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Abstract 

Parameter estimation by inverse modeling involves the repeated evaluation of a function 

of residuals. These residuals represent both errors in the model and errors in the data. In 

practical applications of inverse modeling of multiphase flow and transport, the error 

structure of the final residuals often significantly deviates from the statistical assumptions 

that underlie standard maximum likelihood estimation using the least-squares method. 

Large random or systematic errors are likely to lead to convergence problems, biased 

parameter estimates, misleading uncertainty measures, or poor predictive capabilities of 

the calibrated model. The multiphase inverse modeling code iTOUGH2 supports 

strategies that identify and mitigate the impact of systematic or non-normal error 

structures. We discuss these approaches and provide an overview of the error handling 

features implemented in iTOUGH2. 
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1. Introduction 

Numerical modeling is currently applied to characterize, predict, and optimize subsurface 

systems of increasing complexity. This increase in complexity arises foremost from the 

challenges that need to be addressed to ensure the sustainability of water, energy, and 

environmental systems. To be able to reliably predict the response of these systems to 

natural or man-made changes in the forcing terms, it is essential to consider coupled 

processes and to include many intricate hydrogeologic features. Advances in both process 

understanding and computational methods have enabled us to simulate subsurface 

systems with a higher degree of realism. However, the number of parameter values to be 

determined has also increased, so has the amount and variety of data that need to be 

collected for the calibration of a site-specific model. For example, while it may be 

sufficient to use basic geologic information along with water table measurements and a 

simple flow model to estimate groundwater flow in a confined aquifer, predicting the 

migration of contaminants in the vadose zone may require the development of a complex 

multiphase reactive transport model, the collection of hydrologic and geochemical field 

data, and the measurement of two-phase hydraulic properties on core samples.  

 

Inverse modeling provides a framework to quantitatively integrate information about 

hydrogeological processes and the structure of the subsurface into a site-specific 

prediction model. Parameter estimation by inverse modeling involves minimizing an 

objective function that measures the misfit between the observed and calculated system 

state for all observation times. Many minimization algorithms as well as the 

interpretation of the inversion results are based on assumptions about the structure of the 
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residuals, i.e., the differences between the data and the corresponding model output once 

the objective function has been minimized. For example, these residuals are commonly 

expected to be random, uncorrelated, relatively small, and Gaussian. In practical 

applications, however, the residuals often contain significant systematic deviations or 

relatively large random errors that occur much more frequently than predicted by a 

Gaussian distribution. Such errors in the assumptions are likely to lead to convergence 

problems, biased parameters, misleading uncertainty estimates, or poor predictive 

capabilities of the calibrated model. An excellent discussion of structural errors can be 

found in Doherty and Welter (2010). 

 

In this paper, we discuss the source and structure of such discrepancies and present 

strategies to mitigate their impact on inverse modeling results. We limit the discussion to 

approaches that are implemented in the multiphase inverse modeling code iTOUGH2 

(Finsterle, 2004). 

 

2. Theory 

2.1 Residuals, measurement and modeling errors 

The vector of residuals r is defined as the difference between the observed (indicated by 

an asterisk) and calculated (indicated by a hat) system responses at m discrete points in 

space and time where available measurements are considered suitable for model 

calibration: 

  (1) miεbεbee*eze*zzz*r iiii ,,1)ˆˆ(*)*()ˆ()ˆ()()ˆ( 
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The measurement z* is the sum of the true (but unknown) system state z and the (true) 

measurement error e*. Similarly, the model output is the sum of the true system state and 

the (true) modeling error e . The error terms can be further described as containing a 

systematic component (b) and random component (), that is, 

ˆ

**  be*  and 

. These errors are termed “true” errors, as they refer to the true system response 

z. However, because z is unknown, we have to describe these errors using statistical 

terms.  

̂ˆˆ  be

 

While our ultimate goal is to identify the model structure and model-related parameters 

that best explain (and ultimately predict) the true system response z within acceptable 

uncertainty, this determination is based on an evaluation of residuals that are defined as 

the sum of two unavoidable error terms. In essence, the purpose of a physically based 

forward model is to capture the explainable part of the observable system response (b). In 

this sense, the model is deterministic and a function of the adjustable parameters. The 

unexplainable, random part of the residuals (), on the other hand, needs to be described 

by a stochastic model. Parameter estimation based on this formulation is thus inherently 

uncertain, and a careful examination of the measurement and modeling errors is essential 

to avoid a misinterpretation of its results. In this paper, we focus on estimation 

uncertainties that result from contamination by measurement noise, not from lack of 

sensitivity or from strong parameters correlations. 

