed that significant improvements in HLW glass production rates could be achieved by refining the bubbler configurations, even when this refinement is subject to the significant constraints imposed by the existing melter lid design. These improvements appear to be sufficient to more than make up for the production rate short-fall brought about by the reduction in the solids content in the HLW feed from pretreatment from 20 wt% to 15 wt% undissolved solids. However, attainment of the target rate was not possible for all HLW simulants after yet further reduction in feed solids content. Attempts to achieve the target rate with low solids content HLW feed resulted in unstable melter conditions and frequent blockages of the film cooler. Overall, the success demonstrated to date suggests that there is considerable further scope for HLW production rate enhancement.
- 2. The observed differences in processing rates for different waste compositions for adjusted rheology feeds and lower solids content feeds underscores the need for pilot-scale production rate testing across the full range of feed compositions and likely solids contents.
- 3. Film cooler clogging events continued to be a significant operational problem; their frequency appeared to increase with bubbling rate and glass production rate. Feeds with low solids contents further exacerbate this issue because of the need for increased bubbling rates in order to maintain glass production rates. None of the film cooler washing procedures were effective for preventing clogging with HLW feeds. No mechanical cleaning device has been tested. Consequently, this would appear to be a significant issue with respect to the ability of the WTP to meet HLW throughput requirements. These findings have been reported to the WTP Project and decisions regarding resolution are pending.
- 4. Per WTP Project direction, maintaining a cold cap limited feed rate during DM1200 tests was dependent on frequent visual monitoring of conditions in the melter. In contrast, operation of the WTP melters will be based only on non-visual data, such as plenum temperature. This could lead to either under feeding of the melter, resulting in under-achievement of otherwise attainable production rates, or over feeding of the melter, resulting in excessive cold-cap buildup as well as other operational difficulties. Testing under such conditions is therefore recommended to determine whether the required glass production rates can be achieved without employing the artificial visual data.

R&T Comments

1. Acceptable production rates were obtained for the contract feeds at between 20 wt % and 15 wt % undissolved solids using bubbler rates which are sustainable in the melter. WTP initiatives have started to look at other potential feeds, additional bubblers, and at the Pretreatment system's ability to deliver feed to Vitrification at flow sheet rates and concentrations.

Issues Summary - Attachment

Page 2

- 2. Feeds of different rheology were processed. The thicker, non-Newtonian feeds demonstrated higher production rates, so that testing results are probably conservative (low). Feeds beyond the four contract tanks are not within the scope of this work.
- 3. A film cooler cleaner is included in the WTP design baseline. An assessment of plugging potential is being made based on expected feed composition (wt % solids), bubbler rated to achieve production, and the number of available bublers.
- 4. Observations were used as part of the control strategy for the test melters to assure that test parameters were maintained. The melter design has provisions for a CCTV camera in the lid, however, more recently, remote camera design and procurement has been put on hold. No scope has been identified to mitigate the lack of available observation. It has been identified as a start up issue.

R&T Subcontractor Document Review Record

Page 1 of 1

1) To Be Completed by Cognizant R&T Personnel					
Document Number Revision		Document Title			
VSL-06R6710-2 A		Summary of DM1200 Operations at VSL			
Test Spec: Various		Scoping Statement(s): VH-4, VHO-3, VHO-1, VLO-5, VLO-1			
D &T Contact	Lawrence Petkus Name (Print)		MS6-N1	371-4557	July 11, 2006
K&I Contact.			MSIN	Telephone Number	Date

Organization	Contact	MSIN	Require	Required?		
Process Engineering	T Valenti	MS4-C1	Yes 🖂	No		
Quality Assurance	M Mitchell	MS14-4A	Yes 🗌	No 🛛		
Environmental and Nuclear Safety	E&NS Doc Rev	MS4-D2	Yes 🗌	No 🛛		
Commissioning and Training	S Gourley	MS12-B	Yes 🗌	No 🛛		
Engineering	M Ongpin	MS4-A2	Yes 🗌	No 🛛		
R&T Functional Manager	S Barnes	MS6-P1	Yes 🖂	No 🗌		
			Yes 🗌	No 🗌		
			Yes 🗌	No 🗌		
			Yes 🗌	No 🗌		
			Yes 🗌	No 🗌		

Required Reviewers are required to respond to the R&T Contact.

