Results for the intrabeam scattering growth
Rates for a bi-gaussian distribution

George Parzen
Results for the intrabeam scattering growth rates for a bi-gaussian distribution.

George Parzen

March 2004
BNL Report C-A/AP No.144

Abstract

This note lists results for the intrabeam scattering growth rates for a bi-gaussian distribution. The derivation of these results will be given in a future note.

Introduction

This note finds results for the intrabeam scattering growth rates for a bi-gaussian distribution.

The bi-gaussian distribution is interesting for studying the possibility of using electron cooling in RHIC. Studies done using the SIMCOOL program [1] indicate that in the presence of electron cooling, the beam distribution changes so that it develops a strong core and a long tail which is not described well by a gaussian, but may be better described by a bi-gaussian. Being able to compute the effects of intrabeam scattering for a bi-gaussian distribution would be useful in computing the effects of electron cooling, which depend critically on the details of the intrabeam scattering.

Gaussian distribution

Before defining the bi-gaussian distribution, the gaussian distribution will be reviewed.
\(N f(x, p) \) gives the number of particles in \(d^3x d^3p \), where \(N \) is the number of particles in a bunch. For a gaussian distribution, \(f(x, p) \) is given by

\[
f(x, p) = \frac{1}{\Gamma} \exp[-S(x, p)]
\]

\(S = S_x + S_y + S_s \)

\[
S_x = \frac{1}{\epsilon_x} \epsilon_x(x_p, p_x / p_0)
\]

\[
x_p = x - D(p - p_0) / p_0
\]

\[
p_x / p_0 = p_x / p_0 - D(p - p_0) / p_0
\]

\[
\epsilon_x(x, x') = \gamma_{xy}x^2 + 2\alpha_{xy}x'x + \beta_{xy}x'^2
\]

\[
S_y = \frac{1}{\epsilon_y} \epsilon_y(y, p_y / p_0)
\]

\[
\epsilon_y(y, y') = \gamma_{yy}y^2 + 2\alpha_{yy}yy' + \beta_{yy}y'^2
\]

\[
S_s = \frac{1}{2\sigma_x^2}(s - s_c)^2 + \frac{1}{2\sigma_p^2}(p - p_0) / p_0
\]

\[
S_s = \frac{1}{\epsilon_s} \epsilon_s(s, p - p_0) / p_0
\]

\[
\beta_s = \sigma_s / \sigma_p
\]

\[
\epsilon_s = 2\sigma_s \sigma_p
\]

\[
S_s = \frac{1}{\epsilon_s} \epsilon_s(s - s_c, (p - p_0) / p_0)
\]

\[
\Gamma = \int d^3x d^3p \exp[-S(x, p)]
\]

\[
\Gamma = \pi^3 x^2 \epsilon_y \epsilon_s p_0^3
\]

\[
\epsilon_i = \langle \epsilon_i(x, p) \rangle \quad i = x, y, s
\]

\(D \) is the horizontal dispersion. \(D' = dD/ds \). \(< > \) indicates an average over all the particles in a bunch.

Growth rates for a Gaussian distribution

In the following, the growth rates are given in the Rest Coordinate System, which is the coordinate system moving along with the bunch. Growth rates
are given for \(< p_i p_j >\). From these one can compute the growth rates for
\(< \epsilon_i >\) using the relations given at the end of this note.

\[
\frac{1}{p_0^2} \frac{d}{dt} < p_i p_j > = \frac{N}{\Gamma} \int d^3 \Delta \exp[-R] C_{ij}
\]

\[
C_{ij} = \frac{2\pi}{p_0^2} \left(\frac{r_0}{2\bar{\beta}c} \right)^2 (|\Delta|^2 \delta_{ij} - 3\Delta_i \Delta_j) 2\bar{\beta}c \ln[1 + (2\bar{\beta}^2 b_{\max}/r_0)^2]
\]

\[
\bar{\beta} = \beta_0 \gamma_0 \Delta/p_0,
\]

\[
r_0 = Z^2 c^2/M c^2
\]

\[
R = R_x + R_y + R_s
\]

\[
R_x = \frac{2}{\beta_x \epsilon_x} \left[\gamma^2 D^2 \Delta_x^2 + (\beta_x \Delta_x - \gamma \bar{D} \Delta_y)^2 \right]/p_0^2
\]

\[
\bar{D} = \beta_x D + \alpha_x D
\]

\[
R_y = \frac{2}{\beta_y \epsilon_y} \left[\gamma^2 \Delta_y^2/p_0^2 \right]
\]

\[
R_s = \frac{2}{\beta_s \epsilon_s} \left[\beta_s^2 \gamma^2 \Delta_s^2/p_0^2 \right]
\]

The integral over \(d^3 \Delta\) is an integral over all possible values of the relative
momentum for any two particles in a bunch. \(\bar{\beta}_0, \gamma_0\) are the beta and gamma
 corressponding to \(p_0\), the central momentum of the bunch in the Laboratory
 Coordinate System. \(\gamma = \gamma_0\)