 

The vast majority of parameter estimation problems in hydrology are solved by the 

classical least-squares method, i.e., by minimizing the variance of the residuals, which 
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may include prior information and other regularization terms. Moreover, it is often stated 

that this method leads to maximum likelihood estimates (see, e.g., Carrera and Neuman, 

1987). The reasonableness of this approach is based on all or various combinations of the 

following assumptions: (1) The conceptual model (which includes all parameters that are 

fixed during the inversion) is capable of reproducing the true system state once the 

parameters are adjusted (Vrugt and Boutem, 2002); (2) the final residuals have a random 

structure, i.e., there are no systematic measurement or modeling errors; (3) the solution to 

the inverse problem is unique and stable; (4) a relatively large number of data points is 

available; (5) the residuals are statistically independent; and (6) there are no modeling 

errors, i.e., the residuals can be described by the statistics of the measurement errors. In 

some cases, additional assumptions are made (implicitly or explicitly). If one or several 

of the assumptions listed above are violated, the least-squares approach should be refined 

or replaced with a suitable alternative. If least-squares methods are used nonetheless, the 

results have to be interpreted with caution or discarded, or an effort has to be made to 

bring the residuals in better compliance with the underlying assumptions. The remainder 

of this paper explores some of these issues. 

 

2.2 Residual analysis 

Before we discuss ways to mitigate the impact of certain errors on inverse modeling 

results, we first address the non-trivial question of how the existence of such errors can 

be detected. With the exception of synthetic inversion studies in which the model 

structure is perfectly known, it is impossible to obtain complete confidence that the true 

system response is identified, and that the calibrated model is an accurate enough 
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representation of the true system for reliable predictions to be made (Oreskes et al., 

1994). Even when we acknowledge that a model is by definition a simplification of the 

real system—and thus always contains errors—this does not address the question of 

whether these errors are acceptable, or whether a calibrated model stays within the error 

bounds that were originally deemed tolerable.  

 

In this section, we focus on the residual analysis as a means to detect errors that may not 

have been properly accounted for during model setup and inversion. Focusing on 

residuals rather than on the uncertainty of the estimated parameters is justified by the fact 

that if the model is not able to reasonably reproduce the observed data, it is likely not a 

good representation of the true system, in which case an examination of the estimation 

uncertainties becomes meaningless.  

 

When judging the goodness-of-fit and the structure of the residuals, it is necessary to 

define expectations about how well the calibrated model will match the data overall, and 

what deviations between the data and the model are considered acceptable. These 

expectations are generally reflected in the covariance matrix Czz, the inverse of which is 

used to weigh the residuals in the objective function. As discussed above, describing the 

expectations by a covariance matrix assumes that the final residuals will have a random 

structure, which in turn implies that the deterministic forward model captures the 

systematic, explainable part of the system response. This is why the covariance matrix is 

commonly thought of as describing the measurement errors only. In most applications, 

the covariance matrix is assumed to be diagonal. Its elements can be constant (at least for 
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each data type or sensor) or variable (e.g., expressed as a fraction of the measured value). 

If residuals are heteroscedastic, the Box-Cox transformation (Box and Cox, 1964) can be 

applied to the measured and simulated data: 
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Here, g is the geometric mean of the data, and the Box-Cox parameter  is either known 

or estimated along with the hydrogeological parameters. This rank-preserving power 

transformation can make the residuals more Gaussian-like. 

 

While the covariance matrix can be multiplied by any scalar without impacting the 

parameter estimates, it is desirable to construct the covariance matrix to reflect 

expectations about the final residuals. Then, we can statistically test the goodness-of-fit 

by calculating the a posteriori error variance 
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and test whether it significantly deviates from the a priori variance , which is by 

definition equal to 1.0 (in Eq. 3, n is the number of parameters). Failing the Fisher model 

test 

2
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    1,,
2
0

2
0,, nmnm FsF  indicates that there is an error in the functional or 

stochastic model. This formal analysis, however, has limited applicability in 

hydrogeology, mainly because our expectations about the final residuals are more 

difficult to formulate than in other fields (such as land surveying, where the functional 

model is well defined and the statistics of the measurement errors are accurately known). 

