A Comparative Study of Different Reconstruction Schemes for a Reconstructed Discontinuous Galerkin Method on Arbitrary Grids

PDF Version Also Available for Download.

Description

A comparative study of different reconstruction schemes for a reconstruction-based discontinuous Galerkin, termed RDG(P1P2) method is performed for compressible flow problems on arbitrary grids. The RDG method is designed to enhance the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution via a reconstruction scheme commonly used in the finite volume method. Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are implemented to obtain a quadratic polynomial representation of the underlying discontinuous Galerkin linear polynomial solution on each cell. These three reconstruction/recovery methods are compared for a variety of compressible flow ... continued below

Creation Information

Luo, Hong; Xiao, Hanping; Nourgaliev, Robert & Cai, Chunpei June 1, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A comparative study of different reconstruction schemes for a reconstruction-based discontinuous Galerkin, termed RDG(P1P2) method is performed for compressible flow problems on arbitrary grids. The RDG method is designed to enhance the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution via a reconstruction scheme commonly used in the finite volume method. Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are implemented to obtain a quadratic polynomial representation of the underlying discontinuous Galerkin linear polynomial solution on each cell. These three reconstruction/recovery methods are compared for a variety of compressible flow problems on arbitrary meshes to access their accuracy and robustness. The numerical results demonstrate that all three reconstruction methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstruction method provides the best performance in terms of both accuracy and robustness.

Source

  • AiAA CFD Conference,Honolulu, Hawaii,06/26/2011,07/01/2011

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-11-22524
  • Grant Number: DE-AC07-05ID14517
  • Office of Scientific & Technical Information Report Number: 1027931
  • Archival Resource Key: ark:/67531/metadc830250

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 22, 2016, 10:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Luo, Hong; Xiao, Hanping; Nourgaliev, Robert & Cai, Chunpei. A Comparative Study of Different Reconstruction Schemes for a Reconstructed Discontinuous Galerkin Method on Arbitrary Grids, article, June 1, 2011; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc830250/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.