The above 3-dimensional integral can be reduced to a 2-dimensional
 integral by integrating over \(|\Delta|\) and using \(d^3 \Delta = |\Delta|^2 d|\Delta| \sin \theta d\theta d\phi\).

\[
\frac{1}{p_0^2} \frac{d}{dt} < p_i p_j > = \frac{N}{\Gamma} 2\pi p_0^3 \left(\frac{r_0}{2\gamma_0^2 \beta_0^2} \right)^2 2\beta_0 \gamma_0 c \int \sin \theta d\theta d\phi \ (\delta_{ij} - 3g_i g_j)
\]

\[
\frac{1}{F} \ln \left[\frac{\dot{C}}{C} \right]
\]

\[
g_3 = \cos \theta = g_s
\]

\[
g_1 = \sin \theta \cos \phi = g_x
\]

\[
g_2 = \sin \theta \sin \phi = g_y
\]

\[
\dot{C} = 2\gamma_0^2 \beta_0^2 b_{\max}/r_0
\]

\[
F = R/(|\Delta|/p_0)^2
\]
\[F = F_x + F_y + F_s \]
\[F_x = \frac{2}{\beta_x \epsilon_x} [\gamma^2 D^2 g_x^2 + (\beta_x g_x - \gamma D g_s)^2] \]
\[F_y = \frac{2}{\beta_y \epsilon_y} \beta_y^2 g_y^2 \]
\[F_s = \frac{2}{\beta_s \epsilon_s} \beta_s^2 \gamma^2 g_s^2 \]

(4)

Bi-Gaussian distribution

The bi-gaussian distribution will be assumed to have the form given by the following.

\[N f(x, p) \] gives the number of particles in \(d^3 x d^3 p \), where \(N \) is the number of particles in a bunch. For a bi-gaussian distribution, \(f(x, p) \) is given by

\[f(x, p) = \frac{N_a}{N} \frac{1}{\Gamma_a} e^{\exp[-S_a(x, p)]} + \frac{N_b}{N} \frac{1}{\Gamma_b} e^{\exp[-S_b(x, p)]} \]

(5)

In the first gaussian, to find \(\Gamma_a, S_a \) then in the expressions for \(\Gamma, S \), given above for the gaussian distribution, replace \(\epsilon_x, \epsilon_y, \epsilon_s \) by \(\epsilon_{xa}, \epsilon_{ya}, \epsilon_{sa} \). In the second gaussian, in the expressions for \(\Gamma, S \), replace \(\epsilon_x, \epsilon_y, \epsilon_s \) by \(\epsilon_{xb}, \epsilon_{yb}, \epsilon_{sb} \). In addition, \(N_a + N_b = N \). This bi-gaussian has 7 parameters instead of the three parameters of a gaussian.

Growth rates for a Bi-Gaussian distribution

In the following, the growth rates are given in the Rest Coordinate System, which is the coordinate system moving along with the bunch. Growth rates are given for \(\langle p_i p_j \rangle \). From these one can compute the growth rates for \(\langle \epsilon_i \rangle \) using the relations given at the end of this note.

\[\frac{1}{p_0^2} \frac{d}{dt} \langle p_i p_j \rangle = N \int d^3 \Delta C_{ij} \left[\left(\frac{N_a}{N} \right)^2 \frac{\exp(-R_a)}{\Gamma_a} + \left(\frac{N_b}{N} \right)^2 \frac{\exp(-R_b)}{\Gamma_b} \right] \]

\[+ 2 \frac{N_a N_b}{N^2} \frac{\Gamma_c}{\Gamma_a \Gamma_b} \exp(-T) \]

\[C_{ij} = \frac{2\pi}{p_0^2} (r_0/2\beta^2)^2 (|\Delta|^2 \delta_{ij} - 3 \Delta_i \Delta_j) 2\beta c \ln[1 + (2\beta^2 b_{max}/r_0)^2] \]