Nevertheless, the estimated error variance of Eq. (3) serves as an overall goodness-of-fit 
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criterion, which is also a key component in comparisons of model performance (see the 

discussion of model identification criteria in Carrera and Neuman (1986) for details). 

 

Even if the overall fit is considered acceptable, a more detailed analysis is needed to 

reveal potential trends in the residuals, which indicate that there is a systematic error in 

the model or the data, or that the random components are correlated. In general, an 

inspection of the residuals can be used to help identify aspects of the model that need to 

be modified, or potential flaws in the measurement device. In addition, large residuals 

(outliers) may be detected by visual inspection of a scatter plot, or by use of a more 

rigorous approach based on mathematical statistics. Note that if the statistics of the 

residuals significantly deviate from normal, the least-squares estimates are likely to be 

biased, and the formal error analysis (which establishes quantitative relationships among 

the objective function, the covariance matrix, and the confidence level) is not valid. 

 

If such discrepancies between the assumed and actual distributions of the residuals are 

not obvious, a simple moment analysis of the residuals can be performed, separate for 

each data set or each observation type, and for all appropriately scaled residuals. The 

mean of the residuals, r , is expected to be close to zero, and the variance,  should be 

consistent with that specified by the prior covariance matrix Czz. A large variance either 

indicates that the data were noisier than expected, or that there is a trend or outliers in the 

residuals. The third moment characterizes the degree of asymmetry of the distribution. A 

positive (negative) skewness signifies an asymmetric tail extending to more positive 

(negative) residuals. The fourth moment or kurtosis measures the peakedness or flatness 

2
rs
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of the distribution relative to the Gaussian distribution. A distribution with positive 

(negative) kurtosis is relatively peaked (flat) in comparison with a normal distribution. 

 

Since the calibrated model is expected to yield simulated values that are close to the 

observed data, points of model results versus data should be close to a line with an 

intercept of zero and a slope of one. The statistics of such a regression line, including its 

linear coefficient of determination, provide easy measures of how well these expectations 

are met. Autocorrelations among the residuals within a time series can be identified using 

an autoregressive model or the so-called “runs statistic” (Cooley, 1979). A run is defined 

as a series of residuals that are either positive or negative. The number of sequential 

residuals with the same sign is the length of the run. In a random data set, the probability 

that the sign of two adjoining residuals changes follows a binomial distribution, which 

forms the basis of the runs test. If runs are on average longer or shorter than expected, the 

residuals are most likely not the result of a random process. 

 

To further analyze the residuals, it is necessary to estimate the uncertainty of the 

calculated system response. Under a linearity and normality assumption, the covariance 

matrix of the model prediction (also termed the data resolution matrix) is given by 

   T
pp

T
zz

T
ozz s JJCJJCJJC 

 112
ˆˆ  (4) 

The Jacobian matrix J holds the derivatives of the calculated system response at the 

calibration points with respect to the parameters of interest, i.e., jiij pzJ  /)(ˆ p . The 

covariance matrix of the estimated parameters is given by   112
0

 JCJ zz
TsC . A 

measure of uncertainty can be obtained by taking the square-root of the diagonal 

pp
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elements of . It represents a prediction of the mean, and its expected variability is less 

than that of an individual data point (i.e., ), provided that the Fisher model test is 

passed. The covariance matrix of the residuals is given by (Weisberg, 1980): 

zzˆˆC

22
ˆ zz  

zz CC zzrr ˆˆC  (5) 

Note that the residuals are always correlated, even if the elements of Czz are independent. 

The elements of Crr depend on the number and location of the observation points and the 

sensitivities of the calculated system response and these points to the model parameters; 

they do not depend on the actually measured value. Next, we calculate a measure termed 

local reliability or partial redundancy: 
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The local reliability is a measure of how much a data point is controlled by redundant 

observations. If yi is close to zero, even a large error in the corresponding data point  

cannot be detected. A yi value close to one indicates a well-controlled observation. 

Adding more observation points in the vicinity of this measurement may improve the 

accuracy, but does not necessarily improve the reliability of the inverse modeling system. 

Observations with relatively small yi values are poorly controlled, whereas relatively 

large yi values indicate a high degree of redundancy. For a poorly controlled observation, 

the size of the actual error can be significantly larger than the residual. Note that yi can be 

evaluated a priori and can therefore be used to improve the design of an experiment. 