2) To be Completed by Reviewer							
······							
ne (Print)	Organization	Date					
Accepted, Comments Not Significant	Significant Comments, Form 24590-MGT-F00006 Attached	Significant Comments, Comments Marked on Document					
	pleted by Reviewer ne (Print) Accepted, Comments Not Significant	pleted by Reviewer me (Print) Organization Accepted, Significant Comments, Form Comments Not Significant 24590-MGT-F00006 Attached					

3) To be Com	pleted by Reviewer*		
My significan	t comments have been a	ddressed.	
Acceptance:			
-	Print/Type Name	Signature	Date
* An e-mail to t	he R&T contact stating the	nt significant comments are addresse	ed can substitute for this acceptance.

Petkus, Lawrence

From:Valenti, ThomasSent:Tuesday, September 26, 2006 12:31 PMTo:Petkus, LawrenceSubject:RE: DM1200 Summary Report VSL-06R6710-1

Engineering and Process Engineering has reviewed and accepts resolution of comments to the subject summary report.

Thomas J. Valenti

Process Engineering Group MPF C120A 509/ 371-3760

 -----Original Message----

 From:
 Petkus, Lawrence

 Sent:
 Tuesday, September 26, 2006 12:21 PM

 To:
 Valenti, Thomas

 Subject:
 DM1200 Summary Report VSL-06R6710-1

Tom,

I have all of the individual acceptances, but not the final Engineering acceptance.

Larry Petkus

R&T, ETC-1 MS6-N1 Ph. 371-4557

<< Message: FW: Responses to Comments on DM1200 Summary Report, VSL-06R6710-2 >> << Message: RE: Responses to Comments on DM1200 Summary Report >> << Message: RE: Responses to Comments on DM1200 Summary Report >> << File: DM1200 ComResp - Proc Eng.doc >>

COMMENT RESOLUTION FORM

Page 1 of 1

Return to: Lawrence Petkus			Comments Due: July 26, 2006			
Document Title: Summary of DM1200 Operations at VSL			Document No.	,	Revision:	Date:
			VSL-06R6710-2		Α	July 11, 2006
Reviewer:	Date:	Response by:	Date:	Comments	Resolved:	Date:
L. Petkus for S. Barne	es July 27, 2006			Law	rere Peth	en 8/24/06

Item No.	Section/ Paragraph	Comment	Significance ^a	"M" Comment Justification ^B	Response	Resolution	
1	Summary G	Melter control based on visual monitoring is mentioned in the issues section, but not supported in the main body of the report. Add a section to discuss melter control issues.	Ι		Agreed. Text will be added to Section 3.0 to discuss visual monitoring and melter control.		ORP-51432
2	2.3.1	Type K thermocouples will undergo a calibration shift when they at temperature for an extended period of time. Was there any noticeable temperature reading shift at change out? Was change- out staggered to minimize the effect?	Ι		We will add the rationale for changing thermocouples to the text. Data will be reviewed to determine if a shift occurred after routine thermocouple change outs.		1, Rev. 0

Significance: M = Mandatory; I = Improvement. Definitions for these terms are provided at the end of the form instructions and in Appendix B of procedure "WTP Document Administration". Justification required for Mandatory Comments. а

b

Petkus, Lawrence

From: Randklev, Edward H [Edward_H_Randklev@RL.gov]

Sent: Thursday, September 28, 2006 3:31 PM

To: Petkus, Lawrence

Cc: Randklev, Edward H

Subject: FW: DM1200 Summary

Larry,

Thanks for checking on this matter for me. I am satisfied with the revised VSL phrasing regarding their reporting/concern about the lack of a demonstrated (workable) film cooler cleaning method, and I take your word for it that the Section 6 entry on this same topic was similarly revised by VSL.

With that I consider my primary review comment to be satisfactorily resolved.

Thanks,

Ed R.

