The decay constants fDs and fD+ form lattice QCD

PDF Version Also Available for Download.

Description

Recent calculations of the decay constants in lattice QCD are reviewed and compared to experiment. The decay constants are tabulated in Table 2 and plotted in Figure 2. The most precise f{sub Ds} value is from HPQCD. It is about 2{sigma} higher than their previous result. The change is due to a more precise determination of the lattice spacing and better tuning of the quark masses. They have updated f{sub D+} using the new f{sub Ds} and their older f{sub Ds}/f{sub D+} ratio which is expected to be less sensitive to mistuning of the lattice spacing and masses. The preliminary ... continued below

Physical Description

5 pages

Creation Information

Simone, James N March 1, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recent calculations of the decay constants in lattice QCD are reviewed and compared to experiment. The decay constants are tabulated in Table 2 and plotted in Figure 2. The most precise f{sub Ds} value is from HPQCD. It is about 2{sigma} higher than their previous result. The change is due to a more precise determination of the lattice spacing and better tuning of the quark masses. They have updated f{sub D+} using the new f{sub Ds} and their older f{sub Ds}/f{sub D+} ratio which is expected to be less sensitive to mistuning of the lattice spacing and masses. The preliminary FNAL/MILC f{sub Ds} value is about 1.4{sigma} higher than the HPQCD result but with a larger error. The f{sub D+} values, however, are in better agreement. FNAL/MILC expect to finalize their results once the charm quark mass tuning is complete. The two flavor ETM f{sub D+} value is about 1.6{sigma} lower than the HPQCD value while f{sub Ds} is in better agreement. It is not clear how much of the difference is from neglecting the strange sea quark, given the errors. Lattice and experiment differ most significantly for f{sub Ds}. Figure 3 shows Kronfeld's (updated) history of f{sub Ds}. The yellow bands depict the evolution of the experimental average while the three-flavor lattice average is shown in grey. The right-hand scale and green lines show the differences in sigmas. The 3.8{sigma} discrepancy around t {approx} 2 provoked the 'f{sub Ds} puzzle'. That discrepancy has now shrunk to 1.6{sigma}. Future lattice and experiment will be decisive.

Physical Description

5 pages

Source

  • Presented at 4th International Workshop on Charm Physics: CHARM 2010, Beijing, China, 21-24 Oct 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-CONF-10-594-T
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 1015832
  • Archival Resource Key: ark:/67531/metadc830342

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 26, 2016, 4:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Simone, James N. The decay constants fDs and fD+ form lattice QCD, article, March 1, 2011; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc830342/: accessed November 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.