Experience suggests that good experimental designs yield yi values in the range 

, signifying a good balance between control and data efficiency. 

*
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25.0  iy 75.0
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The normalized or studentized residual 
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is a normally distributed random variable with zero mean and a variance of one. Hence, 

the size of a residual can be statistically tested to see whether it is acceptable or a 

potential outlier. If  1uw , where  is the quantile of the standard normal 

distribution on the 

1u

1  confidence level, then the corresponding residual is likely to be 

an outlier under the normality assumption; the risk of discarding an acceptable data point 

is . Outliers should be discarded, or―if many outliers are detected―the normality 

assumption has to be questioned, robust estimators have to be used, or systematic errors 

removed. Note that the w-test checks each residual individually, whereas the F-test 

examines the ensemble of all residuals. Since the model is nonlinear, all the measures 

discussed above are only approximately correct. Sampling methods need to be employed 

to test the appropriateness of the linearity assumption. 

 

Finally, the relative contribution of each data point, each data set, and each observation 

type to the objective function may be used to identify errors in portions of the data or the 

model. Since the objective function is built using the weighted residuals, an imbalance in 

these contributions may also signify an error in the stochastic model. This concludes the 

discussion of the residual analysis as implemented in iTOUGH2. 

 

2.3 Correlated and non-normal residuals 
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In most hydrogeological inverse modeling applications, errors are assumed to be (1) 

independent, (2) normally distributed, and (3) devoid of systematic errors. In this section, 

we discuss steps that could be taken to address violations of these assumptions.  

 

First we note that Eqs. (3) and (4) as well as related equations (e.g., those describing the 

parameter update in the Gauss-Newton or Levenberg-Marquardt minimization 

algorithms) include a covariance matrix C that may contain off-diagonal terms. This 

means that if correlations are known to exist, they can be specified and used directly in 

the matrix formulations of these equations. The more difficult question is how statistical 

correlations can be determined a priori. A simple approach to partially account for 

temporal correlations among the residuals in a data set is to apply a first-order 

autogregressive time series model (AR1): 
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If the process is indeed autoregressive, the corrected residuals r~ become uncorrelated for 

the appropriate value of the autoregressive coefficient , which can be calculated 

iteratively or estimated along with the hydrogeological parameters.  If autocorrelation 

arises from an incorrect functional model rather than from the random part of the error 

term, it may be more appropriate to refine the model, estimate parameters of a trend 

model, or represent the physics of the measurement condition in parameterized form, as 

will be discussed below. 
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The covariance matrix Czz serves multiple purposes within a formal inversion framework. 

It (1) scales data of different quality, (2) scales observations of different types, so the 

weighted residuals are dimensionless and can be combined within a single objective 

function, (3) weighs the contribution of a residual to the overall misfit measure, and (4) is 

the stochastic model for maximum-likelihood estimation assuming normally distributed 

residuals. The last point is almost universally invoked if the generalized least-squares 

approach is used, and the normality assumption is justified by referring to the central 

limit theorem. However, in practical applications, large residuals occur more frequently 

than predicted by the tails of the normal distribution; they thus receive an undue weight 

in the inversion, and may bias the estimation results. In addition to the standard least-

squares objective function, a number of alternative loss functions are available in 

iTOUGH2 to mitigate the impact of large residuals. The performance of these robust 

estimators has been examined using synthetic and real data (Finsterle and Najita, 1998). 

In the illustration below, we will make use of the Andrews estimator (Andrews et al., 

1972): 
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Here, c is a parameter, zrr /~   is the weighted (potentially transformed) residual, and 

r̂  is the loss function that enters the objective function  rS ˆ  to be minimized. 

Observations with weighted residuals larger than c are considered to be true outliers and 

are not counted at all in the estimation of the parameters. For practical applications, a c 

value of 0.5 approximately represents Gaussian residuals with the tails of the distribution 

truncated. 
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2.4 Systematic errors 

The distinction between systematic and random errors, and that between modeling and 

measurement errors, is somewhat arbitrary or difficult to establish in practice. 

Correlations among random errors may suggest the presence of a systematic process that 

is not explicitly modeled. Moreover, a systematic difference between measurements and 

model results can be attributed to an error in the measured data or an inappropriate 

representation of the measurement process in the forward model. Such errors can be 

viewed as an inconsistency between the model and the real system, and this discrepancy 

can be reduced by either adjusting the experiment or correcting measured data, or by 

refining the model so it properly captures the conditions that prevailed during data 

collection.  