From: Petkus, Lawrence [mailto:llpetkus@bechtel.com] Sent: Thursday, September 28, 2006 2:45 PM To: Randklev, Edward H Subject: DM1200 Summary

Ed,

I checked your original comment S6. Duratek has added words that the project is looking at the resolution of the issue. Again, I have included excised section G. Section 6 uses the same words.

Larry Petkus

R&T, ETC-1 MS6-N1 Ph. 371-4557 <<Report Summary SecG.doc>> ORP-51434, Rev. 0

Petkus, Lawrence

From: Randklev, Edward H [Edward_H_Randklev@RL.gov]

Sent: Thursday, August 24, 2006 5:35 PM

To: Petkus, Lawrence

Cc: Randklev, Edward H

Subject: FW: Response to Comments on VSL-06R6710-2 "Summary of DM1200 Operations at VSL"

Larry,

1) I have reviewed the VSL proposed responses to my review comments, and I find them to be acceptable except for the VSL proposed response to one comment.

2) The one exception, to my approval of the VSL responses, is in regards to my Comment S-6 and the VSL response. (Film cooler issue and the dramatic VSL conclusions about it, including potential WTP Contract requirement violation.) a) You noted how BNI (R&T, et al) tracks, by separate reporting documentation, the issue that are brought to the attention of BNI R&T via contractor work, and then BNI efforts to resolve the issue. Sounds fine. I do not propose that this be included in this VSL report.

b) What I do propose, as an acceptable response/resolution path, regarding my comment, is that VSL at least include a statement in the report that notes that VSL has made recommendations to the WTP Project regarding resolution of this issue and Project decisions are pending. Without such a statement, a general reader is left to wonder if BNI is even paying attention to this dramatic conclusion.

I believe this simple additional statement needs to go into this report in <u>each location</u> where the VSL authors have made the dramatic conclusion that the issue of film cooler plugging, unless fixed, will result in the system not being able to meet the WTP Contract requirements on production throughput. (A very serious claim.) Examples of such locations include the Summary of Testing section (e.g. on page 14 next to their dramatic conclusion), and also in the Section 4.2.6 discussion on the MACT work (again put it next to the VSL claim that a lack of a method fix film cooler plugging is going to jeoprodize the WTP Contract requirement on throughput) and also include it in the Summary and Conclusions section (6.0).

Later, Ed R.

From: Petkus, Lawrence [mailto:llpetkus@bechtel.com]
Sent: Tuesday, August 22, 2006 4:06 PM
To: Randklev, Edward H
Subject: Response to Comments on VSL-06R6710-2 "Summary of DM1200 Operations at VSL"

Ed,

Attached are the responses to you comments. Please let me know if these responses are acceptable.

Larry Petkus R&T, ETC-1 MS6-N1

Ph. 371-4557 <<ORPcoms 8-22-6.doc>> ORP-51434, Rev. 0

Petkus, Lawrence

From: Babel, Carol A [Carol_A_Babel@RL.gov]

Sent: Monday, July 31, 2006 10:51 AM

To: Petkus, Lawrence

Cc: Hamel, William

Subject: RE: Document Review: VSL-06R6710-2 "Summary of DM1200 Operation at VSL

Larry,

Thank you for the opportunity to review the draft report VSL-06R6710-2 "Summary of DM1200 Operation at VSL," Rev A., containing the history of the DM1200 Melter operation and development across many runs for both HLW and LAW. These summary reports are very useful for the project. I have no comments at this time.

Carol

From: Petkus, Lawrence [mailto:llpetkus@bechtel.com]
Sent: Wednesday, July 12, 2006 7:28 AM
To: Babel, Carol A; Randklev, Edward H
Subject: Document Review: VSL-06R6710-2 "Summary of DM1200 Operation at VSL

Carol and Ed

VSL has submitted a draft report, VSL-06R6710-2 "Summary of DM1200 Operation at VSL," Rev A. This report reviews the history of the DM1200 Melter operation and development across many runs, both HLW and LAW. Please have the appropriate staff review this document and return **comments to Larry Petkus by July 26, 2006**.

The report is too big to E-mail, so I am mailing a CD to Carol this morning. I hope you can share.

Thank you,

Larry Petkus

R&T, ETC-1 MS6-N1 Ph. 371-4557