Final Report: B595949 - Fast Solvers for Discrete Hodge Laplacians

L. Zikatanov

January 23, 2013
Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The focus of this research proposal was on multilevel algorithms for the solution of discrete Hodge Laplacians and in particular on the construction of coarse spaces and fast solvers for graph Laplacians and related problems.

The subcontractor worked on polynomial smoothers for symmetric positive definite problems [KVZ12]. In this research a defect correction scheme for constructing the sequence of polynomials of best approximation in the uniform norm to 1/x on a finite interval with positive endpoints was derived. As an application, the two-level methods for scalar elliptic partial differential equation (PDE), where the relaxation on the fine grid uses the aforementioned polynomial of best approximation was considered. Based on a new smoothing property of this polynomial smoother that the Subcontractor proved and a proper choice of the coarse spaces, we obtain as a corollary, that the convergence rate of the resulting two-level method is uniform with respect to the parameters, coarsening ratio and variations in the matrix entries for special class of matrices.

In [VZ12] the subcontractor constructed a coarser version of the mixed graph Laplacian operator with the purpose to construct two-level, and by recursion, a multilevel hierarchy of graphs and associated operators.

The subcontractor has also worked on a class of multilevel preconditioners [KLM12] based on approximate block factorization for conforming finite element methods (FEM) employing quadratic trial and test functions. The Subcontractor considers diffusion problems governed by a scalar elliptic partial differential equation (PDE) with a strongly anisotropic coefficient tensor. The proposed method provides a high robustness with respect to non-grid-aligned anisotropy, which is achieved by the interaction of the following components: (i) an additive Schur complement approximation to construct the coarse-grid operator; (ii) a global block (Jacobi or Gauss-Seidel) smoother complementing the coarse-grid correction based on (i); and (iii) utilization of an augmented coarse grid, which enhances the efficiency of the interplay between (i) and (ii); The performed analysis indicates the high robustness of the resulting two-level method.

REFERENCES