 

Analyzing systematic deviations between the model and the data is the means to gain 

insight into the explainable and predictable parts of the system behavior, and to extract 

information from the data. However, if the cause of the deviation is not related to the 

parameters of interest, the discrepancy has to be removed prior to or during the inversion 

to avoid an estimation bias. If sufficient complementary data are available, potential 

systematic errors can be included in the evolution or observation models using an 

appropriate parameterization, and these parameters can be estimated concurrently. This 

approach has been demonstrated in Finsterle and Persoff (1997) and will be further 

discussed in the example below. 

 

 14



3. Example 

Using a synthetic laboratory experiment involving two-phase flow processes, we examine 

the ability of the diagnostic features and mitigation measures implemented in iTOUGH2 

to detect and partly remove the impact of random and systematic errors in both the model 

and data. In the synthetic experiment (which was simulated by TOUGH2), water is 

injected at a constant pressure into a 0.5 m long horizontal column filled with uniform, 

partially saturated soil. The flow rate at the outlet and the pressure at the center of the 

column are used to estimate soil parameters. Various errors are introduced into the model 

and the synthetic data (see Table 1), purposely violating some of the assumptions 

underlying the standard least-squares approach for maximum-likelihood estimation. In 

our example, a small gap between the soil and the core holder leads to leakage. While 

outflow rate exhibits rate-dependent random fluctuations, with an outlier present, a 

homoscedastic measurement error with a standard deviation of f = 5 ml/min is assumed 

for the initial inversion. Noise in the pressure data is assumed to have a standard 

deviation of p = 100 Pa. However, the manometer has a memory effect that leads to 

temporally correlated pressure signals (generated using a Gaussian noise with an 

autocorrelation coefficient of 0.5), and the head data are erroneously converted to 

absolute pressure using a reference pressure of one bar instead of one atmosphere. 

Moreover, the precise location of the pressure sensor within the sample is not known. 

 

The impact of these errors on the estimation of soil properties is examined by performing 

three calibrations. In the first calibration, two hydrogeologic properties—the logarithm of 

permeability k and porosity —are estimated along with the initial gas saturation Sgi, 
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which is recognized as uncertain and thus included in the inversion. In the second 

calibration, potential systematic errors (leakage permeability kleak, data shift Ap, and 

wrong sensor location Xp) are parameterized and jointly estimated. Finally, the third 

calibration addresses autocorrelation , heteroscedasticity , and the presence of outliers. 

For the first two inversions, the standard weighted least-squares objective function was 

used: 
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For the third inversion, the Andrews estimator (see discussion of Eq. 9) was used, where 

the observations and corresponding model output were Box-Cox transformed (Eq. 2) and 

the transformed residuals corrected using the autoregressive AR1 model (Eq. 8). In all 

inversions, the objective function was minimized using the Levenberg-Marquardt 

algorithm with an eigenvalue-based Tikhonov matrix (Finsterle and Kowalsky, this 

issue). Porosity and initial gas saturation were constrained to their physical ranges; all 

other parameters were unconstrained. For each of these calibrations, we discuss the 

estimation bias and whether insights can be gained from a detailed residual analysis.  

 

Fig. 1 shows the synthetically generated pressure and flow rate data, which are taken 

every 10 seconds. They are derived from the true system response by adding the random 

and systematic errors summarized in Table 1. Both the autocorrelation in the pressure 

noise and the heteroscedasticity in the flow rate data are visible. The calculated system 

response with the initial parameter set and no error handling deviates significantly from 

the data, as expected. 
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Fig. 2 shows the measured against calculated pressures and flow rates, scaled by the 

respective standard deviations p and f. The deviations from the unit-slope line are the 

residuals. Table 2 lists the parameter estimates, and Table 3 the results of the residual 

analysis. 

 

While adjusting permeability, porosity, and initial gas saturation during the first inversion 

leads to a substantial reduction in the objective function, a simple visual inspection of the 

residuals (Fig. 2b) immediately reveals the systematic deviations caused by the 

conversion error and a potential leak. Moreover, the estimates for porosity and initial gas 

saturation end up at their upper and lower bounds, respectively, which often indicates that 

the model is an unlikely representation of the true system.  