4
\[\tilde{\beta} = \beta_0 \gamma_0 \Delta/p_0\]
\[r_0 = Z^2 e^2/M c^2\]
\[\frac{1}{\epsilon_{ic}} = \frac{1}{2} \left(\frac{1}{\epsilon_{ia}} + \frac{1}{\epsilon_{ib}} \right) \quad i = x, y, s\]
\[\frac{1}{\epsilon_{id}} = \frac{1}{2} \left(\frac{1}{\epsilon_{ia}} - \frac{1}{\epsilon_{ib}} \right)\]
\[r_0 = Z^2 e^2/M c^2\]
\[\Gamma_a = \pi^3 \epsilon_{sa} \epsilon_{xa} \epsilon_{ya} p_0^3\]
\[R_a = R_{xa} + R_{ya} + R_{sa}\]
\[R_{xa} = \frac{2}{\beta_x \epsilon_x} \left[\gamma^2 D^2 \Delta_x^2 + (\beta_x \Delta_x - \gamma \tilde{D} \Delta_x)^2 \right]/p_0^2\]
\[\tilde{D} = \beta_x D' + \alpha_x D\]
\[R_{ya} = \frac{2}{\beta_y \epsilon_y} \beta_y^2 \Delta_y^2 / p_0^2\]
\[R_{sa} = \frac{2}{\beta_s \epsilon_s} \beta_s^2 \gamma^2 \Delta_s^2 / p_0^2\]
\[T = T_x + T_y + T_s\]
\[T_x = R_{xc} - R_{xd}\]
\[T_y = R_{yc} - R_{yd}\]
\[T_s = R_{sc} - R_{sd}\]
\[R_{xd} = 2 \left\{ \frac{[-\gamma D \Delta_s]^2}{(\beta_x \epsilon_{xc}^2 / \epsilon_{xc})} \right\} \]
\[R_{yd} = \frac{2 \beta_y}{\epsilon_{yd} / \epsilon_{yc}} \Delta_y^2\]
\[R_{sd} = \frac{2 \beta_s}{\epsilon_{sd} / \epsilon_{sc}} \Delta_s^2\]
\[\Delta_i = \Delta_i / p_0 \quad i = x, y, s\] (6)

\[R_a, R_b, R_c\] are each the same as \(R_a\) given above except that \(\epsilon_{ia}\) are replaced
by $\epsilon_{ia}, \epsilon_{ib}, \epsilon_{ic}$ respectively.

The above 3-dimensional integral can be reduced to a 2-dimensional integral by integrating over $|\Delta|$.

\[
\frac{1}{p_0^2} \frac{d}{dt} < p_i p_j > = 2\pi p_0^3 \left(\frac{r_0}{2\gamma_0^2 \beta_0^2} \right)^2 2\beta_0 \gamma_0 c \int \sin \theta d\theta d\phi (\delta_{ij} - 3g_i g_j)
\]

\[
N\left[\frac{N_a}{N} \right]^2 \frac{1}{\Gamma_a F_a} \ln \frac{\hat{C}}{F_a} + \left(\frac{N_b}{N} \right)^2 \frac{1}{\Gamma_b F_b} \ln \frac{\hat{C}}{F_b} + 2 \frac{N_a N_b}{N^2} \frac{\Gamma_c}{\Gamma_a \Gamma_b} \frac{1}{G} \ln \frac{\hat{C}}{G}
\]

\[
g_3 = \cos \theta = g_s \\
g_1 = \sin \theta \cos \phi = g_x \\
g_2 = \sin \theta \sin \phi = g_y \\
\hat{C} = 2\gamma_0^2 \beta_0^2 b_{\text{max}}/r_0
\]

\[
F_i = R_i/(|\Delta|/p_0)^2 \quad i = a, b, c \\
G = T/(|\Delta|/p_0)^2
\]

(7)

F_a, F_b, F_c are each the same F that was defined for the Gaussian distribution except that the ϵ_i are replaced by $\epsilon_{ia}, \epsilon_{ib}, \epsilon_{ic}$ respectively.

The above results for the growth rates for a bi-gaussian distribution are expressed as an integral which contains 3 terms, each of which is similar to the one term in the results for the gaussian distribution. These three terms may be given a simple interpretation. The first term represents the contribution to the growth rates due to the scattering of the N_a particles of the first gaussian from themselves, the second term the contribution due to the scattering of the N_b particles of the second gaussian from themselves, and the third term the contribution due to the scattering of the N_a particles of the first gaussian from the N_b particles of the second gaussian.
Emittance growth rates

One can compute growth rates for the average emittances, \(<\epsilon_i> \) in the Laboratory Coordinate System, from the growth rates for \(<p_ip_j> \) in the Rest Coordinate System. In the following, \(dt \) is the time interval in the Laboratory System and \(d\tilde{t} \) is the time interval in the Rest System. \(dt = \gamma d\tilde{t} \)

\[
\frac{d}{dt}\epsilon_x = \frac{\beta_x}{\gamma}\frac{d}{d\tilde{t}} <\frac{p_x^2}{p_0^2}> + \frac{D^2 + \ddot{D}^2}{\beta_x}\frac{d}{d\tilde{t}} <\frac{p_x^2}{p_0^2}> - 2\dot{D}\frac{d}{d\tilde{t}} <\frac{p_x p_s}{p_0^2}>
\]

\[
\frac{d}{dt}\epsilon_y = \frac{\beta_y}{\gamma}\frac{d}{d\tilde{t}} <\frac{p_y^2}{p_0^2}>
\]

\[
\frac{d}{dt}\epsilon_s = \beta_s\gamma\frac{d}{d\tilde{t}} <\frac{p_s^2}{p_0^2}>
\]

(8)

I thank I. Ben-Zvi for his comments and encouragement. The results given above were found using the results given in references [2,3,4]. The derivation of the results is given in Ref.[5]

References