 

Next, the potential leak along the sample edge (simulated as a cylindrical opening of 

unknown permeability), the data shift (an unknown constant added to the measured 

pressures), and the location of the pressure sensor (i.e., the coordinate where the 

calculated pressure is extracted from the mode) are parameterized and estimated along 

with the hydrologic properties, significantly improving the fit. Nevertheless, relatively 

many large residuals are still identified using the criterion of Eq. (7), and the Fisher 

model test fails on a significance level of 5%. Moreover, the distributions of residuals are 

skewed and flatter than the normal distribution, suggesting that the normality assumption 

is violated. Even though the estimated parameters are physically reasonable, they are 
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biased. The residual analysis indicates that these parameters should not be taken as the 

final result, but that the analysis needs to be refined. 

 

Finally, estimating the autoregressive coefficient and Box-Cox parameter, and using a 

robust estimator rather than least squares leads to an acceptable model fit and parameter 

estimates that are consistent with the true values given their uncertainties (see Table 2). 

The sole outlier in the flow rate was identified by the Andrews estimator and its effect 

automatically removed from the inversion. 

 

The residual analysis further indicates that the local reliability measures for all residuals 

are above a value of 0.25, i.e., all calibration points are sufficiently controlled by 

neighboring, partly redundant measurements. The relatively large intercept combined 

with the unit slope and high Pearson’s coefficient clearly point to the presence of a 

constant shift in the pressure data. The runs statistic appears to be misleading for the first 

inversion, where too few runs during the early stages of the experiment are compensated 

by many runs at the later stage, leading to the conclusion that the flow-rate residuals are 

random. For the final inversion, the pressure residuals are classified as non-random, 

which is due to the autocorrelation that results in too few runs. 

 

4. Concluding Remarks 

Parameter estimation by automatic model calibration generally relies on simplifying 

assumptions about the structure of the residuals in order to be able to use the powerful 

tools of Gaussian statistics. However, systematic and non-Gaussian errors in both the 
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model and the data are common in the study of complex multiphase flow systems. The 

analytics implemented in iTOUGH2 provide some means to identify and mitigate such 

errors. In this paper, we demonstrated that systematic errors in the model or the data can 

often be parameterized and then subjected to the estimation process. While this may lead 

to higher dimensional inverse problems with related stability, non-uniqueness, and 

performance issues, we consider it essential to pay special attention to these types of 

errors as they may severely bias the estimates. Moreover, in hydrogeology, the statistical 

properties of measurement errors are often not well known or poorly represented by the 

common distributional assumptions. The effects of wrong distributional assumptions 

about the errors can be mitigated by providing a more flexible stochastic model and 

estimating its parameters, concurrently with the hydrogeological properties of interest 

and the correction factors for systematic errors. Finally, we also demonstrated the 

effectiveness of a robust estimator to reduce or eliminate the impact of outliers.  

 

While iTOUGH2 provides considerable flexibility in estimating a variety of parameters 

of different types for different purposes, the results of the inversion must first be 

examined using a detailed residual analysis, before the estimated parameter values can be 

further assessed. A number of statistical measures and graphical analysis tools were 

presented; they point towards aspects of the functional and stochastic models that may 

need to be refined. In addition to these statistical analyses, a sound understanding of the 

physics of multiphase flow, of the structure of geologic media, and of measurement 

processes is essential to avoid biased, misleading, or erroneous estimates. 
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The error handling capabilities of iTOUGH2 are currently enhanced in three ways. First, 

joint hydrogeophysical data inversion approaches are investigated (Finsterle and 

Kowalsky, 2008), testing their capability to identify the structure of the subsurface along 

with the parameters that govern multiphase flow and transport through these structures. 

Reducing structural error is expected to also significantly reduce estimation errors. 

Second, the approximation error theory developed by Kaipio and Somersalo (2004) and 

demonstrated for a hydrogeophysical application by Lehikoinen et al. (2010) will be 

implemented to address structural errors when highly simplified models are used during 

the inversion. Third, it is recognized (e.g., Moore and Doherty, 2006) that restricting the 

solution space by the zonation approach and other parameterization schemes may lead to 

calibrated models that have limited predictive power. We therefore examine alternative 

ways to parameterize heterogeneity and other features of the system, and to increase the 

robustness of inversions of highly parameterized models. The ultimate goal is to provide 

a theoretically sound and practically useful framework for integrating experimental 

design, inverse modeling, and uncertainty quantification for the study of multiphase flow 

systems. 
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Figure Captions 

 

Fig. 1.  Synthetic (a) pressures and (b) flow rates; calibration data (symbols) are derived 

from true system behavior (solid lines); initial parameter set leads to significantly 

different response (dash-dotted line). 

 

Fig. 2. Measured versus calculated pressures and flow rates for (a) initial parameter set 

and after (b) the first, (c) second, and (d) final inversion. 
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Table 1 

Error strategy employed to address deviation between test case and standard assumptions  

# Error Description Error Type 
Error Handling 
Strategy 

A Gas leak Systematic, solution-
dependent, nonlinear 
experimental or modeling 
error 

Include into model as 
parameterized process; 
estimate leakage 
parameters 

B Wrong initial saturation Systematic, nonlinear 
modeling error 

Parameterize and estimate 
initial condition 

C Uncertain location of 
pressure sensor 

Systematic experimental 
or modeling error  

Parameterize and estimate 
sensor location 

D Rate-dependent 
measurement errors 

Error in stochastic model; 
heteroscedastic error 
structure 

Estimate Box-Cox 
transformation parameter 

E Autocorrelation in 
pressure data 

Error in stochastic model; 
correlation 

Estimate autoregressive 
coefficient 

F Offset in pressure data Systematic data error Estimate offset in data 

G Outlier in flow-rate data Error in stochastic model Use robust estimator 
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Table 2 

Estimated parameter sets for inversions with different error handling 

Inversion 3 
Parameter True Initial Inversion 1 Inversion 2 

Value p 

log(k [m2]) -11.70 -11.50 -11.71 -11.71 -11.70 0.06 

Porosity  0.30 0.25 0.60 0.27 0.31 0.04 

Init. sat. Sgi  0.35 0.30 0.00 0.29 0.34 0.03 

log(kleak [m
2]) -11.0 -15.0 n/a -15.0 -11.0 0.37 

Shift Ap [Pa] 1325 0 n/a 1260 1300 30 

Location Xp [m] 0.23 0.25 n/a 0.23 0.23 0.02 

AR1 0.5 0.0 n/a n/a 0.28 0.15 

Box-Cox  0.5 1.0 n/a n/a 0.41 0.11 
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Table 3 

Residual analysis for inversions with different error handling   

Statistics Initial Inversion 1 Inversion 2 Inversion 3 
Objective function [-] 58060 7384 441 109 
Fisher model test failed failed failed passed 

Pressure Residuals 
Maximum studentized residual -29.2 13.8 2.8 2.1 
Number of large residuals 59 60 8 1 
Mean 382 1050 0 -0 
Standard deviation 1330 2010 122 95 
Skewness -1.39 -1.02 0.47 0.27 
Kurtosis 0.30 1.19 -0.61 -0.57 
Regression: intercept 18500 3180 2100 298 
  slope 0.83 0.98 0.98 1.0 
  Pearson’s r 0.79 1.00 1.00 1.0 
Runs statistics: Runs R 3 1 17 23 
  E[R] 22 n/a 30 30 
  Residuals are not random n/a not random not random 

Flow-Rate Residuals 
Maximum studentized residual -57.2 7.4 9.4 7.94 
Number of large residuals 48 26 10 3 
Mean 112.8 8.8 1.1 1.4 
Standard deviation 82.8 11.5 9.2 4.4 
Skewness 0.31 -0.14 -2.28 -0.21 
Kurtosis -0.73 1.40 9.93 0.05 
Regression: intercept 8.16 10.2 -2.6 1.0 
  slope 0.49 1.0 0.98 0.99 
  Pearson’s r 0.76 0.99 0.99 1.0 
Runs statistics: Runs R 1 21 39 31 
  E[R] n/a 18 28 28 
  Residuals are n/a random fluctuating random 
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(a)  

(b)  

Fig. 1. Synthetic (a) pressures and (b) flow rates; calibration data (symbols) are derived 

from true system behavior (solid lines); initial parameter set leads to significantly 

different response (dash-dotted line). 
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(a) (b)  

(c) (d)  

 

Fig. 2. Measured versus calculated pressures and flow rates for (a) initial parameter set 

and after (b) the first, (c) second, and (d) final inversion. 
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